firewire: fw-ohci: reorder includes
[sfrench/cifs-2.6.git] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/gfp.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31
32 #include <asm/page.h>
33 #include <asm/system.h>
34
35 #include "fw-ohci.h"
36 #include "fw-transaction.h"
37
38 #define DESCRIPTOR_OUTPUT_MORE          0
39 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
40 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
41 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
42 #define DESCRIPTOR_STATUS               (1 << 11)
43 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
44 #define DESCRIPTOR_PING                 (1 << 7)
45 #define DESCRIPTOR_YY                   (1 << 6)
46 #define DESCRIPTOR_NO_IRQ               (0 << 4)
47 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
48 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
49 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
50 #define DESCRIPTOR_WAIT                 (3 << 0)
51
52 struct descriptor {
53         __le16 req_count;
54         __le16 control;
55         __le32 data_address;
56         __le32 branch_address;
57         __le16 res_count;
58         __le16 transfer_status;
59 } __attribute__((aligned(16)));
60
61 struct db_descriptor {
62         __le16 first_size;
63         __le16 control;
64         __le16 second_req_count;
65         __le16 first_req_count;
66         __le32 branch_address;
67         __le16 second_res_count;
68         __le16 first_res_count;
69         __le32 reserved0;
70         __le32 first_buffer;
71         __le32 second_buffer;
72         __le32 reserved1;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100 struct context {
101         struct fw_ohci *ohci;
102         u32 regs;
103
104         struct descriptor *buffer;
105         dma_addr_t buffer_bus;
106         size_t buffer_size;
107         struct descriptor *head_descriptor;
108         struct descriptor *tail_descriptor;
109         struct descriptor *tail_descriptor_last;
110         struct descriptor *prev_descriptor;
111
112         descriptor_callback_t callback;
113
114         struct tasklet_struct tasklet;
115 };
116
117 #define IT_HEADER_SY(v)          ((v) <<  0)
118 #define IT_HEADER_TCODE(v)       ((v) <<  4)
119 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
120 #define IT_HEADER_TAG(v)         ((v) << 14)
121 #define IT_HEADER_SPEED(v)       ((v) << 16)
122 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
123
124 struct iso_context {
125         struct fw_iso_context base;
126         struct context context;
127         void *header;
128         size_t header_length;
129 };
130
131 #define CONFIG_ROM_SIZE 1024
132
133 struct fw_ohci {
134         struct fw_card card;
135
136         u32 version;
137         __iomem char *registers;
138         dma_addr_t self_id_bus;
139         __le32 *self_id_cpu;
140         struct tasklet_struct bus_reset_tasklet;
141         int node_id;
142         int generation;
143         int request_generation;
144         u32 bus_seconds;
145
146         /*
147          * Spinlock for accessing fw_ohci data.  Never call out of
148          * this driver with this lock held.
149          */
150         spinlock_t lock;
151         u32 self_id_buffer[512];
152
153         /* Config rom buffers */
154         __be32 *config_rom;
155         dma_addr_t config_rom_bus;
156         __be32 *next_config_rom;
157         dma_addr_t next_config_rom_bus;
158         u32 next_header;
159
160         struct ar_context ar_request_ctx;
161         struct ar_context ar_response_ctx;
162         struct context at_request_ctx;
163         struct context at_response_ctx;
164
165         u32 it_context_mask;
166         struct iso_context *it_context_list;
167         u32 ir_context_mask;
168         struct iso_context *ir_context_list;
169 };
170
171 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
172 {
173         return container_of(card, struct fw_ohci, card);
174 }
175
176 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
177 #define IR_CONTEXT_BUFFER_FILL          0x80000000
178 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
179 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
180 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
181 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
182
183 #define CONTEXT_RUN     0x8000
184 #define CONTEXT_WAKE    0x1000
185 #define CONTEXT_DEAD    0x0800
186 #define CONTEXT_ACTIVE  0x0400
187
188 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
189 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
190 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
191
192 #define FW_OHCI_MAJOR                   240
193 #define OHCI1394_REGISTER_SIZE          0x800
194 #define OHCI_LOOP_COUNT                 500
195 #define OHCI1394_PCI_HCI_Control        0x40
196 #define SELF_ID_BUF_SIZE                0x800
197 #define OHCI_TCODE_PHY_PACKET           0x0e
198 #define OHCI_VERSION_1_1                0x010010
199 #define ISO_BUFFER_SIZE                 (64 * 1024)
200 #define AT_BUFFER_SIZE                  4096
201
202 static char ohci_driver_name[] = KBUILD_MODNAME;
203
204 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
205 {
206         writel(data, ohci->registers + offset);
207 }
208
209 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
210 {
211         return readl(ohci->registers + offset);
212 }
213
214 static inline void flush_writes(const struct fw_ohci *ohci)
215 {
216         /* Do a dummy read to flush writes. */
217         reg_read(ohci, OHCI1394_Version);
218 }
219
220 static int
221 ohci_update_phy_reg(struct fw_card *card, int addr,
222                     int clear_bits, int set_bits)
223 {
224         struct fw_ohci *ohci = fw_ohci(card);
225         u32 val, old;
226
227         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
228         flush_writes(ohci);
229         msleep(2);
230         val = reg_read(ohci, OHCI1394_PhyControl);
231         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
232                 fw_error("failed to set phy reg bits.\n");
233                 return -EBUSY;
234         }
235
236         old = OHCI1394_PhyControl_ReadData(val);
237         old = (old & ~clear_bits) | set_bits;
238         reg_write(ohci, OHCI1394_PhyControl,
239                   OHCI1394_PhyControl_Write(addr, old));
240
241         return 0;
242 }
243
244 static int ar_context_add_page(struct ar_context *ctx)
245 {
246         struct device *dev = ctx->ohci->card.device;
247         struct ar_buffer *ab;
248         dma_addr_t ab_bus;
249         size_t offset;
250
251         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
252         if (ab == NULL)
253                 return -ENOMEM;
254
255         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
256         if (dma_mapping_error(ab_bus)) {
257                 free_page((unsigned long) ab);
258                 return -ENOMEM;
259         }
260
261         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
262         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
263                                                     DESCRIPTOR_STATUS |
264                                                     DESCRIPTOR_BRANCH_ALWAYS);
265         offset = offsetof(struct ar_buffer, data);
266         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
267         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
268         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
269         ab->descriptor.branch_address = 0;
270
271         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
272
273         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
274         ctx->last_buffer->next = ab;
275         ctx->last_buffer = ab;
276
277         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
278         flush_writes(ctx->ohci);
279
280         return 0;
281 }
282
283 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
284 {
285         struct fw_ohci *ohci = ctx->ohci;
286         struct fw_packet p;
287         u32 status, length, tcode;
288
289         p.header[0] = le32_to_cpu(buffer[0]);
290         p.header[1] = le32_to_cpu(buffer[1]);
291         p.header[2] = le32_to_cpu(buffer[2]);
292
293         tcode = (p.header[0] >> 4) & 0x0f;
294         switch (tcode) {
295         case TCODE_WRITE_QUADLET_REQUEST:
296         case TCODE_READ_QUADLET_RESPONSE:
297                 p.header[3] = (__force __u32) buffer[3];
298                 p.header_length = 16;
299                 p.payload_length = 0;
300                 break;
301
302         case TCODE_READ_BLOCK_REQUEST :
303                 p.header[3] = le32_to_cpu(buffer[3]);
304                 p.header_length = 16;
305                 p.payload_length = 0;
306                 break;
307
308         case TCODE_WRITE_BLOCK_REQUEST:
309         case TCODE_READ_BLOCK_RESPONSE:
310         case TCODE_LOCK_REQUEST:
311         case TCODE_LOCK_RESPONSE:
312                 p.header[3] = le32_to_cpu(buffer[3]);
313                 p.header_length = 16;
314                 p.payload_length = p.header[3] >> 16;
315                 break;
316
317         case TCODE_WRITE_RESPONSE:
318         case TCODE_READ_QUADLET_REQUEST:
319         case OHCI_TCODE_PHY_PACKET:
320                 p.header_length = 12;
321                 p.payload_length = 0;
322                 break;
323         }
324
325         p.payload = (void *) buffer + p.header_length;
326
327         /* FIXME: What to do about evt_* errors? */
328         length = (p.header_length + p.payload_length + 3) / 4;
329         status = le32_to_cpu(buffer[length]);
330
331         p.ack        = ((status >> 16) & 0x1f) - 16;
332         p.speed      = (status >> 21) & 0x7;
333         p.timestamp  = status & 0xffff;
334         p.generation = ohci->request_generation;
335
336         /*
337          * The OHCI bus reset handler synthesizes a phy packet with
338          * the new generation number when a bus reset happens (see
339          * section 8.4.2.3).  This helps us determine when a request
340          * was received and make sure we send the response in the same
341          * generation.  We only need this for requests; for responses
342          * we use the unique tlabel for finding the matching
343          * request.
