Merge branch 'devel-stable' into for-next
[sfrench/cifs-2.6.git] / drivers / dma / mmp_pdma.c
1 /*
2  * Copyright 2012 Marvell International Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/interrupt.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/slab.h>
16 #include <linux/dmaengine.h>
17 #include <linux/platform_device.h>
18 #include <linux/device.h>
19 #include <linux/platform_data/mmp_dma.h>
20 #include <linux/dmapool.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/of.h>
24 #include <linux/dma/mmp-pdma.h>
25
26 #include "dmaengine.h"
27
28 #define DCSR            0x0000
29 #define DALGN           0x00a0
30 #define DINT            0x00f0
31 #define DDADR           0x0200
32 #define DSADR(n)        (0x0204 + ((n) << 4))
33 #define DTADR(n)        (0x0208 + ((n) << 4))
34 #define DCMD            0x020c
35
36 #define DCSR_RUN        BIT(31) /* Run Bit (read / write) */
37 #define DCSR_NODESC     BIT(30) /* No-Descriptor Fetch (read / write) */
38 #define DCSR_STOPIRQEN  BIT(29) /* Stop Interrupt Enable (read / write) */
39 #define DCSR_REQPEND    BIT(8)  /* Request Pending (read-only) */
40 #define DCSR_STOPSTATE  BIT(3)  /* Stop State (read-only) */
41 #define DCSR_ENDINTR    BIT(2)  /* End Interrupt (read / write) */
42 #define DCSR_STARTINTR  BIT(1)  /* Start Interrupt (read / write) */
43 #define DCSR_BUSERR     BIT(0)  /* Bus Error Interrupt (read / write) */
44
45 #define DCSR_EORIRQEN   BIT(28) /* End of Receive Interrupt Enable (R/W) */
46 #define DCSR_EORJMPEN   BIT(27) /* Jump to next descriptor on EOR */
47 #define DCSR_EORSTOPEN  BIT(26) /* STOP on an EOR */
48 #define DCSR_SETCMPST   BIT(25) /* Set Descriptor Compare Status */
49 #define DCSR_CLRCMPST   BIT(24) /* Clear Descriptor Compare Status */
50 #define DCSR_CMPST      BIT(10) /* The Descriptor Compare Status */
51 #define DCSR_EORINTR    BIT(9)  /* The end of Receive */
52
53 #define DRCMR(n)        ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
54 #define DRCMR_MAPVLD    BIT(7)  /* Map Valid (read / write) */
55 #define DRCMR_CHLNUM    0x1f    /* mask for Channel Number (read / write) */
56
57 #define DDADR_DESCADDR  0xfffffff0      /* Address of next descriptor (mask) */
58 #define DDADR_STOP      BIT(0)  /* Stop (read / write) */
59
60 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */
61 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */
62 #define DCMD_FLOWSRC    BIT(29) /* Flow Control by the source. */
63 #define DCMD_FLOWTRG    BIT(28) /* Flow Control by the target. */
64 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */
65 #define DCMD_ENDIRQEN   BIT(21) /* End Interrupt Enable */
66 #define DCMD_ENDIAN     BIT(18) /* Device Endian-ness. */
67 #define DCMD_BURST8     (1 << 16)       /* 8 byte burst */
68 #define DCMD_BURST16    (2 << 16)       /* 16 byte burst */
69 #define DCMD_BURST32    (3 << 16)       /* 32 byte burst */
70 #define DCMD_WIDTH1     (1 << 14)       /* 1 byte width */
71 #define DCMD_WIDTH2     (2 << 14)       /* 2 byte width (HalfWord) */
72 #define DCMD_WIDTH4     (3 << 14)       /* 4 byte width (Word) */
73 #define DCMD_LENGTH     0x01fff         /* length mask (max = 8K - 1) */
74
75 #define PDMA_ALIGNMENT          3
76 #define PDMA_MAX_DESC_BYTES     DCMD_LENGTH
77
78 struct mmp_pdma_desc_hw {
79         u32 ddadr;      /* Points to the next descriptor + flags */
80         u32 dsadr;      /* DSADR value for the current transfer */
81         u32 dtadr;      /* DTADR value for the current transfer */
82         u32 dcmd;       /* DCMD value for the current transfer */
83 } __aligned(32);
84
85 struct mmp_pdma_desc_sw {
86         struct mmp_pdma_desc_hw desc;
87         struct list_head node;
88         struct list_head tx_list;
89         struct dma_async_tx_descriptor async_tx;
90 };
91
92 struct mmp_pdma_phy;
93
94 struct mmp_pdma_chan {
95         struct device *dev;
96         struct dma_chan chan;
97         struct dma_async_tx_descriptor desc;
98         struct mmp_pdma_phy *phy;
99         enum dma_transfer_direction dir;
100
101         struct mmp_pdma_desc_sw *cyclic_first;  /* first desc_sw if channel
102                                                  * is in cyclic mode */
103
104         /* channel's basic info */
105         struct tasklet_struct tasklet;
106         u32 dcmd;
107         u32 drcmr;
108         u32 dev_addr;
109
110         /* list for desc */
111         spinlock_t desc_lock;           /* Descriptor list lock */
112         struct list_head chain_pending; /* Link descriptors queue for pending */
113         struct list_head chain_running; /* Link descriptors queue for running */
