Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include <linux/sched.h>
30 #include "kfd_priv.h"
31 #include "kfd_device_queue_manager.h"
32 #include "kfd_mqd_manager.h"
33 #include "cik_regs.h"
34 #include "kfd_kernel_queue.h"
35
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41                                         unsigned int pasid, unsigned int vmid);
42
43 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44                                         struct queue *q,
45                                         struct qcm_process_device *qpd);
46
47 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 static int destroy_queues_cpsch(struct device_queue_manager *dqm,
49                                 bool preempt_static_queues, bool lock);
50
51 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
52                                         struct queue *q,
53                                         struct qcm_process_device *qpd);
54
55 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
56                                 unsigned int sdma_queue_id);
57
58 static inline
59 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
60 {
61         if (type == KFD_QUEUE_TYPE_SDMA)
62                 return KFD_MQD_TYPE_SDMA;
63         return KFD_MQD_TYPE_CP;
64 }
65
66 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
67 {
68         int i;
69         int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
70                 + pipe * dqm->dev->shared_resources.num_queue_per_pipe;
71
72         /* queue is available for KFD usage if bit is 1 */
73         for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
74                 if (test_bit(pipe_offset + i,
75                               dqm->dev->shared_resources.queue_bitmap))
76                         return true;
77         return false;
78 }
79
80 unsigned int get_queues_num(struct device_queue_manager *dqm)
81 {
82         return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
83                                 KGD_MAX_QUEUES);
84 }
85
86 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
87 {
88         return dqm->dev->shared_resources.num_queue_per_pipe;
89 }
90
91 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
92 {
93         return dqm->dev->shared_resources.num_pipe_per_mec;
94 }
95
96 void program_sh_mem_settings(struct device_queue_manager *dqm,
97                                         struct qcm_process_device *qpd)
98 {
99         return dqm->dev->kfd2kgd->program_sh_mem_settings(
100                                                 dqm->dev->kgd, qpd->vmid,
101                                                 qpd->sh_mem_config,
102                                                 qpd->sh_mem_ape1_base,
103                                                 qpd->sh_mem_ape1_limit,
104                                                 qpd->sh_mem_bases);
105 }
106
107 static int allocate_vmid(struct device_queue_manager *dqm,
108                         struct qcm_process_device *qpd,
109                         struct queue *q)
110 {
111         int bit, allocated_vmid;
112
113         if (dqm->vmid_bitmap == 0)
114                 return -ENOMEM;
115
116         bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
117         clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
118
119         /* Kaveri kfd vmid's starts from vmid 8 */
120         allocated_vmid = bit + KFD_VMID_START_OFFSET;
121         pr_debug("vmid allocation %d\n", allocated_vmid);
122         qpd->vmid = allocated_vmid;
123         q->properties.vmid = allocated_vmid;
124
125         set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
126         program_sh_mem_settings(dqm, qpd);
127
128         return 0;
129 }
130
131 static void deallocate_vmid(struct device_queue_manager *dqm,
132                                 struct qcm_process_device *qpd,
133                                 struct queue *q)
134 {
135         int bit = qpd->vmid - KFD_VMID_START_OFFSET;
136
137         /* Release the vmid mapping */
138         set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
139
140         set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
141         qpd->vmid = 0;
142         q->properties.vmid = 0;
143 }
144
145 static int create_queue_nocpsch(struct device_queue_manager *dqm,
146                                 struct queue *q,
147                                 struct qcm_process_device *qpd,
148                                 int *allocated_vmid)
149 {
150         int retval;
151
152         print_queue(q);
153
154         mutex_lock(&dqm->lock);
155
156         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
157                 pr_warn("Can't create new usermode queue because %d queues were already created\n",
158                                 dqm->total_queue_count);
159                 retval = -EPERM;
160                 goto out_unlock;
161         }
162
163         if (list_empty(&qpd->queues_list)) {
164                 retval = allocate_vmid(dqm, qpd, q);
165                 if (retval)
166                         goto out_unlock;
167         }
168         *allocated_vmid = qpd->vmid;
169         q->properties.vmid = qpd->vmid;
170
171         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
172                 retval = create_compute_queue_nocpsch(dqm, q, qpd);
173         else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
174                 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
175         else
176                 retval = -EINVAL;
177
178         if (retval) {
179                 if (list_empty(&qpd->queues_list)) {
180                         deallocate_vmid(dqm, qpd, q);
181                         *allocated_vmid = 0;
182                 }
183                 goto out_unlock;
184         }
185
186         list_add(&q->list, &qpd->queues_list);
187         if (q->properties.is_active)
188                 dqm->queue_count++;
189
190         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
191                 dqm->sdma_queue_count++;
192
193         /*
194          * Unconditionally increment this counter, regardless of the queue's
195          * type or whether the queue is active.
