Merge branch 'asoc-4.22' into asoc-5.0
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32
33 #define MQD_SIZE_ALIGNED 768
34
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44         .asic_family = CHIP_KAVERI,
45         .max_pasid_bits = 16,
46         /* max num of queues for KV.TODO should be a dynamic value */
47         .max_no_of_hqd  = 24,
48         .doorbell_size  = 4,
49         .ih_ring_entry_size = 4 * sizeof(uint32_t),
50         .event_interrupt_class = &event_interrupt_class_cik,
51         .num_of_watch_points = 4,
52         .mqd_size_aligned = MQD_SIZE_ALIGNED,
53         .supports_cwsr = false,
54         .needs_iommu_device = true,
55         .needs_pci_atomics = false,
56         .num_sdma_engines = 2,
57         .num_sdma_queues_per_engine = 2,
58 };
59
60 static const struct kfd_device_info carrizo_device_info = {
61         .asic_family = CHIP_CARRIZO,
62         .max_pasid_bits = 16,
63         /* max num of queues for CZ.TODO should be a dynamic value */
64         .max_no_of_hqd  = 24,
65         .doorbell_size  = 4,
66         .ih_ring_entry_size = 4 * sizeof(uint32_t),
67         .event_interrupt_class = &event_interrupt_class_cik,
68         .num_of_watch_points = 4,
69         .mqd_size_aligned = MQD_SIZE_ALIGNED,
70         .supports_cwsr = true,
71         .needs_iommu_device = true,
72         .needs_pci_atomics = false,
73         .num_sdma_engines = 2,
74         .num_sdma_queues_per_engine = 2,
75 };
76
77 static const struct kfd_device_info raven_device_info = {
78         .asic_family = CHIP_RAVEN,
79         .max_pasid_bits = 16,
80         .max_no_of_hqd  = 24,
81         .doorbell_size  = 8,
82         .ih_ring_entry_size = 8 * sizeof(uint32_t),
83         .event_interrupt_class = &event_interrupt_class_v9,
84         .num_of_watch_points = 4,
85         .mqd_size_aligned = MQD_SIZE_ALIGNED,
86         .supports_cwsr = true,
87         .needs_iommu_device = true,
88         .needs_pci_atomics = true,
89         .num_sdma_engines = 1,
90         .num_sdma_queues_per_engine = 2,
91 };
92 #endif
93
94 static const struct kfd_device_info hawaii_device_info = {
95         .asic_family = CHIP_HAWAII,
96         .max_pasid_bits = 16,
97         /* max num of queues for KV.TODO should be a dynamic value */
98         .max_no_of_hqd  = 24,
99         .doorbell_size  = 4,
100         .ih_ring_entry_size = 4 * sizeof(uint32_t),
101         .event_interrupt_class = &event_interrupt_class_cik,
102         .num_of_watch_points = 4,
103         .mqd_size_aligned = MQD_SIZE_ALIGNED,
104         .supports_cwsr = false,
105         .needs_iommu_device = false,
106         .needs_pci_atomics = false,
107         .num_sdma_engines = 2,
108         .num_sdma_queues_per_engine = 2,
109 };
110
111 static const struct kfd_device_info tonga_device_info = {
112         .asic_family = CHIP_TONGA,
113         .max_pasid_bits = 16,
114         .max_no_of_hqd  = 24,
115         .doorbell_size  = 4,
116         .ih_ring_entry_size = 4 * sizeof(uint32_t),
117         .event_interrupt_class = &event_interrupt_class_cik,
118         .num_of_watch_points = 4,
119         .mqd_size_aligned = MQD_SIZE_ALIGNED,
120         .supports_cwsr = false,
121         .needs_iommu_device = false,
122         .needs_pci_atomics = true,
123         .num_sdma_engines = 2,
124         .num_sdma_queues_per_engine = 2,
125 };
126
127 static const struct kfd_device_info fiji_device_info = {
128         .asic_family = CHIP_FIJI,
129         .max_pasid_bits = 16,
130         .max_no_of_hqd  = 24,
131         .doorbell_size  = 4,
132         .ih_ring_entry_size = 4 * sizeof(uint32_t),
133         .event_interrupt_class = &event_interrupt_class_cik,
134         .num_of_watch_points = 4,
135         .mqd_size_aligned = MQD_SIZE_ALIGNED,
136         .supports_cwsr = true,
137         .needs_iommu_device = false,
138         .needs_pci_atomics = true,
139         .num_sdma_engines = 2,
140         .num_sdma_queues_per_engine = 2,
141 };
142
143 static const struct kfd_device_info fiji_vf_device_info = {
144         .asic_family = CHIP_FIJI,
145         .max_pasid_bits = 16,
146         .max_no_of_hqd  = 24,
147         .doorbell_size  = 4,
148         .ih_ring_entry_size = 4 * sizeof(uint32_t),
149         .event_interrupt_class = &event_interrupt_class_cik,
150         .num_of_watch_points = 4,
151         .mqd_size_aligned = MQD_SIZE_ALIGNED,
152         .supports_cwsr = true,
153         .needs_iommu_device = false,
154         .needs_pci_atomics = false,
155         .num_sdma_engines = 2,
