Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/driver-2.6
[sfrench/cifs-2.6.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/timer.h>
41
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_dbg.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47
48 #include "fw-transaction.h"
49 #include "fw-topology.h"
50 #include "fw-device.h"
51
52 /*
53  * So far only bridges from Oxford Semiconductor are known to support
54  * concurrent logins. Depending on firmware, four or two concurrent logins
55  * are possible on OXFW911 and newer Oxsemi bridges.
56  *
57  * Concurrent logins are useful together with cluster filesystems.
58  */
59 static int sbp2_param_exclusive_login = 1;
60 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
61 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
62                  "(default = Y, use N for concurrent initiators)");
63
64 /* I don't know why the SCSI stack doesn't define something like this... */
65 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
66
67 static const char sbp2_driver_name[] = "sbp2";
68
69 struct sbp2_device {
70         struct kref kref;
71         struct fw_unit *unit;
72         struct fw_address_handler address_handler;
73         struct list_head orb_list;
74         u64 management_agent_address;
75         u64 command_block_agent_address;
76         u32 workarounds;
77         int login_id;
78
79         /*
80          * We cache these addresses and only update them once we've
81          * logged in or reconnected to the sbp2 device.  That way, any
82          * IO to the device will automatically fail and get retried if
83          * it happens in a window where the device is not ready to
84          * handle it (e.g. after a bus reset but before we reconnect).
85          */
86         int node_id;
87         int address_high;
88         int generation;
89
90         int retries;
91         struct delayed_work work;
92 };
93
94 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
95 #define SBP2_MAX_SECTORS                255     /* Max sectors supported */
96 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
97
98 #define SBP2_ORB_NULL                   0x80000000
99
100 #define SBP2_DIRECTION_TO_MEDIA         0x0
101 #define SBP2_DIRECTION_FROM_MEDIA       0x1
102
103 /* Unit directory keys */
104 #define SBP2_COMMAND_SET_SPECIFIER      0x38
105 #define SBP2_COMMAND_SET                0x39
106 #define SBP2_COMMAND_SET_REVISION       0x3b
107 #define SBP2_FIRMWARE_REVISION          0x3c
108
109 /* Flags for detected oddities and brokeness */
110 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
111 #define SBP2_WORKAROUND_INQUIRY_36      0x2
112 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
113 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
114 #define SBP2_WORKAROUND_OVERRIDE        0x100
115
116 /* Management orb opcodes */
117 #define SBP2_LOGIN_REQUEST              0x0
118 #define SBP2_QUERY_LOGINS_REQUEST       0x1
119 #define SBP2_RECONNECT_REQUEST          0x3
120 #define SBP2_SET_PASSWORD_REQUEST       0x4
121 #define SBP2_LOGOUT_REQUEST             0x7
122 #define SBP2_ABORT_TASK_REQUEST         0xb
123 #define SBP2_ABORT_TASK_SET             0xc
124 #define SBP2_LOGICAL_UNIT_RESET         0xe
125 #define SBP2_TARGET_RESET_REQUEST       0xf
126
127 /* Offsets for command block agent registers */
128 #define SBP2_AGENT_STATE                0x00
129 #define SBP2_AGENT_RESET                0x04
130 #define SBP2_ORB_POINTER                0x08
131 #define SBP2_DOORBELL                   0x10
132 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
133
134 /* Status write response codes */
135 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
136 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
137 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
138 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
139
140 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
141 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
142 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
143 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
144 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
145 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
146 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
147 #define STATUS_GET_DATA(v)              ((v).data)
148
149 struct sbp2_status {
150         u32 status;
151         u32 orb_low;
152         u8 data[24];
153 };
154
155 struct sbp2_pointer {
156         u32 high;
157         u32 low;
158 };
159
160 struct sbp2_orb {
161         struct fw_transaction t;
162         dma_addr_t request_bus;
163         int rcode;
164         struct sbp2_pointer pointer;
165         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
166         struct list_head link;
167 };
168
169 #define MANAGEMENT_ORB_LUN(v)                   ((v))
170 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
171 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
172 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
173 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
174 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
175
176 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
177 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
178
179 struct sbp2_management_orb {
180         struct sbp2_orb base;
181         struct {
182                 struct sbp2_pointer password;
183                 struct sbp2_pointer response;
184                 u32 misc;
185                 u32 length;
186                 struct sbp2_pointer status_fifo;
187         } request;
188         __be32 response[4];
189         dma_addr_t response_bus;
190         struct completion done;
191         struct sbp2_status status;
192 };
193
194 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
195 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
196
197 struct sbp2_login_response {
198         u32 misc;
199         struct sbp2_pointer command_block_agent;
200         u32 reconnect_hold;
201 };
202 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
203 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
204 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
205 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
206 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
207 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
208 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
209 #define COMMAND_ORB_NOTIFY              ((1) << 31)
210
211 struct sbp2_command_orb {
212         struct sbp2_orb base;
213         struct {
214                 struct sbp2_pointer next;
215                 struct sbp2_pointer data_descriptor;
216                 u32 misc;
217                 u8 command_block[12];
218         } request;
219         struct scsi_cmnd *cmd;
220         scsi_done_fn_t done;
221         struct fw_unit *unit;
222
223         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
224         dma_addr_t page_table_bus;
225 };
226
227 /*
228  * List of devices with known bugs.
