Merge tag 'wberr-v4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/amd-iommu.h>
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30
31 #define MQD_SIZE_ALIGNED 768
32
33 static const struct kfd_device_info kaveri_device_info = {
34         .asic_family = CHIP_KAVERI,
35         .max_pasid_bits = 16,
36         /* max num of queues for KV.TODO should be a dynamic value */
37         .max_no_of_hqd  = 24,
38         .ih_ring_entry_size = 4 * sizeof(uint32_t),
39         .event_interrupt_class = &event_interrupt_class_cik,
40         .num_of_watch_points = 4,
41         .mqd_size_aligned = MQD_SIZE_ALIGNED
42 };
43
44 static const struct kfd_device_info carrizo_device_info = {
45         .asic_family = CHIP_CARRIZO,
46         .max_pasid_bits = 16,
47         /* max num of queues for CZ.TODO should be a dynamic value */
48         .max_no_of_hqd  = 24,
49         .ih_ring_entry_size = 4 * sizeof(uint32_t),
50         .event_interrupt_class = &event_interrupt_class_cik,
51         .num_of_watch_points = 4,
52         .mqd_size_aligned = MQD_SIZE_ALIGNED
53 };
54
55 struct kfd_deviceid {
56         unsigned short did;
57         const struct kfd_device_info *device_info;
58 };
59
60 /* Please keep this sorted by increasing device id. */
61 static const struct kfd_deviceid supported_devices[] = {
62         { 0x1304, &kaveri_device_info },        /* Kaveri */
63         { 0x1305, &kaveri_device_info },        /* Kaveri */
64         { 0x1306, &kaveri_device_info },        /* Kaveri */
65         { 0x1307, &kaveri_device_info },        /* Kaveri */
66         { 0x1309, &kaveri_device_info },        /* Kaveri */
67         { 0x130A, &kaveri_device_info },        /* Kaveri */
68         { 0x130B, &kaveri_device_info },        /* Kaveri */
69         { 0x130C, &kaveri_device_info },        /* Kaveri */
70         { 0x130D, &kaveri_device_info },        /* Kaveri */
71         { 0x130E, &kaveri_device_info },        /* Kaveri */
72         { 0x130F, &kaveri_device_info },        /* Kaveri */
73         { 0x1310, &kaveri_device_info },        /* Kaveri */
74         { 0x1311, &kaveri_device_info },        /* Kaveri */
75         { 0x1312, &kaveri_device_info },        /* Kaveri */
76         { 0x1313, &kaveri_device_info },        /* Kaveri */
77         { 0x1315, &kaveri_device_info },        /* Kaveri */
78         { 0x1316, &kaveri_device_info },        /* Kaveri */
79         { 0x1317, &kaveri_device_info },        /* Kaveri */
80         { 0x1318, &kaveri_device_info },        /* Kaveri */
81         { 0x131B, &kaveri_device_info },        /* Kaveri */
82         { 0x131C, &kaveri_device_info },        /* Kaveri */
83         { 0x131D, &kaveri_device_info },        /* Kaveri */
84         { 0x9870, &carrizo_device_info },       /* Carrizo */
85         { 0x9874, &carrizo_device_info },       /* Carrizo */
86         { 0x9875, &carrizo_device_info },       /* Carrizo */
87         { 0x9876, &carrizo_device_info },       /* Carrizo */
88         { 0x9877, &carrizo_device_info }        /* Carrizo */
89 };
90
91 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
92                                 unsigned int chunk_size);
93 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
94
95 static const struct kfd_device_info *lookup_device_info(unsigned short did)
96 {
97         size_t i;
98
99         for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
100                 if (supported_devices[i].did == did) {
101                         WARN_ON(!supported_devices[i].device_info);
102                         return supported_devices[i].device_info;
103                 }
104         }
105
106         dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
107                  did);
108
109         return NULL;
110 }
111
112 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
113         struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
114 {
115         struct kfd_dev *kfd;
116
117         const struct kfd_device_info *device_info =
118                                         lookup_device_info(pdev->device);
119
120         if (!device_info) {
121                 dev_err(kfd_device, "kgd2kfd_probe failed\n");
122                 return NULL;
123         }
124
125         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
126         if (!kfd)
127                 return NULL;
128
129         kfd->kgd = kgd;
130         kfd->device_info = device_info;
131         kfd->pdev = pdev;
132         kfd->init_complete = false;
133         kfd->kfd2kgd = f2g;
134
135         mutex_init(&kfd->doorbell_mutex);
136         memset(&kfd->doorbell_available_index, 0,
137                 sizeof(kfd->doorbell_available_index));
138
139         return kfd;
140 }
141
142 static bool device_iommu_pasid_init(struct kfd_dev *kfd)
143 {
144         const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP |
145                                         AMD_IOMMU_DEVICE_FLAG_PRI_SUP |
146                                         AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
147
148         struct amd_iommu_device_info iommu_info;
149         unsigned int pasid_limit;
150         int err;
151
152         err = amd_iommu_device_info(kfd->pdev, &iommu_info);
153         if (err < 0) {
154                 dev_err(kfd_device,
155                         "error getting iommu info. is the iommu enabled?\n");
156                 return false;
157         }
158
159         if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) {
160                 dev_err(kfd_device, "error required iommu flags ats %i, pri %i, pasid %i\n",
161                        (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0,
162                        (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0,
163                        (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP)
164                                                                         != 0);
165                 return false;
166         }
167
168         pasid_limit = min_t(unsigned int,
169                         (unsigned int)(1 << kfd->device_info->max_pasid_bits),
170                         iommu_info.max_pasids);
171         /*
172          * last pasid is used for kernel queues doorbells
173          * in the future the last pasid might be used for a kernel thread.