156         .num_sdma_queues_per_engine = 2,
157 };
158
159
160 static const struct kfd_device_info polaris10_device_info = {
161         .asic_family = CHIP_POLARIS10,
162         .max_pasid_bits = 16,
163         .max_no_of_hqd  = 24,
164         .doorbell_size  = 4,
165         .ih_ring_entry_size = 4 * sizeof(uint32_t),
166         .event_interrupt_class = &event_interrupt_class_cik,
167         .num_of_watch_points = 4,
168         .mqd_size_aligned = MQD_SIZE_ALIGNED,
169         .supports_cwsr = true,
170         .needs_iommu_device = false,
171         .needs_pci_atomics = true,
172         .num_sdma_engines = 2,
173         .num_sdma_queues_per_engine = 2,
174 };
175
176 static const struct kfd_device_info polaris10_vf_device_info = {
177         .asic_family = CHIP_POLARIS10,
178         .max_pasid_bits = 16,
179         .max_no_of_hqd  = 24,
180         .doorbell_size  = 4,
181         .ih_ring_entry_size = 4 * sizeof(uint32_t),
182         .event_interrupt_class = &event_interrupt_class_cik,
183         .num_of_watch_points = 4,
184         .mqd_size_aligned = MQD_SIZE_ALIGNED,
185         .supports_cwsr = true,
186         .needs_iommu_device = false,
187         .needs_pci_atomics = false,
188         .num_sdma_engines = 2,
189         .num_sdma_queues_per_engine = 2,
190 };
191
192 static const struct kfd_device_info polaris11_device_info = {
193         .asic_family = CHIP_POLARIS11,
194         .max_pasid_bits = 16,
195         .max_no_of_hqd  = 24,
196         .doorbell_size  = 4,
197         .ih_ring_entry_size = 4 * sizeof(uint32_t),
198         .event_interrupt_class = &event_interrupt_class_cik,
199         .num_of_watch_points = 4,
200         .mqd_size_aligned = MQD_SIZE_ALIGNED,
201         .supports_cwsr = true,
202         .needs_iommu_device = false,
203         .needs_pci_atomics = true,
204         .num_sdma_engines = 2,
205         .num_sdma_queues_per_engine = 2,
206 };
207
208 static const struct kfd_device_info polaris12_device_info = {
209         .asic_family = CHIP_POLARIS12,
210         .max_pasid_bits = 16,
211         .max_no_of_hqd  = 24,
212         .doorbell_size  = 4,
213         .ih_ring_entry_size = 4 * sizeof(uint32_t),
214         .event_interrupt_class = &event_interrupt_class_cik,
215         .num_of_watch_points = 4,
216         .mqd_size_aligned = MQD_SIZE_ALIGNED,
217         .supports_cwsr = true,
218         .needs_iommu_device = false,
219         .needs_pci_atomics = true,
220         .num_sdma_engines = 2,
221         .num_sdma_queues_per_engine = 2,
222 };
223
224 static const struct kfd_device_info vega10_device_info = {
225         .asic_family = CHIP_VEGA10,
226         .max_pasid_bits = 16,
227         .max_no_of_hqd  = 24,
228         .doorbell_size  = 8,
229         .ih_ring_entry_size = 8 * sizeof(uint32_t),
230         .event_interrupt_class = &event_interrupt_class_v9,
231         .num_of_watch_points = 4,
232         .mqd_size_aligned = MQD_SIZE_ALIGNED,
233         .supports_cwsr = true,
234         .needs_iommu_device = false,
235         .needs_pci_atomics = false,
236         .num_sdma_engines = 2,
237         .num_sdma_queues_per_engine = 2,
238 };
239
240 static const struct kfd_device_info vega10_vf_device_info = {
241         .asic_family = CHIP_VEGA10,
242         .max_pasid_bits = 16,
243         .max_no_of_hqd  = 24,
244         .doorbell_size  = 8,
245         .ih_ring_entry_size = 8 * sizeof(uint32_t),
246         .event_interrupt_class = &event_interrupt_class_v9,
247         .num_of_watch_points = 4,
248         .mqd_size_aligned = MQD_SIZE_ALIGNED,
249         .supports_cwsr = true,
250         .needs_iommu_device = false,
251         .needs_pci_atomics = false,
252         .num_sdma_engines = 2,
253         .num_sdma_queues_per_engine = 2,
254 };
255
256 static const struct kfd_device_info vega12_device_info = {
257         .asic_family = CHIP_VEGA12,
258         .max_pasid_bits = 16,
259         .max_no_of_hqd  = 24,
260         .doorbell_size  = 8,
261         .ih_ring_entry_size = 8 * sizeof(uint32_t),
262         .event_interrupt_class = &event_interrupt_class_v9,
263         .num_of_watch_points = 4,
264         .mqd_size_aligned = MQD_SIZE_ALIGNED,
265         .supports_cwsr = true,
266         .needs_iommu_device = false,
267         .needs_pci_atomics = false,
268         .num_sdma_engines = 2,
269         .num_sdma_queues_per_engine = 2,
270 };
271
272 static const struct kfd_device_info vega20_device_info = {
273         .asic_family = CHIP_VEGA20,
274         .max_pasid_bits = 16,
275         .max_no_of_hqd  = 24,