196          */
197         dqm->total_queue_count++;
198         pr_debug("Total of %d queues are accountable so far\n",
199                         dqm->total_queue_count);
200
201 out_unlock:
202         mutex_unlock(&dqm->lock);
203         return retval;
204 }
205
206 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
207 {
208         bool set;
209         int pipe, bit, i;
210
211         set = false;
212
213         for (pipe = dqm->next_pipe_to_allocate, i = 0;
214                         i < get_pipes_per_mec(dqm);
215                         pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
216
217                 if (!is_pipe_enabled(dqm, 0, pipe))
218                         continue;
219
220                 if (dqm->allocated_queues[pipe] != 0) {
221                         bit = find_first_bit(
222                                 (unsigned long *)&dqm->allocated_queues[pipe],
223                                 get_queues_per_pipe(dqm));
224
225                         clear_bit(bit,
226                                 (unsigned long *)&dqm->allocated_queues[pipe]);
227                         q->pipe = pipe;
228                         q->queue = bit;
229                         set = true;
230                         break;
231                 }
232         }
233
234         if (!set)
235                 return -EBUSY;
236
237         pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
238         /* horizontal hqd allocation */
239         dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
240
241         return 0;
242 }
243
244 static inline void deallocate_hqd(struct device_queue_manager *dqm,
245                                 struct queue *q)
246 {
247         set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
248 }
249
250 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
251                                         struct queue *q,
252                                         struct qcm_process_device *qpd)
253 {
254         int retval;
255         struct mqd_manager *mqd;
256
257         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
258         if (!mqd)
259                 return -ENOMEM;
260
261         retval = allocate_hqd(dqm, q);
262         if (retval)
263                 return retval;
264
265         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
266                                 &q->gart_mqd_addr, &q->properties);
267         if (retval)
268                 goto out_deallocate_hqd;
269
270         pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
271                         q->pipe, q->queue);
272
273         dqm->dev->kfd2kgd->set_scratch_backing_va(
274                         dqm->dev->kgd, qpd->sh_hidden_private_base, qpd->vmid);
275
276         retval = mqd->load_mqd(mqd, q->mqd, q->pipe, q->queue, &q->properties,
277                                q->process->mm);
278         if (retval)
279                 goto out_uninit_mqd;
280
281         return 0;
282
283 out_uninit_mqd:
284         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
285 out_deallocate_hqd:
286         deallocate_hqd(dqm, q);
287
288         return retval;
289 }
290
291 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
292                                 struct qcm_process_device *qpd,
293                                 struct queue *q)
294 {
295         int retval;
296         struct mqd_manager *mqd;
297
298         retval = 0;
299
300         mutex_lock(&dqm->lock);
301
302         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
303                 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
304                 if (mqd == NULL) {
305                         retval = -ENOMEM;
306                         goto out;
307                 }
308                 deallocate_hqd(dqm, q);
309         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
310                 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
311                 if (mqd == NULL) {
312                         retval = -ENOMEM;
313                         goto out;
314                 }
315                 dqm->sdma_queue_count--;
316                 deallocate_sdma_queue(dqm, q->sdma_id);
317         } else {
318                 pr_debug("q->properties.type %d is invalid\n",
319                                 q->properties.type);
320                 retval = -EINVAL;
321                 goto out;
322         }
323
324         retval = mqd->destroy_mqd(mqd, q->mqd,
325                                 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
326                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
327                                 q->pipe, q->queue);