344          */
345
346         if (p.ack + 16 == 0x09)
347                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
348         else if (ctx == &ohci->ar_request_ctx)
349                 fw_core_handle_request(&ohci->card, &p);
350         else
351                 fw_core_handle_response(&ohci->card, &p);
352
353         return buffer + length + 1;
354 }
355
356 static void ar_context_tasklet(unsigned long data)
357 {
358         struct ar_context *ctx = (struct ar_context *)data;
359         struct fw_ohci *ohci = ctx->ohci;
360         struct ar_buffer *ab;
361         struct descriptor *d;
362         void *buffer, *end;
363
364         ab = ctx->current_buffer;
365         d = &ab->descriptor;
366
367         if (d->res_count == 0) {
368                 size_t size, rest, offset;
369
370                 /*
371                  * This descriptor is finished and we may have a
372                  * packet split across this and the next buffer. We
373                  * reuse the page for reassembling the split packet.
374                  */
375
376                 offset = offsetof(struct ar_buffer, data);
377                 dma_unmap_single(ohci->card.device,
378                         le32_to_cpu(ab->descriptor.data_address) - offset,
379                         PAGE_SIZE, DMA_BIDIRECTIONAL);
380
381                 buffer = ab;
382                 ab = ab->next;
383                 d = &ab->descriptor;
384                 size = buffer + PAGE_SIZE - ctx->pointer;
385                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
386                 memmove(buffer, ctx->pointer, size);
387                 memcpy(buffer + size, ab->data, rest);
388                 ctx->current_buffer = ab;
389                 ctx->pointer = (void *) ab->data + rest;
390                 end = buffer + size + rest;
391
392                 while (buffer < end)
393                         buffer = handle_ar_packet(ctx, buffer);
394
395                 free_page((unsigned long)buffer);
396                 ar_context_add_page(ctx);
397         } else {
398                 buffer = ctx->pointer;
399                 ctx->pointer = end =
400                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
401
402                 while (buffer < end)
403                         buffer = handle_ar_packet(ctx, buffer);
404         }
405 }
406
407 static int
408 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
409 {
410         struct ar_buffer ab;
411
412         ctx->regs        = regs;
413         ctx->ohci        = ohci;
414         ctx->last_buffer = &ab;
415         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
416
417         ar_context_add_page(ctx);
418         ar_context_add_page(ctx);
419         ctx->current_buffer = ab.next;
420         ctx->pointer = ctx->current_buffer->data;
421
422         return 0;
423 }
424
425 static void ar_context_run(struct ar_context *ctx)
426 {
427         struct ar_buffer *ab = ctx->current_buffer;
428         dma_addr_t ab_bus;
429         size_t offset;
430
431         offset = offsetof(struct ar_buffer, data);
432         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
433
434         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
435         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
436         flush_writes(ctx->ohci);
437 }
438
439 static void context_tasklet(unsigned long data)
440 {
441         struct context *ctx = (struct context *) data;
442         struct fw_ohci *ohci = ctx->ohci;
443         struct descriptor *d, *last;
444         u32 address;
445         int z;
446
447         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
448                                 ctx->buffer_size, DMA_TO_DEVICE);
449
450         d    = ctx->tail_descriptor;
451         last = ctx->tail_descriptor_last;
452
453         while (last->branch_address != 0) {
454                 address = le32_to_cpu(last->branch_address);
455                 z = address & 0xf;
456                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
457                 last = (z == 2) ? d : d + z - 1;
458
459                 if (!ctx->callback(ctx, d, last))
460                         break;
461
462                 ctx->tail_descriptor      = d;
463                 ctx->tail_descriptor_last = last;
464         }
465 }
466
467 static int
468 context_init(struct context *ctx, struct fw_ohci *ohci,
469              size_t buffer_size, u32 regs,
470              descriptor_callback_t callback)
471 {
472         ctx->ohci = ohci;
473         ctx->regs = regs;
474         ctx->buffer_size = buffer_size;
475         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
476         if (ctx->buffer == NULL)
477                 return -ENOMEM;
478
479         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
480         ctx->callback = callback;
481
482         ctx->buffer_bus =
483                 dma_map_single(ohci->card.device, ctx->buffer,
484                                buffer_size, DMA_TO_DEVICE);
485         if (dma_mapping_error(ctx->buffer_bus)) {
486                 kfree(ctx->buffer);
487                 return -ENOMEM;
488         }
489
490         ctx->head_descriptor      = ctx->buffer;
491         ctx->prev_descriptor      = ctx->buffer;
492         ctx->tail_descriptor      = ctx->buffer;
493         ctx->tail_descriptor_last = ctx->buffer;
494
495         /*
496          * We put a dummy descriptor in the buffer that has a NULL
497          * branch address and looks like it's been sent.  That way we
498          * have a descriptor to append DMA programs to.  Also, the
499          * ring buffer invariant is that it always has at least one
500          * element so that head == tail means buffer full.
501          */
502
503         memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
504         ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
505         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
506         ctx->head_descriptor++;
507
508         return 0;
509 }
510
511 static void
512 context_release(struct context *ctx)
513 {
514         struct fw_card *card = &ctx->ohci->card;
515
516         dma_unmap_single(card->device, ctx->buffer_bus,
517                          ctx->buffer_size, DMA_TO_DEVICE);
518         kfree(ctx->buffer);
519 }
520
521 static struct descriptor *
522 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
523 {
524         struct descriptor *d, *tail, *end;
525
526         d = ctx->head_descriptor;
527         tail = ctx->tail_descriptor;
528         end = ctx->buffer + ctx->buffer_size / sizeof(*d);
529
530         if (d + z <= tail) {
531                 goto has_space;
532         } else if (d > tail && d + z <= end) {
533                 goto has_space;
534         } else if (d > tail && ctx->buffer + z <= tail) {
535                 d = ctx->buffer;
536                 goto has_space;
537         }
538
539         return NULL;
540
541  has_space:
542         memset(d, 0, z * sizeof(*d));
543         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
544
545         return d;
546 }
547
548 static void context_run(struct context *ctx, u32 extra)
549 {
550         struct fw_ohci *ohci = ctx->ohci;
551
552         reg_write(ohci, COMMAND_PTR(ctx->regs),
553                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
554         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
555         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
556         flush_writes(ohci);
557 }
558
559 static void context_append(struct context *ctx,
560                            struct descriptor *d, int z, int extra)
561 {
562         dma_addr_t d_bus;
563
564         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
565
566         ctx->head_descriptor = d + z + extra;
567         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
568         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
569
570         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
571                                    ctx->buffer_size, DMA_TO_DEVICE);
572
573         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
574         flush_writes(ctx->ohci);
575 }
576
577 static void context_stop(struct context *ctx)
578 {
579         u32 reg;
580         int i;
581
582         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
583         flush_writes(ctx->ohci);
584
585         for (i = 0; i < 10; i++) {
586                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
587                 if ((reg & CONTEXT_ACTIVE) == 0)
588                         break;
589
590                 fw_notify("context_stop: still active (0x%08x)\n", reg);
591                 mdelay(1);
592         }
593 }
594
595 struct driver_data {
596         struct fw_packet *packet;
597 };
598
599 /*
600  * This function apppends a packet to the DMA queue for transmission.