229  *
230  * The firmware_revision field, masked with 0xffff00, is the best
231  * indicator for the type of bridge chip of a device.  It yields a few
232  * false positives but this did not break correctly behaving devices
233  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
234  * from the config rom can never match that.
235  */
236 static const struct {
237         u32 firmware_revision;
238         u32 model;
239         unsigned workarounds;
240 } sbp2_workarounds_table[] = {
241         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
242                 .firmware_revision      = 0x002800,
243                 .model                  = 0x001010,
244                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
245                                           SBP2_WORKAROUND_MODE_SENSE_8,
246         },
247         /* Initio bridges, actually only needed for some older ones */ {
248                 .firmware_revision      = 0x000200,
249                 .model                  = ~0,
250                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
251         },
252         /* Symbios bridge */ {
253                 .firmware_revision      = 0xa0b800,
254                 .model                  = ~0,
255                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
256         },
257
258         /*
259          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
260          * these iPods do not feature the read_capacity bug according
261          * to one report.  Read_capacity behaviour as well as model_id
262          * could change due to Apple-supplied firmware updates though.
263          */
264
265         /* iPod 4th generation. */ {
266                 .firmware_revision      = 0x0a2700,
267                 .model                  = 0x000021,
268                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
269         },
270         /* iPod mini */ {
271                 .firmware_revision      = 0x0a2700,
272                 .model                  = 0x000023,
273                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
274         },
275         /* iPod Photo */ {
276                 .firmware_revision      = 0x0a2700,
277                 .model                  = 0x00007e,
278                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
279         }
280 };
281
282 static void
283 sbp2_status_write(struct fw_card *card, struct fw_request *request,
284                   int tcode, int destination, int source,
285                   int generation, int speed,
286                   unsigned long long offset,
287                   void *payload, size_t length, void *callback_data)
288 {
289         struct sbp2_device *sd = callback_data;
290         struct sbp2_orb *orb;
291         struct sbp2_status status;
292         size_t header_size;
293         unsigned long flags;
294
295         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
296             length == 0 || length > sizeof(status)) {
297                 fw_send_response(card, request, RCODE_TYPE_ERROR);
298                 return;
299         }
300
301         header_size = min(length, 2 * sizeof(u32));
302         fw_memcpy_from_be32(&status, payload, header_size);
303         if (length > header_size)
304                 memcpy(status.data, payload + 8, length - header_size);
305         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
306                 fw_notify("non-orb related status write, not handled\n");
307                 fw_send_response(card, request, RCODE_COMPLETE);
308                 return;
309         }
310
311         /* Lookup the orb corresponding to this status write. */
312         spin_lock_irqsave(&card->lock, flags);
313         list_for_each_entry(orb, &sd->orb_list, link) {
314                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
315                     STATUS_GET_ORB_LOW(status) == orb->request_bus &&
316                     orb->rcode == RCODE_COMPLETE) {
317                         list_del(&orb->link);
318                         break;
319                 }
320         }
321         spin_unlock_irqrestore(&card->lock, flags);
322
323         if (&orb->link != &sd->orb_list)
324                 orb->callback(orb, &status);
325         else
326                 fw_error("status write for unknown orb\n");
327
328         fw_send_response(card, request, RCODE_COMPLETE);
329 }
330
331 static void
332 complete_transaction(struct fw_card *card, int rcode,
333                      void *payload, size_t length, void *data)
334 {
335         struct sbp2_orb *orb = data;
336         unsigned long flags;
337
338         orb->rcode = rcode;
339         if (rcode != RCODE_COMPLETE) {
340                 spin_lock_irqsave(&card->lock, flags);
341                 list_del(&orb->link);
342                 spin_unlock_irqrestore(&card->lock, flags);
343                 orb->callback(orb, NULL);
344         }
345 }
346
347 static void
348 sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
349               int node_id, int generation, u64 offset)
350 {
351         struct fw_device *device = fw_device(unit->device.parent);
352         struct sbp2_device *sd = unit->device.driver_data;
