Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / display / dc / core / dc_resource.c
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 #include "dm_services.h"
26
27 #include "resource.h"
28 #include "include/irq_service_interface.h"
29 #include "link_encoder.h"
30 #include "stream_encoder.h"
31 #include "opp.h"
32 #include "timing_generator.h"
33 #include "transform.h"
34 #include "dpp.h"
35 #include "core_types.h"
36 #include "set_mode_types.h"
37 #include "virtual/virtual_stream_encoder.h"
38
39 #include "dce80/dce80_resource.h"
40 #include "dce100/dce100_resource.h"
41 #include "dce110/dce110_resource.h"
42 #include "dce112/dce112_resource.h"
43 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
44 #include "dcn10/dcn10_resource.h"
45 #endif
46 #include "dce120/dce120_resource.h"
47
48 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
49 {
50         enum dce_version dc_version = DCE_VERSION_UNKNOWN;
51         switch (asic_id.chip_family) {
52
53         case FAMILY_CI:
54                 dc_version = DCE_VERSION_8_0;
55                 break;
56         case FAMILY_KV:
57                 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
58                     ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
59                     ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
60                         dc_version = DCE_VERSION_8_3;
61                 else
62                         dc_version = DCE_VERSION_8_1;
63                 break;
64         case FAMILY_CZ:
65                 dc_version = DCE_VERSION_11_0;
66                 break;
67
68         case FAMILY_VI:
69                 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
70                                 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
71                         dc_version = DCE_VERSION_10_0;
72                         break;
73                 }
74                 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
75                                 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
76                                 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
77                         dc_version = DCE_VERSION_11_2;
78                 }
79                 break;
80         case FAMILY_AI:
81                 dc_version = DCE_VERSION_12_0;
82                 break;
83 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
84         case FAMILY_RV:
85                 dc_version = DCN_VERSION_1_0;
86                 break;
87 #endif
88         default:
89                 dc_version = DCE_VERSION_UNKNOWN;
90                 break;
91         }
92         return dc_version;
93 }
94
95 struct resource_pool *dc_create_resource_pool(
96                                 struct dc  *dc,
97                                 int num_virtual_links,
98                                 enum dce_version dc_version,
99                                 struct hw_asic_id asic_id)
100 {
101         struct resource_pool *res_pool = NULL;
102
103         switch (dc_version) {
104         case DCE_VERSION_8_0:
105                 res_pool = dce80_create_resource_pool(
106                         num_virtual_links, dc);
107                 break;
108         case DCE_VERSION_8_1:
109                 res_pool = dce81_create_resource_pool(
110                         num_virtual_links, dc);
111                 break;
112         case DCE_VERSION_8_3:
113                 res_pool = dce83_create_resource_pool(
114                         num_virtual_links, dc);
115                 break;
116         case DCE_VERSION_10_0:
117                 res_pool = dce100_create_resource_pool(
118                                 num_virtual_links, dc);
119                 break;
120         case DCE_VERSION_11_0:
121                 res_pool = dce110_create_resource_pool(
122                         num_virtual_links, dc, asic_id);
123                 break;
124         case DCE_VERSION_11_2:
125                 res_pool = dce112_create_resource_pool(
126                         num_virtual_links, dc);
127                 break;
128         case DCE_VERSION_12_0:
129                 res_pool = dce120_create_resource_pool(
130                         num_virtual_links, dc);
131                 break;
132
133 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
134         case DCN_VERSION_1_0:
135                 res_pool = dcn10_create_resource_pool(
136                                 num_virtual_links, dc);
137                 break;
138 #endif
139
140
141         default:
142                 break;
143         }
144         if (res_pool != NULL) {
145                 struct dc_firmware_info fw_info = { { 0 } };
146
147                 if (dc->ctx->dc_bios->funcs->get_firmware_info(
148                                 dc->ctx->dc_bios, &fw_info) == BP_RESULT_OK) {
149                                 res_pool->ref_clock_inKhz = fw_info.pll_info.crystal_frequency;
150                         } else
151                                 ASSERT_CRITICAL(false);
152         }
153
154         return res_pool;
155 }
156
157 void dc_destroy_resource_pool(struct dc  *dc)
158 {
159         if (dc) {
160                 if (dc->res_pool)
161                         dc->res_pool->funcs->destroy(&dc->res_pool);
162
163                 kfree(dc->hwseq);
164         }
165 }
166
167 static void update_num_audio(
168         const struct resource_straps *straps,
169         unsigned int *num_audio,
170         struct audio_support *aud_support)
171 {
172         aud_support->dp_audio = true;
173         aud_support->hdmi_audio_native = false;
174         aud_support->hdmi_audio_on_dongle = false;
175
176         if (straps->hdmi_disable == 0) {
177                 if (straps->dc_pinstraps_audio & 0x2) {
178                         aud_support->hdmi_audio_on_dongle = true;
179                         aud_support->hdmi_audio_native = true;
180                 }
181         }
182
183         switch (straps->audio_stream_number) {
184         case 0: /* multi streams supported */
185                 break;
186         case 1: /* multi streams not supported */
187                 *num_audio = 1;
188                 break;
189         default:
190                 DC_ERR("DC: unexpected audio fuse!\n");
191         }
192 }
193
194 bool resource_construct(
195         unsigned int num_virtual_links,
196         struct dc  *dc,
197         struct resource_pool *pool,
198         const struct resource_create_funcs *create_funcs)
199 {
200         struct dc_context *ctx = dc->ctx;
201         const struct resource_caps *caps = pool->res_cap;
202         int i;
203         unsigned int num_audio = caps->num_audio;
204         struct resource_straps straps = {0};
205
206         if (create_funcs->read_dce_straps)
207                 create_funcs->read_dce_straps(dc->ctx, &straps);
208
209         pool->audio_count = 0;
210         if (create_funcs->create_audio) {
211                 /* find the total number of streams available via the
212                  * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
213                  * registers (one for each pin) starting from pin 1
214                  * up to the max number of audio pins.
215                  * We stop on the first pin where
216                  * PORT_CONNECTIVITY == 1 (as instructed by HW team).
217                  */
218                 update_num_audio(&straps, &num_audio, &pool->audio_support);
219                 for (i = 0; i < pool->pipe_count && i < num_audio; i++) {
220                         struct audio *aud = create_funcs->create_audio(ctx, i);
221
222                         if (aud == NULL) {
223                                 DC_ERR("DC: failed to create audio!\n");
224                                 return false;
225                         }
226
227                         if (!aud->funcs->endpoint_valid(aud)) {
228                                 aud->funcs->destroy(&aud);
229                                 break;
230                         }
231
232                         pool->audios[i] = aud;
233                         pool->audio_count++;
234                 }
235         }
236
237         pool->stream_enc_count = 0;
238         if (create_funcs->create_stream_encoder) {
239                 for (i = 0; i < caps->num_stream_encoder; i++) {
240                         pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
241                         if (pool->stream_enc[i] == NULL)
242                                 DC_ERR("DC: failed to create stream_encoder!\n");
243                         pool->stream_enc_count++;
244                 }
245         }
246         dc->caps.dynamic_audio = false;
247         if (pool->audio_count < pool->stream_enc_count) {
248                 dc->caps.dynamic_audio = true;
249         }
250         for (i = 0; i < num_virtual_links; i++) {
251                 pool->stream_enc[pool->stream_enc_count] =
252                         virtual_stream_encoder_create(
253                                         ctx, ctx->dc_bios);
254                 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
255                         DC_ERR("DC: failed to create stream_encoder!\n");
256                         return false;
257                 }
258                 pool->stream_enc_count++;
259         }
260
261         dc->hwseq = create_funcs->create_hwseq(ctx);
262
263         return true;
264 }
265
266
267 void resource_unreference_clock_source(
268                 struct resource_context *res_ctx,
269                 const struct resource_pool *pool,
270                 struct clock_source *clock_source)
271 {
272         int i;
273
274         for (i = 0; i < pool->clk_src_count; i++) {
275                 if (pool->clock_sources[i] != clock_source)
276                         continue;
277
278                 res_ctx->clock_source_ref_count[i]--;
279
280                 break;
281         }
282
283         if (pool->dp_clock_source == clock_source)
284                 res_ctx->dp_clock_source_ref_count--;
285 }
286
287 void resource_reference_clock_source(
288                 struct resource_context *res_ctx,
289                 const struct resource_pool *pool,
290                 struct clock_source *clock_source)
291 {
292         int i;
293         for (i = 0; i < pool->clk_src_count; i++) {
294                 if (pool->clock_sources[i] != clock_source)
295                         continue;
296
297                 res_ctx->clock_source_ref_count[i]++;
298                 break;
299         }
300
301         if (pool->dp_clock_source == clock_source)
302                 res_ctx->dp_clock_source_ref_count++;
303 }
304
305 bool resource_are_streams_timing_synchronizable(
306         struct dc_stream_state *stream1,
307         struct dc_stream_state *stream2)
308 {
309         if (stream1->timing.h_total != stream2->timing.h_total)
310                 return false;
311
312         if (stream1->timing.v_total != stream2->timing.v_total)
313                 return false;
314
315         if (stream1->timing.h_addressable
316                                 != stream2->timing.h_addressable)
317                 return false;
318
319         if (stream1->timing.v_addressable
320                                 != stream2->timing.v_addressable)
321                 return false;
322
323         if (stream1->timing.pix_clk_khz
324                                 != stream2->timing.pix_clk_khz)
325                 return false;
326
327         if (stream1->phy_pix_clk != stream2->phy_pix_clk
328                         && (!dc_is_dp_signal(stream1->signal)
329                         || !dc_is_dp_signal(stream2->signal)))
330                 return false;
331
332         return true;
333 }
334
335 static bool is_sharable_clk_src(
336         const struct pipe_ctx *pipe_with_clk_src,
337         const struct pipe_ctx *pipe)
338 {
339         if (pipe_with_clk_src->clock_source == NULL)
340                 return false;
341
342         if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
343                 return false;
344
345         if (dc_is_dp_signal(pipe_with_clk_src->stream->signal))
346                 return false;
347
348         if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
349                         && dc_is_dvi_signal(pipe->stream->signal))
350                 return false;
351
352         if (dc_is_hdmi_signal(pipe->stream->signal)
353                         && dc_is_dvi_signal(pipe_with_clk_src->stream->signal))
354                 return false;
355
356         if (!resource_are_streams_timing_synchronizable(
357                         pipe_with_clk_src->stream, pipe->stream))
358                 return false;
359
360         return true;
361 }
362
363 struct clock_source *resource_find_used_clk_src_for_sharing(
364                                         struct resource_context *res_ctx,
365                                         struct pipe_ctx *pipe_ctx)
366 {
367         int i;
368
369         for (i = 0; i < MAX_PIPES; i++) {
370                 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
371                         return res_ctx->pipe_ctx[i].clock_source;
372         }
373
374         return NULL;
375 }
376
377 static enum pixel_format convert_pixel_format_to_dalsurface(
378                 enum surface_pixel_format surface_pixel_format)
379 {
380         enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
381
382         switch (surface_pixel_format) {
383         case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
384                 dal_pixel_format = PIXEL_FORMAT_INDEX8;
385                 break;
386         case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
387                 dal_pixel_format = PIXEL_FORMAT_RGB565;
388                 break;
389         case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
390                 dal_pixel_format = PIXEL_FORMAT_RGB565;
391                 break;
392         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
393                 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
394                 break;
395         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
396                 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
397                 break;
398         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
399                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
400                 break;
401         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
402                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
403                 break;
404         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
405                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
406                 break;
407         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
408         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
409                 dal_pixel_format = PIXEL_FORMAT_FP16;
410                 break;
411         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
412         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
413                 dal_pixel_format = PIXEL_FORMAT_420BPP8;
414                 break;
415         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
416         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
417                 dal_pixel_format = PIXEL_FORMAT_420BPP10;
418                 break;
419         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
420         default:
421                 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
422                 break;
423         }
424         return dal_pixel_format;
425 }
426
427 static void rect_swap_helper(struct rect *rect)
428 {
429         uint32_t temp = 0;
430
431         temp = rect->height;
432         rect->height = rect->width;
433         rect->width = temp;
434
435         temp = rect->x;
436         rect->x = rect->y;
437         rect->y = temp;
438 }
439
440 static void calculate_viewport(struct pipe_ctx *pipe_ctx)
441 {
442         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
443         const struct dc_stream_state *stream = pipe_ctx->stream;
444         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
445         struct rect surf_src = plane_state->src_rect;
446         struct rect clip = { 0 };
447         int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
448                         || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
449         bool pri_split = pipe_ctx->bottom_pipe &&
450                         pipe_ctx->bottom_pipe->plane_state == pipe_ctx->plane_state;
451         bool sec_split = pipe_ctx->top_pipe &&
452                         pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
453
454         if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE ||
455                 stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
456                 pri_split = false;
457                 sec_split = false;
458         }
459
460         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
461                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
462                 rect_swap_helper(&surf_src);
463
464         /* The actual clip is an intersection between stream
465          * source and surface clip
466          */
467         clip.x = stream->src.x > plane_state->clip_rect.x ?
