firewire: Add driver for OHCI firewire host controllers.
[sfrench/cifs-2.6.git] / drivers / firewire / fw-ohci.c
1 /*                                              -*- c-basic-offset: 8 -*-
2  *
3  * fw-ohci.c - Driver for OHCI 1394 boards
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <asm/uaccess.h>
29 #include <asm/semaphore.h>
30
31 #include "fw-transaction.h"
32 #include "fw-ohci.h"
33
34 #define descriptor_output_more          0
35 #define descriptor_output_last          (1 << 12)
36 #define descriptor_input_more           (2 << 12)
37 #define descriptor_input_last           (3 << 12)
38 #define descriptor_status               (1 << 11)
39 #define descriptor_key_immediate        (2 << 8)
40 #define descriptor_ping                 (1 << 7)
41 #define descriptor_yy                   (1 << 6)
42 #define descriptor_no_irq               (0 << 4)
43 #define descriptor_irq_error            (1 << 4)
44 #define descriptor_irq_always           (3 << 4)
45 #define descriptor_branch_always        (3 << 2)
46
47 struct descriptor {
48         __le16 req_count;
49         __le16 control;
50         __le32 data_address;
51         __le32 branch_address;
52         __le16 res_count;
53         __le16 transfer_status;
54 } __attribute__((aligned(16)));
55
56 struct ar_context {
57         struct fw_ohci *ohci;
58         struct descriptor descriptor;
59         __le32 buffer[512];
60         dma_addr_t descriptor_bus;
61         dma_addr_t buffer_bus;
62
63         u32 command_ptr;
64         u32 control_set;
65         u32 control_clear;
66
67         struct tasklet_struct tasklet;
68 };
69
70 struct at_context {
71         struct fw_ohci *ohci;
72         dma_addr_t descriptor_bus;
73         dma_addr_t buffer_bus;
74
75         struct list_head list;
76
77         struct {
78                 struct descriptor more;
79                 __le32 header[4];
80                 struct descriptor last;
81         } d;
82
83         u32 command_ptr;
84         u32 control_set;
85         u32 control_clear;
86
87         struct tasklet_struct tasklet;
88 };
89
90 #define it_header_sy(v)          ((v) <<  0)
91 #define it_header_tcode(v)       ((v) <<  4)
92 #define it_header_channel(v)     ((v) <<  8)
93 #define it_header_tag(v)         ((v) << 14)
94 #define it_header_speed(v)       ((v) << 16)
95 #define it_header_data_length(v) ((v) << 16)
96
97 struct iso_context {
98         struct fw_iso_context base;
99         struct tasklet_struct tasklet;
100         u32 control_set;
101         u32 control_clear;
102         u32 command_ptr;
103         u32 context_match;
104
105         struct descriptor *buffer;
106         dma_addr_t buffer_bus;
107         struct descriptor *head_descriptor;
108         struct descriptor *tail_descriptor;
109         struct descriptor *tail_descriptor_last;
110         struct descriptor *prev_descriptor;
111 };
112
113 #define CONFIG_ROM_SIZE 1024
114
115 struct fw_ohci {
116         struct fw_card card;
117
118         __iomem char *registers;
119         dma_addr_t self_id_bus;
120         __le32 *self_id_cpu;
121         struct tasklet_struct bus_reset_tasklet;
122         int generation;
123         int request_generation;
124
125         /* Spinlock for accessing fw_ohci data.  Never call out of
126          * this driver with this lock held. */
127         spinlock_t lock;
128         u32 self_id_buffer[512];
129
130         /* Config rom buffers */
131         __be32 *config_rom;
132         dma_addr_t config_rom_bus;
133         __be32 *next_config_rom;
134         dma_addr_t next_config_rom_bus;
135         u32 next_header;
136
137         struct ar_context ar_request_ctx;
138         struct ar_context ar_response_ctx;
139         struct at_context at_request_ctx;
140         struct at_context at_response_ctx;
141
142         u32 it_context_mask;
143         struct iso_context *it_context_list;
144         u32 ir_context_mask;
145         struct iso_context *ir_context_list;
146 };
147
148 extern inline struct fw_ohci *fw_ohci(struct fw_card *card)
149 {
150         return container_of(card, struct fw_ohci, card);
151 }
152
153 #define CONTEXT_CYCLE_MATCH_ENABLE      0x80000000
154
155 #define CONTEXT_RUN     0x8000
156 #define CONTEXT_WAKE    0x1000
157 #define CONTEXT_DEAD    0x0800
158 #define CONTEXT_ACTIVE  0x0400
159
160 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
161 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
162 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
163
164 #define FW_OHCI_MAJOR                   240
165 #define OHCI1394_REGISTER_SIZE          0x800
166 #define OHCI_LOOP_COUNT                 500
167 #define OHCI1394_PCI_HCI_Control        0x40
168 #define SELF_ID_BUF_SIZE                0x800
169
170 /* FIXME: Move this to linux/pci_ids.h */
171 #define PCI_CLASS_SERIAL_FIREWIRE_OHCI  0x0c0010
172
173 static char ohci_driver_name[] = KBUILD_MODNAME;
174
175 extern inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
176 {
177         writel(data, ohci->registers + offset);
178 }
179
180 extern inline u32 reg_read(const struct fw_ohci *ohci, int offset)
181 {
182         return readl(ohci->registers + offset);
183 }
184
185 extern inline void flush_writes(const struct fw_ohci *ohci)
186 {
187         /* Do a dummy read to flush writes. */
188         reg_read(ohci, OHCI1394_Version);
189 }
190
191 static int
192 ohci_update_phy_reg(struct fw_card *card, int addr,
193                     int clear_bits, int set_bits)
194 {
195         struct fw_ohci *ohci = fw_ohci(card);
196         u32 val, old;
197
198         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
199         msleep(2);
200         val = reg_read(ohci, OHCI1394_PhyControl);
201         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
202                 fw_error("failed to set phy reg bits.\n");
203                 return -EBUSY;
204         }
205
206         old = OHCI1394_PhyControl_ReadData(val);
207         old = (old & ~clear_bits) | set_bits;
208         reg_write(ohci, OHCI1394_PhyControl,
209                   OHCI1394_PhyControl_Write(addr, old));
210
211         return 0;
212 }
213
214 static void ar_context_run(struct ar_context *ctx)
215 {
216         reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
217         reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
218         flush_writes(ctx->ohci);
219 }
220
221 static void ar_context_tasklet(unsigned long data)
222 {
223         struct ar_context *ctx = (struct ar_context *)data;
224         struct fw_ohci *ohci = ctx->ohci;
225         u32 status;
226         int length, speed, ack, timestamp, tcode;
227
228         /* FIXME: What to do about evt_* errors? */