353         unsigned long flags;
354
355         orb->pointer.high = 0;
356         orb->pointer.low = orb->request_bus;
357         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
358
359         spin_lock_irqsave(&device->card->lock, flags);
360         list_add_tail(&orb->link, &sd->orb_list);
361         spin_unlock_irqrestore(&device->card->lock, flags);
362
363         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
364                         node_id, generation, device->max_speed, offset,
365                         &orb->pointer, sizeof(orb->pointer),
366                         complete_transaction, orb);
367 }
368
369 static int sbp2_cancel_orbs(struct fw_unit *unit)
370 {
371         struct fw_device *device = fw_device(unit->device.parent);
372         struct sbp2_device *sd = unit->device.driver_data;
373         struct sbp2_orb *orb, *next;
374         struct list_head list;
375         unsigned long flags;
376         int retval = -ENOENT;
377
378         INIT_LIST_HEAD(&list);
379         spin_lock_irqsave(&device->card->lock, flags);
380         list_splice_init(&sd->orb_list, &list);
381         spin_unlock_irqrestore(&device->card->lock, flags);
382
383         list_for_each_entry_safe(orb, next, &list, link) {
384                 retval = 0;
385                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
386                         continue;
387
388                 orb->rcode = RCODE_CANCELLED;
389                 orb->callback(orb, NULL);
390         }
391
392         return retval;
393 }
394
395 static void
396 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
397 {
398         struct sbp2_management_orb *orb =
399                 container_of(base_orb, struct sbp2_management_orb, base);
400
401         if (status)
402                 memcpy(&orb->status, status, sizeof(*status));
403         complete(&orb->done);
404 }
405
406 static int
407 sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
408                          int function, int lun, void *response)
409 {
410         struct fw_device *device = fw_device(unit->device.parent);
411         struct sbp2_device *sd = unit->device.driver_data;
412         struct sbp2_management_orb *orb;
413         int retval = -ENOMEM;
414
415         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
416         if (orb == NULL)
417                 return -ENOMEM;
418
419         orb->response_bus =
420                 dma_map_single(device->card->device, &orb->response,
421                                sizeof(orb->response), DMA_FROM_DEVICE);
422         if (dma_mapping_error(orb->response_bus))
423                 goto fail_mapping_response;
424
425         orb->request.response.high    = 0;
426         orb->request.response.low     = orb->response_bus;
427
428         orb->request.misc =
429                 MANAGEMENT_ORB_NOTIFY |
430                 MANAGEMENT_ORB_FUNCTION(function) |
431                 MANAGEMENT_ORB_LUN(lun);
432         orb->request.length =
433                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
434
435         orb->request.status_fifo.high = sd->address_handler.offset >> 32;
436         orb->request.status_fifo.low  = sd->address_handler.offset;
437
438         if (function == SBP2_LOGIN_REQUEST) {
439                 orb->request.misc |=
440                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
441                         MANAGEMENT_ORB_RECONNECT(0);
442         }
443
444         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
445
446         init_completion(&orb->done);
447         orb->base.callback = complete_management_orb;
448
449         orb->base.request_bus =
450                 dma_map_single(device->card->device, &orb->request,
451                                sizeof(orb->request), DMA_TO_DEVICE);
452         if (dma_mapping_error(orb->base.request_bus))
453                 goto fail_mapping_request;
454
455         sbp2_send_orb(&orb->base, unit,
456                       node_id, generation, sd->management_agent_address);
457
458         wait_for_completion_timeout(&orb->done,
459                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
460
461         retval = -EIO;
462         if (sbp2_cancel_orbs(unit) == 0) {
463                 fw_error("orb reply timed out, rcode=0x%02x\n",
464                          orb->base.rcode);
465                 goto out;
466         }
467
468         if (orb->base.rcode != RCODE_COMPLETE) {
469                 fw_error("management write failed, rcode 0x%02x\n",
470                          orb->base.rcode);
471                 goto out;
472         }
473
474         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
475             STATUS_GET_SBP_STATUS(orb->status) != 0) {
476                 fw_error("error status: %d:%d\n",
477                          STATUS_GET_RESPONSE(orb->status),
478                          STATUS_GET_SBP_STATUS(orb->status));
479                 goto out;
480         }
481
482         retval = 0;
483  out:
484         dma_unmap_single(device->card->device, orb->base.request_bus,
485                          sizeof(orb->request), DMA_TO_DEVICE);
486  fail_mapping_request:
487         dma_unmap_single(device->card->device, orb->response_bus,
488                          sizeof(orb->response), DMA_FROM_DEVICE);
489  fail_mapping_response:
490         if (response)
491                 fw_memcpy_from_be32(response,
492                                     orb->response, sizeof(orb->response));
493         kfree(orb);
494
495         return retval;
496 }
497
498 static void
499 complete_agent_reset_write(struct fw_card *card, int rcode,
500                            void *payload, size_t length, void *data)
501 {
502         struct fw_transaction *t = data;
503
504         kfree(t);
505 }
506
507 static int sbp2_agent_reset(struct fw_unit *unit)
508 {
509         struct fw_device *device = fw_device(unit->device.parent);
510         struct sbp2_device *sd = unit->device.driver_data;
511         struct fw_transaction *t;
512         static u32 zero;
513
514         t = kzalloc(sizeof(*t), GFP_ATOMIC);
515         if (t == NULL)
516                 return -ENOMEM;
517
518         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
519                         sd->node_id, sd->generation, device->max_speed,
520                         sd->command_block_agent_address + SBP2_AGENT_RESET,
521                         &zero, sizeof(zero), complete_agent_reset_write, t);
522
523         return 0;
524 }
525
526 static void sbp2_reconnect(struct work_struct *work);
527 static struct scsi_host_template scsi_driver_template;
528
529 static void release_sbp2_device(struct kref *kref)
530 {
531         struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
532         struct Scsi_Host *host =
533                 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
534
535         scsi_remove_host(host);
536         sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
537                                  SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
538         fw_core_remove_address_handler(&sd->address_handler);
539         fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
540         put_device(&sd->unit->device);
541         scsi_host_put(host);
542 }
543
544 static void sbp2_login(struct work_struct *work)
545 {
546         struct sbp2_device *sd =
547                 container_of(work, struct sbp2_device, work.work);
548         struct Scsi_Host *host =
549                 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
550         struct fw_unit *unit = sd->unit;
551         struct fw_device *device = fw_device(unit->device.parent);
552         struct sbp2_login_response response;
553         int generation, node_id, local_node_id, lun, retval;
554
555         /* FIXME: Make this work for multi-lun devices. */
556         lun = 0;
557
558         generation    = device->card->generation;
559         node_id       = device->node->node_id;
560         local_node_id = device->card->local_node->node_id;
561
562         if (sbp2_send_management_orb(unit, node_id, generation,
563                                      SBP2_LOGIN_REQUEST, lun, &response) < 0) {
564                 if (sd->retries++ < 5) {
565                         schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
566                 } else {
567                         fw_error("failed to login to %s\n",
568                                  unit->device.bus_id);
569                         kref_put(&sd->kref, release_sbp2_device);
570                 }
571                 return;
572         }
573
574         sd->generation   = generation;
575         sd->node_id      = node_id;
576         sd->address_high = local_node_id << 16;
577
578         /* Get command block agent offset and login id. */
579         sd->command_block_agent_address =
580                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
581                 response.command_block_agent.low;
582         sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
583
584         fw_notify("logged in to sbp2 unit %s (%d retries)\n",
585                   unit->device.bus_id, sd->retries);
586         fw_notify(" - management_agent_address:    0x%012llx\n",
587                   (unsigned long long) sd->management_agent_address);
588         fw_notify(" - command_block_agent_address: 0x%012llx\n",
589                   (unsigned long long) sd->command_block_agent_address);
590         fw_notify(" - status write address:        0x%012llx\n",
591                   (unsigned long long) sd->address_handler.offset);
592
593 #if 0
594         /* FIXME: The linux1394 sbp2 does this last step. */
595         sbp2_set_busy_timeout(scsi_id);
596 #endif
597
598         PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
599         sbp2_agent_reset(unit);
600
601         /* FIXME: Loop over luns here. */
602         lun = 0;
603         retval = scsi_add_device(host, 0, 0, lun);
604         if (retval < 0) {
605                 sbp2_send_management_orb(unit, sd->node_id, sd->generation,
606                                          SBP2_LOGOUT_REQUEST, sd->login_id,
607                                          NULL);
608                 /*
609                  * Set this back to sbp2_login so we fall back and
610                  * retry login on bus reset.
