Merge tag 'mmc-v4.20-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[sfrench/cifs-2.6.git] / drivers / firmware / efi / libstub / fdt.c
1 /*
2  * FDT related Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2013 Linaro Limited; author Roy Franz
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
15 #include <asm/efi.h>
16
17 #include "efistub.h"
18
19 #define EFI_DT_ADDR_CELLS_DEFAULT 2
20 #define EFI_DT_SIZE_CELLS_DEFAULT 2
21
22 static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
23 {
24         int offset;
25
26         offset = fdt_path_offset(fdt, "/");
27         /* Set the #address-cells and #size-cells values for an empty tree */
28
29         fdt_setprop_u32(fdt, offset, "#address-cells",
30                         EFI_DT_ADDR_CELLS_DEFAULT);
31
32         fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
33 }
34
35 static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
36                                unsigned long orig_fdt_size,
37                                void *fdt, int new_fdt_size, char *cmdline_ptr,
38                                u64 initrd_addr, u64 initrd_size)
39 {
40         int node, num_rsv;
41         int status;
42         u32 fdt_val32;
43         u64 fdt_val64;
44
45         /* Do some checks on provided FDT, if it exists*/
46         if (orig_fdt) {
47                 if (fdt_check_header(orig_fdt)) {
48                         pr_efi_err(sys_table, "Device Tree header not valid!\n");
49                         return EFI_LOAD_ERROR;
50                 }
51                 /*
52                  * We don't get the size of the FDT if we get if from a
53                  * configuration table.
54                  */
55                 if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
56                         pr_efi_err(sys_table, "Truncated device tree! foo!\n");
57                         return EFI_LOAD_ERROR;
58                 }
59         }
60
61         if (orig_fdt) {
62                 status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
63         } else {
64                 status = fdt_create_empty_tree(fdt, new_fdt_size);
65                 if (status == 0) {
66                         /*
67                          * Any failure from the following function is non
68                          * critical
69                          */
70                         fdt_update_cell_size(sys_table, fdt);
71                 }
72         }
73
74         if (status != 0)
75                 goto fdt_set_fail;
76
77         /*
78          * Delete all memory reserve map entries. When booting via UEFI,
79          * kernel will use the UEFI memory map to find reserved regions.
80          */
81         num_rsv = fdt_num_mem_rsv(fdt);
82         while (num_rsv-- > 0)
83                 fdt_del_mem_rsv(fdt, num_rsv);
84
85         node = fdt_subnode_offset(fdt, 0, "chosen");
86         if (node < 0) {
87                 node = fdt_add_subnode(fdt, 0, "chosen");
88                 if (node < 0) {
89                         status = node; /* node is error code when negative */
90                         goto fdt_set_fail;
91                 }
92         }
93
94         if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
95                 status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
96                                      strlen(cmdline_ptr) + 1);
97                 if (status)
98                         goto fdt_set_fail;
99         }
100
101         /* Set initrd address/end in device tree, if present */
102         if (initrd_size != 0) {
103                 u64 initrd_image_end;
104                 u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
105
106                 status = fdt_setprop(fdt, node, "linux,initrd-start",
107                                      &initrd_image_start, sizeof(u64));
108                 if (status)
109                         goto fdt_set_fail;
110                 initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
111                 status = fdt_setprop(fdt, node, "linux,initrd-end",
112                                      &initrd_image_end, sizeof(u64));
113                 if (status)
114                         goto fdt_set_fail;
115         }
116
117         /* Add FDT entries for EFI runtime services in chosen node. */
118         node = fdt_subnode_offset(fdt, 0, "chosen");
119         fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
120         status = fdt_setprop(fdt, node, "linux,uefi-system-table",
121                              &fdt_val64, sizeof(fdt_val64));
122         if (status)
123                 goto fdt_set_fail;
124
125         fdt_val64 = U64_MAX; /* placeholder */
126         status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
127                              &fdt_val64,  sizeof(fdt_val64));