114         bool idle;                      /* channel statue machine */
115         bool byte_align;
116
117         struct dma_pool *desc_pool;     /* Descriptors pool */
118 };
119
120 struct mmp_pdma_phy {
121         int idx;
122         void __iomem *base;
123         struct mmp_pdma_chan *vchan;
124 };
125
126 struct mmp_pdma_device {
127         int                             dma_channels;
128         void __iomem                    *base;
129         struct device                   *dev;
130         struct dma_device               device;
131         struct mmp_pdma_phy             *phy;
132         spinlock_t phy_lock; /* protect alloc/free phy channels */
133 };
134
135 #define tx_to_mmp_pdma_desc(tx)                                 \
136         container_of(tx, struct mmp_pdma_desc_sw, async_tx)
137 #define to_mmp_pdma_desc(lh)                                    \
138         container_of(lh, struct mmp_pdma_desc_sw, node)
139 #define to_mmp_pdma_chan(dchan)                                 \
140         container_of(dchan, struct mmp_pdma_chan, chan)
141 #define to_mmp_pdma_dev(dmadev)                                 \
142         container_of(dmadev, struct mmp_pdma_device, device)
143
144 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
145 {
146         u32 reg = (phy->idx << 4) + DDADR;
147
148         writel(addr, phy->base + reg);
149 }
150
151 static void enable_chan(struct mmp_pdma_phy *phy)
152 {
153         u32 reg, dalgn;
154
155         if (!phy->vchan)
156                 return;
157
158         reg = DRCMR(phy->vchan->drcmr);
159         writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
160
161         dalgn = readl(phy->base + DALGN);
162         if (phy->vchan->byte_align)
163                 dalgn |= 1 << phy->idx;
164         else
165                 dalgn &= ~(1 << phy->idx);
166         writel(dalgn, phy->base + DALGN);
167
168         reg = (phy->idx << 2) + DCSR;
169         writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg);
170 }
171
172 static void disable_chan(struct mmp_pdma_phy *phy)
173 {
174         u32 reg;
175
176         if (!phy)
177                 return;
178
179         reg = (phy->idx << 2) + DCSR;
180         writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg);
181 }
182
183 static int clear_chan_irq(struct mmp_pdma_phy *phy)
184 {
185         u32 dcsr;
186         u32 dint = readl(phy->base + DINT);
187         u32 reg = (phy->idx << 2) + DCSR;
188
189         if (!(dint & BIT(phy->idx)))
190                 return -EAGAIN;
191
192         /* clear irq */
193         dcsr = readl(phy->base + reg);
194         writel(dcsr, phy->base + reg);
195         if ((dcsr & DCSR_BUSERR) && (phy->vchan))
196                 dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
197
198         return 0;
199 }
200
201 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
202 {
203         struct mmp_pdma_phy *phy = dev_id;
204
205         if (clear_chan_irq(phy) != 0)
206                 return IRQ_NONE;
207
208         tasklet_schedule(&phy->vchan->tasklet);
209         return IRQ_HANDLED;
210 }
211
212 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
213 {
214         struct mmp_pdma_device *pdev = dev_id;
215         struct mmp_pdma_phy *phy;
216         u32 dint = readl(pdev->base + DINT);
217         int i, ret;
218         int irq_num = 0;
219
220         while (dint) {
221                 i = __ffs(dint);
222                 /* only handle interrupts belonging to pdma driver*/
223                 if (i >= pdev->dma_channels)
224                         break;
225                 dint &= (dint - 1);
226                 phy = &pdev->phy[i];
227                 ret = mmp_pdma_chan_handler(irq, phy);
228                 if (ret == IRQ_HANDLED)
229                         irq_num++;
230         }
231
232         if (irq_num)
233                 return IRQ_HANDLED;
234
235         return IRQ_NONE;
236 }
237
238 /* lookup free phy channel as descending priority */
239 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
240 {
241         int prio, i;
242         struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
243         struct mmp_pdma_phy *phy, *found = NULL;
244         unsigned long flags;
245
246         /*
247          * dma channel priorities
248          * ch 0 - 3,  16 - 19  <--> (0)
249          * ch 4 - 7,  20 - 23  <--> (1)
250          * ch 8 - 11, 24 - 27  <--> (2)
251          * ch 12 - 15, 28 - 31  <--> (3)
252          */
253
254         spin_lock_irqsave(&pdev->phy_lock, flags);