328
329         if (retval)
330                 goto out;
331
332         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
333
334         list_del(&q->list);
335         if (list_empty(&qpd->queues_list))
336                 deallocate_vmid(dqm, qpd, q);
337         if (q->properties.is_active)
338                 dqm->queue_count--;
339
340         /*
341          * Unconditionally decrement this counter, regardless of the queue's
342          * type
343          */
344         dqm->total_queue_count--;
345         pr_debug("Total of %d queues are accountable so far\n",
346                         dqm->total_queue_count);
347
348 out:
349         mutex_unlock(&dqm->lock);
350         return retval;
351 }
352
353 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
354 {
355         int retval;
356         struct mqd_manager *mqd;
357         bool prev_active = false;
358
359         mutex_lock(&dqm->lock);
360         mqd = dqm->ops.get_mqd_manager(dqm,
361                         get_mqd_type_from_queue_type(q->properties.type));
362         if (!mqd) {
363                 retval = -ENOMEM;
364                 goto out_unlock;
365         }
366
367         if (q->properties.is_active)
368                 prev_active = true;
369
370         /*
371          *
372          * check active state vs. the previous state
373          * and modify counter accordingly
374          */
375         retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
376         if ((q->properties.is_active) && (!prev_active))
377                 dqm->queue_count++;
378         else if (!q->properties.is_active && prev_active)
379                 dqm->queue_count--;
380
381         if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
382                 retval = execute_queues_cpsch(dqm, false);
383
384 out_unlock:
385         mutex_unlock(&dqm->lock);
386         return retval;
387 }
388
389 static struct mqd_manager *get_mqd_manager_nocpsch(
390                 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
391 {
392         struct mqd_manager *mqd;
393
394         if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
395                 return NULL;
396
397         pr_debug("mqd type %d\n", type);
398
399         mqd = dqm->mqds[type];
400         if (!mqd) {
401                 mqd = mqd_manager_init(type, dqm->dev);
402                 if (!mqd)
403                         pr_err("mqd manager is NULL");
404                 dqm->mqds[type] = mqd;
405         }
406
407         return mqd;
408 }
409
410 static int register_process_nocpsch(struct device_queue_manager *dqm,
411                                         struct qcm_process_device *qpd)
412 {
413         struct device_process_node *n;
414         int retval;
415
416         n = kzalloc(sizeof(*n), GFP_KERNEL);
417         if (!n)
418                 return -ENOMEM;
419
420         n->qpd = qpd;
421
422         mutex_lock(&dqm->lock);
423         list_add(&n->list, &dqm->queues);
424
425         retval = dqm->ops_asic_specific.register_process(dqm, qpd);
426
427         dqm->processes_count++;
428
429         mutex_unlock(&dqm->lock);
430
431         return retval;
432 }
433
434 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
435                                         struct qcm_process_device *qpd)
436 {
437         int retval;
438         struct device_process_node *cur, *next;
439
440         pr_debug("qpd->queues_list is %s\n",
441                         list_empty(&qpd->queues_list) ? "empty" : "not empty");
442
443         retval = 0;
444         mutex_lock(&dqm->lock);
445
446         list_for_each_entry_safe(cur, next, &dqm->queues, list) {
447                 if (qpd == cur->qpd) {
448                         list_del(&cur->list);
449                         kfree(cur);
450                         dqm->processes_count--;
451                         goto out;
452                 }
453         }
454         /* qpd not found in dqm list */
455         retval = 1;
456 out:
457         mutex_unlock(&dqm->lock);
458         return retval;
459 }
460
461 static int
462 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
463                         unsigned int vmid)
464 {
465         uint32_t pasid_mapping;
466
467         pasid_mapping = (pasid == 0) ? 0 :
468                 (uint32_t)pasid |
469                 ATC_VMID_PASID_MAPPING_VALID;
470
471         return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
472                                                 dqm->dev->kgd, pasid_mapping,
473                                                 vmid);
474 }
475
476 static void init_interrupts(struct device_queue_manager *dqm)
477 {
