Merge tag 'drm-intel-next-2019-01-24' of git://anongit.freedesktop.org/drm/drm-intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / sched_policy.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Anhua Xu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *
27  * Contributors:
28  *    Min He <min.he@intel.com>
29  *    Bing Niu <bing.niu@intel.com>
30  *    Zhi Wang <zhi.a.wang@intel.com>
31  *
32  */
33
34 #include "i915_drv.h"
35 #include "gvt.h"
36
37 static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
38 {
39         enum intel_engine_id i;
40         struct intel_engine_cs *engine;
41
42         for_each_engine(engine, vgpu->gvt->dev_priv, i) {
43                 if (!list_empty(workload_q_head(vgpu, i)))
44                         return true;
45         }
46
47         return false;
48 }
49
50 /* We give 2 seconds higher prio for vGPU during start */
51 #define GVT_SCHED_VGPU_PRI_TIME  2
52
53 struct vgpu_sched_data {
54         struct list_head lru_list;
55         struct intel_vgpu *vgpu;
56         bool active;
57         bool pri_sched;
58         ktime_t pri_time;
59         ktime_t sched_in_time;
60         ktime_t sched_time;
61         ktime_t left_ts;
62         ktime_t allocated_ts;
63
64         struct vgpu_sched_ctl sched_ctl;
65 };
66
67 struct gvt_sched_data {
68         struct intel_gvt *gvt;
69         struct hrtimer timer;
70         unsigned long period;
71         struct list_head lru_runq_head;
72         ktime_t expire_time;
73 };
74
75 static void vgpu_update_timeslice(struct intel_vgpu *vgpu, ktime_t cur_time)
76 {
77         ktime_t delta_ts;
78         struct vgpu_sched_data *vgpu_data;
79
80         if (!vgpu || vgpu == vgpu->gvt->idle_vgpu)
81                 return;
82
83         vgpu_data = vgpu->sched_data;
84         delta_ts = ktime_sub(cur_time, vgpu_data->sched_in_time);
85         vgpu_data->sched_time = ktime_add(vgpu_data->sched_time, delta_ts);
86         vgpu_data->left_ts = ktime_sub(vgpu_data->left_ts, delta_ts);
87         vgpu_data->sched_in_time = cur_time;
88 }
89
90 #define GVT_TS_BALANCE_PERIOD_MS 100
91 #define GVT_TS_BALANCE_STAGE_NUM 10
92
93 static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
94 {
95         struct vgpu_sched_data *vgpu_data;
96         struct list_head *pos;
97         static u64 stage_check;
98         int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;
99
100         /* The timeslice accumulation reset at stage 0, which is
101          * allocated again without adding previous debt.
102          */
103         if (stage == 0) {
104                 int total_weight = 0;
105                 ktime_t fair_timeslice;
106
107                 list_for_each(pos, &sched_data->lru_runq_head) {
108                         vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
109                         total_weight += vgpu_data->sched_ctl.weight;
110                 }
111
112                 list_for_each(pos, &sched_data->lru_runq_head) {
113                         vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
114                         fair_timeslice = ktime_divns(ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS),
115                                                      total_weight) * vgpu_data->sched_ctl.weight;
116
117                         vgpu_data->allocated_ts = fair_timeslice;
118                         vgpu_data->left_ts = vgpu_data->allocated_ts;
119                 }
120         } else {
121                 list_for_each(pos, &sched_data->lru_runq_head) {
122                         vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
123
124                         /* timeslice for next 100ms should add the left/debt
125                          * slice of previous stages.
126                          */
127                         vgpu_data->left_ts += vgpu_data->allocated_ts;
128                 }
129         }
130 }
131
132 static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
133 {
134         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
135         enum intel_engine_id i;
136         struct intel_engine_cs *engine;
137         struct vgpu_sched_data *vgpu_data;
138         ktime_t cur_time;
139
140         /* no need to schedule if next_vgpu is the same with current_vgpu,
141          * let scheduler chose next_vgpu again by setting it to NULL.