229         length    = le16_to_cpu(ctx->descriptor.req_count) -
230                 le16_to_cpu(ctx->descriptor.res_count) - 4;
231         status    = le32_to_cpu(ctx->buffer[length / 4]);
232         ack       = ((status >> 16) & 0x1f) - 16;
233         speed     = (status >> 21) & 0x7;
234         timestamp = status & 0xffff;
235
236         ctx->buffer[0] = le32_to_cpu(ctx->buffer[0]);
237         ctx->buffer[1] = le32_to_cpu(ctx->buffer[1]);
238         ctx->buffer[2] = le32_to_cpu(ctx->buffer[2]);
239
240         tcode = (ctx->buffer[0] >> 4) & 0x0f;
241         if (TCODE_IS_BLOCK_PACKET(tcode))
242                 ctx->buffer[3] = le32_to_cpu(ctx->buffer[3]);
243
244         /* The OHCI bus reset handler synthesizes a phy packet with
245          * the new generation number when a bus reset happens (see
246          * section 8.4.2.3).  This helps us determine when a request
247          * was received and make sure we send the response in the same
248          * generation.  We only need this for requests; for responses
249          * we use the unique tlabel for finding the matching
250          * request. */
251
252         if (ack + 16 == 0x09)
253                 ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
254         else if (ctx == &ohci->ar_request_ctx)
255                 fw_core_handle_request(&ohci->card, speed, ack, timestamp,
256                                        ohci->request_generation,
257                                        length, ctx->buffer);
258         else
259                 fw_core_handle_response(&ohci->card, speed, ack, timestamp,
260                                         length, ctx->buffer);
261
262         ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
263         ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
264         ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);
265
266         dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
267                                    sizeof ctx->descriptor_bus, DMA_TO_DEVICE);
268
269         /* FIXME: We stop and restart the ar context here, what if we
270          * stop while a receive is in progress? Maybe we could just
271          * loop the context back to itself and use it in buffer fill
272          * mode as intended... */
273
274         reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
275         ar_context_run(ctx);
276 }
277
278 static int
279 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
280 {
281         ctx->descriptor_bus =
282                 dma_map_single(ohci->card.device, &ctx->descriptor,
283                                sizeof ctx->descriptor, DMA_TO_DEVICE);
284         if (ctx->descriptor_bus == 0)
285                 return -ENOMEM;
286
287         if (ctx->descriptor_bus & 0xf)
288                 fw_notify("descriptor not 16-byte aligned: 0x%08x\n",
289                           ctx->descriptor_bus);
290
291         ctx->buffer_bus =
292                 dma_map_single(ohci->card.device, ctx->buffer,
293                                sizeof ctx->buffer, DMA_FROM_DEVICE);
294
295         if (ctx->buffer_bus == 0) {
296                 dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
297                                  sizeof ctx->descriptor, DMA_TO_DEVICE);
298                 return -ENOMEM;
299         }
300
301         memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
302         ctx->descriptor.control      = cpu_to_le16(descriptor_input_more |
303                                                    descriptor_status |
304                                                    descriptor_branch_always);
305         ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
306         ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
307         ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);
308
309         ctx->control_set   = control_set;
310         ctx->control_clear = control_set + 4;
311         ctx->command_ptr   = control_set + 12;
312         ctx->ohci          = ohci;
313
314         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
315
316         ar_context_run(ctx);
317
318         return 0;
319 }
320
321 static void
322 do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
323 {
324         struct fw_packet *p, *next;
325
326         list_for_each_entry_safe(p, next, list, link)
327                 p->callback(p, &ohci->card, p->status);
328 }
329
330 static void
331 complete_transmission(struct fw_packet *packet,
332                       int status, struct list_head *list)
333 {
334         list_move_tail(&packet->link, list);
335         packet->status = status;
336 }
337
338 /* This function prepares the first packet in the context queue for
339  * transmission.  Must always be called with the ochi->lock held to
340  * ensure proper generation handling and locking around packet queue
341  * manipulation. */
342 static void
343 at_context_setup_packet(struct at_context *ctx, struct list_head *list)
344 {
345         struct fw_packet *packet;
346         struct fw_ohci *ohci = ctx->ohci;
347         int z, tcode;
348
349         packet = fw_packet(ctx->list.next);
350
351         memset(&ctx->d, 0, sizeof ctx->d);
352         if (packet->payload_length > 0) {
353                 packet->payload_bus = dma_map_single(ohci->card.device,
354                                                      packet->payload,
355                                                      packet->payload_length,
356                                                      DMA_TO_DEVICE);
357                 if (packet->payload_bus == 0) {
358                         complete_transmission(packet, -ENOMEM, list);
359                         return;
360                 }
361
362                 ctx->d.more.control      =
363                         cpu_to_le16(descriptor_output_more |
364                                     descriptor_key_immediate);
365                 ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
366                 ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
367                 ctx->d.last.control      =
368                         cpu_to_le16(descriptor_output_last |
369                                     descriptor_irq_always |
370                                     descriptor_branch_always);
371                 ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
372                 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
373                 z = 3;
374         } else {
375                 ctx->d.more.control   =
376                         cpu_to_le16(descriptor_output_last |
377                                     descriptor_key_immediate |