468                         stream->src.x : plane_state->clip_rect.x;
469
470         clip.width = stream->src.x + stream->src.width <
471                         plane_state->clip_rect.x + plane_state->clip_rect.width ?
472                         stream->src.x + stream->src.width - clip.x :
473                         plane_state->clip_rect.x + plane_state->clip_rect.width - clip.x ;
474
475         clip.y = stream->src.y > plane_state->clip_rect.y ?
476                         stream->src.y : plane_state->clip_rect.y;
477
478         clip.height = stream->src.y + stream->src.height <
479                         plane_state->clip_rect.y + plane_state->clip_rect.height ?
480                         stream->src.y + stream->src.height - clip.y :
481                         plane_state->clip_rect.y + plane_state->clip_rect.height - clip.y ;
482
483         /* offset = surf_src.ofs + (clip.ofs - surface->dst_rect.ofs) * scl_ratio
484          * num_pixels = clip.num_pix * scl_ratio
485          */
486         data->viewport.x = surf_src.x + (clip.x - plane_state->dst_rect.x) *
487                         surf_src.width / plane_state->dst_rect.width;
488         data->viewport.width = clip.width *
489                         surf_src.width / plane_state->dst_rect.width;
490
491         data->viewport.y = surf_src.y + (clip.y - plane_state->dst_rect.y) *
492                         surf_src.height / plane_state->dst_rect.height;
493         data->viewport.height = clip.height *
494                         surf_src.height / plane_state->dst_rect.height;
495
496         /* Round down, compensate in init */
497         data->viewport_c.x = data->viewport.x / vpc_div;
498         data->viewport_c.y = data->viewport.y / vpc_div;
499         data->inits.h_c = (data->viewport.x % vpc_div) != 0 ?
500                         dal_fixed31_32_half : dal_fixed31_32_zero;
501         data->inits.v_c = (data->viewport.y % vpc_div) != 0 ?
502                         dal_fixed31_32_half : dal_fixed31_32_zero;
503         /* Round up, assume original video size always even dimensions */
504         data->viewport_c.width = (data->viewport.width + vpc_div - 1) / vpc_div;
505         data->viewport_c.height = (data->viewport.height + vpc_div - 1) / vpc_div;
506
507         /* Handle hsplit */
508         if (pri_split || sec_split) {
509                 /* HMirror XOR Secondary_pipe XOR Rotation_180 */
510                 bool right_view = (sec_split != plane_state->horizontal_mirror) !=
511                                         (plane_state->rotation == ROTATION_ANGLE_180);
512
513                 if (plane_state->rotation == ROTATION_ANGLE_90
514                                 || plane_state->rotation == ROTATION_ANGLE_270)
515                         /* Secondary_pipe XOR Rotation_270 */
516                         right_view = (plane_state->rotation == ROTATION_ANGLE_270) != sec_split;
517
518                 if (right_view) {
519                         data->viewport.x +=  data->viewport.width / 2;
520                         data->viewport_c.x +=  data->viewport_c.width / 2;
521                         /* Ceil offset pipe */
522                         data->viewport.width = (data->viewport.width + 1) / 2;
523                         data->viewport_c.width = (data->viewport_c.width + 1) / 2;
524                 } else {
525                         data->viewport.width /= 2;
526                         data->viewport_c.width /= 2;
527                 }
528         }
529
530         if (plane_state->rotation == ROTATION_ANGLE_90 ||
531                         plane_state->rotation == ROTATION_ANGLE_270) {
532                 rect_swap_helper(&data->viewport_c);
533                 rect_swap_helper(&data->viewport);
534         }
535 }
536
537 static void calculate_recout(struct pipe_ctx *pipe_ctx, struct view *recout_skip)
538 {
539         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
540         const struct dc_stream_state *stream = pipe_ctx->stream;
541         struct rect surf_src = plane_state->src_rect;
542         struct rect surf_clip = plane_state->clip_rect;
543         int recout_full_x, recout_full_y;
544
545         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
546                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
547                 rect_swap_helper(&surf_src);
548
549         pipe_ctx->plane_res.scl_data.recout.x = stream->dst.x;
550         if (stream->src.x < surf_clip.x)
551                 pipe_ctx->plane_res.scl_data.recout.x += (surf_clip.x
552                         - stream->src.x) * stream->dst.width
553                                                 / stream->src.width;
554
555         pipe_ctx->plane_res.scl_data.recout.width = surf_clip.width *
556                         stream->dst.width / stream->src.width;
557         if (pipe_ctx->plane_res.scl_data.recout.width + pipe_ctx->plane_res.scl_data.recout.x >
558                         stream->dst.x + stream->dst.width)
559                 pipe_ctx->plane_res.scl_data.recout.width =
560                         stream->dst.x + stream->dst.width
561                                                 - pipe_ctx->plane_res.scl_data.recout.x;
562
563         pipe_ctx->plane_res.scl_data.recout.y = stream->dst.y;
564         if (stream->src.y < surf_clip.y)
565                 pipe_ctx->plane_res.scl_data.recout.y += (surf_clip.y
566                         - stream->src.y) * stream->dst.height
567                                                 / stream->src.height;
568
569         pipe_ctx->plane_res.scl_data.recout.height = surf_clip.height *
570                         stream->dst.height / stream->src.height;
571         if (pipe_ctx->plane_res.scl_data.recout.height + pipe_ctx->plane_res.scl_data.recout.y >
572                         stream->dst.y + stream->dst.height)
573                 pipe_ctx->plane_res.scl_data.recout.height =
574                         stream->dst.y + stream->dst.height
575                                                 - pipe_ctx->plane_res.scl_data.recout.y;
576
577         /* Handle h & vsplit */
578         if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state ==
579                 pipe_ctx->plane_state) {
580                 if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
581                         pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height / 2;
582                         /* Floor primary pipe, ceil 2ndary pipe */
583                         pipe_ctx->plane_res.scl_data.recout.height = (pipe_ctx->plane_res.scl_data.recout.height + 1) / 2;
584                 } else {
585                         pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width / 2;
586                         pipe_ctx->plane_res.scl_data.recout.width = (pipe_ctx->plane_res.scl_data.recout.width + 1) / 2;
587                 }
588         } else if (pipe_ctx->bottom_pipe &&
589                         pipe_ctx->bottom_pipe->plane_state == pipe_ctx->plane_state) {
590                 if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
591                         pipe_ctx->plane_res.scl_data.recout.height /= 2;
592                 else
593                         pipe_ctx->plane_res.scl_data.recout.width /= 2;
594         }
595
596         /* Unclipped recout offset = stream dst offset + ((surf dst offset - stream surf_src offset)
597          *                              * 1/ stream scaling ratio) - (surf surf_src offset * 1/ full scl
598          *                              ratio)
599          */
600         recout_full_x = stream->dst.x + (plane_state->dst_rect.x -  stream->src.x)
601                                         * stream->dst.width / stream->src.width -
602                         surf_src.x * plane_state->dst_rect.width / surf_src.width
603                                         * stream->dst.width / stream->src.width;
604         recout_full_y = stream->dst.y + (plane_state->dst_rect.y -  stream->src.y)
605                                         * stream->dst.height / stream->src.height -
606                         surf_src.y * plane_state->dst_rect.height / surf_src.height
607                                         * stream->dst.height / stream->src.height;
608
609         recout_skip->width = pipe_ctx->plane_res.scl_data.recout.x - recout_full_x;
610         recout_skip->height = pipe_ctx->plane_res.scl_data.recout.y - recout_full_y;
611 }
612
613 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
614 {
615         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
616         const struct dc_stream_state *stream = pipe_ctx->stream;
617         struct rect surf_src = plane_state->src_rect;
618         const int in_w = stream->src.width;
619         const int in_h = stream->src.height;
620         const int out_w = stream->dst.width;
621         const int out_h = stream->dst.height;
622
623         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
624                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
625                 rect_swap_helper(&surf_src);
626
627         pipe_ctx->plane_res.scl_data.ratios.horz = dal_fixed31_32_from_fraction(
628                                         surf_src.width,
629                                         plane_state->dst_rect.width);
630         pipe_ctx->plane_res.scl_data.ratios.vert = dal_fixed31_32_from_fraction(
631                                         surf_src.height,
632                                         plane_state->dst_rect.height);
633
634         if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
635                 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
636         else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
637                 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
638
639         pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
640                 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
641         pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
642                 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
643
644         pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
645         pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
646
647         if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
648                         || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
649                 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
650                 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
651         }
652 }
653
654 static void calculate_inits_and_adj_vp(struct pipe_ctx *pipe_ctx, struct view *recout_skip)
655 {
656         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
657         struct rect src = pipe_ctx->plane_state->src_rect;
658         int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
659                         || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
660
661
662         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
663                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
664                 rect_swap_helper(&src);
665                 rect_swap_helper(&data->viewport_c);
666                 rect_swap_helper(&data->viewport);
667         }
668
669         /*
670          * Init calculated according to formula:
671          *      init = (scaling_ratio + number_of_taps + 1) / 2
672          *      init_bot = init + scaling_ratio
673          *      init_c = init + truncated_vp_c_offset(from calculate viewport)
674          */
675         data->inits.h = dal_fixed31_32_div_int(
676                         dal_fixed31_32_add_int(data->ratios.horz, data->taps.h_taps + 1), 2);
677
678         data->inits.h_c = dal_fixed31_32_add(data->inits.h_c, dal_fixed31_32_div_int(
679                         dal_fixed31_32_add_int(data->ratios.horz_c, data->taps.h_taps_c + 1), 2));
680
681         data->inits.v = dal_fixed31_32_div_int(
682                         dal_fixed31_32_add_int(data->ratios.vert, data->taps.v_taps + 1), 2);
683
684         data->inits.v_c = dal_fixed31_32_add(data->inits.v_c, dal_fixed31_32_div_int(
685                         dal_fixed31_32_add_int(data->ratios.vert_c, data->taps.v_taps_c + 1), 2));
686
687
688         /* Adjust for viewport end clip-off */
689         if ((data->viewport.x + data->viewport.width) < (src.x + src.width)) {
690                 int vp_clip = src.x + src.width - data->viewport.width - data->viewport.x;
691                 int int_part = dal_fixed31_32_floor(
692                                 dal_fixed31_32_sub(data->inits.h, data->ratios.horz));
693
694                 int_part = int_part > 0 ? int_part : 0;
695                 data->viewport.width += int_part < vp_clip ? int_part : vp_clip;
696         }
697         if ((data->viewport.y + data->viewport.height) < (src.y + src.height)) {
698                 int vp_clip = src.y + src.height - data->viewport.height - data->viewport.y;
699                 int int_part = dal_fixed31_32_floor(
700                                 dal_fixed31_32_sub(data->inits.v, data->ratios.vert));
701
702                 int_part = int_part > 0 ? int_part : 0;
703                 data->viewport.height += int_part < vp_clip ? int_part : vp_clip;
704         }
705         if ((data->viewport_c.x + data->viewport_c.width) < (src.x + src.width) / vpc_div) {
706                 int vp_clip = (src.x + src.width) / vpc_div -
707                                 data->viewport_c.width - data->viewport_c.x;
708                 int int_part = dal_fixed31_32_floor(
709                                 dal_fixed31_32_sub(data->inits.h_c, data->ratios.horz_c));
710
711                 int_part = int_part > 0 ? int_part : 0;
712                 data->viewport_c.width += int_part < vp_clip ? int_part : vp_clip;
713         }
714         if ((data->viewport_c.y + data->viewport_c.height) < (src.y + src.height) / vpc_div) {
715                 int vp_clip = (src.y + src.height) / vpc_div -
716                                 data->viewport_c.height - data->viewport_c.y;
717                 int int_part = dal_fixed31_32_floor(
718                                 dal_fixed31_32_sub(data->inits.v_c, data->ratios.vert_c));
719
720                 int_part = int_part > 0 ? int_part : 0;
721                 data->viewport_c.height += int_part < vp_clip ? int_part : vp_clip;
722         }
723
724         /* Adjust for non-0 viewport offset */
725         if (data->viewport.x) {
726                 int int_part;
727
728                 data->inits.h = dal_fixed31_32_add(data->inits.h, dal_fixed31_32_mul_int(
729                                 data->ratios.horz, recout_skip->width));
730                 int_part = dal_fixed31_32_floor(data->inits.h) - data->viewport.x;
731                 if (int_part < data->taps.h_taps) {
732                         int int_adj = data->viewport.x >= (data->taps.h_taps - int_part) ?