611                  */
612                 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
613         }
614         kref_put(&sd->kref, release_sbp2_device);
615 }
616
617 static int sbp2_probe(struct device *dev)
618 {
619         struct fw_unit *unit = fw_unit(dev);
620         struct fw_device *device = fw_device(unit->device.parent);
621         struct sbp2_device *sd;
622         struct fw_csr_iterator ci;
623         struct Scsi_Host *host;
624         int i, key, value, err;
625         u32 model, firmware_revision;
626
627         err = -ENOMEM;
628         host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd));
629         if (host == NULL)
630                 goto fail;
631
632         sd = (struct sbp2_device *) host->hostdata;
633         unit->device.driver_data = sd;
634         sd->unit = unit;
635         INIT_LIST_HEAD(&sd->orb_list);
636         kref_init(&sd->kref);
637
638         sd->address_handler.length = 0x100;
639         sd->address_handler.address_callback = sbp2_status_write;
640         sd->address_handler.callback_data = sd;
641
642         err = fw_core_add_address_handler(&sd->address_handler,
643                                           &fw_high_memory_region);
644         if (err < 0)
645                 goto fail_host;
646
647         err = fw_device_enable_phys_dma(device);
648         if (err < 0)
649                 goto fail_address_handler;
650
651         err = scsi_add_host(host, &unit->device);
652         if (err < 0)
653                 goto fail_address_handler;
654
655         /*
656          * Scan unit directory to get management agent address,
657          * firmware revison and model.  Initialize firmware_revision
658          * and model to values that wont match anything in our table.
659          */
660         firmware_revision = 0xff000000;
661         model = 0xff000000;
662         fw_csr_iterator_init(&ci, unit->directory);
663         while (fw_csr_iterator_next(&ci, &key, &value)) {
664                 switch (key) {
665                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
666                         sd->management_agent_address =
667                                 0xfffff0000000ULL + 4 * value;
668                         break;
669                 case SBP2_FIRMWARE_REVISION:
670                         firmware_revision = value;
671                         break;
672                 case CSR_MODEL:
673                         model = value;
674                         break;
675                 }
676         }
677
678         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
679                 if (sbp2_workarounds_table[i].firmware_revision !=
680                     (firmware_revision & 0xffffff00))
681                         continue;
682                 if (sbp2_workarounds_table[i].model != model &&
683                     sbp2_workarounds_table[i].model != ~0)
684                         continue;
685                 sd->workarounds |= sbp2_workarounds_table[i].workarounds;
686                 break;
687         }
688
689         if (sd->workarounds)
690                 fw_notify("Workarounds for node %s: 0x%x "
691                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
692                           unit->device.bus_id,
693                           sd->workarounds, firmware_revision, model);
694
695         get_device(&unit->device);
696
697         /*
698          * We schedule work to do the login so we can easily
699          * reschedule retries. Always get the ref before scheduling
700          * work.
701          */
702         INIT_DELAYED_WORK(&sd->work, sbp2_login);
703         if (schedule_delayed_work(&sd->work, 0))
704                 kref_get(&sd->kref);
705
706         return 0;
707
708  fail_address_handler:
709         fw_core_remove_address_handler(&sd->address_handler);
710  fail_host:
711         scsi_host_put(host);
712  fail:
713         return err;
714 }
715
716 static int sbp2_remove(struct device *dev)
717 {
718         struct fw_unit *unit = fw_unit(dev);
719         struct sbp2_device *sd = unit->device.driver_data;
720
721         kref_put(&sd->kref, release_sbp2_device);
722
723         return 0;
724 }
725
726 static void sbp2_reconnect(struct work_struct *work)
727 {
728         struct sbp2_device *sd =
729                 container_of(work, struct sbp2_device, work.work);
730         struct fw_unit *unit = sd->unit;
731         struct fw_device *device = fw_device(unit->device.parent);
732         int generation, node_id, local_node_id;
733
734         generation    = device->card->generation;
735         node_id       = device->node->node_id;
736         local_node_id = device->card->local_node->node_id;
737
738         if (sbp2_send_management_orb(unit, node_id, generation,
739                                      SBP2_RECONNECT_REQUEST,
740                                      sd->login_id, NULL) < 0) {
741                 if (sd->retries++ >= 5) {
742                         fw_error("failed to reconnect to %s\n",
743                                  unit->device.bus_id);
744                         /* Fall back and try to log in again. */
745                         sd->retries = 0;
746                         PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
747                 }
748                 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
749                 return;
750         }
751
752         sd->generation   = generation;
753         sd->node_id      = node_id;
754         sd->address_high = local_node_id << 16;
755
756         fw_notify("reconnected to unit %s (%d retries)\n",
757                   unit->device.bus_id, sd->retries);
758         sbp2_agent_reset(unit);
759         sbp2_cancel_orbs(unit);
760         kref_put(&sd->kref, release_sbp2_device);