174          */
175         pasid_limit = min_t(unsigned int,
176                                 pasid_limit,
177                                 kfd->doorbell_process_limit - 1);
178
179         err = amd_iommu_init_device(kfd->pdev, pasid_limit);
180         if (err < 0) {
181                 dev_err(kfd_device, "error initializing iommu device\n");
182                 return false;
183         }
184
185         if (!kfd_set_pasid_limit(pasid_limit)) {
186                 dev_err(kfd_device, "error setting pasid limit\n");
187                 amd_iommu_free_device(kfd->pdev);
188                 return false;
189         }
190
191         return true;
192 }
193
194 static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid)
195 {
196         struct kfd_dev *dev = kfd_device_by_pci_dev(pdev);
197
198         if (dev)
199                 kfd_unbind_process_from_device(dev, pasid);
200 }
201
202 /*
203  * This function called by IOMMU driver on PPR failure
204  */
205 static int iommu_invalid_ppr_cb(struct pci_dev *pdev, int pasid,
206                 unsigned long address, u16 flags)
207 {
208         struct kfd_dev *dev;
209
210         dev_warn(kfd_device,
211                         "Invalid PPR device %x:%x.%x pasid %d address 0x%lX flags 0x%X",
212                         PCI_BUS_NUM(pdev->devfn),
213                         PCI_SLOT(pdev->devfn),
214                         PCI_FUNC(pdev->devfn),
215                         pasid,
216                         address,
217                         flags);
218
219         dev = kfd_device_by_pci_dev(pdev);
220         if (!WARN_ON(!dev))
221                 kfd_signal_iommu_event(dev, pasid, address,
222                         flags & PPR_FAULT_WRITE, flags & PPR_FAULT_EXEC);
223
224         return AMD_IOMMU_INV_PRI_RSP_INVALID;
225 }
226
227 bool kgd2kfd_device_init(struct kfd_dev *kfd,
228                          const struct kgd2kfd_shared_resources *gpu_resources)
229 {
230         unsigned int size;
231
232         kfd->shared_resources = *gpu_resources;
233
234         /* calculate max size of mqds needed for queues */
235         size = max_num_of_queues_per_device *
236                         kfd->device_info->mqd_size_aligned;
237
238         /*
239          * calculate max size of runlist packet.