276         .doorbell_size  = 8,
277         .ih_ring_entry_size = 8 * sizeof(uint32_t),
278         .event_interrupt_class = &event_interrupt_class_v9,
279         .num_of_watch_points = 4,
280         .mqd_size_aligned = MQD_SIZE_ALIGNED,
281         .supports_cwsr = true,
282         .needs_iommu_device = false,
283         .needs_pci_atomics = false,
284         .num_sdma_engines = 2,
285         .num_sdma_queues_per_engine = 8,
286 };
287
288 struct kfd_deviceid {
289         unsigned short did;
290         const struct kfd_device_info *device_info;
291 };
292
293 static const struct kfd_deviceid supported_devices[] = {
294 #ifdef KFD_SUPPORT_IOMMU_V2
295         { 0x1304, &kaveri_device_info },        /* Kaveri */
296         { 0x1305, &kaveri_device_info },        /* Kaveri */
297         { 0x1306, &kaveri_device_info },        /* Kaveri */
298         { 0x1307, &kaveri_device_info },        /* Kaveri */
299         { 0x1309, &kaveri_device_info },        /* Kaveri */
300         { 0x130A, &kaveri_device_info },        /* Kaveri */
301         { 0x130B, &kaveri_device_info },        /* Kaveri */
302         { 0x130C, &kaveri_device_info },        /* Kaveri */
303         { 0x130D, &kaveri_device_info },        /* Kaveri */
304         { 0x130E, &kaveri_device_info },        /* Kaveri */
305         { 0x130F, &kaveri_device_info },        /* Kaveri */
306         { 0x1310, &kaveri_device_info },        /* Kaveri */
307         { 0x1311, &kaveri_device_info },        /* Kaveri */
308         { 0x1312, &kaveri_device_info },        /* Kaveri */
309         { 0x1313, &kaveri_device_info },        /* Kaveri */
310         { 0x1315, &kaveri_device_info },        /* Kaveri */
311         { 0x1316, &kaveri_device_info },        /* Kaveri */
312         { 0x1317, &kaveri_device_info },        /* Kaveri */
313         { 0x1318, &kaveri_device_info },        /* Kaveri */
314         { 0x131B, &kaveri_device_info },        /* Kaveri */
315         { 0x131C, &kaveri_device_info },        /* Kaveri */
316         { 0x131D, &kaveri_device_info },        /* Kaveri */
317         { 0x9870, &carrizo_device_info },       /* Carrizo */
318         { 0x9874, &carrizo_device_info },       /* Carrizo */
319         { 0x9875, &carrizo_device_info },       /* Carrizo */
320         { 0x9876, &carrizo_device_info },       /* Carrizo */
321         { 0x9877, &carrizo_device_info },       /* Carrizo */
322         { 0x15DD, &raven_device_info },         /* Raven */
323 #endif
324         { 0x67A0, &hawaii_device_info },        /* Hawaii */
325         { 0x67A1, &hawaii_device_info },        /* Hawaii */
326         { 0x67A2, &hawaii_device_info },        /* Hawaii */
327         { 0x67A8, &hawaii_device_info },        /* Hawaii */
328         { 0x67A9, &hawaii_device_info },        /* Hawaii */
329         { 0x67AA, &hawaii_device_info },        /* Hawaii */
330         { 0x67B0, &hawaii_device_info },        /* Hawaii */
331         { 0x67B1, &hawaii_device_info },        /* Hawaii */
332         { 0x67B8, &hawaii_device_info },        /* Hawaii */
333         { 0x67B9, &hawaii_device_info },        /* Hawaii */
334         { 0x67BA, &hawaii_device_info },        /* Hawaii */
335         { 0x67BE, &hawaii_device_info },        /* Hawaii */
336         { 0x6920, &tonga_device_info },         /* Tonga */
337         { 0x6921, &tonga_device_info },         /* Tonga */
338         { 0x6928, &tonga_device_info },         /* Tonga */
339         { 0x6929, &tonga_device_info },         /* Tonga */
340         { 0x692B, &tonga_device_info },         /* Tonga */
341         { 0x6938, &tonga_device_info },         /* Tonga */
342         { 0x6939, &tonga_device_info },         /* Tonga */
343         { 0x7300, &fiji_device_info },          /* Fiji */
344         { 0x730F, &fiji_vf_device_info },       /* Fiji vf*/
345         { 0x67C0, &polaris10_device_info },     /* Polaris10 */
346         { 0x67C1, &polaris10_device_info },     /* Polaris10 */
347         { 0x67C2, &polaris10_device_info },     /* Polaris10 */
348         { 0x67C4, &polaris10_device_info },     /* Polaris10 */
349         { 0x67C7, &polaris10_device_info },     /* Polaris10 */
350         { 0x67C8, &polaris10_device_info },     /* Polaris10 */
351         { 0x67C9, &polaris10_device_info },     /* Polaris10 */
352         { 0x67CA, &polaris10_device_info },     /* Polaris10 */
353         { 0x67CC, &polaris10_device_info },     /* Polaris10 */
354         { 0x67CF, &polaris10_device_info },     /* Polaris10 */