733                                                 (data->taps.h_taps - int_part) : data->viewport.x;
734                         data->viewport.x -= int_adj;
735                         data->viewport.width += int_adj;
736                         int_part += int_adj;
737                 } else if (int_part > data->taps.h_taps) {
738                         data->viewport.x += int_part - data->taps.h_taps;
739                         data->viewport.width -= int_part - data->taps.h_taps;
740                         int_part = data->taps.h_taps;
741                 }
742                 data->inits.h.value &= 0xffffffff;
743                 data->inits.h = dal_fixed31_32_add_int(data->inits.h, int_part);
744         }
745
746         if (data->viewport_c.x) {
747                 int int_part;
748
749                 data->inits.h_c = dal_fixed31_32_add(data->inits.h_c, dal_fixed31_32_mul_int(
750                                 data->ratios.horz_c, recout_skip->width));
751                 int_part = dal_fixed31_32_floor(data->inits.h_c) - data->viewport_c.x;
752                 if (int_part < data->taps.h_taps_c) {
753                         int int_adj = data->viewport_c.x >= (data->taps.h_taps_c - int_part) ?
754                                         (data->taps.h_taps_c - int_part) : data->viewport_c.x;
755                         data->viewport_c.x -= int_adj;
756                         data->viewport_c.width += int_adj;
757                         int_part += int_adj;
758                 } else if (int_part > data->taps.h_taps_c) {
759                         data->viewport_c.x += int_part - data->taps.h_taps_c;
760                         data->viewport_c.width -= int_part - data->taps.h_taps_c;
761                         int_part = data->taps.h_taps_c;
762                 }
763                 data->inits.h_c.value &= 0xffffffff;
764                 data->inits.h_c = dal_fixed31_32_add_int(data->inits.h_c, int_part);
765         }
766
767         if (data->viewport.y) {
768                 int int_part;
769
770                 data->inits.v = dal_fixed31_32_add(data->inits.v, dal_fixed31_32_mul_int(
771                                 data->ratios.vert, recout_skip->height));
772                 int_part = dal_fixed31_32_floor(data->inits.v) - data->viewport.y;
773                 if (int_part < data->taps.v_taps) {
774                         int int_adj = data->viewport.y >= (data->taps.v_taps - int_part) ?
775                                                 (data->taps.v_taps - int_part) : data->viewport.y;
776                         data->viewport.y -= int_adj;
777                         data->viewport.height += int_adj;
778                         int_part += int_adj;
779                 } else if (int_part > data->taps.v_taps) {
780                         data->viewport.y += int_part - data->taps.v_taps;
781                         data->viewport.height -= int_part - data->taps.v_taps;
782                         int_part = data->taps.v_taps;
783                 }
784                 data->inits.v.value &= 0xffffffff;
785                 data->inits.v = dal_fixed31_32_add_int(data->inits.v, int_part);
786         }
787
788         if (data->viewport_c.y) {
789                 int int_part;
790
791                 data->inits.v_c = dal_fixed31_32_add(data->inits.v_c, dal_fixed31_32_mul_int(
792                                 data->ratios.vert_c, recout_skip->height));
793                 int_part = dal_fixed31_32_floor(data->inits.v_c) - data->viewport_c.y;
794                 if (int_part < data->taps.v_taps_c) {
795                         int int_adj = data->viewport_c.y >= (data->taps.v_taps_c - int_part) ?
796                                         (data->taps.v_taps_c - int_part) : data->viewport_c.y;
797                         data->viewport_c.y -= int_adj;
798                         data->viewport_c.height += int_adj;
799                         int_part += int_adj;
800                 } else if (int_part > data->taps.v_taps_c) {
801                         data->viewport_c.y += int_part - data->taps.v_taps_c;
802                         data->viewport_c.height -= int_part - data->taps.v_taps_c;
803                         int_part = data->taps.v_taps_c;
804                 }
805                 data->inits.v_c.value &= 0xffffffff;
806                 data->inits.v_c = dal_fixed31_32_add_int(data->inits.v_c, int_part);
807         }
808
809         /* Interlaced inits based on final vert inits */
810         data->inits.v_bot = dal_fixed31_32_add(data->inits.v, data->ratios.vert);
811         data->inits.v_c_bot = dal_fixed31_32_add(data->inits.v_c, data->ratios.vert_c);
812
813         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
814                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
815                 rect_swap_helper(&data->viewport_c);
816                 rect_swap_helper(&data->viewport);
817         }
818 }
819
820 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
821 {
822         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
823         struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
824         struct view recout_skip = { 0 };
825         bool res = false;
826
827         /* Important: scaling ratio calculation requires pixel format,
828          * lb depth calculation requires recout and taps require scaling ratios.
829          * Inits require viewport, taps, ratios and recout of split pipe
830          */
831         pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
832                         pipe_ctx->plane_state->format);
833
834         calculate_scaling_ratios(pipe_ctx);
835
836         calculate_viewport(pipe_ctx);
837
838         if (pipe_ctx->plane_res.scl_data.viewport.height < 16 || pipe_ctx->plane_res.scl_data.viewport.width < 16)
839                 return false;
840
841         calculate_recout(pipe_ctx, &recout_skip);
842
843         /**
844          * Setting line buffer pixel depth to 24bpp yields banding
845          * on certain displays, such as the Sharp 4k
846          */
847         pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
848
849         pipe_ctx->plane_res.scl_data.recout.x += timing->h_border_left;
850         pipe_ctx->plane_res.scl_data.recout.y += timing->v_border_top;
851
852         pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable + timing->h_border_left + timing->h_border_right;
853         pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable + timing->v_border_top + timing->v_border_bottom;
854
855
856         /* Taps calculations */
857         if (pipe_ctx->plane_res.xfm != NULL)
858                 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
859                                 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
860
861         if (pipe_ctx->plane_res.dpp != NULL)
862                 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
863                                 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
864         if (!res) {
865                 /* Try 24 bpp linebuffer */
866                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
867
868                 if (pipe_ctx->plane_res.xfm != NULL)
869                         res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
870                                         pipe_ctx->plane_res.xfm,
871                                         &pipe_ctx->plane_res.scl_data,
872                                         &plane_state->scaling_quality);
873
874                 if (pipe_ctx->plane_res.dpp != NULL)
875                         res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
876                                         pipe_ctx->plane_res.dpp,
877                                         &pipe_ctx->plane_res.scl_data,
878                                         &plane_state->scaling_quality);
879         }
880
881         if (res)
882                 /* May need to re-check lb size after this in some obscure scenario */
883                 calculate_inits_and_adj_vp(pipe_ctx, &recout_skip);
884
885         dm_logger_write(pipe_ctx->stream->ctx->logger, LOG_SCALER,
886                                 "%s: Viewport:\nheight:%d width:%d x:%d "
887                                 "y:%d\n dst_rect:\nheight:%d width:%d x:%d "
888                                 "y:%d\n",
889                                 __func__,
890                                 pipe_ctx->plane_res.scl_data.viewport.height,
891                                 pipe_ctx->plane_res.scl_data.viewport.width,
892                                 pipe_ctx->plane_res.scl_data.viewport.x,
893                                 pipe_ctx->plane_res.scl_data.viewport.y,
894                                 plane_state->dst_rect.height,
895                                 plane_state->dst_rect.width,
896                                 plane_state->dst_rect.x,
897                                 plane_state->dst_rect.y);
898
899         return res;
900 }
901
902
903 enum dc_status resource_build_scaling_params_for_context(
904         const struct dc  *dc,
905         struct dc_state *context)
906 {
907         int i;
908
909         for (i = 0; i < MAX_PIPES; i++) {
910                 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
911                                 context->res_ctx.pipe_ctx[i].stream != NULL)
912                         if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
913                                 return DC_FAIL_SCALING;
914         }
915
916         return DC_OK;
917 }
918
919 struct pipe_ctx *find_idle_secondary_pipe(
920                 struct resource_context *res_ctx,
921                 const struct resource_pool *pool)
922 {
923         int i;
924         struct pipe_ctx *secondary_pipe = NULL;
925
926         /*
927          * search backwards for the second pipe to keep pipe
928          * assignment more consistent
929          */
930
931         for (i = pool->pipe_count - 1; i >= 0; i--) {
932                 if (res_ctx->pipe_ctx[i].stream == NULL) {
933                         secondary_pipe = &res_ctx->pipe_ctx[i];
934                         secondary_pipe->pipe_idx = i;
935                         break;
936                 }
937         }
938
939
940         return secondary_pipe;
941 }
942
943 struct pipe_ctx *resource_get_head_pipe_for_stream(
944                 struct resource_context *res_ctx,
945                 struct dc_stream_state *stream)
946 {
947         int i;
948         for (i = 0; i < MAX_PIPES; i++) {
949                 if (res_ctx->pipe_ctx[i].stream == stream &&
950                                 !res_ctx->pipe_ctx[i].top_pipe) {
951                         return &res_ctx->pipe_ctx[i];
952                         break;
953                 }
954         }
955         return NULL;
956 }
957
958 static struct pipe_ctx *resource_get_tail_pipe_for_stream(
959                 struct resource_context *res_ctx,
960                 struct dc_stream_state *stream)
961 {
962         struct pipe_ctx *head_pipe, *tail_pipe;
963         head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
964
965         if (!head_pipe)
966                 return NULL;
967
968         tail_pipe = head_pipe->bottom_pipe;
969
970         while (tail_pipe) {
971                 head_pipe = tail_pipe;
972                 tail_pipe = tail_pipe->bottom_pipe;
973         }
974
975         return head_pipe;
976 }
977
978 /*
979  * A free_pipe for a stream is defined here as a pipe
980  * that has no surface attached yet
981  */
982 static struct pipe_ctx *acquire_free_pipe_for_stream(
983                 struct dc_state *context,
984                 const struct resource_pool *pool,
985                 struct dc_stream_state *stream)
986 {
987         int i;
988         struct resource_context *res_ctx = &context->res_ctx;
989
990         struct pipe_ctx *head_pipe = NULL;
991
992         /* Find head pipe, which has the back end set up*/
993
994         head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
995
996         if (!head_pipe) {
997                 ASSERT(0);
998                 return NULL;
999         }
1000
1001         if (!head_pipe->plane_state)
1002                 return head_pipe;
1003
1004         /* Re-use pipe already acquired for this stream if available*/
1005         for (i = pool->pipe_count - 1; i >= 0; i--) {
1006                 if (res_ctx->pipe_ctx[i].stream == stream &&
1007                                 !res_ctx->pipe_ctx[i].plane_state) {
1008                         return &res_ctx->pipe_ctx[i];
1009                 }
1010         }
1011
1012         /*
1013          * At this point we have no re-useable pipe for this stream and we need
1014          * to acquire an idle one to satisfy the request
1015          */
1016
1017         if (!pool->funcs->acquire_idle_pipe_for_layer)
1018                 return NULL;
1019
1020         return pool->funcs->acquire_idle_pipe_for_layer(context, pool, stream);
1021
1022 }
1023
1024 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
1025 static int acquire_first_split_pipe(
1026                 struct resource_context *res_ctx,
1027                 const struct resource_pool *pool,
1028                 struct dc_stream_state *stream)
1029 {
1030         int i;
1031
1032         for (i = 0; i < pool->pipe_count; i++) {
1033                 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1034
1035                 if (pipe_ctx->top_pipe &&
1036                                 pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state) {
1037                         pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1038                         if (pipe_ctx->bottom_pipe)
1039                                 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1040
1041                         memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1042                         pipe_ctx->stream_res.tg = pool->timing_generators[i];
1043                         pipe_ctx->plane_res.hubp = pool->hubps[i];
1044                         pipe_ctx->plane_res.ipp = pool->ipps[i];
1045                         pipe_ctx->plane_res.dpp = pool->dpps[i];
1046                         pipe_ctx->stream_res.opp = pool->opps[i];
1047                         pipe_ctx->pipe_idx = i;
1048
1049                         pipe_ctx->stream = stream;
1050                         return i;
1051                 }
1052         }
1053         return -1;
1054 }