240          * There can be only 2 packets at once
241          */
242         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
243                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
244                 + sizeof(struct pm4_mes_runlist)) * 2;
245
246         /* Add size of HIQ & DIQ */
247         size += KFD_KERNEL_QUEUE_SIZE * 2;
248
249         /* add another 512KB for all other allocations on gart (HPD, fences) */
250         size += 512 * 1024;
251
252         if (kfd->kfd2kgd->init_gtt_mem_allocation(
253                         kfd->kgd, size, &kfd->gtt_mem,
254                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
255                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
256                 goto out;
257         }
258
259         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
260
261         /* Initialize GTT sa with 512 byte chunk size */
262         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
263                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
264                 goto kfd_gtt_sa_init_error;
265         }
266
267         if (kfd_doorbell_init(kfd)) {
268                 dev_err(kfd_device,
269                         "Error initializing doorbell aperture\n");
270                 goto kfd_doorbell_error;
271         }
272
273         if (kfd_topology_add_device(kfd)) {
274                 dev_err(kfd_device, "Error adding device to topology\n");
275                 goto kfd_topology_add_device_error;
276         }
277
278         if (kfd_interrupt_init(kfd)) {
279                 dev_err(kfd_device, "Error initializing interrupts\n");
280                 goto kfd_interrupt_error;
281         }
282
283         if (!device_iommu_pasid_init(kfd)) {
284                 dev_err(kfd_device,
285                         "Error initializing iommuv2 for device %x:%x\n",
286                         kfd->pdev->vendor, kfd->pdev->device);
287                 goto device_iommu_pasid_error;
288         }
289         amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
290                                                 iommu_pasid_shutdown_callback);
291         amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
292
293         kfd->dqm = device_queue_manager_init(kfd);
294         if (!kfd->dqm) {
295                 dev_err(kfd_device, "Error initializing queue manager\n");
296                 goto device_queue_manager_error;
297         }
298
299         if (kfd->dqm->ops.start(kfd->dqm)) {
300                 dev_err(kfd_device,
301                         "Error starting queue manager for device %x:%x\n",
302                         kfd->pdev->vendor, kfd->pdev->device);
303                 goto dqm_start_error;
304         }
305
306         kfd->dbgmgr = NULL;
307
308         kfd->init_complete = true;
309         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
310                  kfd->pdev->device);
311
312         pr_debug("Starting kfd with the following scheduling policy %d\n",
313                 sched_policy);
314
315         goto out;
316
317 dqm_start_error:
318         device_queue_manager_uninit(kfd->dqm);
319 device_queue_manager_error:
320         amd_iommu_free_device(kfd->pdev);
321 device_iommu_pasid_error:
322         kfd_interrupt_exit(kfd);
323 kfd_interrupt_error:
324         kfd_topology_remove_device(kfd);
325 kfd_topology_add_device_error:
326         kfd_doorbell_fini(kfd);
327 kfd_doorbell_error:
328         kfd_gtt_sa_fini(kfd);
329 kfd_gtt_sa_init_error:
330         kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
331         dev_err(kfd_device,
332                 "device %x:%x NOT added due to errors\n",
333                 kfd->pdev->vendor, kfd->pdev->device);
334 out:
335         return kfd->init_complete;
336 }
337
338 void kgd2kfd_device_exit(struct kfd_dev *kfd)
339 {
340         if (kfd->init_complete) {
341                 device_queue_manager_uninit(kfd->dqm);
342                 amd_iommu_free_device(kfd->pdev);
343                 kfd_interrupt_exit(kfd);
344                 kfd_topology_remove_device(kfd);
345                 kfd_doorbell_fini(kfd);
346                 kfd_gtt_sa_fini(kfd);
347                 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
348         }
349
350         kfree(kfd);
351 }
352
353 void kgd2kfd_suspend(struct kfd_dev *kfd)
354 {
355         if (kfd->init_complete) {
356                 kfd->dqm->ops.stop(kfd->dqm);
357                 amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL);
358                 amd_iommu_set_invalid_ppr_cb(kfd->pdev, NULL);
359                 amd_iommu_free_device(kfd->pdev);
360         }
361 }
362
363 int kgd2kfd_resume(struct kfd_dev *kfd)
364 {
365         unsigned int pasid_limit;
366         int err;
367
368         pasid_limit = kfd_get_pasid_limit();
369
370         if (kfd->init_complete) {
371                 err = amd_iommu_init_device(kfd->pdev, pasid_limit);
372                 if (err < 0) {
373                         dev_err(kfd_device, "failed to initialize iommu\n");
374                         return -ENXIO;
375                 }
376
377                 amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
378                                                 iommu_pasid_shutdown_callback);
379                 amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
380                 kfd->dqm->ops.start(kfd->dqm);
381         }
382
383         return 0;
384 }
385
386 /* This is called directly from KGD at ISR. */
387 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
388 {
389         if (!kfd->init_complete)
390                 return;
391
392         spin_lock(&kfd->interrupt_lock);
393
394         if (kfd->interrupts_active
395             && interrupt_is_wanted(kfd, ih_ring_entry)
396             && enqueue_ih_ring_entry(kfd, ih_ring_entry))
397                 schedule_work(&kfd->interrupt_work);
398
399         spin_unlock(&kfd->interrupt_lock);
400 }
401
402 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
403                                 unsigned int chunk_size)
404 {
405         unsigned int num_of_longs;
406
407         if (WARN_ON(buf_size < chunk_size))
408                 return -EINVAL;
409         if (WARN_ON(buf_size == 0))
410                 return -EINVAL;