378                                     descriptor_irq_always |
379                                     descriptor_branch_always);
380                 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
381                 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
382                 z = 2;
383         }
384
385         /* The DMA format for asyncronous link packets is different
386          * from the IEEE1394 layout, so shift the fields around
387          * accordingly.  If header_length is 8, it's a PHY packet, to
388          * which we need to prepend an extra quadlet. */
389         if (packet->header_length > 8) {
390                 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
391                                                (packet->speed << 16));
392                 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
393                                                (packet->header[0] & 0xffff0000));
394                 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
395
396                 tcode = (packet->header[0] >> 4) & 0x0f;
397                 if (TCODE_IS_BLOCK_PACKET(tcode))
398                         ctx->d.header[3] = cpu_to_le32(packet->header[3]);
399                 else
400                         ctx->d.header[3] = packet->header[3];
401         } else {
402                 ctx->d.header[0] =
403                         cpu_to_le32((OHCI1394_phy_tcode << 4) |
404                                     (packet->speed << 16));
405                 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
406                 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
407                 ctx->d.more.req_count = cpu_to_le16(12);
408         }
409
410         /* FIXME: Document how the locking works. */
411         if (ohci->generation == packet->generation) {
412                 reg_write(ctx->ohci, ctx->command_ptr,
413                           ctx->descriptor_bus | z);
414                 reg_write(ctx->ohci, ctx->control_set,
415                           CONTEXT_RUN | CONTEXT_WAKE);
416         } else {
417                 /* We dont return error codes from this function; all
418                  * transmission errors are reported through the
419                  * callback. */
420                 complete_transmission(packet, -ESTALE, list);
421         }
422 }
423
424 static void at_context_stop(struct at_context *ctx)
425 {
426         u32 reg;
427
428         reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
429
430         reg = reg_read(ctx->ohci, ctx->control_set);
431         if (reg & CONTEXT_ACTIVE)
432                 fw_notify("Tried to stop context, but it is still active "
433                           "(0x%08x).\n", reg);
434 }
435
436 static void at_context_tasklet(unsigned long data)
437 {
438         struct at_context *ctx = (struct at_context *)data;
439         struct fw_ohci *ohci = ctx->ohci;
440         struct fw_packet *packet;
441         LIST_HEAD(list);
442         unsigned long flags;
443         int evt;
444
445         spin_lock_irqsave(&ohci->lock, flags);
446
447         packet = fw_packet(ctx->list.next);
448
449         at_context_stop(ctx);
450
451         if (packet->payload_length > 0) {
452                 dma_unmap_single(ohci->card.device, packet->payload_bus,
453                                  packet->payload_length, DMA_TO_DEVICE);
454                 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
455                 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
456         }
457         else {
458                 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
459                 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
460         }
461
462         if (evt < 16) {
463                 switch (evt) {
464                 case OHCI1394_evt_timeout:
465                         /* Async response transmit timed out. */
466                         complete_transmission(packet, -ETIMEDOUT, &list);
467                         break;
468
469                 case OHCI1394_evt_flushed:
470                         /* The packet was flushed should give same
471                          * error as when we try to use a stale
472                          * generation count. */
473                         complete_transmission(packet, -ESTALE, &list);
474                         break;
475
476                 case OHCI1394_evt_missing_ack:
477                         /* This would be a higher level software
478                          * error, it is using a valid (current)
479                          * generation count, but the node is not on
480                          * the bus. */
481                         complete_transmission(packet, -ENODEV, &list);
482                         break;
483
484                 default:
485                         complete_transmission(packet, -EIO, &list);
486                         break;
487                 }
488         } else
489                 complete_transmission(packet, evt - 16, &list);
490
491         /* If more packets are queued, set up the next one. */
492         if (!list_empty(&ctx->list))
493                 at_context_setup_packet(ctx, &list);
494
495         spin_unlock_irqrestore(&ohci->lock, flags);
496
497         do_packet_callbacks(ohci, &list);
498 }
499
500 static int
501 at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
502 {
503         INIT_LIST_HEAD(&ctx->list);
504
505         ctx->descriptor_bus =
506                 dma_map_single(ohci->card.device, &ctx->d,
507                                sizeof ctx->d, DMA_TO_DEVICE);
508         if (ctx->descriptor_bus == 0)
509                 return -ENOMEM;
510
511         ctx->control_set   = control_set;
512         ctx->control_clear = control_set + 4;
513         ctx->command_ptr   = control_set + 12;
514         ctx->ohci          = ohci;
515
516         tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
517
518         return 0;
519 }
520
521 static void
522 at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
523 {
524         LIST_HEAD(list);
525         unsigned long flags;
526         int was_empty;
527
528         spin_lock_irqsave(&ctx->ohci->lock, flags);
529
530         was_empty = list_empty(&ctx->list);
531         list_add_tail(&packet->link, &ctx->list);
532         if (was_empty)
533                 at_context_setup_packet(ctx, &list);
534
535         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
536
537         do_packet_callbacks(ctx->ohci, &list);
538 }
539
540 static void bus_reset_tasklet(unsigned long data)
541 {
542         struct fw_ohci *ohci = (struct fw_ohci *)data;