478         unsigned int i;
479
480         for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
481                 if (is_pipe_enabled(dqm, 0, i))
482                         dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
483 }
484
485 static int initialize_nocpsch(struct device_queue_manager *dqm)
486 {
487         int pipe, queue;
488
489         pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
490
491         dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
492                                         sizeof(unsigned int), GFP_KERNEL);
493         if (!dqm->allocated_queues)
494                 return -ENOMEM;
495
496         mutex_init(&dqm->lock);
497         INIT_LIST_HEAD(&dqm->queues);
498         dqm->queue_count = dqm->next_pipe_to_allocate = 0;
499         dqm->sdma_queue_count = 0;
500
501         for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
502                 int pipe_offset = pipe * get_queues_per_pipe(dqm);
503
504                 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
505                         if (test_bit(pipe_offset + queue,
506                                      dqm->dev->shared_resources.queue_bitmap))
507                                 dqm->allocated_queues[pipe] |= 1 << queue;
508         }
509
510         dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
511         dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
512
513         return 0;
514 }
515
516 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
517 {
518         int i;
519
520         WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
521
522         kfree(dqm->allocated_queues);
523         for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
524                 kfree(dqm->mqds[i]);
525         mutex_destroy(&dqm->lock);
526         kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
527 }
528
529 static int start_nocpsch(struct device_queue_manager *dqm)
530 {
531         init_interrupts(dqm);
532         return 0;
533 }
534
535 static int stop_nocpsch(struct device_queue_manager *dqm)
536 {
537         return 0;
538 }
539
540 static int allocate_sdma_queue(struct device_queue_manager *dqm,
541                                 unsigned int *sdma_queue_id)
542 {
543         int bit;
544
545         if (dqm->sdma_bitmap == 0)
546                 return -ENOMEM;
547
548         bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
549                                 CIK_SDMA_QUEUES);
550
551         clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
552         *sdma_queue_id = bit;
553
554         return 0;
555 }
556
557 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
558                                 unsigned int sdma_queue_id)
559 {
560         if (sdma_queue_id >= CIK_SDMA_QUEUES)
561                 return;
562         set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
563 }
564
565 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
566                                         struct queue *q,
567                                         struct qcm_process_device *qpd)
568 {
569         struct mqd_manager *mqd;
570         int retval;
571
572         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
573         if (!mqd)
574                 return -ENOMEM;
575
576         retval = allocate_sdma_queue(dqm, &q->sdma_id);
577         if (retval)
578                 return retval;
579
580         q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
581         q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
582
583         pr_debug("SDMA id is:    %d\n", q->sdma_id);
584         pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
585         pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
586
587         dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
588         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
589                                 &q->gart_mqd_addr, &q->properties);
590         if (retval)
591                 goto out_deallocate_sdma_queue;
592
593         retval = mqd->load_mqd(mqd, q->mqd, 0, 0, &q->properties, NULL);
594         if (retval)
595                 goto out_uninit_mqd;
596
597         return 0;
598
599 out_uninit_mqd:
600         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
601 out_deallocate_sdma_queue:
602         deallocate_sdma_queue(dqm, q->sdma_id);
603
604         return retval;
605 }
606
607 /*
608  * Device Queue Manager implementation for cp scheduler
609  */
610
611 static int set_sched_resources(struct device_queue_manager *dqm)
612 {
613         int i, mec;
614         struct scheduling_resources res;
615
616         res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