355         { 0x67D0, &polaris10_vf_device_info },  /* Polaris10 vf*/
356         { 0x67DF, &polaris10_device_info },     /* Polaris10 */
357         { 0x67E0, &polaris11_device_info },     /* Polaris11 */
358         { 0x67E1, &polaris11_device_info },     /* Polaris11 */
359         { 0x67E3, &polaris11_device_info },     /* Polaris11 */
360         { 0x67E7, &polaris11_device_info },     /* Polaris11 */
361         { 0x67E8, &polaris11_device_info },     /* Polaris11 */
362         { 0x67E9, &polaris11_device_info },     /* Polaris11 */
363         { 0x67EB, &polaris11_device_info },     /* Polaris11 */
364         { 0x67EF, &polaris11_device_info },     /* Polaris11 */
365         { 0x67FF, &polaris11_device_info },     /* Polaris11 */
366         { 0x6980, &polaris12_device_info },     /* Polaris12 */
367         { 0x6981, &polaris12_device_info },     /* Polaris12 */
368         { 0x6985, &polaris12_device_info },     /* Polaris12 */
369         { 0x6986, &polaris12_device_info },     /* Polaris12 */
370         { 0x6987, &polaris12_device_info },     /* Polaris12 */
371         { 0x6995, &polaris12_device_info },     /* Polaris12 */
372         { 0x6997, &polaris12_device_info },     /* Polaris12 */
373         { 0x699F, &polaris12_device_info },     /* Polaris12 */
374         { 0x6860, &vega10_device_info },        /* Vega10 */
375         { 0x6861, &vega10_device_info },        /* Vega10 */
376         { 0x6862, &vega10_device_info },        /* Vega10 */
377         { 0x6863, &vega10_device_info },        /* Vega10 */
378         { 0x6864, &vega10_device_info },        /* Vega10 */
379         { 0x6867, &vega10_device_info },        /* Vega10 */
380         { 0x6868, &vega10_device_info },        /* Vega10 */
381         { 0x6869, &vega10_device_info },        /* Vega10 */
382         { 0x686A, &vega10_device_info },        /* Vega10 */
383         { 0x686B, &vega10_device_info },        /* Vega10 */
384         { 0x686C, &vega10_vf_device_info },     /* Vega10  vf*/
385         { 0x686D, &vega10_device_info },        /* Vega10 */
386         { 0x686E, &vega10_device_info },        /* Vega10 */
387         { 0x686F, &vega10_device_info },        /* Vega10 */
388         { 0x687F, &vega10_device_info },        /* Vega10 */
389         { 0x69A0, &vega12_device_info },        /* Vega12 */
390         { 0x69A1, &vega12_device_info },        /* Vega12 */
391         { 0x69A2, &vega12_device_info },        /* Vega12 */
392         { 0x69A3, &vega12_device_info },        /* Vega12 */
393         { 0x69AF, &vega12_device_info },        /* Vega12 */
394         { 0x66a0, &vega20_device_info },        /* Vega20 */
395         { 0x66a1, &vega20_device_info },        /* Vega20 */
396         { 0x66a2, &vega20_device_info },        /* Vega20 */
397         { 0x66a3, &vega20_device_info },        /* Vega20 */
398         { 0x66a4, &vega20_device_info },        /* Vega20 */
399         { 0x66a7, &vega20_device_info },        /* Vega20 */
400         { 0x66af, &vega20_device_info }         /* Vega20 */
401 };
402
403 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
404                                 unsigned int chunk_size);
405 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
406
407 static int kfd_resume(struct kfd_dev *kfd);
408
409 static const struct kfd_device_info *lookup_device_info(unsigned short did)
410 {
411         size_t i;
412
413         for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
414                 if (supported_devices[i].did == did) {
415                         WARN_ON(!supported_devices[i].device_info);
416                         return supported_devices[i].device_info;
417                 }
418         }
419
420         dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
421                  did);
422
423         return NULL;
424 }
425
426 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
427         struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
428 {
429         struct kfd_dev *kfd;
430         int ret;
431         const struct kfd_device_info *device_info =
432                                         lookup_device_info(pdev->device);
433
434         if (!device_info) {
435                 dev_err(kfd_device, "kgd2kfd_probe failed\n");
436                 return NULL;
437         }
438
439         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
440         if (!kfd)
441                 return NULL;
442
443         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
444          * 32 and 64-bit requests are possible and must be
445          * supported.
