drm/rect: Round above 1 << 16 upwards to correct scale calculation functions.
[sfrench/cifs-2.6.git] / drivers / gpu / drm / drm_vma_manager.c
1 /*
2  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
3  * Copyright (c) 2012 David Airlie <airlied@linux.ie>
4  * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24
25 #include <drm/drmP.h>
26 #include <drm/drm_mm.h>
27 #include <drm/drm_vma_manager.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/rbtree.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/types.h>
34
35 /**
36  * DOC: vma offset manager
37  *
38  * The vma-manager is responsible to map arbitrary driver-dependent memory
39  * regions into the linear user address-space. It provides offsets to the
40  * caller which can then be used on the address_space of the drm-device. It
41  * takes care to not overlap regions, size them appropriately and to not
42  * confuse mm-core by inconsistent fake vm_pgoff fields.
43  * Drivers shouldn't use this for object placement in VMEM. This manager should
44  * only be used to manage mappings into linear user-space VMs.
45  *
46  * We use drm_mm as backend to manage object allocations. But it is highly
47  * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
48  * speed up offset lookups.
49  *
50  * You must not use multiple offset managers on a single address_space.
51  * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
52  * no longer be linear.
53  *
54  * This offset manager works on page-based addresses. That is, every argument
55  * and return code (with the exception of drm_vma_node_offset_addr()) is given
56  * in number of pages, not number of bytes. That means, object sizes and offsets
57  * must always be page-aligned (as usual).
58  * If you want to get a valid byte-based user-space address for a given offset,
59  * please see drm_vma_node_offset_addr().
60  *
61  * Additionally to offset management, the vma offset manager also handles access
62  * management. For every open-file context that is allowed to access a given
63  * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
64  * open-file with the offset of the node will fail with -EACCES. To revoke
65  * access again, use drm_vma_node_revoke(). However, the caller is responsible
66  * for destroying already existing mappings, if required.
67  */
68
69 /**
70  * drm_vma_offset_manager_init - Initialize new offset-manager
71  * @mgr: Manager object
72  * @page_offset: Offset of available memory area (page-based)
73  * @size: Size of available address space range (page-based)
74  *
75  * Initialize a new offset-manager. The offset and area size available for the
76  * manager are given as @page_offset and @size. Both are interpreted as
77  * page-numbers, not bytes.
78  *
79  * Adding/removing nodes from the manager is locked internally and protected
80  * against concurrent access. However, node allocation and destruction is left
81  * for the caller. While calling into the vma-manager, a given node must
82  * always be guaranteed to be referenced.
83  */
84 void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
85                                  unsigned long page_offset, unsigned long size)
86 {
87         rwlock_init(&mgr->vm_lock);
88         drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
89 }
90 EXPORT_SYMBOL(drm_vma_offset_manager_init);
91
92 /**
93  * drm_vma_offset_manager_destroy() - Destroy offset manager
94  * @mgr: Manager object
95  *
96  * Destroy an object manager which was previously created via
97  * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
98  * before destroying the manager. Otherwise, drm_mm will refuse to free the
99  * requested resources.
100  *
101  * The manager must not be accessed after this function is called.
102  */
103 void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
104 {
105         /* take the lock to protect against buggy drivers */
106         write_lock(&mgr->vm_lock);
107         drm_mm_takedown(&mgr->vm_addr_space_mm);
108         write_unlock(&mgr->vm_lock);
109 }
110 EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
111
112 /**
113  * drm_vma_offset_lookup_locked() - Find node in offset space
114  * @mgr: Manager object
115  * @start: Start address for object (page-based)
116  * @pages: Size of object (page-based)
117  *
118  * Find a node given a start address and object size. This returns the _best_
119  * match for the given node. That is, @start may point somewhere into a valid
120  * region and the given node will be returned, as long as the node spans the
121  * whole requested area (given the size in number of pages as @pages).
122  *
123  * Note that before lookup the vma offset manager lookup lock must be acquired
124  * with drm_vma_offset_lock_lookup(). See there for an example. This can then be
125  * used to implement weakly referenced lookups using kref_get_unless_zero().