255         for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
256                 for (i = 0; i < pdev->dma_channels; i++) {
257                         if (prio != (i & 0xf) >> 2)
258                                 continue;
259                         phy = &pdev->phy[i];
260                         if (!phy->vchan) {
261                                 phy->vchan = pchan;
262                                 found = phy;
263                                 goto out_unlock;
264                         }
265                 }
266         }
267
268 out_unlock:
269         spin_unlock_irqrestore(&pdev->phy_lock, flags);
270         return found;
271 }
272
273 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
274 {
275         struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
276         unsigned long flags;
277         u32 reg;
278
279         if (!pchan->phy)
280                 return;
281
282         /* clear the channel mapping in DRCMR */
283         reg = DRCMR(pchan->drcmr);
284         writel(0, pchan->phy->base + reg);
285
286         spin_lock_irqsave(&pdev->phy_lock, flags);
287         pchan->phy->vchan = NULL;
288         pchan->phy = NULL;
289         spin_unlock_irqrestore(&pdev->phy_lock, flags);
290 }
291
292 /**
293  * start_pending_queue - transfer any pending transactions
294  * pending list ==> running list
295  */
296 static void start_pending_queue(struct mmp_pdma_chan *chan)
297 {
298         struct mmp_pdma_desc_sw *desc;
299
300         /* still in running, irq will start the pending list */
301         if (!chan->idle) {
302                 dev_dbg(chan->dev, "DMA controller still busy\n");
303                 return;
304         }
305
306         if (list_empty(&chan->chain_pending)) {
307                 /* chance to re-fetch phy channel with higher prio */
308                 mmp_pdma_free_phy(chan);
309                 dev_dbg(chan->dev, "no pending list\n");
310                 return;
311         }
312
313         if (!chan->phy) {
314                 chan->phy = lookup_phy(chan);
315                 if (!chan->phy) {
316                         dev_dbg(chan->dev, "no free dma channel\n");
317                         return;
318                 }
319         }
320
321         /*
322          * pending -> running
323          * reintilize pending list
324          */
325         desc = list_first_entry(&chan->chain_pending,
326                                 struct mmp_pdma_desc_sw, node);
327         list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
328
329         /*
330          * Program the descriptor's address into the DMA controller,
331          * then start the DMA transaction
332          */
333         set_desc(chan->phy, desc->async_tx.phys);
334         enable_chan(chan->phy);
335         chan->idle = false;
336 }
337
338
339 /* desc->tx_list ==> pending list */
340 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
341 {
342         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
343         struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
344         struct mmp_pdma_desc_sw *child;
345         unsigned long flags;
346         dma_cookie_t cookie = -EBUSY;
347
348         spin_lock_irqsave(&chan->desc_lock, flags);
349
350         list_for_each_entry(child, &desc->tx_list, node) {
351                 cookie = dma_cookie_assign(&child->async_tx);
352         }
353
354         /* softly link to pending list - desc->tx_list ==> pending list */
355         list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
356
357         spin_unlock_irqrestore(&chan->desc_lock, flags);
358
359         return cookie;
360 }
361
362 static struct mmp_pdma_desc_sw *
363 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
364 {
365         struct mmp_pdma_desc_sw *desc;
366         dma_addr_t pdesc;
367
368         desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
369         if (!desc) {
370                 dev_err(chan->dev, "out of memory for link descriptor\n");
371                 return NULL;
372         }
373
374         memset(desc, 0, sizeof(*desc));
375         INIT_LIST_HEAD(&desc->tx_list);
376         dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
377         /* each desc has submit */
378         desc->async_tx.tx_submit = mmp_pdma_tx_submit;
379         desc->async_tx.phys = pdesc;
380
381         return desc;
382 }
383
384 /**
385  * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
386  *
387  * This function will create a dma pool for descriptor allocation.
388  * Request irq only when channel is requested
389  * Return - The number of allocated descriptors.