1055 #endif
1056
1057 bool dc_add_plane_to_context(
1058                 const struct dc *dc,
1059                 struct dc_stream_state *stream,
1060                 struct dc_plane_state *plane_state,
1061                 struct dc_state *context)
1062 {
1063         int i;
1064         struct resource_pool *pool = dc->res_pool;
1065         struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1066         struct dc_stream_status *stream_status = NULL;
1067
1068         for (i = 0; i < context->stream_count; i++)
1069                 if (context->streams[i] == stream) {
1070                         stream_status = &context->stream_status[i];
1071                         break;
1072                 }
1073         if (stream_status == NULL) {
1074                 dm_error("Existing stream not found; failed to attach surface!\n");
1075                 return false;
1076         }
1077
1078
1079         if (stream_status->plane_count == MAX_SURFACE_NUM) {
1080                 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1081                                 plane_state, MAX_SURFACE_NUM);
1082                 return false;
1083         }
1084
1085         head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1086
1087         if (!head_pipe) {
1088                 dm_error("Head pipe not found for stream_state %p !\n", stream);
1089                 return false;
1090         }
1091
1092         free_pipe = acquire_free_pipe_for_stream(context, pool, stream);
1093
1094 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
1095         if (!free_pipe) {
1096                 int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1097                 if (pipe_idx >= 0)
1098                         free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1099         }
1100 #endif
1101         if (!free_pipe)
1102                 return false;
1103
1104         /* retain new surfaces */
1105         dc_plane_state_retain(plane_state);
1106         free_pipe->plane_state = plane_state;
1107
1108         if (head_pipe != free_pipe) {
1109
1110                 tail_pipe = resource_get_tail_pipe_for_stream(&context->res_ctx, stream);
1111                 ASSERT(tail_pipe);
1112
1113                 free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1114                 free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1115                 free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1116                 free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1117                 free_pipe->clock_source = tail_pipe->clock_source;
1118                 free_pipe->top_pipe = tail_pipe;
1119                 tail_pipe->bottom_pipe = free_pipe;
1120         }
1121
1122         /* assign new surfaces*/
1123         stream_status->plane_states[stream_status->plane_count] = plane_state;
1124
1125         stream_status->plane_count++;
1126
1127         return true;
1128 }
1129
1130 bool dc_remove_plane_from_context(
1131                 const struct dc *dc,
1132                 struct dc_stream_state *stream,
1133                 struct dc_plane_state *plane_state,
1134                 struct dc_state *context)
1135 {
1136         int i;
1137         struct dc_stream_status *stream_status = NULL;
1138         struct resource_pool *pool = dc->res_pool;
1139
1140         for (i = 0; i < context->stream_count; i++)
1141                 if (context->streams[i] == stream) {
1142                         stream_status = &context->stream_status[i];
1143                         break;
1144                 }
1145
1146         if (stream_status == NULL) {
1147                 dm_error("Existing stream not found; failed to remove plane.\n");
1148                 return false;
1149         }
1150
1151         /* release pipe for plane*/
1152         for (i = pool->pipe_count - 1; i >= 0; i--) {
1153                 struct pipe_ctx *pipe_ctx;
1154
1155                 if (context->res_ctx.pipe_ctx[i].plane_state == plane_state) {
1156                         pipe_ctx = &context->res_ctx.pipe_ctx[i];
1157
1158                         if (pipe_ctx->top_pipe)
1159                                 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1160
1161                         /* Second condition is to avoid setting NULL to top pipe
1162                          * of tail pipe making it look like head pipe in subsequent
1163                          * deletes
1164                          */
1165                         if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1166                                 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1167
1168                         /*
1169                          * For head pipe detach surfaces from pipe for tail
1170                          * pipe just zero it out
1171                          */
1172                         if (!pipe_ctx->top_pipe) {
1173                                 pipe_ctx->plane_state = NULL;
1174                                 pipe_ctx->bottom_pipe = NULL;
1175                         } else  {
1176                                 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1177                         }
1178                 }
1179         }
1180
1181
1182         for (i = 0; i < stream_status->plane_count; i++) {
1183                 if (stream_status->plane_states[i] == plane_state) {
1184
1185                         dc_plane_state_release(stream_status->plane_states[i]);
1186                         break;
1187                 }
1188         }
1189
1190         if (i == stream_status->plane_count) {
1191                 dm_error("Existing plane_state not found; failed to detach it!\n");
1192                 return false;
1193         }
1194
1195         stream_status->plane_count--;
1196
1197         /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1198         for (; i < stream_status->plane_count; i++)
1199                 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1200
1201         stream_status->plane_states[stream_status->plane_count] = NULL;
1202
1203         return true;
1204 }
1205
1206 bool dc_rem_all_planes_for_stream(
1207                 const struct dc *dc,
1208                 struct dc_stream_state *stream,
1209                 struct dc_state *context)
1210 {
1211         int i, old_plane_count;
1212         struct dc_stream_status *stream_status = NULL;
1213         struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1214
1215         for (i = 0; i < context->stream_count; i++)
1216                         if (context->streams[i] == stream) {
1217                                 stream_status = &context->stream_status[i];
1218                                 break;
1219                         }
1220
1221         if (stream_status == NULL) {
1222                 dm_error("Existing stream %p not found!\n", stream);
1223                 return false;
1224         }
1225
1226         old_plane_count = stream_status->plane_count;
1227
1228         for (i = 0; i < old_plane_count; i++)
1229                 del_planes[i] = stream_status->plane_states[i];
1230
1231         for (i = 0; i < old_plane_count; i++)
1232                 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1233                         return false;
1234
1235         return true;
1236 }
1237
1238 static bool add_all_planes_for_stream(
1239                 const struct dc *dc,
1240                 struct dc_stream_state *stream,
1241                 const struct dc_validation_set set[],
1242                 int set_count,
1243                 struct dc_state *context)
1244 {
1245         int i, j;
1246
1247         for (i = 0; i < set_count; i++)
1248                 if (set[i].stream == stream)
1249                         break;
1250
1251         if (i == set_count) {
1252                 dm_error("Stream %p not found in set!\n", stream);
1253                 return false;
1254         }
1255
1256         for (j = 0; j < set[i].plane_count; j++)
1257                 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1258                         return false;
1259
1260         return true;
1261 }
1262
1263 bool dc_add_all_planes_for_stream(
1264                 const struct dc *dc,
1265                 struct dc_stream_state *stream,
1266                 struct dc_plane_state * const *plane_states,
1267                 int plane_count,
1268                 struct dc_state *context)
1269 {
1270         struct dc_validation_set set;
1271         int i;
1272
1273         set.stream = stream;
1274         set.plane_count = plane_count;
1275
1276         for (i = 0; i < plane_count; i++)
1277                 set.plane_states[i] = plane_states[i];
1278
1279         return add_all_planes_for_stream(dc, stream, &set, 1, context);
1280 }
1281
1282
1283
1284 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1285                 struct dc_stream_state *new_stream)
1286 {
1287         if (cur_stream == NULL)
1288                 return true;
1289
1290         /* If sink pointer changed, it means this is a hotplug, we should do
1291          * full hw setting.
1292          */
1293         if (cur_stream->sink != new_stream->sink)
1294                 return true;
1295
1296         /* If output color space is changed, need to reprogram info frames */
1297         if (cur_stream->output_color_space != new_stream->output_color_space)
1298                 return true;
1299
1300         return memcmp(
1301                 &cur_stream->timing,
1302                 &new_stream->timing,
1303                 sizeof(struct dc_crtc_timing)) != 0;
1304 }
1305
1306 static bool are_stream_backends_same(
1307         struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1308 {
1309         if (stream_a == stream_b)
1310                 return true;
1311
1312         if (stream_a == NULL || stream_b == NULL)
1313                 return false;
1314
1315         if (is_timing_changed(stream_a, stream_b))
1316                 return false;
1317
1318         return true;
1319 }
1320
1321 bool dc_is_stream_unchanged(
1322         struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1323 {
1324
1325         if (!are_stream_backends_same(old_stream, stream))
1326                 return false;
1327
1328         return true;
1329 }
1330
1331 bool dc_is_stream_scaling_unchanged(
1332         struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1333 {
1334         if (old_stream == stream)
1335                 return true;
1336
1337         if (old_stream == NULL || stream == NULL)
1338                 return false;
1339
1340         if (memcmp(&old_stream->src,
1341                         &stream->src,
1342                         sizeof(struct rect)) != 0)
1343                 return false;
1344
1345         if (memcmp(&old_stream->dst,
1346                         &stream->dst,
1347                         sizeof(struct rect)) != 0)
1348                 return false;
1349
1350         return true;
1351 }
1352
1353 /* Maximum TMDS single link pixel clock 165MHz */
1354 #define TMDS_MAX_PIXEL_CLOCK_IN_KHZ 165000
1355
1356 static void update_stream_engine_usage(
1357                 struct resource_context *res_ctx,
1358                 const struct resource_pool *pool,
1359                 struct stream_encoder *stream_enc,
1360                 bool acquired)
1361 {
1362         int i;
1363
1364         for (i = 0; i < pool->stream_enc_count; i++) {
1365                 if (pool->stream_enc[i] == stream_enc)
1366                         res_ctx->is_stream_enc_acquired[i] = acquired;
1367         }
1368 }
1369
1370 /* TODO: release audio object */
1371 void update_audio_usage(
1372                 struct resource_context *res_ctx,
1373                 const struct resource_pool *pool,
1374                 struct audio *audio,
1375                 bool acquired)
1376 {
1377         int i;
1378         for (i = 0; i < pool->audio_count; i++) {
1379                 if (pool->audios[i] == audio)
1380                         res_ctx->is_audio_acquired[i] = acquired;
1381         }
1382 }
1383
1384 static int acquire_first_free_pipe(
1385                 struct resource_context *res_ctx,
1386                 const struct resource_pool *pool,
1387                 struct dc_stream_state *stream)
1388 {
1389         int i;
1390
1391         for (i = 0; i < pool->pipe_count; i++) {
1392                 if (!res_ctx->pipe_ctx[i].stream) {
1393                         struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1394
1395                         pipe_ctx->stream_res.tg = pool->timing_generators[i];
1396                         pipe_ctx->plane_res.mi = pool->mis[i];
1397                         pipe_ctx->plane_res.hubp = pool->hubps[i];
1398                         pipe_ctx->plane_res.ipp = pool->ipps[i];
1399                         pipe_ctx->plane_res.xfm = pool->transforms[i];
1400                         pipe_ctx->plane_res.dpp = pool->dpps[i];
1401                         pipe_ctx->stream_res.opp = pool->opps[i];
1402                         pipe_ctx->pipe_idx = i;
1403
1404
1405                         pipe_ctx->stream = stream;
1406                         return i;
1407                 }
1408         }
1409         return -1;
1410 }
1411
1412 static struct stream_encoder *find_first_free_match_stream_enc_for_link(
1413                 struct resource_context *res_ctx,
1414                 const struct resource_pool *pool,
1415                 struct dc_stream_state *stream)
1416 {
1417         int i;
1418         int j = -1;
1419         struct dc_link *link = stream->sink->link;
1420
1421         for (i = 0; i < pool->stream_enc_count; i++) {
1422                 if (!res_ctx->is_stream_enc_acquired[i] &&
1423                                 pool->stream_enc[i]) {
1424                         /* Store first available for MST second display
1425                          * in daisy chain use case */
1426                         j = i;
1427                         if (pool->stream_enc[i]->id ==
1428                                         link->link_enc->preferred_engine)
1429                                 return pool->stream_enc[i];
1430                 }
1431         }
1432
1433         /*
1434          * below can happen in cases when stream encoder is acquired:
1435          * 1) for second MST display in chain, so preferred engine already
1436          * acquired;
1437          * 2) for another link, which preferred engine already acquired by any
1438          * MST configuration.