601  * Must always be called with the ochi->lock held to ensure proper
602  * generation handling and locking around packet queue manipulation.
603  */
604 static int
605 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
606 {
607         struct fw_ohci *ohci = ctx->ohci;
608         dma_addr_t d_bus, payload_bus;
609         struct driver_data *driver_data;
610         struct descriptor *d, *last;
611         __le32 *header;
612         int z, tcode;
613         u32 reg;
614
615         d = context_get_descriptors(ctx, 4, &d_bus);
616         if (d == NULL) {
617                 packet->ack = RCODE_SEND_ERROR;
618                 return -1;
619         }
620
621         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
622         d[0].res_count = cpu_to_le16(packet->timestamp);
623
624         /*
625          * The DMA format for asyncronous link packets is different
626          * from the IEEE1394 layout, so shift the fields around
627          * accordingly.  If header_length is 8, it's a PHY packet, to
628          * which we need to prepend an extra quadlet.
629          */
630
631         header = (__le32 *) &d[1];
632         if (packet->header_length > 8) {
633                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
634                                         (packet->speed << 16));
635                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
636                                         (packet->header[0] & 0xffff0000));
637                 header[2] = cpu_to_le32(packet->header[2]);
638
639                 tcode = (packet->header[0] >> 4) & 0x0f;
640                 if (TCODE_IS_BLOCK_PACKET(tcode))
641                         header[3] = cpu_to_le32(packet->header[3]);
642                 else
643                         header[3] = (__force __le32) packet->header[3];
644
645                 d[0].req_count = cpu_to_le16(packet->header_length);
646         } else {
647                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
648                                         (packet->speed << 16));
649                 header[1] = cpu_to_le32(packet->header[0]);
650                 header[2] = cpu_to_le32(packet->header[1]);
651                 d[0].req_count = cpu_to_le16(12);
652         }
653
654         driver_data = (struct driver_data *) &d[3];
655         driver_data->packet = packet;
656         packet->driver_data = driver_data;
657         
658         if (packet->payload_length > 0) {
659                 payload_bus =
660                         dma_map_single(ohci->card.device, packet->payload,
661                                        packet->payload_length, DMA_TO_DEVICE);
662                 if (dma_mapping_error(payload_bus)) {
663                         packet->ack = RCODE_SEND_ERROR;
664                         return -1;
665                 }
666
667                 d[2].req_count    = cpu_to_le16(packet->payload_length);
668                 d[2].data_address = cpu_to_le32(payload_bus);
669                 last = &d[2];
670                 z = 3;
671         } else {
672                 last = &d[0];
673                 z = 2;
674         }
675
676         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
677                                      DESCRIPTOR_IRQ_ALWAYS |
678                                      DESCRIPTOR_BRANCH_ALWAYS);
679
680         /* FIXME: Document how the locking works. */
681         if (ohci->generation != packet->generation) {
682                 packet->ack = RCODE_GENERATION;
683                 return -1;
684         }
685
686         context_append(ctx, d, z, 4 - z);
687
688         /* If the context isn't already running, start it up. */
689         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
690         if ((reg & CONTEXT_RUN) == 0)
691                 context_run(ctx, 0);
692
693         return 0;
694 }
695
696 static int handle_at_packet(struct context *context,
697                             struct descriptor *d,
698                             struct descriptor *last)
699 {
700         struct driver_data *driver_data;
701         struct fw_packet *packet;
702         struct fw_ohci *ohci = context->ohci;
703         dma_addr_t payload_bus;
704         int evt;
705
706         if (last->transfer_status == 0)
707                 /* This descriptor isn't done yet, stop iteration. */
708                 return 0;
709
710         driver_data = (struct driver_data *) &d[3];
711         packet = driver_data->packet;
712         if (packet == NULL)
713                 /* This packet was cancelled, just continue. */
714                 return 1;
715
716         payload_bus = le32_to_cpu(last->data_address);
717         if (payload_bus != 0)
718                 dma_unmap_single(ohci->card.device, payload_bus,
719                                  packet->payload_length, DMA_TO_DEVICE);
720
721         evt = le16_to_cpu(last->transfer_status) & 0x1f;
722         packet->timestamp = le16_to_cpu(last->res_count);
723
724         switch (evt) {
725         case OHCI1394_evt_timeout:
726                 /* Async response transmit timed out. */
727                 packet->ack = RCODE_CANCELLED;
728                 break;
729
730         case OHCI1394_evt_flushed:
731                 /*
732                  * The packet was flushed should give same error as
733                  * when we try to use a stale generation count.
734                  */
735                 packet->ack = RCODE_GENERATION;
736                 break;
737
738         case OHCI1394_evt_missing_ack:
739                 /*
740                  * Using a valid (current) generation count, but the
741                  * node is not on the bus or not sending acks.