390  */
391
392 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
393 {
394         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
395
396         if (chan->desc_pool)
397                 return 1;
398
399         chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
400                                           chan->dev,
401                                           sizeof(struct mmp_pdma_desc_sw),
402                                           __alignof__(struct mmp_pdma_desc_sw),
403                                           0);
404         if (!chan->desc_pool) {
405                 dev_err(chan->dev, "unable to allocate descriptor pool\n");
406                 return -ENOMEM;
407         }
408
409         mmp_pdma_free_phy(chan);
410         chan->idle = true;
411         chan->dev_addr = 0;
412         return 1;
413 }
414
415 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
416                                     struct list_head *list)
417 {
418         struct mmp_pdma_desc_sw *desc, *_desc;
419
420         list_for_each_entry_safe(desc, _desc, list, node) {
421                 list_del(&desc->node);
422                 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
423         }
424 }
425
426 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
427 {
428         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
429         unsigned long flags;
430
431         spin_lock_irqsave(&chan->desc_lock, flags);
432         mmp_pdma_free_desc_list(chan, &chan->chain_pending);
433         mmp_pdma_free_desc_list(chan, &chan->chain_running);
434         spin_unlock_irqrestore(&chan->desc_lock, flags);
435
436         dma_pool_destroy(chan->desc_pool);
437         chan->desc_pool = NULL;
438         chan->idle = true;
439         chan->dev_addr = 0;
440         mmp_pdma_free_phy(chan);
441         return;
442 }
443
444 static struct dma_async_tx_descriptor *
445 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
446                      dma_addr_t dma_dst, dma_addr_t dma_src,
447                      size_t len, unsigned long flags)
448 {
449         struct mmp_pdma_chan *chan;
450         struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
451         size_t copy = 0;
452
453         if (!dchan)
454                 return NULL;
455
456         if (!len)
457                 return NULL;
458
459         chan = to_mmp_pdma_chan(dchan);
460         chan->byte_align = false;
461
462         if (!chan->dir) {
463                 chan->dir = DMA_MEM_TO_MEM;
464                 chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
465                 chan->dcmd |= DCMD_BURST32;
466         }
467
468         do {
469                 /* Allocate the link descriptor from DMA pool */
470                 new = mmp_pdma_alloc_descriptor(chan);
471                 if (!new) {
472                         dev_err(chan->dev, "no memory for desc\n");
473                         goto fail;
474                 }
475
476                 copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
477                 if (dma_src & 0x7 || dma_dst & 0x7)
478                         chan->byte_align = true;
479
480                 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
481                 new->desc.dsadr = dma_src;
482                 new->desc.dtadr = dma_dst;
483
484                 if (!first)
485                         first = new;
486                 else
487                         prev->desc.ddadr = new->async_tx.phys;
488
489                 new->async_tx.cookie = 0;
490                 async_tx_ack(&new->async_tx);
491
492                 prev = new;
493                 len -= copy;
494
495                 if (chan->dir == DMA_MEM_TO_DEV) {
496                         dma_src += copy;
497                 } else if (chan->dir == DMA_DEV_TO_MEM) {
498                         dma_dst += copy;
499                 } else if (chan->dir == DMA_MEM_TO_MEM) {
500                         dma_src += copy;
501                         dma_dst += copy;
502                 }
503
504                 /* Insert the link descriptor to the LD ring */
505                 list_add_tail(&new->node, &first->tx_list);
506         } while (len);
507
508         first->async_tx.flags = flags; /* client is in control of this ack */
509         first->async_tx.cookie = -EBUSY;
510
511         /* last desc and fire IRQ */
512         new->desc.ddadr = DDADR_STOP;
513         new->desc.dcmd |= DCMD_ENDIRQEN;
514
515         chan->cyclic_first = NULL;
516
517         return &first->async_tx;
518
519 fail:
520         if (first)
521                 mmp_pdma_free_desc_list(chan, &first->tx_list);
522         return NULL;
523 }
524
525 static struct dma_async_tx_descriptor *
526 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
527                        unsigned int sg_len, enum dma_transfer_direction dir,
528                        unsigned long flags, void *context)
529 {
530         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
531         struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
532         size_t len, avail;
533         struct scatterlist *sg;
534         dma_addr_t addr;
535         int i;
536
537         if ((sgl == NULL) || (sg_len == 0))
538                 return NULL;
539
540         chan->byte_align = false;
541
542         for_each_sg(sgl, sg, sg_len, i) {
543                 addr = sg_dma_address(sg);
544                 avail = sg_dma_len(sgl);
545
546                 do {
547                         len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
548                         if (addr & 0x7)
549                                 chan->byte_align = true;
550
551                         /* allocate and populate the descriptor */
552                         new = mmp_pdma_alloc_descriptor(chan);
553                         if (!new) {
554                                 dev_err(chan->dev, "no memory for desc\n");
555                                 goto fail;
556                         }
557
558                         new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
559                         if (dir == DMA_MEM_TO_DEV) {
560                                 new->desc.dsadr = addr;