617         res.vmid_mask <<= KFD_VMID_START_OFFSET;
618
619         res.queue_mask = 0;
620         for (i = 0; i < KGD_MAX_QUEUES; ++i) {
621                 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
622                         / dqm->dev->shared_resources.num_pipe_per_mec;
623
624                 if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
625                         continue;
626
627                 /* only acquire queues from the first MEC */
628                 if (mec > 0)
629                         continue;
630
631                 /* This situation may be hit in the future if a new HW
632                  * generation exposes more than 64 queues. If so, the
633                  * definition of res.queue_mask needs updating
634                  */
635                 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
636                         pr_err("Invalid queue enabled by amdgpu: %d\n", i);
637                         break;
638                 }
639
640                 res.queue_mask |= (1ull << i);
641         }
642         res.gws_mask = res.oac_mask = res.gds_heap_base =
643                                                 res.gds_heap_size = 0;
644
645         pr_debug("Scheduling resources:\n"
646                         "vmid mask: 0x%8X\n"
647                         "queue mask: 0x%8llX\n",
648                         res.vmid_mask, res.queue_mask);
649
650         return pm_send_set_resources(&dqm->packets, &res);
651 }
652
653 static int initialize_cpsch(struct device_queue_manager *dqm)
654 {
655         int retval;
656
657         pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
658
659         mutex_init(&dqm->lock);
660         INIT_LIST_HEAD(&dqm->queues);
661         dqm->queue_count = dqm->processes_count = 0;
662         dqm->sdma_queue_count = 0;
663         dqm->active_runlist = false;
664         retval = dqm->ops_asic_specific.initialize(dqm);
665         if (retval)
666                 mutex_destroy(&dqm->lock);
667
668         return retval;
669 }
670
671 static int start_cpsch(struct device_queue_manager *dqm)
672 {
673         struct device_process_node *node;
674         int retval;
675
676         retval = 0;
677
678         retval = pm_init(&dqm->packets, dqm);
679         if (retval)
680                 goto fail_packet_manager_init;
681
682         retval = set_sched_resources(dqm);
683         if (retval)
684                 goto fail_set_sched_resources;
685
686         pr_debug("Allocating fence memory\n");
687
688         /* allocate fence memory on the gart */
689         retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
690                                         &dqm->fence_mem);
691
692         if (retval)
693                 goto fail_allocate_vidmem;
694
695         dqm->fence_addr = dqm->fence_mem->cpu_ptr;
696         dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
697
698         init_interrupts(dqm);
699
700         list_for_each_entry(node, &dqm->queues, list)
701                 if (node->qpd->pqm->process && dqm->dev)
702                         kfd_bind_process_to_device(dqm->dev,
703                                                 node->qpd->pqm->process);
704
705         execute_queues_cpsch(dqm, true);
706
707         return 0;
708 fail_allocate_vidmem:
709 fail_set_sched_resources:
710         pm_uninit(&dqm->packets);
711 fail_packet_manager_init:
712         return retval;
713 }
714
715 static int stop_cpsch(struct device_queue_manager *dqm)
716 {
717         struct device_process_node *node;
718         struct kfd_process_device *pdd;
719
720         destroy_queues_cpsch(dqm, true, true);
721
722         list_for_each_entry(node, &dqm->queues, list) {
723                 pdd = qpd_to_pdd(node->qpd);
724                 pdd->bound = false;
725         }
726         kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
727         pm_uninit(&dqm->packets);
728
729         return 0;
730 }
731
732 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
733                                         struct kernel_queue *kq,
734                                         struct qcm_process_device *qpd)
735 {
736         mutex_lock(&dqm->lock);
737         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
738                 pr_warn("Can't create new kernel queue because %d queues were already created\n",
739                                 dqm->total_queue_count);
740                 mutex_unlock(&dqm->lock);
741                 return -EPERM;
742         }
743
744         /*
745          * Unconditionally increment this counter, regardless of the queue's
746          * type or whether the queue is active.