446          */
447         ret = pci_enable_atomic_ops_to_root(pdev,
448                         PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
449                         PCI_EXP_DEVCAP2_ATOMIC_COMP64);
450         if (device_info->needs_pci_atomics && ret < 0) {
451                 dev_info(kfd_device,
452                          "skipped device %x:%x, PCI rejects atomics\n",
453                          pdev->vendor, pdev->device);
454                 kfree(kfd);
455                 return NULL;
456         } else if (!ret)
457                 kfd->pci_atomic_requested = true;
458
459         kfd->kgd = kgd;
460         kfd->device_info = device_info;
461         kfd->pdev = pdev;
462         kfd->init_complete = false;
463         kfd->kfd2kgd = f2g;
464
465         mutex_init(&kfd->doorbell_mutex);
466         memset(&kfd->doorbell_available_index, 0,
467                 sizeof(kfd->doorbell_available_index));
468
469         return kfd;
470 }
471
472 static void kfd_cwsr_init(struct kfd_dev *kfd)
473 {
474         if (cwsr_enable && kfd->device_info->supports_cwsr) {
475                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
476                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
477                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
478                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
479                 } else {
480                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
481                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
482                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
483                 }
484
485                 kfd->cwsr_enabled = true;
486         }
487 }
488
489 bool kgd2kfd_device_init(struct kfd_dev *kfd,
490                          const struct kgd2kfd_shared_resources *gpu_resources)
491 {
492         unsigned int size;
493
494         kfd->mec_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
495                         KGD_ENGINE_MEC1);
496         kfd->sdma_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
497                         KGD_ENGINE_SDMA1);
498         kfd->shared_resources = *gpu_resources;
499
500         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
501         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
502         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
503                         - kfd->vm_info.first_vmid_kfd + 1;
504
505         /* Verify module parameters regarding mapped process number*/
506         if ((hws_max_conc_proc < 0)
507                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
508                 dev_err(kfd_device,
509                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
510                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
511                         kfd->vm_info.vmid_num_kfd);
512                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
513         } else
514                 kfd->max_proc_per_quantum = hws_max_conc_proc;
515
516         /* calculate max size of mqds needed for queues */
517         size = max_num_of_queues_per_device *
518                         kfd->device_info->mqd_size_aligned;
519
520         /*
521          * calculate max size of runlist packet.