561                                 new->desc.dtadr = chan->dev_addr;
562                         } else {
563                                 new->desc.dsadr = chan->dev_addr;
564                                 new->desc.dtadr = addr;
565                         }
566
567                         if (!first)
568                                 first = new;
569                         else
570                                 prev->desc.ddadr = new->async_tx.phys;
571
572                         new->async_tx.cookie = 0;
573                         async_tx_ack(&new->async_tx);
574                         prev = new;
575
576                         /* Insert the link descriptor to the LD ring */
577                         list_add_tail(&new->node, &first->tx_list);
578
579                         /* update metadata */
580                         addr += len;
581                         avail -= len;
582                 } while (avail);
583         }
584
585         first->async_tx.cookie = -EBUSY;
586         first->async_tx.flags = flags;
587
588         /* last desc and fire IRQ */
589         new->desc.ddadr = DDADR_STOP;
590         new->desc.dcmd |= DCMD_ENDIRQEN;
591
592         chan->dir = dir;
593         chan->cyclic_first = NULL;
594
595         return &first->async_tx;
596
597 fail:
598         if (first)
599                 mmp_pdma_free_desc_list(chan, &first->tx_list);
600         return NULL;
601 }
602
603 static struct dma_async_tx_descriptor *
604 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
605                          dma_addr_t buf_addr, size_t len, size_t period_len,
606                          enum dma_transfer_direction direction,
607                          unsigned long flags)
608 {
609         struct mmp_pdma_chan *chan;
610         struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
611         dma_addr_t dma_src, dma_dst;
612
613         if (!dchan || !len || !period_len)
614                 return NULL;
615
616         /* the buffer length must be a multiple of period_len */
617         if (len % period_len != 0)
618                 return NULL;
619
620         if (period_len > PDMA_MAX_DESC_BYTES)
621                 return NULL;
622
623         chan = to_mmp_pdma_chan(dchan);
624
625         switch (direction) {
626         case DMA_MEM_TO_DEV:
627                 dma_src = buf_addr;
628                 dma_dst = chan->dev_addr;
629                 break;
630         case DMA_DEV_TO_MEM:
631                 dma_dst = buf_addr;
632                 dma_src = chan->dev_addr;
633                 break;
634         default:
635                 dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
636                 return NULL;
637         }
638
639         chan->dir = direction;
640
641         do {
642                 /* Allocate the link descriptor from DMA pool */
643                 new = mmp_pdma_alloc_descriptor(chan);
644                 if (!new) {
645                         dev_err(chan->dev, "no memory for desc\n");
646                         goto fail;
647                 }
648
649                 new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
650                                   (DCMD_LENGTH & period_len));
651                 new->desc.dsadr = dma_src;
652                 new->desc.dtadr = dma_dst;
653
654                 if (!first)
655                         first = new;
656                 else
657                         prev->desc.ddadr = new->async_tx.phys;
658
659                 new->async_tx.cookie = 0;
660                 async_tx_ack(&new->async_tx);
661
662                 prev = new;
663                 len -= period_len;
664
665                 if (chan->dir == DMA_MEM_TO_DEV)
666                         dma_src += period_len;
667                 else
668                         dma_dst += period_len;
669
670                 /* Insert the link descriptor to the LD ring */
671                 list_add_tail(&new->node, &first->tx_list);
672         } while (len);
673
674         first->async_tx.flags = flags; /* client is in control of this ack */
675         first->async_tx.cookie = -EBUSY;
676
677         /* make the cyclic link */
678         new->desc.ddadr = first->async_tx.phys;
679         chan->cyclic_first = first;
680
681         return &first->async_tx;
682
683 fail:
684         if (first)
685                 mmp_pdma_free_desc_list(chan, &first->tx_list);
686         return NULL;
687 }
688
689 static int mmp_pdma_config(struct dma_chan *dchan,
690                            struct dma_slave_config *cfg)
691 {
692         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
693         u32 maxburst = 0, addr = 0;
694         enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
695
696         if (!dchan)
697                 return -EINVAL;
698
699         if (cfg->direction == DMA_DEV_TO_MEM) {
700                 chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
701                 maxburst = cfg->src_maxburst;
702                 width = cfg->src_addr_width;
703                 addr = cfg->src_addr;
704         } else if (cfg->direction == DMA_MEM_TO_DEV) {
705                 chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
706                 maxburst = cfg->dst_maxburst;
707                 width = cfg->dst_addr_width;
708                 addr = cfg->dst_addr;
709         }
710
711         if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
712                 chan->dcmd |= DCMD_WIDTH1;
713         else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
714                 chan->dcmd |= DCMD_WIDTH2;
715         else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
716                 chan->dcmd |= DCMD_WIDTH4;
717
718         if (maxburst == 8)
719                 chan->dcmd |= DCMD_BURST8;
720         else if (maxburst == 16)
721                 chan->dcmd |= DCMD_BURST16;
722         else if (maxburst == 32)
723                 chan->dcmd |= DCMD_BURST32;
724
725         chan->dir = cfg->direction;
726         chan->dev_addr = addr;
727         /* FIXME: drivers should be ported over to use the filter
728          * function. Once that's done, the following two lines can
729          * be removed.