761 }
762
763 static void sbp2_update(struct fw_unit *unit)
764 {
765         struct fw_device *device = fw_device(unit->device.parent);
766         struct sbp2_device *sd = unit->device.driver_data;
767
768         sd->retries = 0;
769         fw_device_enable_phys_dma(device);
770         if (schedule_delayed_work(&sd->work, 0))
771                 kref_get(&sd->kref);
772 }
773
774 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
775 #define SBP2_SW_VERSION_ENTRY   0x00010483
776
777 static const struct fw_device_id sbp2_id_table[] = {
778         {
779                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
780                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
781                 .version      = SBP2_SW_VERSION_ENTRY,
782         },
783         { }
784 };
785
786 static struct fw_driver sbp2_driver = {
787         .driver   = {
788                 .owner  = THIS_MODULE,
789                 .name   = sbp2_driver_name,
790                 .bus    = &fw_bus_type,
791                 .probe  = sbp2_probe,
792                 .remove = sbp2_remove,
793         },
794         .update   = sbp2_update,
795         .id_table = sbp2_id_table,
796 };
797
798 static unsigned int
799 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
800 {
801         int sam_status;
802
803         sense_data[0] = 0x70;
804         sense_data[1] = 0x0;
805         sense_data[2] = sbp2_status[1];
806         sense_data[3] = sbp2_status[4];
807         sense_data[4] = sbp2_status[5];
808         sense_data[5] = sbp2_status[6];
809         sense_data[6] = sbp2_status[7];
810         sense_data[7] = 10;
811         sense_data[8] = sbp2_status[8];
812         sense_data[9] = sbp2_status[9];
813         sense_data[10] = sbp2_status[10];
814         sense_data[11] = sbp2_status[11];
815         sense_data[12] = sbp2_status[2];
816         sense_data[13] = sbp2_status[3];
817         sense_data[14] = sbp2_status[12];
818         sense_data[15] = sbp2_status[13];
819
820         sam_status = sbp2_status[0] & 0x3f;
821
822         switch (sam_status) {
823         case SAM_STAT_GOOD:
824         case SAM_STAT_CHECK_CONDITION:
825         case SAM_STAT_CONDITION_MET:
826         case SAM_STAT_BUSY:
827         case SAM_STAT_RESERVATION_CONFLICT:
828         case SAM_STAT_COMMAND_TERMINATED:
829                 return DID_OK << 16 | sam_status;
830
831         default:
832                 return DID_ERROR << 16;
833         }
834 }
835
836 static void
837 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
838 {
839         struct sbp2_command_orb *orb =
840                 container_of(base_orb, struct sbp2_command_orb, base);
841         struct fw_unit *unit = orb->unit;
842         struct fw_device *device = fw_device(unit->device.parent);
843         int result;
844
845         if (status != NULL) {
846                 if (STATUS_GET_DEAD(*status))
847                         sbp2_agent_reset(unit);
848
849                 switch (STATUS_GET_RESPONSE(*status)) {
850                 case SBP2_STATUS_REQUEST_COMPLETE:
851                         result = DID_OK << 16;
852                         break;
853                 case SBP2_STATUS_TRANSPORT_FAILURE:
854                         result = DID_BUS_BUSY << 16;
855                         break;
856                 case SBP2_STATUS_ILLEGAL_REQUEST:
857                 case SBP2_STATUS_VENDOR_DEPENDENT:
858                 default:
859                         result = DID_ERROR << 16;
860                         break;
861                 }
862
863                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
864                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
865                                                            orb->cmd->sense_buffer);
866         } else {
867                 /*
868                  * If the orb completes with status == NULL, something
869                  * went wrong, typically a bus reset happened mid-orb
870                  * or when sending the write (less likely).
871                  */
872                 result = DID_BUS_BUSY << 16;
873         }
874
875         dma_unmap_single(device->card->device, orb->base.request_bus,
876                          sizeof(orb->request), DMA_TO_DEVICE);
877
878         if (scsi_sg_count(orb->cmd) > 0)
879                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
880                              scsi_sg_count(orb->cmd),
881                              orb->cmd->sc_data_direction);
882
883         if (orb->page_table_bus != 0)
884                 dma_unmap_single(device->card->device, orb->page_table_bus,
885                                  sizeof(orb->page_table), DMA_TO_DEVICE);
886
887         orb->cmd->result = result;
888         orb->done(orb->cmd);
889         kfree(orb);
890 }
891
892 static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
893 {
894         struct sbp2_device *sd =
895                 (struct sbp2_device *)orb->cmd->device->host->hostdata;
896         struct fw_unit *unit = sd->unit;
897         struct fw_device *device = fw_device(unit->device.parent);
898         struct scatterlist *sg;
899         int sg_len, l, i, j, count;
900         dma_addr_t sg_addr;
901
902         sg = scsi_sglist(orb->cmd);
903         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
904                            orb->cmd->sc_data_direction);
905         if (count == 0)
906                 goto fail;
907
908         /*
909          * Handle the special case where there is only one element in
910          * the scatter list by converting it to an immediate block
911          * request. This is also a workaround for broken devices such
912          * as the second generation iPod which doesn't support page
913          * tables.
