Merge tag 'for-4.15/dm' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mappe...
[sfrench/cifs-2.6.git] / drivers / crypto / inside-secure / safexcel_hash.c
1 /*
2  * Copyright (C) 2017 Marvell
3  *
4  * Antoine Tenart <antoine.tenart@free-electrons.com>
5  *
6  * This file is licensed under the terms of the GNU General Public
7  * License version 2. This program is licensed "as is" without any
8  * warranty of any kind, whether express or implied.
9  */
10
11 #include <crypto/hmac.h>
12 #include <crypto/sha.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16
17
18 #include "safexcel.h"
19
20 struct safexcel_ahash_ctx {
21         struct safexcel_context base;
22         struct safexcel_crypto_priv *priv;
23
24         u32 alg;
25         u32 digest;
26
27         u32 ipad[SHA1_DIGEST_SIZE / sizeof(u32)];
28         u32 opad[SHA1_DIGEST_SIZE / sizeof(u32)];
29 };
30
31 struct safexcel_ahash_req {
32         bool last_req;
33         bool finish;
34         bool hmac;
35
36         u8 state_sz;    /* expected sate size, only set once */
37         u32 state[SHA256_DIGEST_SIZE / sizeof(u32)];
38
39         u64 len;
40         u64 processed;
41
42         u8 cache[SHA256_BLOCK_SIZE] __aligned(sizeof(u32));
43         u8 cache_next[SHA256_BLOCK_SIZE] __aligned(sizeof(u32));
44 };
45
46 struct safexcel_ahash_export_state {
47         u64 len;
48         u64 processed;
49
50         u32 state[SHA256_DIGEST_SIZE / sizeof(u32)];
51         u8 cache[SHA256_BLOCK_SIZE];
52 };
53
54 static void safexcel_hash_token(struct safexcel_command_desc *cdesc,
55                                 u32 input_length, u32 result_length)
56 {
57         struct safexcel_token *token =
58                 (struct safexcel_token *)cdesc->control_data.token;
59
60         token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
61         token[0].packet_length = input_length;
62         token[0].stat = EIP197_TOKEN_STAT_LAST_HASH;
63         token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
64
65         token[1].opcode = EIP197_TOKEN_OPCODE_INSERT;
66         token[1].packet_length = result_length;
67         token[1].stat = EIP197_TOKEN_STAT_LAST_HASH |
68                         EIP197_TOKEN_STAT_LAST_PACKET;
69         token[1].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
70                                 EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
71 }
72
73 static void safexcel_context_control(struct safexcel_ahash_ctx *ctx,
74                                      struct safexcel_ahash_req *req,
75                                      struct safexcel_command_desc *cdesc,
76                                      unsigned int digestsize,
77                                      unsigned int blocksize)
78 {
79         int i;
80
81         cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_OUT;
82         cdesc->control_data.control0 |= ctx->alg;
83         cdesc->control_data.control0 |= ctx->digest;
84
85         if (ctx->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) {
86                 if (req->processed) {
87                         if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
88                                 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(6);
89                         else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224 ||
90                                  ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
91                                 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(9);
92
93                         cdesc->control_data.control1 |= CONTEXT_CONTROL_DIGEST_CNT;
94                 } else {
95                         cdesc->control_data.control0 |= CONTEXT_CONTROL_RESTART_HASH;
96                 }
97
98                 if (!req->finish)
99                         cdesc->control_data.control0 |= CONTEXT_CONTROL_NO_FINISH_HASH;
100
101                 /*
102                  * Copy the input digest if needed, and setup the context
103                  * fields. Do this now as we need it to setup the first command
104                  * descriptor.