730          */
731         if (cfg->slave_id)
732                 chan->drcmr = cfg->slave_id;
733
734         return 0;
735 }
736
737 static int mmp_pdma_terminate_all(struct dma_chan *dchan)
738 {
739         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
740         unsigned long flags;
741
742         if (!dchan)
743                 return -EINVAL;
744
745         disable_chan(chan->phy);
746         mmp_pdma_free_phy(chan);
747         spin_lock_irqsave(&chan->desc_lock, flags);
748         mmp_pdma_free_desc_list(chan, &chan->chain_pending);
749         mmp_pdma_free_desc_list(chan, &chan->chain_running);
750         spin_unlock_irqrestore(&chan->desc_lock, flags);
751         chan->idle = true;
752
753         return 0;
754 }
755
756 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
757                                      dma_cookie_t cookie)
758 {
759         struct mmp_pdma_desc_sw *sw;
760         u32 curr, residue = 0;
761         bool passed = false;
762         bool cyclic = chan->cyclic_first != NULL;
763
764         /*
765          * If the channel does not have a phy pointer anymore, it has already
766          * been completed. Therefore, its residue is 0.
767          */
768         if (!chan->phy)
769                 return 0;
770
771         if (chan->dir == DMA_DEV_TO_MEM)
772                 curr = readl(chan->phy->base + DTADR(chan->phy->idx));
773         else
774                 curr = readl(chan->phy->base + DSADR(chan->phy->idx));
775
776         list_for_each_entry(sw, &chan->chain_running, node) {
777                 u32 start, end, len;
778
779                 if (chan->dir == DMA_DEV_TO_MEM)
780                         start = sw->desc.dtadr;
781                 else
782                         start = sw->desc.dsadr;
783
784                 len = sw->desc.dcmd & DCMD_LENGTH;
785                 end = start + len;
786
787                 /*
788                  * 'passed' will be latched once we found the descriptor which
789                  * lies inside the boundaries of the curr pointer. All
790                  * descriptors that occur in the list _after_ we found that
791                  * partially handled descriptor are still to be processed and
792                  * are hence added to the residual bytes counter.
793                  */
794
795                 if (passed) {
796                         residue += len;
797                 } else if (curr >= start && curr <= end) {
798                         residue += end - curr;
799                         passed = true;
800                 }
801
802                 /*
803                  * Descriptors that have the ENDIRQEN bit set mark the end of a
804                  * transaction chain, and the cookie assigned with it has been
805                  * returned previously from mmp_pdma_tx_submit().
806                  *
807                  * In case we have multiple transactions in the running chain,
808                  * and the cookie does not match the one the user asked us
809                  * about, reset the state variables and start over.
810                  *
811                  * This logic does not apply to cyclic transactions, where all
812                  * descriptors have the ENDIRQEN bit set, and for which we
813                  * can't have multiple transactions on one channel anyway.