747          */
748         dqm->total_queue_count++;
749         pr_debug("Total of %d queues are accountable so far\n",
750                         dqm->total_queue_count);
751
752         list_add(&kq->list, &qpd->priv_queue_list);
753         dqm->queue_count++;
754         qpd->is_debug = true;
755         execute_queues_cpsch(dqm, false);
756         mutex_unlock(&dqm->lock);
757
758         return 0;
759 }
760
761 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
762                                         struct kernel_queue *kq,
763                                         struct qcm_process_device *qpd)
764 {
765         mutex_lock(&dqm->lock);
766         /* here we actually preempt the DIQ */
767         destroy_queues_cpsch(dqm, true, false);
768         list_del(&kq->list);
769         dqm->queue_count--;
770         qpd->is_debug = false;
771         execute_queues_cpsch(dqm, false);
772         /*
773          * Unconditionally decrement this counter, regardless of the queue's
774          * type.
775          */
776         dqm->total_queue_count--;
777         pr_debug("Total of %d queues are accountable so far\n",
778                         dqm->total_queue_count);
779         mutex_unlock(&dqm->lock);
780 }
781
782 static void select_sdma_engine_id(struct queue *q)
783 {
784         static int sdma_id;
785
786         q->sdma_id = sdma_id;
787         sdma_id = (sdma_id + 1) % 2;
788 }
789
790 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
791                         struct qcm_process_device *qpd, int *allocate_vmid)
792 {
793         int retval;
794         struct mqd_manager *mqd;
795
796         retval = 0;
797
798         if (allocate_vmid)
799                 *allocate_vmid = 0;
800
801         mutex_lock(&dqm->lock);
802
803         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
804                 pr_warn("Can't create new usermode queue because %d queues were already created\n",
805                                 dqm->total_queue_count);
806                 retval = -EPERM;
807                 goto out;
808         }
809
810         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
811                 select_sdma_engine_id(q);
812
813         mqd = dqm->ops.get_mqd_manager(dqm,
814                         get_mqd_type_from_queue_type(q->properties.type));
815
816         if (!mqd) {
817                 retval = -ENOMEM;
818                 goto out;
819         }
820
821         dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
822         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
823                                 &q->gart_mqd_addr, &q->properties);
824         if (retval)
825                 goto out;
826
827         list_add(&q->list, &qpd->queues_list);
828         if (q->properties.is_active) {
829                 dqm->queue_count++;
830                 retval = execute_queues_cpsch(dqm, false);
831         }
832
833         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
834                 dqm->sdma_queue_count++;
835         /*
836          * Unconditionally increment this counter, regardless of the queue's
837          * type or whether the queue is active.
838          */
839         dqm->total_queue_count++;
840
841         pr_debug("Total of %d queues are accountable so far\n",
842                         dqm->total_queue_count);
843
844 out:
845         mutex_unlock(&dqm->lock);
846         return retval;
847 }
848
849 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
850                                 unsigned int fence_value,
851                                 unsigned long timeout)
852 {
853         timeout += jiffies;
854
855         while (*fence_addr != fence_value) {
856                 if (time_after(jiffies, timeout)) {
857                         pr_err("qcm fence wait loop timeout expired\n");
858                         return -ETIME;
859                 }
860                 schedule();
861         }
862
863         return 0;
864 }
865
866 static int destroy_sdma_queues(struct device_queue_manager *dqm,
867                                 unsigned int sdma_engine)
868 {
869         return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
870                         KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false,
871                         sdma_engine);
872 }
873
874 static int destroy_queues_cpsch(struct device_queue_manager *dqm,
875                                 bool preempt_static_queues, bool lock)
876 {
877         int retval;
878         enum kfd_preempt_type_filter preempt_type;
879         struct kfd_process_device *pdd;
880
881         retval = 0;
882
883         if (lock)
884                 mutex_lock(&dqm->lock);
885         if (!dqm->active_runlist)
886                 goto out;
887
888         pr_debug("Before destroying queues, sdma queue count is : %u\n",
889                 dqm->sdma_queue_count);
890
891         if (dqm->sdma_queue_count > 0) {
892                 destroy_sdma_queues(dqm, 0);
893                 destroy_sdma_queues(dqm, 1);
894         }
895
896         preempt_type = preempt_static_queues ?