105                  */
106                 if (req->processed) {
107                         for (i = 0; i < digestsize / sizeof(u32); i++)
108                                 ctx->base.ctxr->data[i] = cpu_to_le32(req->state[i]);
109
110                         if (req->finish)
111                                 ctx->base.ctxr->data[i] = cpu_to_le32(req->processed / blocksize);
112                 }
113         } else if (ctx->digest == CONTEXT_CONTROL_DIGEST_HMAC) {
114                 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(10);
115
116                 memcpy(ctx->base.ctxr->data, ctx->ipad, digestsize);
117                 memcpy(ctx->base.ctxr->data + digestsize / sizeof(u32),
118                        ctx->opad, digestsize);
119         }
120 }
121
122 static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring,
123                                   struct crypto_async_request *async,
124                                   bool *should_complete, int *ret)
125 {
126         struct safexcel_result_desc *rdesc;
127         struct ahash_request *areq = ahash_request_cast(async);
128         struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
129         struct safexcel_ahash_req *sreq = ahash_request_ctx(areq);
130         int cache_len, result_sz = sreq->state_sz;
131
132         *ret = 0;
133
134         spin_lock_bh(&priv->ring[ring].egress_lock);
135         rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
136         if (IS_ERR(rdesc)) {
137                 dev_err(priv->dev,
138                         "hash: result: could not retrieve the result descriptor\n");
139                 *ret = PTR_ERR(rdesc);
140         } else if (rdesc->result_data.error_code) {
141                 dev_err(priv->dev,
142                         "hash: result: result descriptor error (%d)\n",
143                         rdesc->result_data.error_code);
144                 *ret = -EINVAL;
145         }
146
147         safexcel_complete(priv, ring);
148         spin_unlock_bh(&priv->ring[ring].egress_lock);
149
150         if (sreq->finish)
151                 result_sz = crypto_ahash_digestsize(ahash);
152         memcpy(sreq->state, areq->result, result_sz);
153
154         dma_unmap_sg(priv->dev, areq->src,
155                      sg_nents_for_len(areq->src, areq->nbytes), DMA_TO_DEVICE);
156
157         safexcel_free_context(priv, async, sreq->state_sz);
158
159         cache_len = sreq->len - sreq->processed;
160         if (cache_len)
161                 memcpy(sreq->cache, sreq->cache_next, cache_len);
162
163         *should_complete = true;
164
165         return 1;
166 }
167
168 static int safexcel_ahash_send(struct crypto_async_request *async, int ring,
169                                struct safexcel_request *request, int *commands,
170                                int *results)
171 {
172         struct ahash_request *areq = ahash_request_cast(async);
173         struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
174         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
175         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
176         struct safexcel_crypto_priv *priv = ctx->priv;
177         struct safexcel_command_desc *cdesc, *first_cdesc = NULL;
178         struct safexcel_result_desc *rdesc;
179         struct scatterlist *sg;
180         int i, nents, queued, len, cache_len, extra, n_cdesc = 0, ret = 0;
181
182         queued = len = req->len - req->processed;
183         if (queued < crypto_ahash_blocksize(ahash))
184                 cache_len = queued;
185         else
186                 cache_len = queued - areq->nbytes;
187
188         /*
189          * If this is not the last request and the queued data does not fit
190          * into full blocks, cache it for the next send() call.
191          */
192         extra = queued & (crypto_ahash_blocksize(ahash) - 1);
193         if (!req->last_req && extra) {
194                 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
195                                    req->cache_next, extra, areq->nbytes - extra);
196
197                 queued -= extra;
198                 len -= extra;
199         }
200
201         spin_lock_bh(&priv->ring[ring].egress_lock);
202
203         /* Add a command descriptor for the cached data, if any */
204         if (cache_len) {
205                 ctx->base.cache = kzalloc(cache_len, EIP197_GFP_FLAGS(*async));
206                 if (!ctx->base.cache) {
207                         ret = -ENOMEM;
208                         goto unlock;
209                 }
210                 memcpy(ctx->base.cache, req->cache, cache_len);
211                 ctx->base.cache_dma = dma_map_single(priv->dev, ctx->base.cache,
212                                                      cache_len, DMA_TO_DEVICE);
213                 if (dma_mapping_error(priv->dev, ctx->base.cache_dma)) {
214                         ret = -EINVAL;
215                         goto free_cache;
216                 }
217
218                 ctx->base.cache_sz = cache_len;