543         int self_id_count, i, j, reg, node_id;
544         int generation, new_generation;
545         unsigned long flags;
546
547         reg = reg_read(ohci, OHCI1394_NodeID);
548         if (!(reg & OHCI1394_NodeID_idValid)) {
549                 fw_error("node ID not valid, new bus reset in progress\n");
550                 return;
551         }
552         node_id = reg & 0xffff;
553
554         /* The count in the SelfIDCount register is the number of
555          * bytes in the self ID receive buffer.  Since we also receive
556          * the inverted quadlets and a header quadlet, we shift one
557          * bit extra to get the actual number of self IDs. */
558
559         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
560         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
561
562         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
563                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
564                         fw_error("inconsistent self IDs\n");
565                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
566         }
567
568         /* Check the consistency of the self IDs we just read.  The
569          * problem we face is that a new bus reset can start while we
570          * read out the self IDs from the DMA buffer. If this happens,
571          * the DMA buffer will be overwritten with new self IDs and we
572          * will read out inconsistent data.  The OHCI specification
573          * (section 11.2) recommends a technique similar to
574          * linux/seqlock.h, where we remember the generation of the
575          * self IDs in the buffer before reading them out and compare
576          * it to the current generation after reading them out.  If
577          * the two generations match we know we have a consistent set
578          * of self IDs. */
579
580         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
581         if (new_generation != generation) {
582                 fw_notify("recursive bus reset detected, "
583                           "discarding self ids\n");
584                 return;
585         }
586
587         /* FIXME: Document how the locking works. */
588         spin_lock_irqsave(&ohci->lock, flags);
589
590         ohci->generation = generation;
591         at_context_stop(&ohci->at_request_ctx);
592         at_context_stop(&ohci->at_response_ctx);
593         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
594
595         /* This next bit is unrelated to the AT context stuff but we
596          * have to do it under the spinlock also.  If a new config rom
597          * was set up before this reset, the old one is now no longer
598          * in use and we can free it. Update the config rom pointers
599          * to point to the current config rom and clear the
600          * next_config_rom pointer so a new udpate can take place. */
601
602         if (ohci->next_config_rom != NULL) {
603                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
604                                   ohci->config_rom, ohci->config_rom_bus);
605                 ohci->config_rom      = ohci->next_config_rom;
606                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
607                 ohci->next_config_rom = NULL;
608
609                 /* Restore config_rom image and manually update
610                  * config_rom registers.  Writing the header quadlet
611                  * will indicate that the config rom is ready, so we
612                  * do that last. */
613                 reg_write(ohci, OHCI1394_BusOptions,
614                           be32_to_cpu(ohci->config_rom[2]));
615                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
616                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
617         }
618
619         spin_unlock_irqrestore(&ohci->lock, flags);
620
621         fw_core_handle_bus_reset(&ohci->card, node_id, generation,
622                                  self_id_count, ohci->self_id_buffer);
623 }
624
625 static irqreturn_t irq_handler(int irq, void *data)
626 {
627         struct fw_ohci *ohci = data;
628         u32 event, iso_event;
629         int i;
630
631         event = reg_read(ohci, OHCI1394_IntEventClear);
632
633         if (!event)
634                 return IRQ_NONE;
635
636         reg_write(ohci, OHCI1394_IntEventClear, event);
637
638         if (event & OHCI1394_selfIDComplete)
639                 tasklet_schedule(&ohci->bus_reset_tasklet);
640
641         if (event & OHCI1394_RQPkt)
642                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
643
644         if (event & OHCI1394_RSPkt)
645                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
646
647         if (event & OHCI1394_reqTxComplete)
648                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
649
650         if (event & OHCI1394_respTxComplete)
651                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
652
653         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
654         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
655
656         while (iso_event) {
657                 i = ffs(iso_event) - 1;
658                 tasklet_schedule(&ohci->ir_context_list[i].tasklet);
659                 iso_event &= ~(1 << i);
660         }
661
662         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
663         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
664
665         while (iso_event) {
666                 i = ffs(iso_event) - 1;
667                 tasklet_schedule(&ohci->it_context_list[i].tasklet);
668                 iso_event &= ~(1 << i);
669         }
670
671         return IRQ_HANDLED;
672 }
673
674 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
675 {
676         struct fw_ohci *ohci = fw_ohci(card);
677         struct pci_dev *dev = to_pci_dev(card->device);
678
679         /* When the link is not yet enabled, the atomic config rom
680          * update mechanism described below in ohci_set_config_rom()
681          * is not active.  We have to update ConfigRomHeader and
682          * BusOptions manually, and the write to ConfigROMmap takes
683          * effect immediately.  We tie this to the enabling of the
684          * link, so we have a valid config rom before enabling - the
685          * OHCI requires that ConfigROMhdr and BusOptions have valid
686          * values before enabling.
687          *
688          * However, when the ConfigROMmap is written, some controllers
689          * always read back quadlets 0 and 2 from the config rom to
690          * the ConfigRomHeader and BusOptions registers on bus reset.