914          */
915         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
916                 orb->request.data_descriptor.high = sd->address_high;
917                 orb->request.data_descriptor.low  = sg_dma_address(sg);
918                 orb->request.misc |=
919                         COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
920                 return 0;
921         }
922
923         /*
924          * Convert the scatterlist to an sbp2 page table.  If any
925          * scatterlist entries are too big for sbp2, we split them as we
926          * go.  Even if we ask the block I/O layer to not give us sg
927          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
928          * during DMA mapping, and Linux currently doesn't prevent this.
929          */
930         for (i = 0, j = 0; i < count; i++) {
931                 sg_len = sg_dma_len(sg + i);
932                 sg_addr = sg_dma_address(sg + i);
933                 while (sg_len) {
934                         /* FIXME: This won't get us out of the pinch. */
935                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
936                                 fw_error("page table overflow\n");
937                                 goto fail_page_table;
938                         }
939                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
940                         orb->page_table[j].low = sg_addr;
941                         orb->page_table[j].high = (l << 16);
942                         sg_addr += l;
943                         sg_len -= l;
944                         j++;
945                 }
946         }
947
948         fw_memcpy_to_be32(orb->page_table, orb->page_table,
949                           sizeof(orb->page_table[0]) * j);
950         orb->page_table_bus =
951                 dma_map_single(device->card->device, orb->page_table,
952                                sizeof(orb->page_table), DMA_TO_DEVICE);
953         if (dma_mapping_error(orb->page_table_bus))
954                 goto fail_page_table;
955
956         /*
957          * The data_descriptor pointer is the one case where we need
958          * to fill in the node ID part of the address.  All other
959          * pointers assume that the data referenced reside on the
960          * initiator (i.e. us), but data_descriptor can refer to data
961          * on other nodes so we need to put our ID in descriptor.high.
962          */
963         orb->request.data_descriptor.high = sd->address_high;
964         orb->request.data_descriptor.low  = orb->page_table_bus;
965         orb->request.misc |=
966                 COMMAND_ORB_PAGE_TABLE_PRESENT |
967                 COMMAND_ORB_DATA_SIZE(j);
968
969         return 0;
970
971  fail_page_table:
972         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
973                      orb->cmd->sc_data_direction);
974  fail:
975         return -ENOMEM;
976 }
977
978 /* SCSI stack integration */
979
980 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
981 {
982         struct sbp2_device *sd =
983                 (struct sbp2_device *)cmd->device->host->hostdata;
984         struct fw_unit *unit = sd->unit;
985         struct fw_device *device = fw_device(unit->device.parent);
986         struct sbp2_command_orb *orb;
987
988         /*
989          * Bidirectional commands are not yet implemented, and unknown
990          * transfer direction not handled.
991          */
992         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
993                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
994                 cmd->result = DID_ERROR << 16;
995                 done(cmd);
996                 return 0;
997         }
998
999         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1000         if (orb == NULL) {
1001                 fw_notify("failed to alloc orb\n");
1002                 goto fail_alloc;
1003         }
1004
1005         /* Initialize rcode to something not RCODE_COMPLETE. */
1006         orb->base.rcode = -1;
1007
1008         orb->unit = unit;
1009         orb->done = done;
1010         orb->cmd  = cmd;
1011
1012         orb->request.next.high   = SBP2_ORB_NULL;
1013         orb->request.next.low    = 0x0;
1014         /*
1015          * At speed 100 we can do 512 bytes per packet, at speed 200,
1016          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1017          * specifies the max payload size as 2 ^ (max_payload + 2), so
1018          * if we set this to max_speed + 7, we get the right value.