142          */
143         if (scheduler->next_vgpu == scheduler->current_vgpu) {
144                 scheduler->next_vgpu = NULL;
145                 return;
146         }
147
148         /*
149          * after the flag is set, workload dispatch thread will
150          * stop dispatching workload for current vgpu
151          */
152         scheduler->need_reschedule = true;
153
154         /* still have uncompleted workload? */
155         for_each_engine(engine, gvt->dev_priv, i) {
156                 if (scheduler->current_workload[i])
157                         return;
158         }
159
160         cur_time = ktime_get();
161         vgpu_update_timeslice(scheduler->current_vgpu, cur_time);
162         vgpu_data = scheduler->next_vgpu->sched_data;
163         vgpu_data->sched_in_time = cur_time;
164
165         /* switch current vgpu */
166         scheduler->current_vgpu = scheduler->next_vgpu;
167         scheduler->next_vgpu = NULL;
168
169         scheduler->need_reschedule = false;
170
171         /* wake up workload dispatch thread */
172         for_each_engine(engine, gvt->dev_priv, i)
173                 wake_up(&scheduler->waitq[i]);
174 }
175
176 static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
177 {
178         struct vgpu_sched_data *vgpu_data;
179         struct intel_vgpu *vgpu = NULL;
180         struct list_head *head = &sched_data->lru_runq_head;
181         struct list_head *pos;
182
183         /* search a vgpu with pending workload */
184         list_for_each(pos, head) {
185
186                 vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
187                 if (!vgpu_has_pending_workload(vgpu_data->vgpu))
188                         continue;
189
190                 if (vgpu_data->pri_sched) {
191                         if (ktime_before(ktime_get(), vgpu_data->pri_time)) {
192                                 vgpu = vgpu_data->vgpu;
193                                 break;
194                         } else
195                                 vgpu_data->pri_sched = false;
196                 }
197
198                 /* Return the vGPU only if it has time slice left */
199                 if (vgpu_data->left_ts > 0) {
200                         vgpu = vgpu_data->vgpu;
201                         break;
202                 }
203         }
204
205         return vgpu;
206 }
207
208 /* in nanosecond */
209 #define GVT_DEFAULT_TIME_SLICE 1000000
210
211 static void tbs_sched_func(struct gvt_sched_data *sched_data)
212 {
213         struct intel_gvt *gvt = sched_data->gvt;
214         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
215         struct vgpu_sched_data *vgpu_data;
216         struct intel_vgpu *vgpu = NULL;
217
218         /* no active vgpu or has already had a target */
219         if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
220                 goto out;
221
222         vgpu = find_busy_vgpu(sched_data);
223         if (vgpu) {
224                 scheduler->next_vgpu = vgpu;
225                 vgpu_data = vgpu->sched_data;
226                 if (!vgpu_data->pri_sched) {
227                         /* Move the last used vGPU to the tail of lru_list */
228                         list_del_init(&vgpu_data->lru_list);
229                         list_add_tail(&vgpu_data->lru_list,
230                                       &sched_data->lru_runq_head);
231                 }
232         } else {
233                 scheduler->next_vgpu = gvt->idle_vgpu;
234         }
235 out:
236         if (scheduler->next_vgpu)
237                 try_to_schedule_next_vgpu(gvt);
238 }
239
240 void intel_gvt_schedule(struct intel_gvt *gvt)
241 {
242         struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
243         ktime_t cur_time;
244
245         mutex_lock(&gvt->sched_lock);
246         cur_time = ktime_get();
247
248         if (test_and_clear_bit(INTEL_GVT_REQUEST_SCHED,
249                                 (void *)&gvt->service_request)) {
250                 if (cur_time >= sched_data->expire_time) {
251                         gvt_balance_timeslice(sched_data);
252                         sched_data->expire_time = ktime_add_ms(
253                                 cur_time, GVT_TS_BALANCE_PERIOD_MS);
254                 }
255         }
256         clear_bit(INTEL_GVT_REQUEST_EVENT_SCHED, (void *)&gvt->service_request);
257
258         vgpu_update_timeslice(gvt->scheduler.current_vgpu, cur_time);
259         tbs_sched_func(sched_data);
260
261         mutex_unlock(&gvt->sched_lock);
262 }
263
264 static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
265 {
266         struct gvt_sched_data *data;
267
268         data = container_of(timer_data, struct gvt_sched_data, timer);
269
270         intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);
271
272         hrtimer_add_expires_ns(&data->timer, data->period);
273
274         return HRTIMER_RESTART;
275 }
276
277 static int tbs_sched_init(struct intel_gvt *gvt)
278 {
279         struct intel_gvt_workload_scheduler *scheduler =
280                 &gvt->scheduler;
281
282         struct gvt_sched_data *data;
283
284         data = kzalloc(sizeof(*data), GFP_KERNEL);
285         if (!data)
286                 return -ENOMEM;
287
288         INIT_LIST_HEAD(&data->lru_runq_head);
289         hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
290         data->timer.function = tbs_timer_fn;
291         data->period = GVT_DEFAULT_TIME_SLICE;
292         data->gvt = gvt;
293
294         scheduler->sched_data = data;
295
296         return 0;
297 }
298
299 static void tbs_sched_clean(struct intel_gvt *gvt)
300 {
301         struct intel_gvt_workload_scheduler *scheduler =
302                 &gvt->scheduler;
303         struct gvt_sched_data *data = scheduler->sched_data;
304
305         hrtimer_cancel(&data->timer);
306
307         kfree(data);
308         scheduler->sched_data = NULL;