522          * There can be only 2 packets at once
523          */
524         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
525                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
526                 + sizeof(struct pm4_mes_runlist)) * 2;
527
528         /* Add size of HIQ & DIQ */
529         size += KFD_KERNEL_QUEUE_SIZE * 2;
530
531         /* add another 512KB for all other allocations on gart (HPD, fences) */
532         size += 512 * 1024;
533
534         if (amdgpu_amdkfd_alloc_gtt_mem(
535                         kfd->kgd, size, &kfd->gtt_mem,
536                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
537                         false)) {
538                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
539                 goto out;
540         }
541
542         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
543
544         /* Initialize GTT sa with 512 byte chunk size */
545         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
546                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
547                 goto kfd_gtt_sa_init_error;
548         }
549
550         if (kfd_doorbell_init(kfd)) {
551                 dev_err(kfd_device,
552                         "Error initializing doorbell aperture\n");
553                 goto kfd_doorbell_error;
554         }
555
556         if (kfd->kfd2kgd->get_hive_id)
557                 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
558
559         if (kfd_topology_add_device(kfd)) {
560                 dev_err(kfd_device, "Error adding device to topology\n");
561                 goto kfd_topology_add_device_error;
562         }
563
564         if (kfd_interrupt_init(kfd)) {
565                 dev_err(kfd_device, "Error initializing interrupts\n");
566                 goto kfd_interrupt_error;
567         }
568
569         kfd->dqm = device_queue_manager_init(kfd);
570         if (!kfd->dqm) {
571                 dev_err(kfd_device, "Error initializing queue manager\n");
572                 goto device_queue_manager_error;
573         }
574
575         if (kfd_iommu_device_init(kfd)) {
576                 dev_err(kfd_device, "Error initializing iommuv2\n");
577                 goto device_iommu_error;
578         }
579
580         kfd_cwsr_init(kfd);
581
582         if (kfd_resume(kfd))
583                 goto kfd_resume_error;
584
585         kfd->dbgmgr = NULL;
586
587         kfd->init_complete = true;
588         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
589                  kfd->pdev->device);
590
591         pr_debug("Starting kfd with the following scheduling policy %d\n",
592                 kfd->dqm->sched_policy);
593
594         goto out;
595
596 kfd_resume_error:
597 device_iommu_error:
598         device_queue_manager_uninit(kfd->dqm);
599 device_queue_manager_error:
600         kfd_interrupt_exit(kfd);
601 kfd_interrupt_error:
602         kfd_topology_remove_device(kfd);
603 kfd_topology_add_device_error:
604         kfd_doorbell_fini(kfd);
605 kfd_doorbell_error:
606         kfd_gtt_sa_fini(kfd);
607 kfd_gtt_sa_init_error:
608         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
609         dev_err(kfd_device,
610                 "device %x:%x NOT added due to errors\n",
611                 kfd->pdev->vendor, kfd->pdev->device);
612 out:
613         return kfd->init_complete;
614 }
615
616 void kgd2kfd_device_exit(struct kfd_dev *kfd)
617 {
618         if (kfd->init_complete) {
619                 kgd2kfd_suspend(kfd);
620                 device_queue_manager_uninit(kfd->dqm);
621                 kfd_interrupt_exit(kfd);
622                 kfd_topology_remove_device(kfd);
623                 kfd_doorbell_fini(kfd);
624                 kfd_gtt_sa_fini(kfd);
625                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
626         }
627
628         kfree(kfd);
629 }
630
631 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
632 {
633         if (!kfd->init_complete)
634                 return 0;
635         kgd2kfd_suspend(kfd);
636
637         /* hold dqm->lock to prevent further execution*/
638         dqm_lock(kfd->dqm);
639
640         kfd_signal_reset_event(kfd);
641         return 0;
642 }
643
644 /*
645  * Fix me. KFD won't be able to resume existing process for now.
646  * We will keep all existing process in a evicted state and
647  * wait the process to be terminated.
648  */
649
650 int kgd2kfd_post_reset(struct kfd_dev *kfd)
651 {
652         int ret, count;
653
654         if (!kfd->init_complete)
655                 return 0;
656
657         dqm_unlock(kfd->dqm);
658
659         ret = kfd_resume(kfd);
660         if (ret)
661                 return ret;
662         count = atomic_dec_return(&kfd_locked);
663         WARN_ONCE(count != 0, "KFD reset ref. error");
664         return 0;
665 }
666
667 bool kfd_is_locked(void)
668 {
669         return  (atomic_read(&kfd_locked) > 0);
670 }
671
672 void kgd2kfd_suspend(struct kfd_dev *kfd)
673 {
674         if (!kfd->init_complete)
675                 return;
676
677         /* For first KFD device suspend all the KFD processes */
678         if (atomic_inc_return(&kfd_locked) == 1)
679                 kfd_suspend_all_processes();
680
681         kfd->dqm->ops.stop(kfd->dqm);
682
683         kfd_iommu_suspend(kfd);
684 }
685
686 int kgd2kfd_resume(struct kfd_dev *kfd)
687 {
688         int ret, count;
689
690         if (!kfd->init_complete)
691                 return 0;
692
693         ret = kfd_resume(kfd);
694         if (ret)
695                 return ret;
696
697         count = atomic_dec_return(&kfd_locked);
698         WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
699         if (count == 0)
700                 ret = kfd_resume_all_processes();
701
702         return ret;
703 }
704
705 static int kfd_resume(struct kfd_dev *kfd)
706 {
707         int err = 0;
708
709         err = kfd_iommu_resume(kfd);
710         if (err) {
711                 dev_err(kfd_device,
712                         "Failed to resume IOMMU for device %x:%x\n",
713                         kfd->pdev->vendor, kfd->pdev->device);
714                 return err;
715         }
716
717         err = kfd->dqm->ops.start(kfd->dqm);
718         if (err) {
719                 dev_err(kfd_device,
720                         "Error starting queue manager for device %x:%x\n",
721                         kfd->pdev->vendor, kfd->pdev->device);
722                 goto dqm_start_error;
723         }
724
725         return err;
726
727 dqm_start_error:
728         kfd_iommu_suspend(kfd);
729         return err;
730 }
731
732 /* This is called directly from KGD at ISR. */
733 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
734 {
735         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
736         bool is_patched = false;
737         unsigned long flags;
738
739         if (!kfd->init_complete)
740                 return;
741
742         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
743                 dev_err_once(kfd_device, "Ring entry too small\n");
744                 return;
745         }
746
747         spin_lock_irqsave(&kfd->interrupt_lock, flags);
748
749         if (kfd->interrupts_active
750             && interrupt_is_wanted(kfd, ih_ring_entry,
751                                    patched_ihre, &is_patched)
752             && enqueue_ih_ring_entry(kfd,
753                                      is_patched ? patched_ihre : ih_ring_entry))
754                 queue_work(kfd->ih_wq, &kfd->interrupt_work);
755
756         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
757 }
758
759 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
760 {
761         struct kfd_process *p;
762         int r;
763
764         /* Because we are called from arbitrary context (workqueue) as opposed
765          * to process context, kfd_process could attempt to exit while we are
766          * running so the lookup function increments the process ref count.