897                         KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES :
898                         KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES;
899
900         retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
901                         preempt_type, 0, false, 0);
902         if (retval)
903                 goto out;
904
905         *dqm->fence_addr = KFD_FENCE_INIT;
906         pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
907                                 KFD_FENCE_COMPLETED);
908         /* should be timed out */
909         retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
910                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
911         if (retval) {
912                 pdd = kfd_get_process_device_data(dqm->dev,
913                                 kfd_get_process(current));
914                 pdd->reset_wavefronts = true;
915                 goto out;
916         }
917         pm_release_ib(&dqm->packets);
918         dqm->active_runlist = false;
919
920 out:
921         if (lock)
922                 mutex_unlock(&dqm->lock);
923         return retval;
924 }
925
926 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
927 {
928         int retval;
929
930         if (lock)
931                 mutex_lock(&dqm->lock);
932
933         retval = destroy_queues_cpsch(dqm, false, false);
934         if (retval) {
935                 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption");
936                 goto out;
937         }
938
939         if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
940                 retval = 0;
941                 goto out;
942         }
943
944         if (dqm->active_runlist) {
945                 retval = 0;
946                 goto out;
947         }
948
949         retval = pm_send_runlist(&dqm->packets, &dqm->queues);
950         if (retval) {
951                 pr_err("failed to execute runlist");
952                 goto out;
953         }
954         dqm->active_runlist = true;
955
956 out:
957         if (lock)
958                 mutex_unlock(&dqm->lock);
959         return retval;
960 }
961
962 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
963                                 struct qcm_process_device *qpd,
964                                 struct queue *q)
965 {
966         int retval;
967         struct mqd_manager *mqd;
968         bool preempt_all_queues;
969
970         preempt_all_queues = false;
971
972         retval = 0;
973
974         /* remove queue from list to prevent rescheduling after preemption */
975         mutex_lock(&dqm->lock);
976
977         if (qpd->is_debug) {
978                 /*
979                  * error, currently we do not allow to destroy a queue
980                  * of a currently debugged process
981                  */
982                 retval = -EBUSY;
983                 goto failed_try_destroy_debugged_queue;
984
985         }
986
987         mqd = dqm->ops.get_mqd_manager(dqm,
988                         get_mqd_type_from_queue_type(q->properties.type));
989         if (!mqd) {
990                 retval = -ENOMEM;
991                 goto failed;
992         }
993
994         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
995                 dqm->sdma_queue_count--;
996
997         list_del(&q->list);
998         if (q->properties.is_active)
999                 dqm->queue_count--;
1000
1001         execute_queues_cpsch(dqm, false);
1002
1003         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1004
1005         /*
1006          * Unconditionally decrement this counter, regardless of the queue's
1007          * type
1008          */
1009         dqm->total_queue_count--;
1010         pr_debug("Total of %d queues are accountable so far\n",
1011                         dqm->total_queue_count);
1012
1013         mutex_unlock(&dqm->lock);
1014
1015         return 0;
1016
1017 failed:
1018 failed_try_destroy_debugged_queue:
1019
1020         mutex_unlock(&dqm->lock);
1021         return retval;
1022 }
1023
1024 /*
1025  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1026  * stay in user mode.
1027  */
1028 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1029 /* APE1 limit is inclusive and 64K aligned. */
1030 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1031
1032 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1033                                    struct qcm_process_device *qpd,
1034                                    enum cache_policy default_policy,
1035                                    enum cache_policy alternate_policy,
1036                                    void __user *alternate_aperture_base,
1037                                    uint64_t alternate_aperture_size)
1038 {
1039         bool retval;
1040
1041         mutex_lock(&dqm->lock);
1042
1043         if (alternate_aperture_size == 0) {
1044                 /* base > limit disables APE1 */
1045                 qpd->sh_mem_ape1_base = 1;
1046                 qpd->sh_mem_ape1_limit = 0;
1047         } else {
1048                 /*
1049                  * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1050                  *                      SH_MEM_APE1_BASE[31:0], 0x0000 }
1051                  * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1052                  *                      SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1053                  * Verify that the base and size parameters can be
1054                  * represented in this format and convert them.