742                  */
743                 packet->ack = RCODE_NO_ACK;
744                 break;
745
746         case ACK_COMPLETE + 0x10:
747         case ACK_PENDING + 0x10:
748         case ACK_BUSY_X + 0x10:
749         case ACK_BUSY_A + 0x10:
750         case ACK_BUSY_B + 0x10:
751         case ACK_DATA_ERROR + 0x10:
752         case ACK_TYPE_ERROR + 0x10:
753                 packet->ack = evt - 0x10;
754                 break;
755
756         default:
757                 packet->ack = RCODE_SEND_ERROR;
758                 break;
759         }
760
761         packet->callback(packet, &ohci->card, packet->ack);
762
763         return 1;
764 }
765
766 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
767 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
768 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
769 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
770 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
771
772 static void
773 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
774 {
775         struct fw_packet response;
776         int tcode, length, i;
777
778         tcode = HEADER_GET_TCODE(packet->header[0]);
779         if (TCODE_IS_BLOCK_PACKET(tcode))
780                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
781         else
782                 length = 4;
783
784         i = csr - CSR_CONFIG_ROM;
785         if (i + length > CONFIG_ROM_SIZE) {
786                 fw_fill_response(&response, packet->header,
787                                  RCODE_ADDRESS_ERROR, NULL, 0);
788         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
789                 fw_fill_response(&response, packet->header,
790                                  RCODE_TYPE_ERROR, NULL, 0);
791         } else {
792                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
793                                  (void *) ohci->config_rom + i, length);
794         }
795
796         fw_core_handle_response(&ohci->card, &response);
797 }
798
799 static void
800 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
801 {
802         struct fw_packet response;
803         int tcode, length, ext_tcode, sel;
804         __be32 *payload, lock_old;
805         u32 lock_arg, lock_data;
806
807         tcode = HEADER_GET_TCODE(packet->header[0]);
808         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
809         payload = packet->payload;
810         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
811
812         if (tcode == TCODE_LOCK_REQUEST &&
813             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
814                 lock_arg = be32_to_cpu(payload[0]);
815                 lock_data = be32_to_cpu(payload[1]);
816         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
817                 lock_arg = 0;
818                 lock_data = 0;
819         } else {
820                 fw_fill_response(&response, packet->header,
821                                  RCODE_TYPE_ERROR, NULL, 0);
822                 goto out;
823         }
824
825         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
826         reg_write(ohci, OHCI1394_CSRData, lock_data);
827         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
828         reg_write(ohci, OHCI1394_CSRControl, sel);
829
830         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
831                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
832         else
833                 fw_notify("swap not done yet\n");
834
835         fw_fill_response(&response, packet->header,
836                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
837  out:
838         fw_core_handle_response(&ohci->card, &response);
839 }
840
841 static void
842 handle_local_request(struct context *ctx, struct fw_packet *packet)
843 {
844         u64 offset;
845         u32 csr;
846
847         if (ctx == &ctx->ohci->at_request_ctx) {
848                 packet->ack = ACK_PENDING;
849                 packet->callback(packet, &ctx->ohci->card, packet->ack);
850         }
851
852         offset =
853                 ((unsigned long long)
854                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
855                 packet->header[2];
856         csr = offset - CSR_REGISTER_BASE;
857
858         /* Handle config rom reads. */
859         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
860                 handle_local_rom(ctx->ohci, packet, csr);
861         else switch (csr) {
862         case CSR_BUS_MANAGER_ID:
863         case CSR_BANDWIDTH_AVAILABLE:
864         case CSR_CHANNELS_AVAILABLE_HI:
865         case CSR_CHANNELS_AVAILABLE_LO:
866                 handle_local_lock(ctx->ohci, packet, csr);
867                 break;
868         default:
869                 if (ctx == &ctx->ohci->at_request_ctx)
870                         fw_core_handle_request(&ctx->ohci->card, packet);
871                 else
872                         fw_core_handle_response(&ctx->ohci->card, packet);
873                 break;
874         }
875
876         if (ctx == &ctx->ohci->at_response_ctx) {
877                 packet->ack = ACK_COMPLETE;
878                 packet->callback(packet, &ctx->ohci->card, packet->ack);
879         }
880 }
881
882 static void
883 at_context_transmit(struct context *ctx, struct fw_packet *packet)
884 {
885         unsigned long flags;
886         int retval;
887
888         spin_lock_irqsave(&ctx->ohci->lock, flags);
889
890         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
891             ctx->ohci->generation == packet->generation) {
892                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
893                 handle_local_request(ctx, packet);
894                 return;
895         }
896
897         retval = at_context_queue_packet(ctx, packet);
898         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
899
900         if (retval < 0)
901                 packet->callback(packet, &ctx->ohci->card, packet->ack);
902         
903 }
904
905 static void bus_reset_tasklet(unsigned long data)
906 {
907         struct fw_ohci *ohci = (struct fw_ohci *)data;
908         int self_id_count, i, j, reg;
909         int generation, new_generation;
910         unsigned long flags;
911         void *free_rom = NULL;
912         dma_addr_t free_rom_bus = 0;
913
914         reg = reg_read(ohci, OHCI1394_NodeID);
915         if (!(reg & OHCI1394_NodeID_idValid)) {
916                 fw_error("node ID not valid, new bus reset in progress\n");
917                 return;
918         }
919         ohci->node_id = reg & 0xffff;
920
921         /*
922          * The count in the SelfIDCount register is the number of
923          * bytes in the self ID receive buffer.  Since we also receive
924          * the inverted quadlets and a header quadlet, we shift one
925          * bit extra to get the actual number of self IDs.
926          */
927
928         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
929         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
930         rmb();
931
932         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
933                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
934                         fw_error("inconsistent self IDs\n");
935                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
936         }
937         rmb();
938
939         /*
940          * Check the consistency of the self IDs we just read.  The
941          * problem we face is that a new bus reset can start while we
942          * read out the self IDs from the DMA buffer. If this happens,
943          * the DMA buffer will be overwritten with new self IDs and we
944          * will read out inconsistent data.  The OHCI specification
945          * (section 11.2) recommends a technique similar to
946          * linux/seqlock.h, where we remember the generation of the
947          * self IDs in the buffer before reading them out and compare
948          * it to the current generation after reading them out.  If
949          * the two generations match we know we have a consistent set
950          * of self IDs.
951          */
952
953         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
954         if (new_generation != generation) {
955                 fw_notify("recursive bus reset detected, "
956                           "discarding self ids\n");
957                 return;
958         }
959
960         /* FIXME: Document how the locking works. */
961         spin_lock_irqsave(&ohci->lock, flags);
962
963         ohci->generation = generation;
964         context_stop(&ohci->at_request_ctx);
965         context_stop(&ohci->at_response_ctx);
966         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
967
968         /*
969          * This next bit is unrelated to the AT context stuff but we
970          * have to do it under the spinlock also.  If a new config rom
971          * was set up before this reset, the old one is now no longer
972          * in use and we can free it. Update the config rom pointers
973          * to point to the current config rom and clear the
974          * next_config_rom pointer so a new udpate can take place.
975          */
976
977         if (ohci->next_config_rom != NULL) {
978                 free_rom     = ohci->config_rom;
979                 free_rom_bus = ohci->config_rom_bus;
980                 ohci->config_rom      = ohci->next_config_rom;
981                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
982                 ohci->next_config_rom = NULL;
983
984                 /*
985                  * Restore config_rom image and manually update
986                  * config_rom registers.  Writing the header quadlet
987                  * will indicate that the config rom is ready, so we
988                  * do that last.
989                  */
990                 reg_write(ohci, OHCI1394_BusOptions,
991                           be32_to_cpu(ohci->config_rom[2]));
992                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
993                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
994         }
995
996         spin_unlock_irqrestore(&ohci->lock, flags);
997
998         if (free_rom)
999                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1000                                   free_rom, free_rom_bus);
1001
1002         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1003                                  self_id_count, ohci->self_id_buffer);
1004 }
1005
1006 static irqreturn_t irq_handler(int irq, void *data)
1007 {
1008         struct fw_ohci *ohci = data;
1009         u32 event, iso_event, cycle_time;
1010         int i;
1011
1012         event = reg_read(ohci, OHCI1394_IntEventClear);
1013
1014         if (!event || !~event)
1015                 return IRQ_NONE;
1016
1017         reg_write(ohci, OHCI1394_IntEventClear, event);
1018
1019         if (event & OHCI1394_selfIDComplete)
1020                 tasklet_schedule(&ohci->bus_reset_tasklet);
1021
1022         if (event & OHCI1394_RQPkt)
1023                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1024
1025         if (event & OHCI1394_RSPkt)
1026                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1027
1028         if (event & OHCI1394_reqTxComplete)
1029                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1030
1031         if (event & OHCI1394_respTxComplete)
1032                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1033
1034         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1035         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1036
1037         while (iso_event) {
1038                 i = ffs(iso_event) - 1;
1039                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1040                 iso_event &= ~(1 << i);
1041         }
1042
1043         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1044         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1045
1046         while (iso_event) {
1047                 i = ffs(iso_event) - 1;
1048                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1049                 iso_event &= ~(1 << i);
1050         }
1051
1052         if (event & OHCI1394_cycle64Seconds) {
1053                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1054                 if ((cycle_time & 0x80000000) == 0)
1055                         ohci->bus_seconds++;
1056         }
1057
1058         return IRQ_HANDLED;
1059 }
1060
1061 static int software_reset(struct fw_ohci *ohci)
1062 {
1063         int i;
1064
1065         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1066
1067         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1068                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1069                      OHCI1394_HCControl_softReset) == 0)
1070                         return 0;
1071                 msleep(1);
1072         }
1073
1074         return -EBUSY;
1075 }
1076
1077 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1078 {
1079         struct fw_ohci *ohci = fw_ohci(card);
1080         struct pci_dev *dev = to_pci_dev(card->device);
1081
1082         if (software_reset(ohci)) {
1083                 fw_error("Failed to reset ohci card.\n");
1084                 return -EBUSY;
1085         }
1086
1087         /*
1088          * Now enable LPS, which we need in order to start accessing
1089          * most of the registers.  In fact, on some cards (ALI M5251),
1090          * accessing registers in the SClk domain without LPS enabled
1091          * will lock up the machine.  Wait 50msec to make sure we have
1092          * full link enabled.