126  *
127  * Example:
128  *
129  * ::
130  *
131  *     drm_vma_offset_lock_lookup(mgr);
132  *     node = drm_vma_offset_lookup_locked(mgr);
133  *     if (node)
134  *         kref_get_unless_zero(container_of(node, sth, entr));
135  *     drm_vma_offset_unlock_lookup(mgr);
136  *
137  * RETURNS:
138  * Returns NULL if no suitable node can be found. Otherwise, the best match
139  * is returned. It's the caller's responsibility to make sure the node doesn't
140  * get destroyed before the caller can access it.
141  */
142 struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
143                                                          unsigned long start,
144                                                          unsigned long pages)
145 {
146         struct drm_mm_node *node, *best;
147         struct rb_node *iter;
148         unsigned long offset;
149
150         iter = mgr->vm_addr_space_mm.interval_tree.rb_root.rb_node;
151         best = NULL;
152
153         while (likely(iter)) {
154                 node = rb_entry(iter, struct drm_mm_node, rb);
155                 offset = node->start;
156                 if (start >= offset) {
157                         iter = iter->rb_right;
158                         best = node;
159                         if (start == offset)
160                                 break;
161                 } else {
162                         iter = iter->rb_left;
163                 }
164         }
165
166         /* verify that the node spans the requested area */
167         if (best) {
168                 offset = best->start + best->size;
169                 if (offset < start + pages)
170                         best = NULL;
171         }
172
173         if (!best)
174                 return NULL;
175
176         return container_of(best, struct drm_vma_offset_node, vm_node);
177 }
178 EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
179
180 /**
181  * drm_vma_offset_add() - Add offset node to manager
182  * @mgr: Manager object
183  * @node: Node to be added
184  * @pages: Allocation size visible to user-space (in number of pages)
185  *
186  * Add a node to the offset-manager. If the node was already added, this does
187  * nothing and return 0. @pages is the size of the object given in number of
188  * pages.
189  * After this call succeeds, you can access the offset of the node until it
190  * is removed again.
191  *
192  * If this call fails, it is safe to retry the operation or call
193  * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
194  * case.
195  *
196  * @pages is not required to be the same size as the underlying memory object
197  * that you want to map. It only limits the size that user-space can map into
198  * their address space.
199  *
200  * RETURNS:
201  * 0 on success, negative error code on failure.
202  */
203 int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
204                        struct drm_vma_offset_node *node, unsigned long pages)
205 {
206         int ret = 0;
207
208         write_lock(&mgr->vm_lock);
209
210         if (!drm_mm_node_allocated(&node->vm_node))
211                 ret = drm_mm_insert_node(&mgr->vm_addr_space_mm,
212                                          &node->vm_node, pages);
213
214         write_unlock(&mgr->vm_lock);
215
216         return ret;
217 }
218 EXPORT_SYMBOL(drm_vma_offset_add);
219
220 /**
221  * drm_vma_offset_remove() - Remove offset node from manager
222  * @mgr: Manager object
223  * @node: Node to be removed
224  *
225  * Remove a node from the offset manager. If the node wasn't added before, this
226  * does nothing. After this call returns, the offset and size will be 0 until a
227  * new offset is allocated via drm_vma_offset_add() again. Helper functions like
228  * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
229  * offset is allocated.
230  */
231 void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
232                            struct drm_vma_offset_node *node)
233 {
234         write_lock(&mgr->vm_lock);
235
236         if (drm_mm_node_allocated(&node->vm_node)) {
237                 drm_mm_remove_node(&node->vm_node);
238                 memset(&node->vm_node, 0, sizeof(node->vm_node));
239         }
240
241         write_unlock(&mgr->vm_lock);
242 }
243 EXPORT_SYMBOL(drm_vma_offset_remove);
244
245 /**
246  * drm_vma_node_allow - Add open-file to list of allowed users
247  * @node: Node to modify
248  * @tag: Tag of file to remove
249  *
250  * Add @tag to the list of allowed open-files for this node. If @tag is
251  * already on this list, the ref-count is incremented.
252  *
253  * The list of allowed-users is preserved across drm_vma_offset_add() and
254  * drm_vma_offset_remove() calls. You may even call it if the node is currently
255  * not added to any offset-manager.
256  *
257  * You must remove all open-files the same number of times as you added them
258  * before destroying the node. Otherwise, you will leak memory.