1439          *
1440          * If signal is of DP type and preferred engine not found, return last available
1441          *
1442          * TODO - This is just a patch up and a generic solution is
1443          * required for non DP connectors.
1444          */
1445
1446         if (j >= 0 && dc_is_dp_signal(stream->signal))
1447                 return pool->stream_enc[j];
1448
1449         return NULL;
1450 }
1451
1452 static struct audio *find_first_free_audio(
1453                 struct resource_context *res_ctx,
1454                 const struct resource_pool *pool,
1455                 enum engine_id id)
1456 {
1457         int i;
1458         for (i = 0; i < pool->audio_count; i++) {
1459                 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1460                         /*we have enough audio endpoint, find the matching inst*/
1461                         if (id != i)
1462                                 continue;
1463
1464                         return pool->audios[i];
1465                 }
1466         }
1467         /*not found the matching one, first come first serve*/
1468         for (i = 0; i < pool->audio_count; i++) {
1469                 if (res_ctx->is_audio_acquired[i] == false) {
1470                         return pool->audios[i];
1471                 }
1472         }
1473         return 0;
1474 }
1475
1476 bool resource_is_stream_unchanged(
1477         struct dc_state *old_context, struct dc_stream_state *stream)
1478 {
1479         int i;
1480
1481         for (i = 0; i < old_context->stream_count; i++) {
1482                 struct dc_stream_state *old_stream = old_context->streams[i];
1483
1484                 if (are_stream_backends_same(old_stream, stream))
1485                                 return true;
1486         }
1487
1488         return false;
1489 }
1490
1491 enum dc_status dc_add_stream_to_ctx(
1492                 struct dc *dc,
1493                 struct dc_state *new_ctx,
1494                 struct dc_stream_state *stream)
1495 {
1496         struct dc_context *dc_ctx = dc->ctx;
1497         enum dc_status res;
1498
1499         if (new_ctx->stream_count >= dc->res_pool->pipe_count) {
1500                 DC_ERROR("Max streams reached, can add stream %p !\n", stream);
1501                 return DC_ERROR_UNEXPECTED;
1502         }
1503
1504         new_ctx->streams[new_ctx->stream_count] = stream;
1505         dc_stream_retain(stream);
1506         new_ctx->stream_count++;
1507
1508         res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1509         if (res != DC_OK)
1510                 DC_ERROR("Adding stream %p to context failed with err %d!\n", stream, res);
1511
1512         return res;
1513 }
1514
1515 enum dc_status dc_remove_stream_from_ctx(
1516                         struct dc *dc,
1517                         struct dc_state *new_ctx,
1518                         struct dc_stream_state *stream)
1519 {
1520         int i;
1521         struct dc_context *dc_ctx = dc->ctx;
1522         struct pipe_ctx *del_pipe = NULL;
1523
1524         /* Release primary pipe */
1525         for (i = 0; i < MAX_PIPES; i++) {
1526                 if (new_ctx->res_ctx.pipe_ctx[i].stream == stream &&
1527                                 !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1528                         del_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1529
1530                         ASSERT(del_pipe->stream_res.stream_enc);
1531                         update_stream_engine_usage(
1532                                         &new_ctx->res_ctx,
1533                                                 dc->res_pool,
1534                                         del_pipe->stream_res.stream_enc,
1535                                         false);
1536
1537                         if (del_pipe->stream_res.audio)
1538                                 update_audio_usage(
1539                                         &new_ctx->res_ctx,
1540                                         dc->res_pool,
1541                                         del_pipe->stream_res.audio,
1542                                         false);
1543
1544                         resource_unreference_clock_source(&new_ctx->res_ctx,
1545                                                           dc->res_pool,
1546                                                           del_pipe->clock_source);
1547
1548                         memset(del_pipe, 0, sizeof(*del_pipe));
1549
1550                         break;
1551                 }
1552         }
1553
1554         if (!del_pipe) {
1555                 DC_ERROR("Pipe not found for stream %p !\n", stream);
1556                 return DC_ERROR_UNEXPECTED;
1557         }
1558
1559         for (i = 0; i < new_ctx->stream_count; i++)
1560                 if (new_ctx->streams[i] == stream)
1561                         break;
1562
1563         if (new_ctx->streams[i] != stream) {
1564                 DC_ERROR("Context doesn't have stream %p !\n", stream);
1565                 return DC_ERROR_UNEXPECTED;
1566         }
1567
1568         dc_stream_release(new_ctx->streams[i]);
1569         new_ctx->stream_count--;
1570
1571         /* Trim back arrays */
1572         for (; i < new_ctx->stream_count; i++) {
1573                 new_ctx->streams[i] = new_ctx->streams[i + 1];
1574                 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1575         }
1576
1577         new_ctx->streams[new_ctx->stream_count] = NULL;
1578         memset(
1579                         &new_ctx->stream_status[new_ctx->stream_count],
1580                         0,
1581                         sizeof(new_ctx->stream_status[0]));
1582
1583         return DC_OK;
1584 }
1585
1586 static void copy_pipe_ctx(
1587         const struct pipe_ctx *from_pipe_ctx, struct pipe_ctx *to_pipe_ctx)
1588 {
1589         struct dc_plane_state *plane_state = to_pipe_ctx->plane_state;
1590         struct dc_stream_state *stream = to_pipe_ctx->stream;
1591
1592         *to_pipe_ctx = *from_pipe_ctx;
1593         to_pipe_ctx->stream = stream;
1594         if (plane_state != NULL)
1595                 to_pipe_ctx->plane_state = plane_state;
1596 }
1597
1598 static struct dc_stream_state *find_pll_sharable_stream(
1599                 struct dc_stream_state *stream_needs_pll,
1600                 struct dc_state *context)
1601 {
1602         int i;
1603
1604         for (i = 0; i < context->stream_count; i++) {
1605                 struct dc_stream_state *stream_has_pll = context->streams[i];
1606
1607                 /* We are looking for non dp, non virtual stream */
1608                 if (resource_are_streams_timing_synchronizable(
1609                         stream_needs_pll, stream_has_pll)
1610                         && !dc_is_dp_signal(stream_has_pll->signal)
1611                         && stream_has_pll->sink->link->connector_signal
1612                         != SIGNAL_TYPE_VIRTUAL)
1613                         return stream_has_pll;
1614
1615         }
1616
1617         return NULL;
1618 }
1619
1620 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1621 {
1622         uint32_t pix_clk = timing->pix_clk_khz;
1623         uint32_t normalized_pix_clk = pix_clk;
1624
1625         if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1626                 pix_clk /= 2;
1627         if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1628                 switch (timing->display_color_depth) {
1629                 case COLOR_DEPTH_888:
1630                         normalized_pix_clk = pix_clk;
1631                         break;
1632                 case COLOR_DEPTH_101010:
1633                         normalized_pix_clk = (pix_clk * 30) / 24;
1634                         break;
1635                 case COLOR_DEPTH_121212:
1636                         normalized_pix_clk = (pix_clk * 36) / 24;
1637                 break;
1638                 case COLOR_DEPTH_161616:
1639                         normalized_pix_clk = (pix_clk * 48) / 24;
1640                 break;
1641                 default:
1642                         ASSERT(0);
1643                 break;
1644                 }
1645         }
1646         return normalized_pix_clk;
1647 }
1648
1649 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1650 {
1651         /* update actual pixel clock on all streams */
1652         if (dc_is_hdmi_signal(stream->signal))
1653                 stream->phy_pix_clk = get_norm_pix_clk(
1654                         &stream->timing);
1655         else
1656                 stream->phy_pix_clk =
1657                         stream->timing.pix_clk_khz;
1658 }
1659
1660 enum dc_status resource_map_pool_resources(
1661                 const struct dc  *dc,
1662                 struct dc_state *context,
1663                 struct dc_stream_state *stream)
1664 {
1665         const struct resource_pool *pool = dc->res_pool;
1666         int i;
1667         struct dc_context *dc_ctx = dc->ctx;
1668         struct pipe_ctx *pipe_ctx = NULL;
1669         int pipe_idx = -1;
1670
1671         /* TODO Check if this is needed */
1672         /*if (!resource_is_stream_unchanged(old_context, stream)) {
1673                         if (stream != NULL && old_context->streams[i] != NULL) {
1674                                 stream->bit_depth_params =
1675                                                 old_context->streams[i]->bit_depth_params;
1676                                 stream->clamping = old_context->streams[i]->clamping;
1677                                 continue;
1678                         }
1679                 }
1680         */
1681
1682         /* acquire new resources */
1683         pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
1684
1685 #ifdef CONFIG_DRM_AMD_DC_DCN1_0
1686         if (pipe_idx < 0)
1687                 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1688 #endif
1689
1690         if (pipe_idx < 0)
1691                 return DC_NO_CONTROLLER_RESOURCE;
1692
1693         pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1694
1695         pipe_ctx->stream_res.stream_enc =
1696                 find_first_free_match_stream_enc_for_link(
1697                         &context->res_ctx, pool, stream);
1698
1699         if (!pipe_ctx->stream_res.stream_enc)
1700                 return DC_NO_STREAM_ENG_RESOURCE;
1701
1702         update_stream_engine_usage(
1703                 &context->res_ctx, pool,
1704                 pipe_ctx->stream_res.stream_enc,
1705                 true);
1706
1707         /* TODO: Add check if ASIC support and EDID audio */
1708         if (!stream->sink->converter_disable_audio &&
1709             dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
1710             stream->audio_info.mode_count) {
1711                 pipe_ctx->stream_res.audio = find_first_free_audio(
1712                 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id);
1713
1714                 /*
1715                  * Audio assigned in order first come first get.
1716                  * There are asics which has number of audio
1717                  * resources less then number of pipes
1718                  */
1719                 if (pipe_ctx->stream_res.audio)
1720                         update_audio_usage(&context->res_ctx, pool,
1721                                            pipe_ctx->stream_res.audio, true);
1722         }
1723
1724         for (i = 0; i < context->stream_count; i++)
1725                 if (context->streams[i] == stream) {
1726                         context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
1727                         context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->id;
1728                         return DC_OK;
1729                 }
1730
1731         DC_ERROR("Stream %p not found in new ctx!\n", stream);
1732         return DC_ERROR_UNEXPECTED;
1733 }
1734
1735 /* first stream in the context is used to populate the rest */
1736 void validate_guaranteed_copy_streams(
1737                 struct dc_state *context,
1738                 int max_streams)
1739 {
1740         int i;
1741
1742         for (i = 1; i < max_streams; i++) {
1743                 context->streams[i] = context->streams[0];
1744
1745                 copy_pipe_ctx(&context->res_ctx.pipe_ctx[0],
1746                               &context->res_ctx.pipe_ctx[i]);
1747                 context->res_ctx.pipe_ctx[i].stream =
1748                                 context->res_ctx.pipe_ctx[0].stream;
1749
1750                 dc_stream_retain(context->streams[i]);
1751                 context->stream_count++;
1752         }
1753 }
1754
1755 void dc_resource_state_copy_construct_current(
1756                 const struct dc *dc,
1757                 struct dc_state *dst_ctx)
1758 {
1759         dc_resource_state_copy_construct(dc->current_state, dst_ctx);
1760 }
1761
1762
1763 void dc_resource_state_construct(
1764                 const struct dc *dc,
1765                 struct dc_state *dst_ctx)
1766 {
1767         dst_ctx->dis_clk = dc->res_pool->display_clock;
1768 }
1769
1770 enum dc_status dc_validate_global_state(
1771                 struct dc *dc,
1772                 struct dc_state *new_ctx)
1773 {
1774         enum dc_status result = DC_ERROR_UNEXPECTED;
1775         int i, j;
1776
1777         if (!new_ctx)
1778                 return DC_ERROR_UNEXPECTED;
1779
1780         if (dc->res_pool->funcs->validate_global) {
1781                         result = dc->res_pool->funcs->validate_global(dc, new_ctx);
1782                         if (result != DC_OK)
1783                                 return result;
1784         }
1785
1786         for (i = 0; i < new_ctx->stream_count; i++) {
1787                 struct dc_stream_state *stream = new_ctx->streams[i];
1788
1789                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
1790                         struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
1791
1792                         if (pipe_ctx->stream != stream)
1793                                 continue;
1794
1795                         /* Switch to dp clock source only if there is
1796                          * no non dp stream that shares the same timing
1797                          * with the dp stream.