1093          */
1094         reg_write(ohci, OHCI1394_HCControlSet,
1095                   OHCI1394_HCControl_LPS |
1096                   OHCI1394_HCControl_postedWriteEnable);
1097         flush_writes(ohci);
1098         msleep(50);
1099
1100         reg_write(ohci, OHCI1394_HCControlClear,
1101                   OHCI1394_HCControl_noByteSwapData);
1102
1103         reg_write(ohci, OHCI1394_LinkControlSet,
1104                   OHCI1394_LinkControl_rcvSelfID |
1105                   OHCI1394_LinkControl_cycleTimerEnable |
1106                   OHCI1394_LinkControl_cycleMaster);
1107
1108         reg_write(ohci, OHCI1394_ATRetries,
1109                   OHCI1394_MAX_AT_REQ_RETRIES |
1110                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1111                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1112
1113         ar_context_run(&ohci->ar_request_ctx);
1114         ar_context_run(&ohci->ar_response_ctx);
1115
1116         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1117         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1118         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1119         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1120         reg_write(ohci, OHCI1394_IntMaskSet,
1121                   OHCI1394_selfIDComplete |
1122                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1123                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1124                   OHCI1394_isochRx | OHCI1394_isochTx |
1125                   OHCI1394_masterIntEnable |
1126                   OHCI1394_cycle64Seconds);
1127
1128         /* Activate link_on bit and contender bit in our self ID packets.*/
1129         if (ohci_update_phy_reg(card, 4, 0,
1130                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1131                 return -EIO;
1132
1133         /*
1134          * When the link is not yet enabled, the atomic config rom
1135          * update mechanism described below in ohci_set_config_rom()
1136          * is not active.  We have to update ConfigRomHeader and
1137          * BusOptions manually, and the write to ConfigROMmap takes
1138          * effect immediately.  We tie this to the enabling of the
1139          * link, so we have a valid config rom before enabling - the
1140          * OHCI requires that ConfigROMhdr and BusOptions have valid
1141          * values before enabling.
1142          *
1143          * However, when the ConfigROMmap is written, some controllers
1144          * always read back quadlets 0 and 2 from the config rom to
1145          * the ConfigRomHeader and BusOptions registers on bus reset.
1146          * They shouldn't do that in this initial case where the link
1147          * isn't enabled.  This means we have to use the same
1148          * workaround here, setting the bus header to 0 and then write
1149          * the right values in the bus reset tasklet.
1150          */
1151
1152         ohci->next_config_rom =
1153                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1154                                    &ohci->next_config_rom_bus, GFP_KERNEL);
1155         if (ohci->next_config_rom == NULL)
1156                 return -ENOMEM;
1157
1158         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1159         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1160
1161         ohci->next_header = config_rom[0];
1162         ohci->next_config_rom[0] = 0;
1163         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1164         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1165         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1166
1167         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1168
1169         if (request_irq(dev->irq, irq_handler,
1170                         IRQF_SHARED, ohci_driver_name, ohci)) {
1171                 fw_error("Failed to allocate shared interrupt %d.\n",
1172                          dev->irq);
1173                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1174                                   ohci->config_rom, ohci->config_rom_bus);
1175                 return -EIO;
1176         }
1177
1178         reg_write(ohci, OHCI1394_HCControlSet,
1179                   OHCI1394_HCControl_linkEnable |
1180                   OHCI1394_HCControl_BIBimageValid);
1181         flush_writes(ohci);
1182
1183         /*
1184          * We are ready to go, initiate bus reset to finish the
1185          * initialization.
1186          */
1187
1188         fw_core_initiate_bus_reset(&ohci->card, 1);
1189
1190         return 0;
1191 }
1192
1193 static int
1194 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1195 {
1196         struct fw_ohci *ohci;
1197         unsigned long flags;
1198         int retval = -EBUSY;
1199         __be32 *next_config_rom;
1200         dma_addr_t next_config_rom_bus;
1201
1202         ohci = fw_ohci(card);
1203
1204         /*
1205          * When the OHCI controller is enabled, the config rom update
1206          * mechanism is a bit tricky, but easy enough to use.  See
1207          * section 5.5.6 in the OHCI specification.
1208          *
1209          * The OHCI controller caches the new config rom address in a
1210          * shadow register (ConfigROMmapNext) and needs a bus reset
1211          * for the changes to take place.  When the bus reset is
1212          * detected, the controller loads the new values for the
1213          * ConfigRomHeader and BusOptions registers from the specified
1214          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1215          * shadow register. All automatically and atomically.
1216          *
1217          * Now, there's a twist to this story.  The automatic load of
1218          * ConfigRomHeader and BusOptions doesn't honor the
1219          * noByteSwapData bit, so with a be32 config rom, the
1220          * controller will load be32 values in to these registers
1221          * during the atomic update, even on litte endian
1222          * architectures.  The workaround we use is to put a 0 in the
1223          * header quadlet; 0 is endian agnostic and means that the
1224          * config rom isn't ready yet.  In the bus reset tasklet we
1225          * then set up the real values for the two registers.
1226          *
1227          * We use ohci->lock to avoid racing with the code that sets
1228          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1229          */
1230
1231         next_config_rom =
1232                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1233                                    &next_config_rom_bus, GFP_KERNEL);
1234         if (next_config_rom == NULL)
1235                 return -ENOMEM;
1236
1237         spin_lock_irqsave(&ohci->lock, flags);
1238
1239         if (ohci->next_config_rom == NULL) {
1240                 ohci->next_config_rom = next_config_rom;
1241                 ohci->next_config_rom_bus = next_config_rom_bus;
1242
1243                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1244                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1245                                   length * 4);
1246
1247                 ohci->next_header = config_rom[0];
1248                 ohci->next_config_rom[0] = 0;
1249
1250                 reg_write(ohci, OHCI1394_ConfigROMmap,
1251                           ohci->next_config_rom_bus);
1252                 retval = 0;
1253         }
1254
1255         spin_unlock_irqrestore(&ohci->lock, flags);
1256
1257         /*
1258          * Now initiate a bus reset to have the changes take
1259          * effect. We clean up the old config rom memory and DMA
1260          * mappings in the bus reset tasklet, since the OHCI
1261          * controller could need to access it before the bus reset
1262          * takes effect.