691          * They shouldn't do that in this initial case where the link
692          * isn't enabled.  This means we have to use the same
693          * workaround here, setting the bus header to 0 and then write
694          * the right values in the bus reset tasklet.
695          */
696
697         ohci->next_config_rom =
698                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
699                                    &ohci->next_config_rom_bus, GFP_KERNEL);
700         if (ohci->next_config_rom == NULL)
701                 return -ENOMEM;
702
703         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
704         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
705
706         ohci->next_header = config_rom[0];
707         ohci->next_config_rom[0] = 0;
708         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
709         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
710         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
711
712         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
713
714         if (request_irq(dev->irq, irq_handler,
715                         SA_SHIRQ, ohci_driver_name, ohci)) {
716                 fw_error("Failed to allocate shared interrupt %d.\n",
717                          dev->irq);
718                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
719                                   ohci->config_rom, ohci->config_rom_bus);
720                 return -EIO;
721         }
722
723         reg_write(ohci, OHCI1394_HCControlSet,
724                   OHCI1394_HCControl_linkEnable |
725                   OHCI1394_HCControl_BIBimageValid);
726         flush_writes(ohci);
727
728         /* We are ready to go, initiate bus reset to finish the
729          * initialization. */
730
731         fw_core_initiate_bus_reset(&ohci->card, 1);
732
733         return 0;
734 }
735
736 static int
737 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
738 {
739         struct fw_ohci *ohci;
740         unsigned long flags;
741         int retval = 0;
742         __be32 *next_config_rom;
743         dma_addr_t next_config_rom_bus;
744
745         ohci = fw_ohci(card);
746
747         /* When the OHCI controller is enabled, the config rom update
748          * mechanism is a bit tricky, but easy enough to use.  See
749          * section 5.5.6 in the OHCI specification.
750          *
751          * The OHCI controller caches the new config rom address in a
752          * shadow register (ConfigROMmapNext) and needs a bus reset
753          * for the changes to take place.  When the bus reset is
754          * detected, the controller loads the new values for the
755          * ConfigRomHeader and BusOptions registers from the specified
756          * config rom and loads ConfigROMmap from the ConfigROMmapNext
757          * shadow register. All automatically and atomically.
758          *
759          * Now, there's a twist to this story.  The automatic load of
760          * ConfigRomHeader and BusOptions doesn't honor the
761          * noByteSwapData bit, so with a be32 config rom, the
762          * controller will load be32 values in to these registers
763          * during the atomic update, even on litte endian
764          * architectures.  The workaround we use is to put a 0 in the
765          * header quadlet; 0 is endian agnostic and means that the
766          * config rom isn't ready yet.  In the bus reset tasklet we
767          * then set up the real values for the two registers.
768          *
769          * We use ohci->lock to avoid racing with the code that sets
770          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
771          */
772
773         next_config_rom =
774                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
775                                    &next_config_rom_bus, GFP_KERNEL);
776         if (next_config_rom == NULL)
777                 return -ENOMEM;
778
779         spin_lock_irqsave(&ohci->lock, flags);
780
781         if (ohci->next_config_rom == NULL) {
782                 ohci->next_config_rom = next_config_rom;
783                 ohci->next_config_rom_bus = next_config_rom_bus;
784
785                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
786                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
787                                   length * 4);
788
789                 ohci->next_header = config_rom[0];
790                 ohci->next_config_rom[0] = 0;
791
792                 reg_write(ohci, OHCI1394_ConfigROMmap,
793                           ohci->next_config_rom_bus);
794         } else {
795                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
796                                   next_config_rom, next_config_rom_bus);
797                 retval = -EBUSY;
798         }
799
800         spin_unlock_irqrestore(&ohci->lock, flags);
801
802         /* Now initiate a bus reset to have the changes take
803          * effect. We clean up the old config rom memory and DMA
804          * mappings in the bus reset tasklet, since the OHCI
805          * controller could need to access it before the bus reset
806          * takes effect. */
807         if (retval == 0)
808                 fw_core_initiate_bus_reset(&ohci->card, 1);
809
810         return retval;
811 }
812
813 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
814 {
815         struct fw_ohci *ohci = fw_ohci(card);
816
817         at_context_transmit(&ohci->at_request_ctx, packet);
818 }
819
820 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
821 {
822         struct fw_ohci *ohci = fw_ohci(card);
823
824         at_context_transmit(&ohci->at_response_ctx, packet);
825 }
826
827 static int
828 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
829 {
830         struct fw_ohci *ohci = fw_ohci(card);
831         unsigned long flags;
832         int retval = 0;
833
834         /* FIXME: make sure this bitmask is cleared when we clear the
835          * busReset interrupt bit. */
836
837         spin_lock_irqsave(&ohci->lock, flags);
838
839         if (ohci->generation != generation) {
840                 retval = -ESTALE;
841                 goto out;
842         }
843
844         if (node_id < 32) {
845                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << node_id);
846         } else {
847                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
848                           1 << (node_id - 32));
849         }
850         flush_writes(ohci);
851
852         spin_unlock_irqrestore(&ohci->lock, flags);
853
854  out:
855         return retval;
856 }
857
858 static void ir_context_tasklet(unsigned long data)
859 {
860         struct iso_context *ctx = (struct iso_context *)data;
861
862         (void)ctx;
863 }
864
865 #define ISO_BUFFER_SIZE (64 * 1024)
866
867 static void flush_iso_context(struct iso_context *ctx)
868 {
869         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