767          */
768         p = kfd_lookup_process_by_mm(mm);
769         if (!p)
770                 return -ESRCH;
771
772         r = kfd_process_evict_queues(p);
773
774         kfd_unref_process(p);
775         return r;
776 }
777
778 int kgd2kfd_resume_mm(struct mm_struct *mm)
779 {
780         struct kfd_process *p;
781         int r;
782
783         /* Because we are called from arbitrary context (workqueue) as opposed
784          * to process context, kfd_process could attempt to exit while we are
785          * running so the lookup function increments the process ref count.
786          */
787         p = kfd_lookup_process_by_mm(mm);
788         if (!p)
789                 return -ESRCH;
790
791         r = kfd_process_restore_queues(p);
792
793         kfd_unref_process(p);
794         return r;
795 }
796
797 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
798  *   prepare for safe eviction of KFD BOs that belong to the specified
799  *   process.
800  *
801  * @mm: mm_struct that identifies the specified KFD process
802  * @fence: eviction fence attached to KFD process BOs
803  *
804  */
805 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
806                                                struct dma_fence *fence)
807 {
808         struct kfd_process *p;
809         unsigned long active_time;
810         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
811
812         if (!fence)
813                 return -EINVAL;
814
815         if (dma_fence_is_signaled(fence))
816                 return 0;
817
818         p = kfd_lookup_process_by_mm(mm);
819         if (!p)
820                 return -ENODEV;
821
822         if (fence->seqno == p->last_eviction_seqno)
823                 goto out;
824
825         p->last_eviction_seqno = fence->seqno;
826
827         /* Avoid KFD process starvation. Wait for at least
828          * PROCESS_ACTIVE_TIME_MS before evicting the process again
829          */
830         active_time = get_jiffies_64() - p->last_restore_timestamp;
831         if (delay_jiffies > active_time)
832                 delay_jiffies -= active_time;
833         else
834                 delay_jiffies = 0;
835
836         /* During process initialization eviction_work.dwork is initialized
837          * to kfd_evict_bo_worker
838          */
839         schedule_delayed_work(&p->eviction_work, delay_jiffies);
840 out:
841         kfd_unref_process(p);
842         return 0;
843 }
844
845 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
846                                 unsigned int chunk_size)
847 {
848         unsigned int num_of_longs;
849
850         if (WARN_ON(buf_size < chunk_size))
851                 return -EINVAL;
852         if (WARN_ON(buf_size == 0))
853                 return -EINVAL;
854         if (WARN_ON(chunk_size == 0))
855                 return -EINVAL;
856
857         kfd->gtt_sa_chunk_size = chunk_size;
858         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
859
860         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
861                 BITS_PER_LONG;
862
863         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
864
865         if (!kfd->gtt_sa_bitmap)
866                 return -ENOMEM;
867
868         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
869                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
870
871         mutex_init(&kfd->gtt_sa_lock);
872
873         return 0;
874
875 }
876
877 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
878 {
879         mutex_destroy(&kfd->gtt_sa_lock);
880         kfree(kfd->gtt_sa_bitmap);
881 }
882
883 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
884                                                 unsigned int bit_num,
885                                                 unsigned int chunk_size)
886 {
887         return start_addr + bit_num * chunk_size;
888 }
889
890 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
891                                                 unsigned int bit_num,
892                                                 unsigned int chunk_size)
893 {
894         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
895 }
896
897 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
898                         struct kfd_mem_obj **mem_obj)
899 {
900         unsigned int found, start_search, cur_size;
901
902         if (size == 0)
903                 return -EINVAL;
904
905         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
906                 return -ENOMEM;
907
908         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
909         if (!(*mem_obj))
910                 return -ENOMEM;
911
912         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
913
914         start_search = 0;
915
916         mutex_lock(&kfd->gtt_sa_lock);
917
918 kfd_gtt_restart_search:
919         /* Find the first chunk that is free */