1019          */
1020         orb->request.misc =
1021                 COMMAND_ORB_MAX_PAYLOAD(device->max_speed + 7) |
1022                 COMMAND_ORB_SPEED(device->max_speed) |
1023                 COMMAND_ORB_NOTIFY;
1024
1025         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1026                 orb->request.misc |=
1027                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1028         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1029                 orb->request.misc |=
1030                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1031
1032         if (scsi_sg_count(cmd) && sbp2_command_orb_map_scatterlist(orb) < 0)
1033                 goto fail_mapping;
1034
1035         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1036
1037         memset(orb->request.command_block,
1038                0, sizeof(orb->request.command_block));
1039         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1040
1041         orb->base.callback = complete_command_orb;
1042         orb->base.request_bus =
1043                 dma_map_single(device->card->device, &orb->request,
1044                                sizeof(orb->request), DMA_TO_DEVICE);
1045         if (dma_mapping_error(orb->base.request_bus))
1046                 goto fail_mapping;
1047
1048         sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
1049                       sd->command_block_agent_address + SBP2_ORB_POINTER);
1050
1051         return 0;
1052
1053  fail_mapping:
1054         kfree(orb);
1055  fail_alloc:
1056         return SCSI_MLQUEUE_HOST_BUSY;
1057 }
1058
1059 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1060 {
1061         struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1062
1063         sdev->allow_restart = 1;
1064
1065         if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1066                 sdev->inquiry_len = 36;
1067         return 0;
1068 }
1069
1070 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1071 {
1072         struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1073         struct fw_unit *unit = sd->unit;
1074
1075         sdev->use_10_for_rw = 1;
1076
1077         if (sdev->type == TYPE_ROM)
1078                 sdev->use_10_for_ms = 1;
1079         if (sdev->type == TYPE_DISK &&
1080             sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1081                 sdev->skip_ms_page_8 = 1;
1082         if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
1083                 fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
1084                 sdev->fix_capacity = 1;
1085         }
1086         if (sd->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1087                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1088         return 0;
1089 }
1090
1091 /*
1092  * Called by scsi stack when something has really gone wrong.  Usually
1093  * called when a command has timed-out for some reason.
1094  */
1095 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1096 {
1097         struct sbp2_device *sd =
1098                 (struct sbp2_device *)cmd->device->host->hostdata;
1099         struct fw_unit *unit = sd->unit;
1100
1101         fw_notify("sbp2_scsi_abort\n");
1102         sbp2_agent_reset(unit);
1103         sbp2_cancel_orbs(unit);
1104
1105         return SUCCESS;
1106 }
1107
1108 /*
1109  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1110  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1111  *
1112  * This is the concatenation of target port identifier and logical unit
1113  * identifier as per SAM-2...SAM-4 annex A.
1114  */
1115 static ssize_t
1116 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1117                             char *buf)
1118 {
1119         struct scsi_device *sdev = to_scsi_device(dev);
1120         struct sbp2_device *sd;
1121         struct fw_unit *unit;
1122         struct fw_device *device;
1123         u32 directory_id;
1124         struct fw_csr_iterator ci;
1125         int key, value, lun;
1126
1127         if (!sdev)
1128                 return 0;
1129         sd = (struct sbp2_device *)sdev->host->hostdata;
1130         unit = sd->unit;
1131         device = fw_device(unit->device.parent);
1132
1133         /* implicit directory ID */
1134         directory_id = ((unit->directory - device->config_rom) * 4
1135                         + CSR_CONFIG_ROM) & 0xffffff;
1136
1137         /* explicit directory ID, overrides implicit ID if present */
1138         fw_csr_iterator_init(&ci, unit->directory);
1139         while (fw_csr_iterator_next(&ci, &key, &value))
1140                 if (key == CSR_DIRECTORY_ID) {
1141                         directory_id = value;
1142                         break;
1143                 }
1144
1145         /* FIXME: Make this work for multi-lun devices. */
1146         lun = 0;
1147
1148         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1149                         device->config_rom[3], device->config_rom[4],
1150                         directory_id, lun);
1151 }
1152
1153 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1154
1155 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1156         &dev_attr_ieee1394_id,
1157         NULL
1158 };
1159
1160 static struct scsi_host_template scsi_driver_template = {
1161         .module                 = THIS_MODULE,
1162         .name                   = "SBP-2 IEEE-1394",
1163         .proc_name              = (char *)sbp2_driver_name,
1164         .queuecommand           = sbp2_scsi_queuecommand,
1165         .slave_alloc            = sbp2_scsi_slave_alloc,
1166         .slave_configure        = sbp2_scsi_slave_configure,
1167         .eh_abort_handler       = sbp2_scsi_abort,
1168         .this_id                = -1,
1169         .sg_tablesize           = SG_ALL,
1170         .use_clustering         = ENABLE_CLUSTERING,
1171         .cmd_per_lun            = 1,
1172         .can_queue              = 1,
1173         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1174 };
1175
1176 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1177 MODULE_DESCRIPTION("SCSI over IEEE1394");
1178 MODULE_LICENSE("GPL");
1179 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1180
1181 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1182 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1183 MODULE_ALIAS("sbp2");
1184 #endif
1185
1186 static int __init sbp2_init(void)
1187 {
1188         return driver_register(&sbp2_driver.driver);
1189 }
1190
1191 static void __exit sbp2_cleanup(void)
1192 {
1193         driver_unregister(&sbp2_driver.driver);
1194 }
1195
1196 module_init(sbp2_init);
1197 module_exit(sbp2_cleanup);