309 }
310
311 static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
312 {
313         struct vgpu_sched_data *data;
314
315         data = kzalloc(sizeof(*data), GFP_KERNEL);
316         if (!data)
317                 return -ENOMEM;
318
319         data->sched_ctl.weight = vgpu->sched_ctl.weight;
320         data->vgpu = vgpu;
321         INIT_LIST_HEAD(&data->lru_list);
322
323         vgpu->sched_data = data;
324
325         return 0;
326 }
327
328 static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
329 {
330         struct intel_gvt *gvt = vgpu->gvt;
331         struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
332
333         kfree(vgpu->sched_data);
334         vgpu->sched_data = NULL;
335
336         /* this vgpu id has been removed */
337         if (idr_is_empty(&gvt->vgpu_idr))
338                 hrtimer_cancel(&sched_data->timer);
339 }
340
341 static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
342 {
343         struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
344         struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
345         ktime_t now;
346
347         if (!list_empty(&vgpu_data->lru_list))
348                 return;
349
350         now = ktime_get();
351         vgpu_data->pri_time = ktime_add(now,
352                                         ktime_set(GVT_SCHED_VGPU_PRI_TIME, 0));
353         vgpu_data->pri_sched = true;
354
355         list_add(&vgpu_data->lru_list, &sched_data->lru_runq_head);
356
357         if (!hrtimer_active(&sched_data->timer))
358                 hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
359                         sched_data->period), HRTIMER_MODE_ABS);
360         vgpu_data->active = true;
361 }
362
363 static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
364 {
365         struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
366
367         list_del_init(&vgpu_data->lru_list);
368         vgpu_data->active = false;
369 }
370
371 static struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
372         .init = tbs_sched_init,
373         .clean = tbs_sched_clean,
374         .init_vgpu = tbs_sched_init_vgpu,
375         .clean_vgpu = tbs_sched_clean_vgpu,
376         .start_schedule = tbs_sched_start_schedule,
377         .stop_schedule = tbs_sched_stop_schedule,
378 };
379
380 int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
381 {
382         int ret;
383
384         mutex_lock(&gvt->sched_lock);
385         gvt->scheduler.sched_ops = &tbs_schedule_ops;
386         ret = gvt->scheduler.sched_ops->init(gvt);
387         mutex_unlock(&gvt->sched_lock);
388
389         return ret;
390 }
391
392 void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
393 {
394         mutex_lock(&gvt->sched_lock);
395         gvt->scheduler.sched_ops->clean(gvt);
396         mutex_unlock(&gvt->sched_lock);
397 }
398
399 /* for per-vgpu scheduler policy, there are 2 per-vgpu data:
400  * sched_data, and sched_ctl. We see these 2 data as part of
401  * the global scheduler which are proteced by gvt->sched_lock.
402  * Caller should make their decision if the vgpu_lock should
403  * be hold outside.
404  */
405
406 int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
407 {
408         int ret;
409
410         mutex_lock(&vgpu->gvt->sched_lock);
411         ret = vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
412         mutex_unlock(&vgpu->gvt->sched_lock);
413
414         return ret;
415 }
416
417 void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
418 {
419         mutex_lock(&vgpu->gvt->sched_lock);
420         vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
421         mutex_unlock(&vgpu->gvt->sched_lock);
422 }
423
424 void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
425 {
426         struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
427
428         mutex_lock(&vgpu->gvt->sched_lock);
429         if (!vgpu_data->active) {
430                 gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);
431                 vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
432         }
433         mutex_unlock(&vgpu->gvt->sched_lock);
434 }
435
436 void intel_gvt_kick_schedule(struct intel_gvt *gvt)
437 {
438         mutex_lock(&gvt->sched_lock);
439         intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
440         mutex_unlock(&gvt->sched_lock);
441 }
442
443 void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
444 {
445         struct intel_gvt_workload_scheduler *scheduler =
446                 &vgpu->gvt->scheduler;
447         int ring_id;
448         struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
449         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
450
451         if (!vgpu_data->active)
452                 return;
453
454         gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);
455
456         mutex_lock(&vgpu->gvt->sched_lock);
457         scheduler->sched_ops->stop_schedule(vgpu);
458
459         if (scheduler->next_vgpu == vgpu)
460                 scheduler->next_vgpu = NULL;
461
462         if (scheduler->current_vgpu == vgpu) {
463                 /* stop workload dispatching */
464                 scheduler->need_reschedule = true;
465                 scheduler->current_vgpu = NULL;
466         }
467
468         intel_runtime_pm_get(dev_priv);
469         spin_lock_bh(&scheduler->mmio_context_lock);
470         for (ring_id = 0; ring_id < I915_NUM_ENGINES; ring_id++) {
471                 if (scheduler->engine_owner[ring_id] == vgpu) {
472                         intel_gvt_switch_mmio(vgpu, NULL, ring_id);
473                         scheduler->engine_owner[ring_id] = NULL;
474                 }
475         }
476         spin_unlock_bh(&scheduler->mmio_context_lock);
477         intel_runtime_pm_put_unchecked(dev_priv);
478         mutex_unlock(&vgpu->gvt->sched_lock);
479 }