814                  */
815                 if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
816                         continue;
817
818                 if (sw->async_tx.cookie == cookie) {
819                         return residue;
820                 } else {
821                         residue = 0;
822                         passed = false;
823                 }
824         }
825
826         /* We should only get here in case of cyclic transactions */
827         return residue;
828 }
829
830 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
831                                           dma_cookie_t cookie,
832                                           struct dma_tx_state *txstate)
833 {
834         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
835         enum dma_status ret;
836
837         ret = dma_cookie_status(dchan, cookie, txstate);
838         if (likely(ret != DMA_ERROR))
839                 dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
840
841         return ret;
842 }
843
844 /**
845  * mmp_pdma_issue_pending - Issue the DMA start command
846  * pending list ==> running list
847  */
848 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
849 {
850         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
851         unsigned long flags;
852
853         spin_lock_irqsave(&chan->desc_lock, flags);
854         start_pending_queue(chan);
855         spin_unlock_irqrestore(&chan->desc_lock, flags);
856 }
857
858 /*
859  * dma_do_tasklet
860  * Do call back
861  * Start pending list
862  */
863 static void dma_do_tasklet(unsigned long data)
864 {
865         struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data;
866         struct mmp_pdma_desc_sw *desc, *_desc;
867         LIST_HEAD(chain_cleanup);
868         unsigned long flags;
869
870         if (chan->cyclic_first) {
871                 dma_async_tx_callback cb = NULL;
872                 void *cb_data = NULL;
873
874                 spin_lock_irqsave(&chan->desc_lock, flags);
875                 desc = chan->cyclic_first;
876                 cb = desc->async_tx.callback;
877                 cb_data = desc->async_tx.callback_param;
878                 spin_unlock_irqrestore(&chan->desc_lock, flags);
879
880                 if (cb)
881                         cb(cb_data);
882
883                 return;
884         }
885
886         /* submit pending list; callback for each desc; free desc */
887         spin_lock_irqsave(&chan->desc_lock, flags);
888
889         list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
890                 /*
891                  * move the descriptors to a temporary list so we can drop
892                  * the lock during the entire cleanup operation
893                  */
894                 list_move(&desc->node, &chain_cleanup);
895
896                 /*
897                  * Look for the first list entry which has the ENDIRQEN flag
898                  * set. That is the descriptor we got an interrupt for, so
899                  * complete that transaction and its cookie.
900                  */
901                 if (desc->desc.dcmd & DCMD_ENDIRQEN) {
902                         dma_cookie_t cookie = desc->async_tx.cookie;
903                         dma_cookie_complete(&desc->async_tx);
904                         dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
905                         break;
906                 }
907         }
908
909         /*
910          * The hardware is idle and ready for more when the
911          * chain_running list is empty.
912          */
913         chan->idle = list_empty(&chan->chain_running);
914
915         /* Start any pending transactions automatically */
916         start_pending_queue(chan);
917         spin_unlock_irqrestore(&chan->desc_lock, flags);
918
919         /* Run the callback for each descriptor, in order */
920         list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
921                 struct dma_async_tx_descriptor *txd = &desc->async_tx;
922
923                 /* Remove from the list of transactions */
924                 list_del(&desc->node);
925                 /* Run the link descriptor callback function */
926                 if (txd->callback)
927                         txd->callback(txd->callback_param);
928
929                 dma_pool_free(chan->desc_pool, desc, txd->phys);
930         }
931 }
932
933 static int mmp_pdma_remove(struct platform_device *op)
934 {
935         struct mmp_pdma_device *pdev = platform_get_drvdata(op);
936
937         dma_async_device_unregister(&pdev->device);
938         return 0;
939 }
940
941 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
942 {
943         struct mmp_pdma_phy *phy  = &pdev->phy[idx];
944         struct mmp_pdma_chan *chan;
945         int ret;
946
947         chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
948         if (chan == NULL)
949                 return -ENOMEM;
950
951         phy->idx = idx;
952         phy->base = pdev->base;
953
954         if (irq) {
955                 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
956                                        IRQF_SHARED, "pdma", phy);
957                 if (ret) {
958                         dev_err(pdev->dev, "channel request irq fail!\n");
959                         return ret;
960                 }
961         }
962
963         spin_lock_init(&chan->desc_lock);
964         chan->dev = pdev->dev;
965         chan->chan.device = &pdev->device;
966         tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
967         INIT_LIST_HEAD(&chan->chain_pending);
968         INIT_LIST_HEAD(&chan->chain_running);
969
970         /* register virt channel to dma engine */
971         list_add_tail(&chan->chan.device_node, &pdev->device.channels);
972
973         return 0;
974 }
975
976 static struct of_device_id mmp_pdma_dt_ids[] = {
977         { .compatible = "marvell,pdma-1.0", },
978         {}
979 };
980 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
981
982 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
983                                            struct of_dma *ofdma)
984 {