219                 first_cdesc = safexcel_add_cdesc(priv, ring, 1,
220                                                  (cache_len == len),
221                                                  ctx->base.cache_dma,
222                                                  cache_len, len,
223                                                  ctx->base.ctxr_dma);
224                 if (IS_ERR(first_cdesc)) {
225                         ret = PTR_ERR(first_cdesc);
226                         goto unmap_cache;
227                 }
228                 n_cdesc++;
229
230                 queued -= cache_len;
231                 if (!queued)
232                         goto send_command;
233         }
234
235         /* Now handle the current ahash request buffer(s) */
236         nents = dma_map_sg(priv->dev, areq->src,
237                        sg_nents_for_len(areq->src, areq->nbytes),
238                        DMA_TO_DEVICE);
239         if (!nents) {
240                 ret = -ENOMEM;
241                 goto cdesc_rollback;
242         }
243
244         for_each_sg(areq->src, sg, nents, i) {
245                 int sglen = sg_dma_len(sg);
246
247                 /* Do not overflow the request */
248                 if (queued - sglen < 0)
249                         sglen = queued;
250
251                 cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
252                                            !(queued - sglen), sg_dma_address(sg),
253                                            sglen, len, ctx->base.ctxr_dma);
254                 if (IS_ERR(cdesc)) {
255                         ret = PTR_ERR(cdesc);
256                         goto cdesc_rollback;
257                 }
258                 n_cdesc++;
259
260                 if (n_cdesc == 1)
261                         first_cdesc = cdesc;
262
263                 queued -= sglen;
264                 if (!queued)
265                         break;
266         }
267
268 send_command:
269         /* Setup the context options */
270         safexcel_context_control(ctx, req, first_cdesc, req->state_sz,
271                                  crypto_ahash_blocksize(ahash));
272
273         /* Add the token */
274         safexcel_hash_token(first_cdesc, len, req->state_sz);
275
276         ctx->base.result_dma = dma_map_single(priv->dev, areq->result,
277                                               req->state_sz, DMA_FROM_DEVICE);
278         if (dma_mapping_error(priv->dev, ctx->base.result_dma)) {
279                 ret = -EINVAL;
280                 goto cdesc_rollback;
281         }
282
283         /* Add a result descriptor */
284         rdesc = safexcel_add_rdesc(priv, ring, 1, 1, ctx->base.result_dma,
285                                    req->state_sz);
286         if (IS_ERR(rdesc)) {
287                 ret = PTR_ERR(rdesc);
288                 goto cdesc_rollback;
289         }
290
291         spin_unlock_bh(&priv->ring[ring].egress_lock);
292
293         req->processed += len;
294         request->req = &areq->base;
295         ctx->base.handle_result = safexcel_handle_result;
296
297         *commands = n_cdesc;
298         *results = 1;
299         return 0;
300
301 cdesc_rollback:
302         for (i = 0; i < n_cdesc; i++)
303                 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
304 unmap_cache:
305         if (ctx->base.cache_dma) {
306                 dma_unmap_single(priv->dev, ctx->base.cache_dma,
307                                  ctx->base.cache_sz, DMA_TO_DEVICE);
308                 ctx->base.cache_sz = 0;
309         }
310 free_cache:
311         kfree(ctx->base.cache);
312         ctx->base.cache = NULL;
313
314 unlock:
315         spin_unlock_bh(&priv->ring[ring].egress_lock);
316         return ret;
317 }
318
319 static inline bool safexcel_ahash_needs_inv_get(struct ahash_request *areq)
320 {
321         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
322         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
323         struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
324         unsigned int state_w_sz = req->state_sz / sizeof(u32);
325         int i;
326
327         for (i = 0; i < state_w_sz; i++)
328                 if (ctx->base.ctxr->data[i] != cpu_to_le32(req->state[i]))
329                         return true;
330
331         if (ctx->base.ctxr->data[state_w_sz] !=
332             cpu_to_le32(req->processed / crypto_ahash_blocksize(ahash)))
333                 return true;
334
335         return false;
336 }
337
338 static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
339                                       int ring,
340                                       struct crypto_async_request *async,
341                                       bool *should_complete, int *ret)
342 {
343         struct safexcel_result_desc *rdesc;
344         struct ahash_request *areq = ahash_request_cast(async);
345         struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
346         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
347         int enq_ret;
348
349         *ret = 0;
350