870         struct descriptor *d, *last;
871         u32 address;
872         int z;
873
874         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
875                                 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
876
877         d    = ctx->tail_descriptor;
878         last = ctx->tail_descriptor_last;
879
880         while (last->branch_address != 0 && last->transfer_status != 0) {
881                 address = le32_to_cpu(last->branch_address);
882                 z = address & 0xf;
883                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
884
885                 if (z == 2)
886                         last = d;
887                 else
888                         last = d + z - 1;
889
890                 if (le16_to_cpu(last->control) & descriptor_irq_always)
891                         ctx->base.callback(&ctx->base,
892                                            0, le16_to_cpu(last->res_count),
893                                            ctx->base.callback_data);
894         }
895
896         ctx->tail_descriptor      = d;
897         ctx->tail_descriptor_last = last;
898 }
899
900 static void it_context_tasklet(unsigned long data)
901 {
902         struct iso_context *ctx = (struct iso_context *)data;
903
904         flush_iso_context(ctx);
905 }
906
907 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
908                                                         int type)
909 {
910         struct fw_ohci *ohci = fw_ohci(card);
911         struct iso_context *ctx, *list;
912         void (*tasklet) (unsigned long data);
913         u32 *mask;
914         unsigned long flags;
915         int index;
916
917         if (type == FW_ISO_CONTEXT_TRANSMIT) {
918                 mask = &ohci->it_context_mask;
919                 list = ohci->it_context_list;
920                 tasklet = it_context_tasklet;
921         } else {
922                 mask = &ohci->ir_context_mask;
923                 list = ohci->ir_context_list;
924                 tasklet = ir_context_tasklet;
925         }
926
927         spin_lock_irqsave(&ohci->lock, flags);
928         index = ffs(*mask) - 1;
929         if (index >= 0)
930                 *mask &= ~(1 << index);
931         spin_unlock_irqrestore(&ohci->lock, flags);
932
933         if (index < 0)
934                 return ERR_PTR(-EBUSY);
935
936         ctx = &list[index];
937         memset(ctx, 0, sizeof *ctx);
938         tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
939
940         ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
941         if (ctx->buffer == NULL) {
942                 spin_lock_irqsave(&ohci->lock, flags);
943                 *mask |= 1 << index;
944                 spin_unlock_irqrestore(&ohci->lock, flags);
945                 return ERR_PTR(-ENOMEM);
946         }
947
948         ctx->buffer_bus =
949             dma_map_single(card->device, ctx->buffer,
950                            ISO_BUFFER_SIZE, DMA_TO_DEVICE);
951
952         ctx->head_descriptor      = ctx->buffer;
953         ctx->prev_descriptor      = ctx->buffer;
954         ctx->tail_descriptor      = ctx->buffer;
955         ctx->tail_descriptor_last = ctx->buffer;
956
957         /* We put a dummy descriptor in the buffer that has a NULL
958          * branch address and looks like it's been sent.  That way we
959          * have a descriptor to append DMA programs to.  Also, the
960          * ring buffer invariant is that it always has at least one
961          * element so that head == tail means buffer full. */
962
963         memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
964         ctx->head_descriptor->control          =
965                 cpu_to_le16(descriptor_output_last);
966         ctx->head_descriptor->transfer_status  = cpu_to_le16(0x8011);
967         ctx->head_descriptor++;
968
969         return &ctx->base;
970 }
971
972 static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
973 {
974         struct iso_context *ctx = (struct iso_context *)base;
975         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
976         u32 cycle_match = 0;
977         int index;
978
979         index = ctx - ohci->it_context_list;
980         if (cycle > 0)
981                 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
982                         (cycle & 0x7fff) << 16;
983
984         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
985         reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
986                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
987         reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
988         reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
989                   CONTEXT_RUN | cycle_match);
990         flush_writes(ohci);
991
992         return 0;
993 }
994
995 static void ohci_free_iso_context(struct fw_iso_context *base)
996 {
997         struct fw_ohci *ohci = fw_ohci(base->card);
998         struct iso_context *ctx = (struct iso_context *)base;
999         unsigned long flags;
1000         int index;
1001
1002         flush_iso_context(ctx);
1003
1004         spin_lock_irqsave(&ohci->lock, flags);
1005
1006         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1007                 index = ctx - ohci->it_context_list;
1008                 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1009                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1010                 ohci->it_context_mask |= 1 << index;
1011         } else {
1012                 index = ctx - ohci->ir_context_list;
1013                 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1014                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1015                 ohci->ir_context_mask |= 1 << index;
1016         }
1017         flush_writes(ohci);
1018
1019         dma_unmap_single(ohci->card.device, ctx->buffer_bus,
1020                          ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1021
1022         spin_unlock_irqrestore(&ohci->lock, flags);
1023 }
1024
1025 static int
1026 ohci_queue_iso(struct fw_iso_context *base,
1027                struct fw_iso_packet *packet, void *payload)
1028 {
1029         struct iso_context *ctx = (struct iso_context *)base;
1030         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1031         struct descriptor *d, *end, *last, *tail, *pd;
1032         struct fw_iso_packet *p;
1033         __le32 *header;
1034         dma_addr_t d_bus;
1035         u32 z, header_z, payload_z, irq;
1036         u32 payload_index, payload_end_index, next_page_index;
1037         int index, page, end_page, i, length, offset;
1038
1039         /* FIXME: Cycle lost behavior should be configurable: lose
1040          * packet, retransmit or terminate.. */
1041
1042         p = packet;
1043         payload_index = payload - ctx->base.buffer;
1044         d = ctx->head_descriptor;
1045         tail = ctx->tail_descriptor;