411         if (WARN_ON(chunk_size == 0))
412                 return -EINVAL;
413
414         kfd->gtt_sa_chunk_size = chunk_size;
415         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
416
417         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
418                 BITS_PER_LONG;
419
420         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
421
422         if (!kfd->gtt_sa_bitmap)
423                 return -ENOMEM;
424
425         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
426                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
427
428         mutex_init(&kfd->gtt_sa_lock);
429
430         return 0;
431
432 }
433
434 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
435 {
436         mutex_destroy(&kfd->gtt_sa_lock);
437         kfree(kfd->gtt_sa_bitmap);
438 }
439
440 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
441                                                 unsigned int bit_num,
442                                                 unsigned int chunk_size)
443 {
444         return start_addr + bit_num * chunk_size;
445 }
446
447 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
448                                                 unsigned int bit_num,
449                                                 unsigned int chunk_size)
450 {
451         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
452 }
453
454 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
455                         struct kfd_mem_obj **mem_obj)
456 {
457         unsigned int found, start_search, cur_size;
458
459         if (size == 0)
460                 return -EINVAL;
461
462         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
463                 return -ENOMEM;
464
465         *mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
466         if ((*mem_obj) == NULL)
467                 return -ENOMEM;
468
469         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
470
471         start_search = 0;
472
473         mutex_lock(&kfd->gtt_sa_lock);
474
475 kfd_gtt_restart_search:
476         /* Find the first chunk that is free */
477         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
478                                         kfd->gtt_sa_num_of_chunks,
479                                         start_search);
480
481         pr_debug("Found = %d\n", found);
482
483         /* If there wasn't any free chunk, bail out */
484         if (found == kfd->gtt_sa_num_of_chunks)
485                 goto kfd_gtt_no_free_chunk;
486
487         /* Update fields of mem_obj */
488         (*mem_obj)->range_start = found;
489         (*mem_obj)->range_end = found;
490         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
491                                         kfd->gtt_start_gpu_addr,
492                                         found,
493                                         kfd->gtt_sa_chunk_size);
494         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
495                                         kfd->gtt_start_cpu_ptr,
496                                         found,
497                                         kfd->gtt_sa_chunk_size);
498
499         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
500                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
501
502         /* If we need only one chunk, mark it as allocated and get out */
503         if (size <= kfd->gtt_sa_chunk_size) {
504                 pr_debug("Single bit\n");
505                 set_bit(found, kfd->gtt_sa_bitmap);
506                 goto kfd_gtt_out;
507         }
508
509         /* Otherwise, try to see if we have enough contiguous chunks */
510         cur_size = size - kfd->gtt_sa_chunk_size;
511         do {
512                 (*mem_obj)->range_end =
513                         find_next_zero_bit(kfd->gtt_sa_bitmap,
514                                         kfd->gtt_sa_num_of_chunks, ++found);
515                 /*
516                  * If next free chunk is not contiguous than we need to
517                  * restart our search from the last free chunk we found (which
518                  * wasn't contiguous to the previous ones
519                  */
520                 if ((*mem_obj)->range_end != found) {
521                         start_search = found;
522                         goto kfd_gtt_restart_search;
523                 }
524
525                 /*
526                  * If we reached end of buffer, bail out with error
527                  */
528                 if (found == kfd->gtt_sa_num_of_chunks)
529                         goto kfd_gtt_no_free_chunk;
530
531                 /* Check if we don't need another chunk */
532                 if (cur_size <= kfd->gtt_sa_chunk_size)
533                         cur_size = 0;
534                 else
535                         cur_size -= kfd->gtt_sa_chunk_size;
536
537         } while (cur_size > 0);
538
539         pr_debug("range_start = %d, range_end = %d\n",
540                 (*mem_obj)->range_start, (*mem_obj)->range_end);
541
542         /* Mark the chunks as allocated */
543         for (found = (*mem_obj)->range_start;
544                 found <= (*mem_obj)->range_end;
545                 found++)
546                 set_bit(found, kfd->gtt_sa_bitmap);
547
548 kfd_gtt_out:
549         mutex_unlock(&kfd->gtt_sa_lock);
550         return 0;
551
552 kfd_gtt_no_free_chunk:
553         pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
554         mutex_unlock(&kfd->gtt_sa_lock);
555         kfree(mem_obj);
556         return -ENOMEM;
557 }
558
559 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
560 {
561         unsigned int bit;
562
563         /* Act like kfree when trying to free a NULL object */
564         if (!mem_obj)
565                 return 0;
566
567         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
568                         mem_obj, mem_obj->range_start, mem_obj->range_end);
569
570         mutex_lock(&kfd->gtt_sa_lock);
571
572         /* Mark the chunks as free */
573         for (bit = mem_obj->range_start;
574                 bit <= mem_obj->range_end;
575                 bit++)
576                 clear_bit(bit, kfd->gtt_sa_bitmap);
577
578         mutex_unlock(&kfd->gtt_sa_lock);
579
580         kfree(mem_obj);
581         return 0;
582 }