259  *
260  * This is locked against concurrent access internally.
261  *
262  * RETURNS:
263  * 0 on success, negative error code on internal failure (out-of-mem)
264  */
265 int drm_vma_node_allow(struct drm_vma_offset_node *node, struct drm_file *tag)
266 {
267         struct rb_node **iter;
268         struct rb_node *parent = NULL;
269         struct drm_vma_offset_file *new, *entry;
270         int ret = 0;
271
272         /* Preallocate entry to avoid atomic allocations below. It is quite
273          * unlikely that an open-file is added twice to a single node so we
274          * don't optimize for this case. OOM is checked below only if the entry
275          * is actually used. */
276         new = kmalloc(sizeof(*entry), GFP_KERNEL);
277
278         write_lock(&node->vm_lock);
279
280         iter = &node->vm_files.rb_node;
281
282         while (likely(*iter)) {
283                 parent = *iter;
284                 entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
285
286                 if (tag == entry->vm_tag) {
287                         entry->vm_count++;
288                         goto unlock;
289                 } else if (tag > entry->vm_tag) {
290                         iter = &(*iter)->rb_right;
291                 } else {
292                         iter = &(*iter)->rb_left;
293                 }
294         }
295
296         if (!new) {
297                 ret = -ENOMEM;
298                 goto unlock;
299         }
300
301         new->vm_tag = tag;
302         new->vm_count = 1;
303         rb_link_node(&new->vm_rb, parent, iter);
304         rb_insert_color(&new->vm_rb, &node->vm_files);
305         new = NULL;
306
307 unlock:
308         write_unlock(&node->vm_lock);
309         kfree(new);
310         return ret;
311 }
312 EXPORT_SYMBOL(drm_vma_node_allow);
313
314 /**
315  * drm_vma_node_revoke - Remove open-file from list of allowed users
316  * @node: Node to modify
317  * @tag: Tag of file to remove
318  *
319  * Decrement the ref-count of @tag in the list of allowed open-files on @node.
320  * If the ref-count drops to zero, remove @tag from the list. You must call
321  * this once for every drm_vma_node_allow() on @tag.
322  *
323  * This is locked against concurrent access internally.
324  *
325  * If @tag is not on the list, nothing is done.
326  */
327 void drm_vma_node_revoke(struct drm_vma_offset_node *node,
328                          struct drm_file *tag)
329 {
330         struct drm_vma_offset_file *entry;
331         struct rb_node *iter;
332
333         write_lock(&node->vm_lock);
334
335         iter = node->vm_files.rb_node;
336         while (likely(iter)) {
337                 entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
338                 if (tag == entry->vm_tag) {
339                         if (!--entry->vm_count) {
340                                 rb_erase(&entry->vm_rb, &node->vm_files);
341                                 kfree(entry);
342                         }
343                         break;
344                 } else if (tag > entry->vm_tag) {
345                         iter = iter->rb_right;
346                 } else {
347                         iter = iter->rb_left;
348                 }
349         }
350
351         write_unlock(&node->vm_lock);
352 }
353 EXPORT_SYMBOL(drm_vma_node_revoke);
354
355 /**
356  * drm_vma_node_is_allowed - Check whether an open-file is granted access
357  * @node: Node to check
358  * @tag: Tag of file to remove
359  *
360  * Search the list in @node whether @tag is currently on the list of allowed
361  * open-files (see drm_vma_node_allow()).
362  *
363  * This is locked against concurrent access internally.
364  *
365  * RETURNS:
366  * true iff @filp is on the list
367  */
368 bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
369                              struct drm_file *tag)
370 {
371         struct drm_vma_offset_file *entry;
372         struct rb_node *iter;
373
374         read_lock(&node->vm_lock);
375
376         iter = node->vm_files.rb_node;
377         while (likely(iter)) {
378                 entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
379                 if (tag == entry->vm_tag)
380                         break;
381                 else if (tag > entry->vm_tag)
382                         iter = iter->rb_right;
383                 else
384                         iter = iter->rb_left;
385         }
386
387         read_unlock(&node->vm_lock);
388
389         return iter;
390 }
391 EXPORT_SYMBOL(drm_vma_node_is_allowed);