1263          */
1264         if (retval == 0)
1265                 fw_core_initiate_bus_reset(&ohci->card, 1);
1266         else
1267                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1268                                   next_config_rom, next_config_rom_bus);
1269
1270         return retval;
1271 }
1272
1273 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1274 {
1275         struct fw_ohci *ohci = fw_ohci(card);
1276
1277         at_context_transmit(&ohci->at_request_ctx, packet);
1278 }
1279
1280 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1281 {
1282         struct fw_ohci *ohci = fw_ohci(card);
1283
1284         at_context_transmit(&ohci->at_response_ctx, packet);
1285 }
1286
1287 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1288 {
1289         struct fw_ohci *ohci = fw_ohci(card);
1290         struct context *ctx = &ohci->at_request_ctx;
1291         struct driver_data *driver_data = packet->driver_data;
1292         int retval = -ENOENT;
1293
1294         tasklet_disable(&ctx->tasklet);
1295
1296         if (packet->ack != 0)
1297                 goto out;
1298
1299         driver_data->packet = NULL;
1300         packet->ack = RCODE_CANCELLED;
1301         packet->callback(packet, &ohci->card, packet->ack);
1302         retval = 0;
1303
1304  out:
1305         tasklet_enable(&ctx->tasklet);
1306
1307         return retval;
1308 }
1309
1310 static int
1311 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1312 {
1313         struct fw_ohci *ohci = fw_ohci(card);
1314         unsigned long flags;
1315         int n, retval = 0;
1316
1317         /*
1318          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1319          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1320          */
1321
1322         spin_lock_irqsave(&ohci->lock, flags);
1323
1324         if (ohci->generation != generation) {
1325                 retval = -ESTALE;
1326                 goto out;
1327         }
1328
1329         /*
1330          * Note, if the node ID contains a non-local bus ID, physical DMA is
1331          * enabled for _all_ nodes on remote buses.
1332          */
1333
1334         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1335         if (n < 32)
1336                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1337         else
1338                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1339
1340         flush_writes(ohci);
1341  out:
1342         spin_unlock_irqrestore(&ohci->lock, flags);
1343         return retval;
1344 }
1345
1346 static u64
1347 ohci_get_bus_time(struct fw_card *card)
1348 {
1349         struct fw_ohci *ohci = fw_ohci(card);
1350         u32 cycle_time;
1351         u64 bus_time;
1352
1353         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1354         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1355
1356         return bus_time;
1357 }
1358
1359 static int handle_ir_dualbuffer_packet(struct context *context,
1360                                        struct descriptor *d,
1361                                        struct descriptor *last)
1362 {
1363         struct iso_context *ctx =
1364                 container_of(context, struct iso_context, context);
1365         struct db_descriptor *db = (struct db_descriptor *) d;
1366         __le32 *ir_header;
1367         size_t header_length;
1368         void *p, *end;
1369         int i;
1370
1371         if (db->first_res_count > 0 && db->second_res_count > 0)
1372                 /* This descriptor isn't done yet, stop iteration. */
1373                 return 0;
1374
1375         header_length = le16_to_cpu(db->first_req_count) -
1376                 le16_to_cpu(db->first_res_count);
1377
1378         i = ctx->header_length;
1379         p = db + 1;
1380         end = p + header_length;
1381         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1382                 /*
1383                  * The iso header is byteswapped to little endian by
1384                  * the controller, but the remaining header quadlets
1385                  * are big endian.  We want to present all the headers
1386                  * as big endian, so we have to swap the first
1387                  * quadlet.
1388                  */
1389                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1390                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1391                 i += ctx->base.header_size;
1392                 p += ctx->base.header_size + 4;
1393         }
1394
1395         ctx->header_length = i;
1396
1397         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1398                 ir_header = (__le32 *) (db + 1);
1399                 ctx->base.callback(&ctx->base,
1400                                    le32_to_cpu(ir_header[0]) & 0xffff,
1401                                    ctx->header_length, ctx->header,
1402                                    ctx->base.callback_data);
1403                 ctx->header_length = 0;
1404         }
1405
1406         return 1;
1407 }
1408
1409 static int handle_it_packet(struct context *context,
1410                             struct descriptor *d,
1411                             struct descriptor *last)
1412 {
1413         struct iso_context *ctx =
1414                 container_of(context, struct iso_context, context);
1415
1416         if (last->transfer_status == 0)
1417                 /* This descriptor isn't done yet, stop iteration. */
1418                 return 0;
1419
1420         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1421                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1422                                    0, NULL, ctx->base.callback_data);
1423
1424         return 1;
1425 }
1426
1427 static struct fw_iso_context *
1428 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1429 {
1430         struct fw_ohci *ohci = fw_ohci(card);
1431         struct iso_context *ctx, *list;
1432         descriptor_callback_t callback;
1433         u32 *mask, regs;
1434         unsigned long flags;
1435         int index, retval = -ENOMEM;
1436
1437         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1438                 mask = &ohci->it_context_mask;
1439                 list = ohci->it_context_list;
1440                 callback = handle_it_packet;
1441         } else {
1442                 mask = &ohci->ir_context_mask;
1443                 list = ohci->ir_context_list;
1444                 callback = handle_ir_dualbuffer_packet;
1445         }
1446
1447         /* FIXME: We need a fallback for pre 1.1 OHCI. */
1448         if (callback == handle_ir_dualbuffer_packet &&
1449             ohci->version < OHCI_VERSION_1_1)
1450                 return ERR_PTR(-EINVAL);
1451
1452         spin_lock_irqsave(&ohci->lock, flags);
1453         index = ffs(*mask) - 1;
1454         if (index >= 0)
1455                 *mask &= ~(1 << index);
1456         spin_unlock_irqrestore(&ohci->lock, flags);
1457
1458         if (index < 0)
1459                 return ERR_PTR(-EBUSY);
1460
1461         if (type == FW_ISO_CONTEXT_TRANSMIT)
1462                 regs = OHCI1394_IsoXmitContextBase(index);
1463         else
1464                 regs = OHCI1394_IsoRcvContextBase(index);
1465
1466         ctx = &list[index];
1467         memset(ctx, 0, sizeof(*ctx));
1468         ctx->header_length = 0;
1469         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1470         if (ctx->header == NULL)
1471                 goto out;
1472
1473         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1474                               regs, callback);
1475         if (retval < 0)
1476                 goto out_with_header;
1477
1478         return &ctx->base;
1479
1480  out_with_header:
1481         free_page((unsigned long)ctx->header);
1482  out:
1483         spin_lock_irqsave(&ohci->lock, flags);
1484         *mask |= 1 << index;
1485         spin_unlock_irqrestore(&ohci->lock, flags);
1486
1487         return ERR_PTR(retval);
1488 }
1489
1490 static int ohci_start_iso(struct fw_iso_context *base,
1491                           s32 cycle, u32 sync, u32 tags)
1492 {
1493         struct iso_context *ctx = container_of(base, struct iso_context, base);
1494         struct fw_ohci *ohci = ctx->context.ohci;
1495         u32 control, match;
1496         int index;
1497
1498         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1499                 index = ctx - ohci->it_context_list;
1500                 match = 0;
1501                 if (cycle >= 0)
1502                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1503                                 (cycle & 0x7fff) << 16;
1504
1505                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1506                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1507                 context_run(&ctx->context, match);
1508         } else {
1509                 index = ctx - ohci->ir_context_list;
1510                 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1511                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1512                 if (cycle >= 0) {
1513                         match |= (cycle & 0x07fff) << 12;
1514                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1515                 }
1516
1517                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1518                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1519                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1520                 context_run(&ctx->context, control);
1521         }
1522
1523         return 0;
1524 }
1525
1526 static int ohci_stop_iso(struct fw_iso_context *base)
1527 {
1528         struct fw_ohci *ohci = fw_ohci(base->card);
1529         struct iso_context *ctx = container_of(base, struct iso_context, base);
1530         int index;
1531
1532         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1533                 index = ctx - ohci->it_context_list;
1534                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1535         } else {
1536                 index = ctx - ohci->ir_context_list;
1537                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1538         }
1539         flush_writes(ohci);
1540         context_stop(&ctx->context);
1541
1542         return 0;
1543 }
1544
1545 static void ohci_free_iso_context(struct fw_iso_context *base)
1546 {
1547         struct fw_ohci *ohci = fw_ohci(base->card);
1548         struct iso_context *ctx = container_of(base, struct iso_context, base);
1549         unsigned long flags;
1550         int index;
1551
1552         ohci_stop_iso(base);
1553         context_release(&ctx->context);
1554         free_page((unsigned long)ctx->header);
1555
1556         spin_lock_irqsave(&ohci->lock, flags);
1557
1558         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1559                 index = ctx - ohci->it_context_list;
1560                 ohci->it_context_mask |= 1 << index;
1561         } else {
1562                 index = ctx - ohci->ir_context_list;
1563                 ohci->ir_context_mask |= 1 << index;
1564         }
1565
1566         spin_unlock_irqrestore(&ohci->lock, flags);
1567 }
1568
1569 static int
1570 ohci_queue_iso_transmit(struct fw_iso_context *base,
1571                         struct fw_iso_packet *packet,
1572                         struct fw_iso_buffer *buffer,
1573                         unsigned long payload)
1574 {
1575         struct iso_context *ctx = container_of(base, struct iso_context, base);
1576         struct descriptor *d, *last, *pd;
1577         struct fw_iso_packet *p;
1578         __le32 *header;
1579         dma_addr_t d_bus, page_bus;
1580         u32 z, header_z, payload_z, irq;
1581         u32 payload_index, payload_end_index, next_page_index;
1582         int page, end_page, i, length, offset;
1583
1584         /*
1585          * FIXME: Cycle lost behavior should be configurable: lose
1586          * packet, retransmit or terminate..