920         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
921                                         kfd->gtt_sa_num_of_chunks,
922                                         start_search);
923
924         pr_debug("Found = %d\n", found);
925
926         /* If there wasn't any free chunk, bail out */
927         if (found == kfd->gtt_sa_num_of_chunks)
928                 goto kfd_gtt_no_free_chunk;
929
930         /* Update fields of mem_obj */
931         (*mem_obj)->range_start = found;
932         (*mem_obj)->range_end = found;
933         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
934                                         kfd->gtt_start_gpu_addr,
935                                         found,
936                                         kfd->gtt_sa_chunk_size);
937         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
938                                         kfd->gtt_start_cpu_ptr,
939                                         found,
940                                         kfd->gtt_sa_chunk_size);
941
942         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
943                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
944
945         /* If we need only one chunk, mark it as allocated and get out */
946         if (size <= kfd->gtt_sa_chunk_size) {
947                 pr_debug("Single bit\n");
948                 set_bit(found, kfd->gtt_sa_bitmap);
949                 goto kfd_gtt_out;
950         }
951
952         /* Otherwise, try to see if we have enough contiguous chunks */
953         cur_size = size - kfd->gtt_sa_chunk_size;
954         do {
955                 (*mem_obj)->range_end =
956                         find_next_zero_bit(kfd->gtt_sa_bitmap,
957                                         kfd->gtt_sa_num_of_chunks, ++found);
958                 /*
959                  * If next free chunk is not contiguous than we need to
960                  * restart our search from the last free chunk we found (which
961                  * wasn't contiguous to the previous ones
962                  */
963                 if ((*mem_obj)->range_end != found) {
964                         start_search = found;
965                         goto kfd_gtt_restart_search;
966                 }
967
968                 /*
969                  * If we reached end of buffer, bail out with error
970                  */
971                 if (found == kfd->gtt_sa_num_of_chunks)
972                         goto kfd_gtt_no_free_chunk;
973
974                 /* Check if we don't need another chunk */
975                 if (cur_size <= kfd->gtt_sa_chunk_size)
976                         cur_size = 0;
977                 else
978                         cur_size -= kfd->gtt_sa_chunk_size;
979
980         } while (cur_size > 0);
981
982         pr_debug("range_start = %d, range_end = %d\n",
983                 (*mem_obj)->range_start, (*mem_obj)->range_end);
984
985         /* Mark the chunks as allocated */
986         for (found = (*mem_obj)->range_start;
987                 found <= (*mem_obj)->range_end;
988                 found++)
989                 set_bit(found, kfd->gtt_sa_bitmap);
990
991 kfd_gtt_out:
992         mutex_unlock(&kfd->gtt_sa_lock);
993         return 0;
994
995 kfd_gtt_no_free_chunk:
996         pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
997         mutex_unlock(&kfd->gtt_sa_lock);
998         kfree(mem_obj);
999         return -ENOMEM;
1000 }
1001
1002 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1003 {
1004         unsigned int bit;
1005
1006         /* Act like kfree when trying to free a NULL object */
1007         if (!mem_obj)
1008                 return 0;
1009
1010         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1011                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1012
1013         mutex_lock(&kfd->gtt_sa_lock);
1014
1015         /* Mark the chunks as free */
1016         for (bit = mem_obj->range_start;
1017                 bit <= mem_obj->range_end;
1018                 bit++)
1019                 clear_bit(bit, kfd->gtt_sa_bitmap);
1020
1021         mutex_unlock(&kfd->gtt_sa_lock);
1022
1023         kfree(mem_obj);
1024         return 0;
1025 }
1026
1027 #if defined(CONFIG_DEBUG_FS)
1028
1029 /* This function will send a package to HIQ to hang the HWS
1030  * which will trigger a GPU reset and bring the HWS back to normal state
1031  */
1032 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1033 {
1034         int r = 0;
1035
1036         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1037                 pr_err("HWS is not enabled");
1038                 return -EINVAL;
1039         }
1040
1041         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1042         if (!r)
1043                 r = dqm_debugfs_execute_queues(dev->dqm);
1044
1045         return r;
1046 }
1047
1048 #endif