1798                          */
1799                         if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
1800                                 !find_pll_sharable_stream(stream, new_ctx)) {
1801
1802                                 resource_unreference_clock_source(
1803                                                 &new_ctx->res_ctx,
1804                                                 dc->res_pool,
1805                                                 pipe_ctx->clock_source);
1806
1807                                 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
1808                                 resource_reference_clock_source(
1809                                                 &new_ctx->res_ctx,
1810                                                 dc->res_pool,
1811                                                  pipe_ctx->clock_source);
1812                         }
1813                 }
1814         }
1815
1816         result = resource_build_scaling_params_for_context(dc, new_ctx);
1817
1818         if (result == DC_OK)
1819                 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx))
1820                         result = DC_FAIL_BANDWIDTH_VALIDATE;
1821
1822         return result;
1823 }
1824
1825 static void patch_gamut_packet_checksum(
1826                 struct encoder_info_packet *gamut_packet)
1827 {
1828         /* For gamut we recalc checksum */
1829         if (gamut_packet->valid) {
1830                 uint8_t chk_sum = 0;
1831                 uint8_t *ptr;
1832                 uint8_t i;
1833
1834                 /*start of the Gamut data. */
1835                 ptr = &gamut_packet->sb[3];
1836
1837                 for (i = 0; i <= gamut_packet->sb[1]; i++)
1838                         chk_sum += ptr[i];
1839
1840                 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
1841         }
1842 }
1843
1844 static void set_avi_info_frame(
1845                 struct encoder_info_packet *info_packet,
1846                 struct pipe_ctx *pipe_ctx)
1847 {
1848         struct dc_stream_state *stream = pipe_ctx->stream;
1849         enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
1850         struct info_frame info_frame = { {0} };
1851         uint32_t pixel_encoding = 0;
1852         enum scanning_type scan_type = SCANNING_TYPE_NODATA;
1853         enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
1854         bool itc = false;
1855         uint8_t itc_value = 0;
1856         uint8_t cn0_cn1 = 0;
1857         unsigned int cn0_cn1_value = 0;
1858         uint8_t *check_sum = NULL;
1859         uint8_t byte_index = 0;
1860         union hdmi_info_packet *hdmi_info = &info_frame.avi_info_packet.info_packet_hdmi;
1861         union display_content_support support = {0};
1862         unsigned int vic = pipe_ctx->stream->timing.vic;
1863         enum dc_timing_3d_format format;
1864
1865         color_space = pipe_ctx->stream->output_color_space;
1866         if (color_space == COLOR_SPACE_UNKNOWN)
1867                 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
1868                         COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
1869
1870         /* Initialize header */
1871         hdmi_info->bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
1872         /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
1873         * not be used in HDMI 2.0 (Section 10.1) */
1874         hdmi_info->bits.header.version = 2;
1875         hdmi_info->bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
1876
1877         /*
1878          * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
1879          * according to HDMI 2.0 spec (Section 10.1)
1880          */
1881
1882         switch (stream->timing.pixel_encoding) {
1883         case PIXEL_ENCODING_YCBCR422:
1884                 pixel_encoding = 1;
1885                 break;
1886
1887         case PIXEL_ENCODING_YCBCR444:
1888                 pixel_encoding = 2;
1889                 break;
1890         case PIXEL_ENCODING_YCBCR420:
1891                 pixel_encoding = 3;
1892                 break;
1893
1894         case PIXEL_ENCODING_RGB:
1895         default:
1896                 pixel_encoding = 0;
1897         }
1898
1899         /* Y0_Y1_Y2 : The pixel encoding */
1900         /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
1901         hdmi_info->bits.Y0_Y1_Y2 = pixel_encoding;
1902
1903         /* A0 = 1 Active Format Information valid */
1904         hdmi_info->bits.A0 = ACTIVE_FORMAT_VALID;
1905
1906         /* B0, B1 = 3; Bar info data is valid */
1907         hdmi_info->bits.B0_B1 = BAR_INFO_BOTH_VALID;
1908
1909         hdmi_info->bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
1910
1911         /* S0, S1 : Underscan / Overscan */
1912         /* TODO: un-hardcode scan type */
1913         scan_type = SCANNING_TYPE_UNDERSCAN;
1914         hdmi_info->bits.S0_S1 = scan_type;
1915
1916         /* C0, C1 : Colorimetry */
1917         if (color_space == COLOR_SPACE_YCBCR709 ||
1918                         color_space == COLOR_SPACE_YCBCR709_LIMITED)
1919                 hdmi_info->bits.C0_C1 = COLORIMETRY_ITU709;
1920         else if (color_space == COLOR_SPACE_YCBCR601 ||
1921                         color_space == COLOR_SPACE_YCBCR601_LIMITED)
1922                 hdmi_info->bits.C0_C1 = COLORIMETRY_ITU601;
1923         else {
1924                 hdmi_info->bits.C0_C1 = COLORIMETRY_NO_DATA;
1925         }
1926         if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
1927                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
1928                         color_space == COLOR_SPACE_2020_YCBCR) {
1929                 hdmi_info->bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
1930                 hdmi_info->bits.C0_C1   = COLORIMETRY_EXTENDED;
1931         } else if (color_space == COLOR_SPACE_ADOBERGB) {
1932                 hdmi_info->bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
1933                 hdmi_info->bits.C0_C1   = COLORIMETRY_EXTENDED;
1934         }
1935
1936         /* TODO: un-hardcode aspect ratio */
1937         aspect = stream->timing.aspect_ratio;
1938
1939         switch (aspect) {
1940         case ASPECT_RATIO_4_3:
1941         case ASPECT_RATIO_16_9:
1942                 hdmi_info->bits.M0_M1 = aspect;
1943                 break;
1944
1945         case ASPECT_RATIO_NO_DATA:
1946         case ASPECT_RATIO_64_27:
1947         case ASPECT_RATIO_256_135:
1948         default:
1949                 hdmi_info->bits.M0_M1 = 0;
1950         }
1951
1952         /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
1953         hdmi_info->bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
1954
1955         /* TODO: un-hardcode cn0_cn1 and itc */
1956
1957         cn0_cn1 = 0;
1958         cn0_cn1_value = 0;
1959
1960         itc = true;
1961         itc_value = 1;
1962
1963         support = stream->sink->edid_caps.content_support;
1964
1965         if (itc) {
1966                 if (!support.bits.valid_content_type) {
1967                         cn0_cn1_value = 0;
1968                 } else {
1969                         if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
1970                                 if (support.bits.graphics_content == 1) {
1971                                         cn0_cn1_value = 0;
1972                                 }
1973                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
1974                                 if (support.bits.photo_content == 1) {
1975                                         cn0_cn1_value = 1;
1976                                 } else {
1977                                         cn0_cn1_value = 0;
1978                                         itc_value = 0;
1979                                 }
1980                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
1981                                 if (support.bits.cinema_content == 1) {
1982                                         cn0_cn1_value = 2;
1983                                 } else {
1984                                         cn0_cn1_value = 0;
1985                                         itc_value = 0;
1986                                 }
1987                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
1988                                 if (support.bits.game_content == 1) {
1989                                         cn0_cn1_value = 3;
1990                                 } else {
1991                                         cn0_cn1_value = 0;
1992                                         itc_value = 0;
1993                                 }
1994                         }
1995                 }
1996                 hdmi_info->bits.CN0_CN1 = cn0_cn1_value;
1997                 hdmi_info->bits.ITC = itc_value;
1998         }
1999
2000         /* TODO : We should handle YCC quantization */
2001         /* but we do not have matrix calculation */
2002         if (stream->sink->edid_caps.qs_bit == 1 &&
2003                         stream->sink->edid_caps.qy_bit == 1) {
2004                 if (color_space == COLOR_SPACE_SRGB ||
2005                         color_space == COLOR_SPACE_2020_RGB_FULLRANGE) {
2006                         hdmi_info->bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2007                         hdmi_info->bits.YQ0_YQ1 = YYC_QUANTIZATION_FULL_RANGE;
2008                 } else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2009                                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE) {
2010                         hdmi_info->bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2011                         hdmi_info->bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2012                 } else {
2013                         hdmi_info->bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2014                         hdmi_info->bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2015                 }
2016         } else {
2017                 hdmi_info->bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2018                 hdmi_info->bits.YQ0_YQ1   = YYC_QUANTIZATION_LIMITED_RANGE;
2019         }
2020
2021         ///VIC
2022         format = stream->timing.timing_3d_format;
2023         /*todo, add 3DStereo support*/
2024         if (format != TIMING_3D_FORMAT_NONE) {
2025                 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2026                 switch (pipe_ctx->stream->timing.hdmi_vic) {
2027                 case 1:
2028                         vic = 95;
2029                         break;
2030                 case 2:
2031                         vic = 94;
2032                         break;
2033                 case 3:
2034                         vic = 93;
2035                         break;
2036                 case 4:
2037                         vic = 98;
2038                         break;
2039                 default:
2040                         break;
2041                 }
2042         }
2043         hdmi_info->bits.VIC0_VIC7 = vic;
2044
2045         /* pixel repetition
2046          * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2047          * repetition start from 1 */
2048         hdmi_info->bits.PR0_PR3 = 0;
2049
2050         /* Bar Info
2051          * barTop:    Line Number of End of Top Bar.
2052          * barBottom: Line Number of Start of Bottom Bar.
2053          * barLeft:   Pixel Number of End of Left Bar.
2054          * barRight:  Pixel Number of Start of Right Bar. */
2055         hdmi_info->bits.bar_top = stream->timing.v_border_top;
2056         hdmi_info->bits.bar_bottom = (stream->timing.v_total
2057                         - stream->timing.v_border_bottom + 1);
2058         hdmi_info->bits.bar_left  = stream->timing.h_border_left;
2059         hdmi_info->bits.bar_right = (stream->timing.h_total
2060                         - stream->timing.h_border_right + 1);
2061
2062         /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2063         check_sum = &info_frame.avi_info_packet.info_packet_hdmi.packet_raw_data.sb[0];
2064
2065         *check_sum = HDMI_INFOFRAME_TYPE_AVI + HDMI_AVI_INFOFRAME_SIZE + 2;
2066
2067         for (byte_index = 1; byte_index <= HDMI_AVI_INFOFRAME_SIZE; byte_index++)
2068                 *check_sum += hdmi_info->packet_raw_data.sb[byte_index];
2069
2070         /* one byte complement */
2071         *check_sum = (uint8_t) (0x100 - *check_sum);
2072
2073         /* Store in hw_path_mode */
2074         info_packet->hb0 = hdmi_info->packet_raw_data.hb0;
2075         info_packet->hb1 = hdmi_info->packet_raw_data.hb1;
2076         info_packet->hb2 = hdmi_info->packet_raw_data.hb2;
2077
2078         for (byte_index = 0; byte_index < sizeof(info_frame.avi_info_packet.
2079                                 info_packet_hdmi.packet_raw_data.sb); byte_index++)
2080                 info_packet->sb[byte_index] = info_frame.avi_info_packet.
2081                                 info_packet_hdmi.packet_raw_data.sb[byte_index];
2082
2083         info_packet->valid = true;
2084 }
2085
2086 static void set_vendor_info_packet(
2087                 struct encoder_info_packet *info_packet,
2088                 struct dc_stream_state *stream)
2089 {
2090         uint32_t length = 0;
2091         bool hdmi_vic_mode = false;
2092         uint8_t checksum = 0;
2093         uint32_t i = 0;
2094         enum dc_timing_3d_format format;
2095         // Can be different depending on packet content /*todo*/
2096         // unsigned int length = pPathMode->dolbyVision ? 24 : 5;
2097
2098         info_packet->valid = false;
2099
2100         format = stream->timing.timing_3d_format;
2101         if (stream->view_format == VIEW_3D_FORMAT_NONE)
2102                 format = TIMING_3D_FORMAT_NONE;
2103
2104         /* Can be different depending on packet content */
2105         length = 5;
2106
2107         if (stream->timing.hdmi_vic != 0
2108                         && stream->timing.h_total >= 3840
2109                         && stream->timing.v_total >= 2160)
2110                 hdmi_vic_mode = true;
2111
2112         /* According to HDMI 1.4a CTS, VSIF should be sent
2113          * for both 3D stereo and HDMI VIC modes.