128         if (status)
129                 goto fdt_set_fail;
130
131         fdt_val32 = U32_MAX; /* placeholder */
132         status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
133                              &fdt_val32,  sizeof(fdt_val32));
134         if (status)
135                 goto fdt_set_fail;
136
137         status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
138                              &fdt_val32, sizeof(fdt_val32));
139         if (status)
140                 goto fdt_set_fail;
141
142         status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
143                              &fdt_val32, sizeof(fdt_val32));
144         if (status)
145                 goto fdt_set_fail;
146
147         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
148                 efi_status_t efi_status;
149
150                 efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
151                                                   (u8 *)&fdt_val64);
152                 if (efi_status == EFI_SUCCESS) {
153                         status = fdt_setprop(fdt, node, "kaslr-seed",
154                                              &fdt_val64, sizeof(fdt_val64));
155                         if (status)
156                                 goto fdt_set_fail;
157                 } else if (efi_status != EFI_NOT_FOUND) {
158                         return efi_status;
159                 }
160         }
161
162         /* shrink the FDT back to its minimum size */
163         fdt_pack(fdt);
164
165         return EFI_SUCCESS;
166
167 fdt_set_fail:
168         if (status == -FDT_ERR_NOSPACE)
169                 return EFI_BUFFER_TOO_SMALL;
170
171         return EFI_LOAD_ERROR;
172 }
173
174 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
175 {
176         int node = fdt_path_offset(fdt, "/chosen");
177         u64 fdt_val64;
178         u32 fdt_val32;
179         int err;
180
181         if (node < 0)
182                 return EFI_LOAD_ERROR;
183
184         fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
185         err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start",
186                                   &fdt_val64, sizeof(fdt_val64));
187         if (err)
188                 return EFI_LOAD_ERROR;
189
190         fdt_val32 = cpu_to_fdt32(*map->map_size);
191         err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size",
192                                   &fdt_val32, sizeof(fdt_val32));
193         if (err)
194                 return EFI_LOAD_ERROR;
195
196         fdt_val32 = cpu_to_fdt32(*map->desc_size);
197         err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size",
198                                   &fdt_val32, sizeof(fdt_val32));
199         if (err)
200                 return EFI_LOAD_ERROR;
201
202         fdt_val32 = cpu_to_fdt32(*map->desc_ver);
203         err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver",
204                                   &fdt_val32, sizeof(fdt_val32));
205         if (err)
206                 return EFI_LOAD_ERROR;
207
208         return EFI_SUCCESS;
209 }
210
211 #ifndef EFI_FDT_ALIGN
212 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
213 #endif
214
215 struct exit_boot_struct {
216         efi_memory_desc_t *runtime_map;
217         int *runtime_entry_count;
218         void *new_fdt_addr;
219 };
220
221 static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
222                                    struct efi_boot_memmap *map,
223                                    void *priv)
224 {
225         struct exit_boot_struct *p = priv;
226         /*
227          * Update the memory map with virtual addresses. The function will also
228          * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
229          * entries so that we can pass it straight to SetVirtualAddressMap()
230          */
231         efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
232                         p->runtime_map, p->runtime_entry_count);
233
234         return update_fdt_memmap(p->new_fdt_addr, map);
235 }
236
237 #ifndef MAX_FDT_SIZE
238 #define MAX_FDT_SIZE    SZ_2M
239 #endif
240
241 /*
242  * Allocate memory for a new FDT, then add EFI, commandline, and
243  * initrd related fields to the FDT.  This routine increases the
244  * FDT allocation size until the allocated memory is large
245  * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
246  * which are fixed at 4K bytes, so in most cases the first
247  * allocation should succeed.
248  * EFI boot services are exited at the end of this function.
249  * There must be no allocations between the get_memory_map()
250  * call and the exit_boot_services() call, so the exiting of
251  * boot services is very tightly tied to the creation of the FDT
252  * with the final memory map in it.