1055                  * Additionally restrict APE1 to user-mode addresses.
1056                  */
1057
1058                 uint64_t base = (uintptr_t)alternate_aperture_base;
1059                 uint64_t limit = base + alternate_aperture_size - 1;
1060
1061                 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1062                    (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1063                         retval = false;
1064                         goto out;
1065                 }
1066
1067                 qpd->sh_mem_ape1_base = base >> 16;
1068                 qpd->sh_mem_ape1_limit = limit >> 16;
1069         }
1070
1071         retval = dqm->ops_asic_specific.set_cache_memory_policy(
1072                         dqm,
1073                         qpd,
1074                         default_policy,
1075                         alternate_policy,
1076                         alternate_aperture_base,
1077                         alternate_aperture_size);
1078
1079         if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1080                 program_sh_mem_settings(dqm, qpd);
1081
1082         pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1083                 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1084                 qpd->sh_mem_ape1_limit);
1085
1086 out:
1087         mutex_unlock(&dqm->lock);
1088         return retval;
1089 }
1090
1091 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1092 {
1093         struct device_queue_manager *dqm;
1094
1095         pr_debug("Loading device queue manager\n");
1096
1097         dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1098         if (!dqm)
1099                 return NULL;
1100
1101         dqm->dev = dev;
1102         switch (sched_policy) {
1103         case KFD_SCHED_POLICY_HWS:
1104         case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1105                 /* initialize dqm for cp scheduling */
1106                 dqm->ops.create_queue = create_queue_cpsch;
1107                 dqm->ops.initialize = initialize_cpsch;
1108                 dqm->ops.start = start_cpsch;
1109                 dqm->ops.stop = stop_cpsch;
1110                 dqm->ops.destroy_queue = destroy_queue_cpsch;
1111                 dqm->ops.update_queue = update_queue;
1112                 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1113                 dqm->ops.register_process = register_process_nocpsch;
1114                 dqm->ops.unregister_process = unregister_process_nocpsch;
1115                 dqm->ops.uninitialize = uninitialize_nocpsch;
1116                 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1117                 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1118                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1119                 break;
1120         case KFD_SCHED_POLICY_NO_HWS:
1121                 /* initialize dqm for no cp scheduling */
1122                 dqm->ops.start = start_nocpsch;
1123                 dqm->ops.stop = stop_nocpsch;
1124                 dqm->ops.create_queue = create_queue_nocpsch;
1125                 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1126                 dqm->ops.update_queue = update_queue;
1127                 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1128                 dqm->ops.register_process = register_process_nocpsch;
1129                 dqm->ops.unregister_process = unregister_process_nocpsch;
1130                 dqm->ops.initialize = initialize_nocpsch;
1131                 dqm->ops.uninitialize = uninitialize_nocpsch;
1132                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1133                 break;
1134         default:
1135                 pr_err("Invalid scheduling policy %d\n", sched_policy);
1136                 goto out_free;
1137         }
1138
1139         switch (dev->device_info->asic_family) {
1140         case CHIP_CARRIZO:
1141                 device_queue_manager_init_vi(&dqm->ops_asic_specific);
1142                 break;
1143
1144         case CHIP_KAVERI:
1145                 device_queue_manager_init_cik(&dqm->ops_asic_specific);
1146                 break;
1147         }
1148
1149         if (!dqm->ops.initialize(dqm))
1150                 return dqm;
1151
1152 out_free:
1153         kfree(dqm);
1154         return NULL;
1155 }
1156
1157 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1158 {
1159         dqm->ops.uninitialize(dqm);
1160         kfree(dqm);
1161 }