1587          */
1588
1589         p = packet;
1590         payload_index = payload;
1591
1592         if (p->skip)
1593                 z = 1;
1594         else
1595                 z = 2;
1596         if (p->header_length > 0)
1597                 z++;
1598
1599         /* Determine the first page the payload isn't contained in. */
1600         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1601         if (p->payload_length > 0)
1602                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1603         else
1604                 payload_z = 0;
1605
1606         z += payload_z;
1607
1608         /* Get header size in number of descriptors. */
1609         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1610
1611         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1612         if (d == NULL)
1613                 return -ENOMEM;
1614
1615         if (!p->skip) {
1616                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1617                 d[0].req_count = cpu_to_le16(8);
1618
1619                 header = (__le32 *) &d[1];
1620                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1621                                         IT_HEADER_TAG(p->tag) |
1622                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1623                                         IT_HEADER_CHANNEL(ctx->base.channel) |
1624                                         IT_HEADER_SPEED(ctx->base.speed));
1625                 header[1] =
1626                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1627                                                           p->payload_length));
1628         }
1629
1630         if (p->header_length > 0) {
1631                 d[2].req_count    = cpu_to_le16(p->header_length);
1632                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1633                 memcpy(&d[z], p->header, p->header_length);
1634         }
1635
1636         pd = d + z - payload_z;
1637         payload_end_index = payload_index + p->payload_length;
1638         for (i = 0; i < payload_z; i++) {
1639                 page               = payload_index >> PAGE_SHIFT;
1640                 offset             = payload_index & ~PAGE_MASK;
1641                 next_page_index    = (page + 1) << PAGE_SHIFT;
1642                 length             =
1643                         min(next_page_index, payload_end_index) - payload_index;
1644                 pd[i].req_count    = cpu_to_le16(length);
1645
1646                 page_bus = page_private(buffer->pages[page]);
1647                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1648
1649                 payload_index += length;
1650         }
1651
1652         if (p->interrupt)
1653                 irq = DESCRIPTOR_IRQ_ALWAYS;
1654         else
1655                 irq = DESCRIPTOR_NO_IRQ;
1656
1657         last = z == 2 ? d : d + z - 1;
1658         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1659                                      DESCRIPTOR_STATUS |
1660                                      DESCRIPTOR_BRANCH_ALWAYS |
1661                                      irq);
1662
1663         context_append(&ctx->context, d, z, header_z);
1664
1665         return 0;
1666 }
1667
1668 static int
1669 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1670                                   struct fw_iso_packet *packet,
1671                                   struct fw_iso_buffer *buffer,
1672                                   unsigned long payload)
1673 {
1674         struct iso_context *ctx = container_of(base, struct iso_context, base);
1675         struct db_descriptor *db = NULL;
1676         struct descriptor *d;
1677         struct fw_iso_packet *p;
1678         dma_addr_t d_bus, page_bus;
1679         u32 z, header_z, length, rest;
1680         int page, offset, packet_count, header_size;
1681
1682         /*
1683          * FIXME: Cycle lost behavior should be configurable: lose
1684          * packet, retransmit or terminate..
1685          */
1686
1687         if (packet->skip) {
1688                 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1689                 if (d == NULL)
1690                         return -ENOMEM;
1691
1692                 db = (struct db_descriptor *) d;
1693                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1694                                           DESCRIPTOR_BRANCH_ALWAYS |
1695                                           DESCRIPTOR_WAIT);
1696                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1697                 context_append(&ctx->context, d, 2, 0);
1698         }
1699
1700         p = packet;
1701         z = 2;
1702
1703         /*
1704          * The OHCI controller puts the status word in the header
1705          * buffer too, so we need 4 extra bytes per packet.