253  */
254
255 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
256                                             void *handle,
257                                             unsigned long *new_fdt_addr,
258                                             unsigned long max_addr,
259                                             u64 initrd_addr, u64 initrd_size,
260                                             char *cmdline_ptr,
261                                             unsigned long fdt_addr,
262                                             unsigned long fdt_size)
263 {
264         unsigned long map_size, desc_size, buff_size;
265         u32 desc_ver;
266         unsigned long mmap_key;
267         efi_memory_desc_t *memory_map, *runtime_map;
268         efi_status_t status;
269         int runtime_entry_count = 0;
270         struct efi_boot_memmap map;
271         struct exit_boot_struct priv;
272
273         map.map =       &runtime_map;
274         map.map_size =  &map_size;
275         map.desc_size = &desc_size;
276         map.desc_ver =  &desc_ver;
277         map.key_ptr =   &mmap_key;
278         map.buff_size = &buff_size;
279
280         /*
281          * Get a copy of the current memory map that we will use to prepare
282          * the input for SetVirtualAddressMap(). We don't have to worry about
283          * subsequent allocations adding entries, since they could not affect
284          * the number of EFI_MEMORY_RUNTIME regions.
285          */
286         status = efi_get_memory_map(sys_table, &map);
287         if (status != EFI_SUCCESS) {
288                 pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
289                 return status;
290         }
291
292         pr_efi(sys_table,
293                "Exiting boot services and installing virtual address map...\n");
294
295         map.map = &memory_map;
296         status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
297                                 new_fdt_addr, max_addr);
298         if (status != EFI_SUCCESS) {
299                 pr_efi_err(sys_table,
300                            "Unable to allocate memory for new device tree.\n");
301                 goto fail;
302         }
303
304         /*
305          * Now that we have done our final memory allocation (and free)
306          * we can get the memory map key needed for exit_boot_services().
307          */
308         status = efi_get_memory_map(sys_table, &map);
309         if (status != EFI_SUCCESS)
310                 goto fail_free_new_fdt;
311
312         status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
313                             (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
314                             initrd_addr, initrd_size);
315
316         if (status != EFI_SUCCESS) {
317                 pr_efi_err(sys_table, "Unable to construct new device tree.\n");
318                 goto fail_free_new_fdt;
319         }
320
321         priv.runtime_map = runtime_map;
322         priv.runtime_entry_count = &runtime_entry_count;
323         priv.new_fdt_addr = (void *)*new_fdt_addr;
324         status = efi_exit_boot_services(sys_table, handle, &map, &priv,
325                                         exit_boot_func);
326
327         if (status == EFI_SUCCESS) {
328                 efi_set_virtual_address_map_t *svam;
329
330                 /* Install the new virtual address map */
331                 svam = sys_table->runtime->set_virtual_address_map;
332                 status = svam(runtime_entry_count * desc_size, desc_size,
333                               desc_ver, runtime_map);
334
335                 /*
336                  * We are beyond the point of no return here, so if the call to
337                  * SetVirtualAddressMap() failed, we need to signal that to the
338                  * incoming kernel but proceed normally otherwise.
339                  */
340                 if (status != EFI_SUCCESS) {
341                         int l;
342
343                         /*
344                          * Set the virtual address field of all
345                          * EFI_MEMORY_RUNTIME entries to 0. This will signal
346                          * the incoming kernel that no virtual translation has
347                          * been installed.
348                          */
349                         for (l = 0; l < map_size; l += desc_size) {
350                                 efi_memory_desc_t *p = (void *)memory_map + l;
351
352                                 if (p->attribute & EFI_MEMORY_RUNTIME)
353                                         p->virt_addr = 0;
354                         }
355                 }
356                 return EFI_SUCCESS;
357         }
358
359         pr_efi_err(sys_table, "Exit boot services failed.\n");
360
361 fail_free_new_fdt:
362         efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
363
364 fail:
365         sys_table->boottime->free_pool(runtime_map);
366         return EFI_LOAD_ERROR;
367 }
368
369 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
370 {
371         efi_guid_t fdt_guid = DEVICE_TREE_GUID;
372         efi_config_table_t *tables;
373         void *fdt;
374         int i;
375
376         tables = (efi_config_table_t *) sys_table->tables;
377         fdt = NULL;
378
379         for (i = 0; i < sys_table->nr_tables; i++)
380                 if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
381                         fdt = (void *) tables[i].table;
382                         if (fdt_check_header(fdt) != 0) {
383                                 pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
384                                 return NULL;
385                         }
386                         *fdt_size = fdt_totalsize(fdt);
387                         break;
388          }
389
390         return fdt;
391 }