2114          * For all other modes, there is no VSIF sent.  */
2115
2116         if (format == TIMING_3D_FORMAT_NONE && !hdmi_vic_mode)
2117                 return;
2118
2119         /* 24bit IEEE Registration identifier (0x000c03). LSB first. */
2120         info_packet->sb[1] = 0x03;
2121         info_packet->sb[2] = 0x0C;
2122         info_packet->sb[3] = 0x00;
2123
2124         /*PB4: 5 lower bytes = 0 (reserved). 3 higher bits = HDMI_Video_Format.
2125          * The value for HDMI_Video_Format are:
2126          * 0x0 (0b000) - No additional HDMI video format is presented in this
2127          * packet
2128          * 0x1 (0b001) - Extended resolution format present. 1 byte of HDMI_VIC
2129          * parameter follows
2130          * 0x2 (0b010) - 3D format indication present. 3D_Structure and
2131          * potentially 3D_Ext_Data follows
2132          * 0x3..0x7 (0b011..0b111) - reserved for future use */
2133         if (format != TIMING_3D_FORMAT_NONE)
2134                 info_packet->sb[4] = (2 << 5);
2135         else if (hdmi_vic_mode)
2136                 info_packet->sb[4] = (1 << 5);
2137
2138         /* PB5: If PB4 claims 3D timing (HDMI_Video_Format = 0x2):
2139          * 4 lower bites = 0 (reserved). 4 higher bits = 3D_Structure.
2140          * The value for 3D_Structure are:
2141          * 0x0 - Frame Packing
2142          * 0x1 - Field Alternative
2143          * 0x2 - Line Alternative
2144          * 0x3 - Side-by-Side (full)
2145          * 0x4 - L + depth
2146          * 0x5 - L + depth + graphics + graphics-depth
2147          * 0x6 - Top-and-Bottom
2148          * 0x7 - Reserved for future use
2149          * 0x8 - Side-by-Side (Half)
2150          * 0x9..0xE - Reserved for future use
2151          * 0xF - Not used */
2152         switch (format) {
2153         case TIMING_3D_FORMAT_HW_FRAME_PACKING:
2154         case TIMING_3D_FORMAT_SW_FRAME_PACKING:
2155                 info_packet->sb[5] = (0x0 << 4);
2156                 break;
2157
2158         case TIMING_3D_FORMAT_SIDE_BY_SIDE:
2159         case TIMING_3D_FORMAT_SBS_SW_PACKED:
2160                 info_packet->sb[5] = (0x8 << 4);
2161                 length = 6;
2162                 break;
2163
2164         case TIMING_3D_FORMAT_TOP_AND_BOTTOM:
2165         case TIMING_3D_FORMAT_TB_SW_PACKED:
2166                 info_packet->sb[5] = (0x6 << 4);
2167                 break;
2168
2169         default:
2170                 break;
2171         }
2172
2173         /*PB5: If PB4 is set to 0x1 (extended resolution format)
2174          * fill PB5 with the correct HDMI VIC code */
2175         if (hdmi_vic_mode)
2176                 info_packet->sb[5] = stream->timing.hdmi_vic;
2177
2178         /* Header */
2179         info_packet->hb0 = HDMI_INFOFRAME_TYPE_VENDOR; /* VSIF packet type. */
2180         info_packet->hb1 = 0x01; /* Version */
2181
2182         /* 4 lower bits = Length, 4 higher bits = 0 (reserved) */
2183         info_packet->hb2 = (uint8_t) (length);
2184
2185         /* Calculate checksum */
2186         checksum = 0;
2187         checksum += info_packet->hb0;
2188         checksum += info_packet->hb1;
2189         checksum += info_packet->hb2;
2190
2191         for (i = 1; i <= length; i++)
2192                 checksum += info_packet->sb[i];
2193
2194         info_packet->sb[0] = (uint8_t) (0x100 - checksum);
2195
2196         info_packet->valid = true;
2197 }
2198
2199 static void set_spd_info_packet(
2200                 struct encoder_info_packet *info_packet,
2201                 struct dc_stream_state *stream)
2202 {
2203         /* SPD info packet for FreeSync */
2204
2205         unsigned char checksum = 0;
2206         unsigned int idx, payload_size = 0;
2207
2208         /* Check if Freesync is supported. Return if false. If true,
2209          * set the corresponding bit in the info packet
2210          */
2211         if (stream->freesync_ctx.supported == false)
2212                 return;
2213
2214         if (dc_is_hdmi_signal(stream->signal)) {
2215
2216                 /* HEADER */
2217
2218                 /* HB0  = Packet Type = 0x83 (Source Product
2219                  *        Descriptor InfoFrame)
2220                  */
2221                 info_packet->hb0 = HDMI_INFOFRAME_TYPE_SPD;
2222
2223                 /* HB1  = Version = 0x01 */
2224                 info_packet->hb1 = 0x01;
2225
2226                 /* HB2  = [Bits 7:5 = 0] [Bits 4:0 = Length = 0x08] */
2227                 info_packet->hb2 = 0x08;
2228
2229                 payload_size = 0x08;
2230
2231         } else if (dc_is_dp_signal(stream->signal)) {
2232
2233                 /* HEADER */
2234
2235                 /* HB0  = Secondary-data Packet ID = 0 - Only non-zero
2236                  *        when used to associate audio related info packets
2237                  */
2238                 info_packet->hb0 = 0x00;
2239
2240                 /* HB1  = Packet Type = 0x83 (Source Product
2241                  *        Descriptor InfoFrame)
2242                  */
2243                 info_packet->hb1 = HDMI_INFOFRAME_TYPE_SPD;
2244
2245                 /* HB2  = [Bits 7:0 = Least significant eight bits -
2246                  *        For INFOFRAME, the value must be 1Bh]
2247                  */
2248                 info_packet->hb2 = 0x1B;
2249
2250                 /* HB3  = [Bits 7:2 = INFOFRAME SDP Version Number = 0x1]
2251                  *        [Bits 1:0 = Most significant two bits = 0x00]
2252                  */
2253                 info_packet->hb3 = 0x04;
2254
2255                 payload_size = 0x1B;
2256         }
2257
2258         /* PB1 = 0x1A (24bit AMD IEEE OUI (0x00001A) - Byte 0) */
2259         info_packet->sb[1] = 0x1A;
2260
2261         /* PB2 = 0x00 (24bit AMD IEEE OUI (0x00001A) - Byte 1) */
2262         info_packet->sb[2] = 0x00;
2263
2264         /* PB3 = 0x00 (24bit AMD IEEE OUI (0x00001A) - Byte 2) */
2265         info_packet->sb[3] = 0x00;
2266
2267         /* PB4 = Reserved */
2268         info_packet->sb[4] = 0x00;
2269
2270         /* PB5 = Reserved */
2271         info_packet->sb[5] = 0x00;
2272
2273         /* PB6 = [Bits 7:3 = Reserved] */
2274         info_packet->sb[6] = 0x00;
2275
2276         if (stream->freesync_ctx.supported == true)
2277                 /* PB6 = [Bit 0 = FreeSync Supported] */
2278                 info_packet->sb[6] |= 0x01;
2279
2280         if (stream->freesync_ctx.enabled == true)
2281                 /* PB6 = [Bit 1 = FreeSync Enabled] */
2282                 info_packet->sb[6] |= 0x02;
2283
2284         if (stream->freesync_ctx.active == true)
2285                 /* PB6 = [Bit 2 = FreeSync Active] */
2286                 info_packet->sb[6] |= 0x04;
2287
2288         /* PB7 = FreeSync Minimum refresh rate (Hz) */
2289         info_packet->sb[7] = (unsigned char) (stream->freesync_ctx.
2290                         min_refresh_in_micro_hz / 1000000);
2291
2292         /* PB8 = FreeSync Maximum refresh rate (Hz)
2293          *
2294          * Note: We do not use the maximum capable refresh rate
2295          * of the panel, because we should never go above the field
2296          * rate of the mode timing set.
2297          */
2298         info_packet->sb[8] = (unsigned char) (stream->freesync_ctx.
2299                         nominal_refresh_in_micro_hz / 1000000);
2300
2301         /* PB9 - PB27  = Reserved */
2302         for (idx = 9; idx <= 27; idx++)
2303                 info_packet->sb[idx] = 0x00;
2304
2305         /* Calculate checksum */
2306         checksum += info_packet->hb0;
2307         checksum += info_packet->hb1;
2308         checksum += info_packet->hb2;
2309         checksum += info_packet->hb3;
2310
2311         for (idx = 1; idx <= payload_size; idx++)
2312                 checksum += info_packet->sb[idx];
2313
2314         /* PB0 = Checksum (one byte complement) */
2315         info_packet->sb[0] = (unsigned char) (0x100 - checksum);
2316
2317         info_packet->valid = true;
2318 }
2319
2320 static void set_hdr_static_info_packet(
2321                 struct encoder_info_packet *info_packet,
2322                 struct dc_plane_state *plane_state,
2323                 struct dc_stream_state *stream)
2324 {
2325         uint16_t i = 0;
2326         enum signal_type signal = stream->signal;
2327         struct dc_hdr_static_metadata hdr_metadata;
2328         uint32_t data;
2329
2330         if (!plane_state)
2331                 return;
2332
2333         hdr_metadata = plane_state->hdr_static_ctx;
2334
2335         if (!hdr_metadata.hdr_supported)
2336                 return;
2337
2338         if (dc_is_hdmi_signal(signal)) {
2339                 info_packet->valid = true;
2340
2341                 info_packet->hb0 = 0x87;
2342                 info_packet->hb1 = 0x01;
2343                 info_packet->hb2 = 0x1A;
2344                 i = 1;
2345         } else if (dc_is_dp_signal(signal)) {
2346                 info_packet->valid = true;
2347
2348                 info_packet->hb0 = 0x00;
2349                 info_packet->hb1 = 0x87;
2350                 info_packet->hb2 = 0x1D;
2351                 info_packet->hb3 = (0x13 << 2);
2352                 i = 2;
2353         }
2354
2355         data = hdr_metadata.is_hdr;
2356         info_packet->sb[i++] = data ? 0x02 : 0x00;
2357         info_packet->sb[i++] = 0x00;
2358
2359         data = hdr_metadata.chromaticity_green_x / 2;
2360         info_packet->sb[i++] = data & 0xFF;
2361         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2362
2363         data = hdr_metadata.chromaticity_green_y / 2;
2364         info_packet->sb[i++] = data & 0xFF;
2365         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2366
2367         data = hdr_metadata.chromaticity_blue_x / 2;
2368         info_packet->sb[i++] = data & 0xFF;
2369         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2370
2371         data = hdr_metadata.chromaticity_blue_y / 2;
2372         info_packet->sb[i++] = data & 0xFF;
2373         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2374
2375         data = hdr_metadata.chromaticity_red_x / 2;
2376         info_packet->sb[i++] = data & 0xFF;
2377         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2378
2379         data = hdr_metadata.chromaticity_red_y / 2;
2380         info_packet->sb[i++] = data & 0xFF;
2381         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2382
2383         data = hdr_metadata.chromaticity_white_point_x / 2;
2384         info_packet->sb[i++] = data & 0xFF;
2385         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2386
2387         data = hdr_metadata.chromaticity_white_point_y / 2;
2388         info_packet->sb[i++] = data & 0xFF;
2389         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2390
2391         data = hdr_metadata.max_luminance;
2392         info_packet->sb[i++] = data & 0xFF;
2393         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2394
2395         data = hdr_metadata.min_luminance;
2396         info_packet->sb[i++] = data & 0xFF;
2397         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2398
2399         data = hdr_metadata.maximum_content_light_level;
2400         info_packet->sb[i++] = data & 0xFF;
2401         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2402
2403         data = hdr_metadata.maximum_frame_average_light_level;
2404         info_packet->sb[i++] = data & 0xFF;
2405         info_packet->sb[i++] = (data & 0xFF00) >> 8;
2406
2407         if (dc_is_hdmi_signal(signal)) {
2408                 uint32_t checksum = 0;
2409
2410                 checksum += info_packet->hb0;
2411                 checksum += info_packet->hb1;
2412                 checksum += info_packet->hb2;
2413
2414                 for (i = 1; i <= info_packet->hb2; i++)
2415                         checksum += info_packet->sb[i];
2416
2417                 info_packet->sb[0] = 0x100 - checksum;
2418         } else if (dc_is_dp_signal(signal)) {
2419                 info_packet->sb[0] = 0x01;
2420                 info_packet->sb[1] = 0x1A;
2421         }
2422 }
2423
2424 static void set_vsc_info_packet(
2425                 struct encoder_info_packet *info_packet,
2426                 struct dc_stream_state *stream)
2427 {
2428         unsigned int vscPacketRevision = 0;
2429         unsigned int i;
2430
2431         if (stream->sink->link->psr_enabled) {
2432                 vscPacketRevision = 2;
2433         }
2434
2435         /* VSC packet not needed based on the features
2436          * supported by this DP display
2437          */
2438         if (vscPacketRevision == 0)
2439                 return;
2440
2441         if (vscPacketRevision == 0x2) {
2442                 /* Secondary-data Packet ID = 0*/
2443                 info_packet->hb0 = 0x00;
2444                 /* 07h - Packet Type Value indicating Video
2445                  * Stream Configuration packet
2446                  */
2447                 info_packet->hb1 = 0x07;
2448                 /* 02h = VSC SDP supporting 3D stereo and PSR
2449                  * (applies to eDP v1.3 or higher).