1046         end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
1047
1048         if (p->skip)
1049                 z = 1;
1050         else
1051                 z = 2;
1052         if (p->header_length > 0)
1053                 z++;
1054
1055         /* Determine the first page the payload isn't contained in. */
1056         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1057         if (p->payload_length > 0)
1058                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1059         else
1060                 payload_z = 0;
1061
1062         z += payload_z;
1063
1064         /* Get header size in number of descriptors. */
1065         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1066
1067         if (d + z + header_z <= tail) {
1068                 goto has_space;
1069         } else if (d > tail && d + z + header_z <= end) {
1070                 goto has_space;
1071         } else if (d > tail && ctx->buffer + z + header_z <= tail) {
1072                 d = ctx->buffer;
1073                 goto has_space;
1074         }
1075
1076         /* No space in buffer */
1077         return -1;
1078
1079  has_space:
1080         memset(d, 0, (z + header_z) * sizeof *d);
1081         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
1082
1083         if (!p->skip) {
1084                 d[0].control   = cpu_to_le16(descriptor_key_immediate);
1085                 d[0].req_count = cpu_to_le16(8);
1086
1087                 header = (__le32 *) &d[1];
1088                 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1089                                         it_header_tag(p->tag) |
1090                                         it_header_tcode(TCODE_STREAM_DATA) |
1091                                         it_header_channel(ctx->base.channel) |
1092                                         it_header_speed(ctx->base.speed));
1093                 header[1] =
1094                         cpu_to_le32(it_header_data_length(p->header_length +
1095                                                           p->payload_length));
1096         }
1097
1098         if (p->header_length > 0) {
1099                 d[2].req_count    = cpu_to_le16(p->header_length);
1100                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1101                 memcpy(&d[z], p->header, p->header_length);
1102         }
1103
1104         pd = d + z - payload_z;
1105         payload_end_index = payload_index + p->payload_length;
1106         for (i = 0; i < payload_z; i++) {
1107                 page               = payload_index >> PAGE_SHIFT;
1108                 offset             = payload_index & ~PAGE_MASK;
1109                 next_page_index    = (page + 1) << PAGE_SHIFT;
1110                 length             =
1111                         min(next_page_index, payload_end_index) - payload_index;
1112                 pd[i].req_count    = cpu_to_le16(length);
1113                 pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
1114
1115                 payload_index += length;
1116         }
1117
1118         if (z == 2)
1119                 last = d;
1120         else
1121                 last = d + z - 1;
1122
1123         if (p->interrupt)
1124                 irq = descriptor_irq_always;
1125         else
1126                 irq = descriptor_no_irq;
1127
1128         last->control = cpu_to_le16(descriptor_output_last |
1129                                     descriptor_status |
1130                                     descriptor_branch_always |
1131                                     irq);
1132
1133         dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
1134                                    ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1135
1136         ctx->head_descriptor = d + z + header_z;
1137         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
1138         ctx->prev_descriptor = last;
1139
1140         index = ctx - ohci->it_context_list;
1141         reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
1142         flush_writes(ohci);
1143
1144         return 0;
1145 }
1146
1147 static struct fw_card_driver ohci_driver = {
1148         .name                   = ohci_driver_name,
1149         .enable                 = ohci_enable,
1150         .update_phy_reg         = ohci_update_phy_reg,
1151         .set_config_rom         = ohci_set_config_rom,
1152         .send_request           = ohci_send_request,
1153         .send_response          = ohci_send_response,
1154         .enable_phys_dma        = ohci_enable_phys_dma,
1155
1156         .allocate_iso_context   = ohci_allocate_iso_context,
1157         .free_iso_context       = ohci_free_iso_context,
1158         .queue_iso              = ohci_queue_iso,
1159         .send_iso               = ohci_send_iso
1160 };
1161
1162 static int software_reset(struct fw_ohci *ohci)
1163 {
1164         int i;
1165
1166         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1167
1168         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1169                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1170                      OHCI1394_HCControl_softReset) == 0)
1171                         return 0;
1172                 msleep(1);
1173         }
1174
1175         return -EBUSY;
1176 }
1177
1178 /* ---------- pci subsystem interface ---------- */
1179
1180 enum {
1181         CLEANUP_SELF_ID,
1182         CLEANUP_REGISTERS,
1183         CLEANUP_IOMEM,
1184         CLEANUP_DISABLE,
1185         CLEANUP_PUT_CARD,
1186 };
1187
1188 static int cleanup(struct fw_ohci *ohci, int stage, int code)
1189 {
1190         struct pci_dev *dev = to_pci_dev(ohci->card.device);
1191
1192         switch (stage) {
1193         case CLEANUP_SELF_ID:
1194                 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1195                                   ohci->self_id_cpu, ohci->self_id_bus);
1196         case CLEANUP_REGISTERS:
1197                 kfree(ohci->it_context_list);
1198                 kfree(ohci->ir_context_list);
1199                 pci_iounmap(dev, ohci->registers);
1200         case CLEANUP_IOMEM:
1201                 pci_release_region(dev, 0);
1202         case CLEANUP_DISABLE:
1203                 pci_disable_device(dev);
1204         case CLEANUP_PUT_CARD:
1205                 fw_card_put(&ohci->card);
1206         }
1207
1208         return code;
1209 }
1210
1211 static int __devinit
1212 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1213 {
1214         struct fw_ohci *ohci;
1215         u32 bus_options, max_receive, link_speed;
1216         u64 guid;
1217         int error_code;
1218         size_t size;
1219
1220         ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1221         if (ohci == NULL) {
1222                 fw_error("Could not malloc fw_ohci data.\n");
1223                 return -ENOMEM;
1224         }
1225
1226         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1227