1706          */
1707         packet_count = p->header_length / ctx->base.header_size;
1708         header_size = packet_count * (ctx->base.header_size + 4);
1709
1710         /* Get header size in number of descriptors. */
1711         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1712         page     = payload >> PAGE_SHIFT;
1713         offset   = payload & ~PAGE_MASK;
1714         rest     = p->payload_length;
1715
1716         /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1717         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1718         while (rest > 0) {
1719                 d = context_get_descriptors(&ctx->context,
1720                                             z + header_z, &d_bus);
1721                 if (d == NULL)
1722                         return -ENOMEM;
1723
1724                 db = (struct db_descriptor *) d;
1725                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1726                                           DESCRIPTOR_BRANCH_ALWAYS);
1727                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1728                 db->first_req_count = cpu_to_le16(header_size);
1729                 db->first_res_count = db->first_req_count;
1730                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1731
1732                 if (offset + rest < PAGE_SIZE)
1733                         length = rest;
1734                 else
1735                         length = PAGE_SIZE - offset;
1736
1737                 db->second_req_count = cpu_to_le16(length);
1738                 db->second_res_count = db->second_req_count;
1739                 page_bus = page_private(buffer->pages[page]);
1740                 db->second_buffer = cpu_to_le32(page_bus + offset);
1741
1742                 if (p->interrupt && length == rest)
1743                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1744
1745                 context_append(&ctx->context, d, z, header_z);
1746                 offset = (offset + length) & ~PAGE_MASK;
1747                 rest -= length;
1748                 page++;
1749         }
1750
1751         return 0;
1752 }
1753
1754 static int
1755 ohci_queue_iso(struct fw_iso_context *base,
1756                struct fw_iso_packet *packet,
1757                struct fw_iso_buffer *buffer,
1758                unsigned long payload)
1759 {
1760         struct iso_context *ctx = container_of(base, struct iso_context, base);
1761
1762         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1763                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1764         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1765                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1766                                                          buffer, payload);
1767         else
1768                 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1769                 return -EINVAL;
1770 }
1771
1772 static const struct fw_card_driver ohci_driver = {
1773         .name                   = ohci_driver_name,
1774         .enable                 = ohci_enable,
1775         .update_phy_reg         = ohci_update_phy_reg,
1776         .set_config_rom         = ohci_set_config_rom,
1777         .send_request           = ohci_send_request,
1778         .send_response          = ohci_send_response,
1779         .cancel_packet          = ohci_cancel_packet,
1780         .enable_phys_dma        = ohci_enable_phys_dma,
1781         .get_bus_time           = ohci_get_bus_time,
1782
1783         .allocate_iso_context   = ohci_allocate_iso_context,
1784         .free_iso_context       = ohci_free_iso_context,
1785         .queue_iso              = ohci_queue_iso,
1786         .start_iso              = ohci_start_iso,
1787         .stop_iso               = ohci_stop_iso,
1788 };
1789
1790 static int __devinit
1791 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1792 {
1793         struct fw_ohci *ohci;
1794         u32 bus_options, max_receive, link_speed;
1795         u64 guid;
1796         int err;
1797         size_t size;
1798
1799         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1800         if (ohci == NULL) {
1801                 fw_error("Could not malloc fw_ohci data.\n");
1802                 return -ENOMEM;
1803         }
1804
1805         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1806
1807         err = pci_enable_device(dev);
1808         if (err) {
1809                 fw_error("Failed to enable OHCI hardware.\n");
1810                 goto fail_put_card;
1811         }
1812
1813         pci_set_master(dev);
1814         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1815         pci_set_drvdata(dev, ohci);
1816
1817         spin_lock_init(&ohci->lock);
1818
1819         tasklet_init(&ohci->bus_reset_tasklet,
1820                      bus_reset_tasklet, (unsigned long)ohci);
1821
1822         err = pci_request_region(dev, 0, ohci_driver_name);
1823         if (err) {
1824                 fw_error("MMIO resource unavailable\n");
1825                 goto fail_disable;
1826         }
1827
1828         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1829         if (ohci->registers == NULL) {
1830                 fw_error("Failed to remap registers\n");
1831                 err = -ENXIO;
1832                 goto fail_iomem;
1833         }
1834
1835         ar_context_init(&ohci->ar_request_ctx, ohci,
1836                         OHCI1394_AsReqRcvContextControlSet);
1837
1838         ar_context_init(&ohci->ar_response_ctx, ohci,
1839                         OHCI1394_AsRspRcvContextControlSet);
1840
1841         context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1842                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1843
1844         context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1845                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1846
1847         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1848         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1849         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1850         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1851         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1852
1853         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1854         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1855         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1856         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1857         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1858
1859         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1860                 fw_error("Out of memory for it/ir contexts.\n");
1861                 err = -ENOMEM;
1862                 goto fail_registers;
1863         }
1864
1865         /* self-id dma buffer allocation */
1866         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1867                                                SELF_ID_BUF_SIZE,
1868                                                &ohci->self_id_bus,
1869                                                GFP_KERNEL);
1870         if (ohci->self_id_cpu == NULL) {
1871                 fw_error("Out of memory for self ID buffer.\n");
1872                 err = -ENOMEM;
1873                 goto fail_registers;
1874         }
1875
1876         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1877         max_receive = (bus_options >> 12) & 0xf;
1878         link_speed = bus_options & 0x7;
1879         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1880                 reg_read(ohci, OHCI1394_GUIDLo);
1881
1882         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1883         if (err < 0)
1884                 goto fail_self_id;
1885
1886         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1887         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1888                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1889
1890         return 0;
1891
1892  fail_self_id:
1893         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1894                           ohci->self_id_cpu, ohci->self_id_bus);
1895  fail_registers:
1896         kfree(ohci->it_context_list);
1897         kfree(ohci->ir_context_list);
1898         pci_iounmap(dev, ohci->registers);
1899  fail_iomem:
1900         pci_release_region(dev, 0);
1901  fail_disable:
1902         pci_disable_device(dev);
1903  fail_put_card:
1904         fw_card_put(&ohci->card);
1905
1906         return err;
1907 }
1908
1909 static void pci_remove(struct pci_dev *dev)
1910 {
1911         struct fw_ohci *ohci;
1912
1913         ohci = pci_get_drvdata(dev);
1914         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1915         flush_writes(ohci);
1916         fw_core_remove_card(&ohci->card);
1917
1918         /*
1919          * FIXME: Fail all pending packets here, now that the upper
1920          * layers can't queue any more.
1921          */
1922
1923         software_reset(ohci);
1924         free_irq(dev->irq, ohci);
1925         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1926                           ohci->self_id_cpu, ohci->self_id_bus);
1927         kfree(ohci->it_context_list);
1928         kfree(ohci->ir_context_list);
1929         pci_iounmap(dev, ohci->registers);
1930         pci_release_region(dev, 0);
1931         pci_disable_device(dev);
1932         fw_card_put(&ohci->card);
1933
1934         fw_notify("Removed fw-ohci device.\n");
1935 }
1936
1937 #ifdef CONFIG_PM
1938 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
1939 {
1940         struct fw_ohci *ohci = pci_get_drvdata(pdev);
1941         int err;
1942
1943         software_reset(ohci);
1944         free_irq(pdev->irq, ohci);
1945         err = pci_save_state(pdev);
1946         if (err) {
1947                 fw_error("pci_save_state failed\n");
1948                 return err;
1949         }
1950         err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
1951         if (err)
1952                 fw_error("pci_set_power_state failed with %d\n", err);
1953
1954         return 0;
1955 }
1956
1957 static int pci_resume(struct pci_dev *pdev)
1958 {
1959         struct fw_ohci *ohci = pci_get_drvdata(pdev);
1960         int err;
1961
1962         pci_set_power_state(pdev, PCI_D0);
1963         pci_restore_state(pdev);
1964         err = pci_enable_device(pdev);
1965         if (err) {
1966                 fw_error("pci_enable_device failed\n");
1967                 return err;
1968         }
1969
1970         return ohci_enable(&ohci->card, ohci->config_rom, CONFIG_ROM_SIZE);
1971 }
1972 #endif
1973
1974 static struct pci_device_id pci_table[] = {
1975         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1976         { }
1977 };
1978
1979 MODULE_DEVICE_TABLE(pci, pci_table);
1980
1981 static struct pci_driver fw_ohci_pci_driver = {
1982         .name           = ohci_driver_name,
1983         .id_table       = pci_table,
1984         .probe          = pci_probe,
1985         .remove         = pci_remove,
1986 #ifdef CONFIG_PM
1987         .resume         = pci_resume,
1988         .suspend        = pci_suspend,
1989 #endif
1990 };
1991
1992 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1993 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1994 MODULE_LICENSE("GPL");
1995
1996 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1997 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
1998 MODULE_ALIAS("ohci1394");
1999 #endif
2000
2001 static int __init fw_ohci_init(void)
2002 {
2003         return pci_register_driver(&fw_ohci_pci_driver);
2004 }
2005
2006 static void __exit fw_ohci_cleanup(void)
2007 {
2008         pci_unregister_driver(&fw_ohci_pci_driver);
2009 }
2010
2011 module_init(fw_ohci_init);
2012 module_exit(fw_ohci_cleanup);