2450                  */
2451                 info_packet->hb2 = 0x02;
2452                 /* 08h = VSC packet supporting 3D stereo + PSR
2453                  * (HB2 = 02h).
2454                  */
2455                 info_packet->hb3 = 0x08;
2456
2457                 for (i = 0; i < 28; i++)
2458                         info_packet->sb[i] = 0;
2459
2460                 info_packet->valid = true;
2461         }
2462
2463         /*TODO: stereo 3D support and extend pixel encoding colorimetry*/
2464 }
2465
2466 void dc_resource_state_destruct(struct dc_state *context)
2467 {
2468         int i, j;
2469
2470         for (i = 0; i < context->stream_count; i++) {
2471                 for (j = 0; j < context->stream_status[i].plane_count; j++)
2472                         dc_plane_state_release(
2473                                 context->stream_status[i].plane_states[j]);
2474
2475                 context->stream_status[i].plane_count = 0;
2476                 dc_stream_release(context->streams[i]);
2477                 context->streams[i] = NULL;
2478         }
2479 }
2480
2481 /*
2482  * Copy src_ctx into dst_ctx and retain all surfaces and streams referenced
2483  * by the src_ctx
2484  */
2485 void dc_resource_state_copy_construct(
2486                 const struct dc_state *src_ctx,
2487                 struct dc_state *dst_ctx)
2488 {
2489         int i, j;
2490         struct kref refcount = dst_ctx->refcount;
2491
2492         *dst_ctx = *src_ctx;
2493
2494         for (i = 0; i < MAX_PIPES; i++) {
2495                 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2496
2497                 if (cur_pipe->top_pipe)
2498                         cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2499
2500                 if (cur_pipe->bottom_pipe)
2501                         cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2502
2503         }
2504
2505         for (i = 0; i < dst_ctx->stream_count; i++) {
2506                 dc_stream_retain(dst_ctx->streams[i]);
2507                 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2508                         dc_plane_state_retain(
2509                                 dst_ctx->stream_status[i].plane_states[j]);
2510         }
2511
2512         /* context refcount should not be overridden */
2513         dst_ctx->refcount = refcount;
2514
2515 }
2516
2517 struct clock_source *dc_resource_find_first_free_pll(
2518                 struct resource_context *res_ctx,
2519                 const struct resource_pool *pool)
2520 {
2521         int i;
2522
2523         for (i = 0; i < pool->clk_src_count; ++i) {
2524                 if (res_ctx->clock_source_ref_count[i] == 0)
2525                         return pool->clock_sources[i];
2526         }
2527
2528         return NULL;
2529 }
2530
2531 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2532 {
2533         enum signal_type signal = SIGNAL_TYPE_NONE;
2534         struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2535
2536         /* default all packets to invalid */
2537         info->avi.valid = false;
2538         info->gamut.valid = false;
2539         info->vendor.valid = false;
2540         info->spd.valid = false;
2541         info->hdrsmd.valid = false;
2542         info->vsc.valid = false;
2543
2544         signal = pipe_ctx->stream->signal;
2545
2546         /* HDMi and DP have different info packets*/
2547         if (dc_is_hdmi_signal(signal)) {
2548                 set_avi_info_frame(&info->avi, pipe_ctx);
2549
2550                 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2551
2552                 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2553
2554                 set_hdr_static_info_packet(&info->hdrsmd,
2555                                 pipe_ctx->plane_state, pipe_ctx->stream);
2556
2557         } else if (dc_is_dp_signal(signal)) {
2558                 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2559
2560                 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2561
2562                 set_hdr_static_info_packet(&info->hdrsmd,
2563                                 pipe_ctx->plane_state, pipe_ctx->stream);
2564         }
2565
2566         patch_gamut_packet_checksum(&info->gamut);
2567 }
2568
2569 enum dc_status resource_map_clock_resources(
2570                 const struct dc  *dc,
2571                 struct dc_state *context,
2572                 struct dc_stream_state *stream)
2573 {
2574         /* acquire new resources */
2575         const struct resource_pool *pool = dc->res_pool;
2576         struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2577                                 &context->res_ctx, stream);
2578
2579         if (!pipe_ctx)
2580                 return DC_ERROR_UNEXPECTED;
2581
2582         if (dc_is_dp_signal(pipe_ctx->stream->signal)
2583                 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2584                 pipe_ctx->clock_source = pool->dp_clock_source;
2585         else {
2586                 pipe_ctx->clock_source = NULL;
2587
2588                 if (!dc->config.disable_disp_pll_sharing)
2589                         pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2590                                 &context->res_ctx,
2591                                 pipe_ctx);
2592
2593                 if (pipe_ctx->clock_source == NULL)
2594                         pipe_ctx->clock_source =
2595                                 dc_resource_find_first_free_pll(
2596                                         &context->res_ctx,
2597                                         pool);
2598         }
2599
2600         if (pipe_ctx->clock_source == NULL)
2601                 return DC_NO_CLOCK_SOURCE_RESOURCE;
2602
2603         resource_reference_clock_source(
2604                 &context->res_ctx, pool,
2605                 pipe_ctx->clock_source);
2606
2607         return DC_OK;
2608 }
2609
2610 /*
2611  * Note: We need to disable output if clock sources change,
2612  * since bios does optimization and doesn't apply if changing
2613  * PHY when not already disabled.
2614  */
2615 bool pipe_need_reprogram(
2616                 struct pipe_ctx *pipe_ctx_old,
2617                 struct pipe_ctx *pipe_ctx)
2618 {
2619         if (!pipe_ctx_old->stream)
2620                 return false;
2621
2622         if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2623                 return true;
2624
2625         if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2626                 return true;
2627
2628         if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2629                 return true;
2630
2631         if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2632                         && pipe_ctx_old->stream != pipe_ctx->stream)
2633                 return true;
2634
2635         if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2636                 return true;
2637
2638         if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2639                 return true;
2640
2641
2642         return false;
2643 }
2644
2645 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2646                 struct bit_depth_reduction_params *fmt_bit_depth)
2647 {
2648         enum dc_dither_option option = stream->dither_option;
2649         enum dc_pixel_encoding pixel_encoding =
2650                         stream->timing.pixel_encoding;
2651
2652         memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2653
2654         if (option == DITHER_OPTION_DEFAULT) {
2655                 switch (stream->timing.display_color_depth) {
2656                 case COLOR_DEPTH_666:
2657                         option = DITHER_OPTION_SPATIAL6;
2658                         break;
2659                 case COLOR_DEPTH_888:
2660                         option = DITHER_OPTION_SPATIAL8;
2661                         break;
2662                 case COLOR_DEPTH_101010:
2663                         option = DITHER_OPTION_SPATIAL10;
2664                         break;
2665                 default:
2666                         option = DITHER_OPTION_DISABLE;
2667                 }
2668         }
2669
2670         if (option == DITHER_OPTION_DISABLE)
2671                 return;
2672
2673         if (option == DITHER_OPTION_TRUN6) {
2674                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2675                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2676         } else if (option == DITHER_OPTION_TRUN8 ||
2677                         option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2678                         option == DITHER_OPTION_TRUN8_FM6) {
2679                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2680                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2681         } else if (option == DITHER_OPTION_TRUN10        ||
2682                         option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2683                         option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2684                         option == DITHER_OPTION_TRUN10_FM8     ||
2685                         option == DITHER_OPTION_TRUN10_FM6     ||
2686                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2687                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2688                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2689         }
2690
2691         /* special case - Formatter can only reduce by 4 bits at most.
2692          * When reducing from 12 to 6 bits,
2693          * HW recommends we use trunc with round mode
2694          * (if we did nothing, trunc to 10 bits would be used)
2695          * note that any 12->10 bit reduction is ignored prior to DCE8,
2696          * as the input was 10 bits.
2697          */
2698         if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2699                         option == DITHER_OPTION_SPATIAL6 ||
2700                         option == DITHER_OPTION_FM6) {
2701                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2702                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2703                 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2704         }
2705
2706         /* spatial dither
2707          * note that spatial modes 1-3 are never used
2708          */
2709         if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2710                         option == DITHER_OPTION_SPATIAL6 ||
2711                         option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2712                         option == DITHER_OPTION_TRUN8_SPATIAL6) {
2713                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2714                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2715                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2716                 fmt_bit_depth->flags.RGB_RANDOM =
2717                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2718         } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2719                         option == DITHER_OPTION_SPATIAL8 ||
2720                         option == DITHER_OPTION_SPATIAL8_FM6        ||
2721                         option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2722                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2723                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2724                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2725                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2726                 fmt_bit_depth->flags.RGB_RANDOM =
2727                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2728         } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2729                         option == DITHER_OPTION_SPATIAL10 ||
2730                         option == DITHER_OPTION_SPATIAL10_FM8 ||
2731                         option == DITHER_OPTION_SPATIAL10_FM6) {
2732                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2733                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2734                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2735                 fmt_bit_depth->flags.RGB_RANDOM =
2736                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2737         }
2738
2739         if (option == DITHER_OPTION_SPATIAL6 ||
2740                         option == DITHER_OPTION_SPATIAL8 ||
2741                         option == DITHER_OPTION_SPATIAL10) {
2742                 fmt_bit_depth->flags.FRAME_RANDOM = 0;
2743         } else {
2744                 fmt_bit_depth->flags.FRAME_RANDOM = 1;
2745         }
2746
2747         //////////////////////
2748         //// temporal dither
2749         //////////////////////
2750         if (option == DITHER_OPTION_FM6           ||
2751                         option == DITHER_OPTION_SPATIAL8_FM6     ||
2752                         option == DITHER_OPTION_SPATIAL10_FM6     ||
2753                         option == DITHER_OPTION_TRUN10_FM6     ||
2754                         option == DITHER_OPTION_TRUN8_FM6      ||
2755                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2756                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2757                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2758         } else if (option == DITHER_OPTION_FM8        ||
2759                         option == DITHER_OPTION_SPATIAL10_FM8  ||
2760                         option == DITHER_OPTION_TRUN10_FM8) {
2761                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2762                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2763         } else if (option == DITHER_OPTION_FM10) {
2764                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2765                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2766         }
2767
2768         fmt_bit_depth->pixel_encoding = pixel_encoding;
2769 }
2770
2771 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2772 {
2773         struct dc  *core_dc = dc;
2774         struct dc_link *link = stream->sink->link;
2775         struct timing_generator *tg = core_dc->res_pool->timing_generators[0];
2776         enum dc_status res = DC_OK;
2777
2778         calculate_phy_pix_clks(stream);
2779
2780         if (!tg->funcs->validate_timing(tg, &stream->timing))
2781                 res = DC_FAIL_CONTROLLER_VALIDATE;
2782
2783         if (res == DC_OK)
2784                 if (!link->link_enc->funcs->validate_output_with_stream(
2785                                                 link->link_enc, stream))
2786                         res = DC_FAIL_ENC_VALIDATE;
2787
2788         /* TODO: validate audio ASIC caps, encoder */
2789
2790         if (res == DC_OK)
2791                 res = dc_link_validate_mode_timing(stream,
2792                       link,
2793                       &stream->timing);
2794
2795         return res;
2796 }
2797
2798 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2799 {
2800         enum dc_status res = DC_OK;
2801
2802         /* TODO For now validates pixel format only */
2803         if (dc->res_pool->funcs->validate_plane)
2804                 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2805
2806         return res;
2807 }