1228         if (pci_enable_device(dev)) {
1229                 fw_error("Failed to enable OHCI hardware.\n");
1230                 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1231         }
1232
1233         pci_set_master(dev);
1234         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1235         pci_set_drvdata(dev, ohci);
1236
1237         spin_lock_init(&ohci->lock);
1238
1239         tasklet_init(&ohci->bus_reset_tasklet,
1240                      bus_reset_tasklet, (unsigned long)ohci);
1241
1242         if (pci_request_region(dev, 0, ohci_driver_name)) {
1243                 fw_error("MMIO resource unavailable\n");
1244                 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1245         }
1246
1247         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1248         if (ohci->registers == NULL) {
1249                 fw_error("Failed to remap registers\n");
1250                 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1251         }
1252
1253         if (software_reset(ohci)) {
1254                 fw_error("Failed to reset ohci card.\n");
1255                 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1256         }
1257
1258         /* Now enable LPS, which we need in order to start accessing
1259          * most of the registers.  In fact, on some cards (ALI M5251),
1260          * accessing registers in the SClk domain without LPS enabled
1261          * will lock up the machine.  Wait 50msec to make sure we have
1262          * full link enabled.  */
1263         reg_write(ohci, OHCI1394_HCControlSet,
1264                   OHCI1394_HCControl_LPS |
1265                   OHCI1394_HCControl_postedWriteEnable);
1266         flush_writes(ohci);
1267         msleep(50);
1268
1269         reg_write(ohci, OHCI1394_HCControlClear,
1270                   OHCI1394_HCControl_noByteSwapData);
1271
1272         reg_write(ohci, OHCI1394_LinkControlSet,
1273                   OHCI1394_LinkControl_rcvSelfID |
1274                   OHCI1394_LinkControl_cycleTimerEnable |
1275                   OHCI1394_LinkControl_cycleMaster);
1276
1277         ar_context_init(&ohci->ar_request_ctx, ohci,
1278                         OHCI1394_AsReqRcvContextControlSet);
1279
1280         ar_context_init(&ohci->ar_response_ctx, ohci,
1281                         OHCI1394_AsRspRcvContextControlSet);
1282
1283         at_context_init(&ohci->at_request_ctx, ohci,
1284                         OHCI1394_AsReqTrContextControlSet);
1285
1286         at_context_init(&ohci->at_response_ctx, ohci,
1287                         OHCI1394_AsRspTrContextControlSet);
1288
1289         reg_write(ohci, OHCI1394_ATRetries,
1290                   OHCI1394_MAX_AT_REQ_RETRIES |
1291                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1292                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1293
1294         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1295         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1296         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1297         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1298         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1299
1300         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1301         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1302         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1303         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1304         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1305
1306         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1307                 fw_error("Out of memory for it/ir contexts.\n");
1308                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1309         }
1310
1311         /* self-id dma buffer allocation */
1312         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1313                                                SELF_ID_BUF_SIZE,
1314                                                &ohci->self_id_bus,
1315                                                GFP_KERNEL);
1316         if (ohci->self_id_cpu == NULL) {
1317                 fw_error("Out of memory for self ID buffer.\n");
1318                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1319         }
1320
1321         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1322         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1323         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1324         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1325         reg_write(ohci, OHCI1394_IntMaskSet,
1326                   OHCI1394_selfIDComplete |
1327                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1328                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1329                   OHCI1394_isochRx | OHCI1394_isochTx |
1330                   OHCI1394_masterIntEnable);
1331
1332         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1333         max_receive = (bus_options >> 12) & 0xf;
1334         link_speed = bus_options & 0x7;
1335         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1336                 reg_read(ohci, OHCI1394_GUIDLo);
1337
1338         error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1339         if (error_code < 0)
1340                 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1341
1342         fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1343
1344         return 0;
1345 }
1346
1347 static void pci_remove(struct pci_dev *dev)
1348 {
1349         struct fw_ohci *ohci;
1350
1351         ohci = pci_get_drvdata(dev);
1352         reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1353         fw_core_remove_card(&ohci->card);
1354
1355         /* FIXME: Fail all pending packets here, now that the upper
1356          * layers can't queue any more. */
1357
1358         software_reset(ohci);
1359         free_irq(dev->irq, ohci);
1360         cleanup(ohci, CLEANUP_SELF_ID, 0);
1361
1362         fw_notify("Removed fw-ohci device.\n");
1363 }
1364
1365 static struct pci_device_id pci_table[] = {
1366         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1367         { }
1368 };
1369
1370 MODULE_DEVICE_TABLE(pci, pci_table);
1371
1372 static struct pci_driver fw_ohci_pci_driver = {
1373         .name           = ohci_driver_name,
1374         .id_table       = pci_table,
1375         .probe          = pci_probe,
1376         .remove         = pci_remove,
1377 };
1378
1379 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1380 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1381 MODULE_LICENSE("GPL");
1382
1383 static int __init fw_ohci_init(void)
1384 {
1385         return pci_register_driver(&fw_ohci_pci_driver);
1386 }
1387
1388 static void __exit fw_ohci_cleanup(void)
1389 {
1390         pci_unregister_driver(&fw_ohci_pci_driver);
1391 }
1392
1393 module_init(fw_ohci_init);
1394 module_exit(fw_ohci_cleanup);