985         struct mmp_pdma_device *d = ofdma->of_dma_data;
986         struct dma_chan *chan;
987
988         chan = dma_get_any_slave_channel(&d->device);
989         if (!chan)
990                 return NULL;
991
992         to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
993
994         return chan;
995 }
996
997 static int mmp_pdma_probe(struct platform_device *op)
998 {
999         struct mmp_pdma_device *pdev;
1000         const struct of_device_id *of_id;
1001         struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
1002         struct resource *iores;
1003         int i, ret, irq = 0;
1004         int dma_channels = 0, irq_num = 0;
1005         const enum dma_slave_buswidth widths =
1006                 DMA_SLAVE_BUSWIDTH_1_BYTE   | DMA_SLAVE_BUSWIDTH_2_BYTES |
1007                 DMA_SLAVE_BUSWIDTH_4_BYTES;
1008
1009         pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1010         if (!pdev)
1011                 return -ENOMEM;
1012
1013         pdev->dev = &op->dev;
1014
1015         spin_lock_init(&pdev->phy_lock);
1016
1017         iores = platform_get_resource(op, IORESOURCE_MEM, 0);
1018         pdev->base = devm_ioremap_resource(pdev->dev, iores);
1019         if (IS_ERR(pdev->base))
1020                 return PTR_ERR(pdev->base);
1021
1022         of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev);
1023         if (of_id)
1024                 of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1025                                      &dma_channels);
1026         else if (pdata && pdata->dma_channels)
1027                 dma_channels = pdata->dma_channels;
1028         else
1029                 dma_channels = 32;      /* default 32 channel */
1030         pdev->dma_channels = dma_channels;
1031
1032         for (i = 0; i < dma_channels; i++) {
1033                 if (platform_get_irq(op, i) > 0)
1034                         irq_num++;
1035         }
1036
1037         pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1038                                  GFP_KERNEL);
1039         if (pdev->phy == NULL)
1040                 return -ENOMEM;
1041
1042         INIT_LIST_HEAD(&pdev->device.channels);
1043
1044         if (irq_num != dma_channels) {
1045                 /* all chan share one irq, demux inside */
1046                 irq = platform_get_irq(op, 0);
1047                 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1048                                        IRQF_SHARED, "pdma", pdev);
1049                 if (ret)
1050                         return ret;
1051         }
1052
1053         for (i = 0; i < dma_channels; i++) {
1054                 irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1055                 ret = mmp_pdma_chan_init(pdev, i, irq);
1056                 if (ret)
1057                         return ret;
1058         }
1059
1060         dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1061         dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1062         dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1063         dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1064         pdev->device.dev = &op->dev;
1065         pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1066         pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1067         pdev->device.device_tx_status = mmp_pdma_tx_status;
1068         pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1069         pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1070         pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1071         pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1072         pdev->device.device_config = mmp_pdma_config;
1073         pdev->device.device_terminate_all = mmp_pdma_terminate_all;
1074         pdev->device.copy_align = PDMA_ALIGNMENT;
1075         pdev->device.src_addr_widths = widths;
1076         pdev->device.dst_addr_widths = widths;
1077         pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1078         pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1079
1080         if (pdev->dev->coherent_dma_mask)
1081                 dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1082         else
1083                 dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1084
1085         ret = dma_async_device_register(&pdev->device);
1086         if (ret) {
1087                 dev_err(pdev->device.dev, "unable to register\n");
1088                 return ret;
1089         }
1090
1091         if (op->dev.of_node) {
1092                 /* Device-tree DMA controller registration */
1093                 ret = of_dma_controller_register(op->dev.of_node,
1094                                                  mmp_pdma_dma_xlate, pdev);
1095                 if (ret < 0) {
1096                         dev_err(&op->dev, "of_dma_controller_register failed\n");
1097                         return ret;
1098                 }
1099         }
1100
1101         platform_set_drvdata(op, pdev);
1102         dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1103         return 0;
1104 }
1105
1106 static const struct platform_device_id mmp_pdma_id_table[] = {
1107         { "mmp-pdma", },
1108         { },
1109 };
1110
1111 static struct platform_driver mmp_pdma_driver = {
1112         .driver         = {
1113                 .name   = "mmp-pdma",
1114                 .of_match_table = mmp_pdma_dt_ids,
1115         },
1116         .id_table       = mmp_pdma_id_table,
1117         .probe          = mmp_pdma_probe,
1118         .remove         = mmp_pdma_remove,
1119 };
1120
1121 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param)
1122 {
1123         struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan);
1124
1125         if (chan->device->dev->driver != &mmp_pdma_driver.driver)
1126                 return false;
1127
1128         c->drcmr = *(unsigned int *)param;
1129
1130         return true;
1131 }
1132 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn);
1133
1134 module_platform_driver(mmp_pdma_driver);
1135
1136 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1137 MODULE_AUTHOR("Marvell International Ltd.");
1138 MODULE_LICENSE("GPL v2");