351         spin_lock_bh(&priv->ring[ring].egress_lock);
352         rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
353         if (IS_ERR(rdesc)) {
354                 dev_err(priv->dev,
355                         "hash: invalidate: could not retrieve the result descriptor\n");
356                 *ret = PTR_ERR(rdesc);
357         } else if (rdesc->result_data.error_code) {
358                 dev_err(priv->dev,
359                         "hash: invalidate: result descriptor error (%d)\n",
360                         rdesc->result_data.error_code);
361                 *ret = -EINVAL;
362         }
363
364         safexcel_complete(priv, ring);
365         spin_unlock_bh(&priv->ring[ring].egress_lock);
366
367         if (ctx->base.exit_inv) {
368                 dma_pool_free(priv->context_pool, ctx->base.ctxr,
369                               ctx->base.ctxr_dma);
370
371                 *should_complete = true;
372                 return 1;
373         }
374
375         ring = safexcel_select_ring(priv);
376         ctx->base.ring = ring;
377         ctx->base.needs_inv = false;
378         ctx->base.send = safexcel_ahash_send;
379
380         spin_lock_bh(&priv->ring[ring].queue_lock);
381         enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async);
382         spin_unlock_bh(&priv->ring[ring].queue_lock);
383
384         if (enq_ret != -EINPROGRESS)
385                 *ret = enq_ret;
386
387         if (!priv->ring[ring].need_dequeue)
388                 safexcel_dequeue(priv, ring);
389
390         *should_complete = false;
391
392         return 1;
393 }
394
395 static int safexcel_ahash_send_inv(struct crypto_async_request *async,
396                                    int ring, struct safexcel_request *request,
397                                    int *commands, int *results)
398 {
399         struct ahash_request *areq = ahash_request_cast(async);
400         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
401         int ret;
402
403         ctx->base.handle_result = safexcel_handle_inv_result;
404         ret = safexcel_invalidate_cache(async, &ctx->base, ctx->priv,
405                                         ctx->base.ctxr_dma, ring, request);
406         if (unlikely(ret))
407                 return ret;
408
409         *commands = 1;
410         *results = 1;
411
412         return 0;
413 }
414
415 static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm)
416 {
417         struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
418         struct safexcel_crypto_priv *priv = ctx->priv;
419         struct ahash_request req;
420         struct safexcel_inv_result result = {};
421         int ring = ctx->base.ring;
422
423         memset(&req, 0, sizeof(struct ahash_request));
424
425         /* create invalidation request */
426         init_completion(&result.completion);
427         ahash_request_set_callback(&req, CRYPTO_TFM_REQ_MAY_BACKLOG,
428                                    safexcel_inv_complete, &result);
429
430         ahash_request_set_tfm(&req, __crypto_ahash_cast(tfm));
431         ctx = crypto_tfm_ctx(req.base.tfm);
432         ctx->base.exit_inv = true;
433         ctx->base.send = safexcel_ahash_send_inv;
434
435         spin_lock_bh(&priv->ring[ring].queue_lock);
436         crypto_enqueue_request(&priv->ring[ring].queue, &req.base);
437         spin_unlock_bh(&priv->ring[ring].queue_lock);
438
439         if (!priv->ring[ring].need_dequeue)
440                 safexcel_dequeue(priv, ring);
441
442         wait_for_completion_interruptible(&result.completion);
443
444         if (result.error) {
445                 dev_warn(priv->dev, "hash: completion error (%d)\n",
446                          result.error);
447                 return result.error;
448         }
449
450         return 0;
451 }
452
453 static int safexcel_ahash_cache(struct ahash_request *areq)
454 {
455         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
456         struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
457         int queued, cache_len;
458
459         cache_len = req->len - areq->nbytes - req->processed;
460         queued = req->len - req->processed;
461
462         /*
463          * In case there isn't enough bytes to proceed (less than a
464          * block size), cache the data until we have enough.
465          */
466         if (cache_len + areq->nbytes <= crypto_ahash_blocksize(ahash)) {
467                 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
468                                    req->cache + cache_len,
469                                    areq->nbytes, 0);
470                 return areq->nbytes;
471         }
472
473         /* We could'nt cache all the data */
474         return -E2BIG;
475 }
476
477 static int safexcel_ahash_enqueue(struct ahash_request *areq)
478 {
479         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
480         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
481         struct safexcel_crypto_priv *priv = ctx->priv;
482         int ret, ring;
483
484         ctx->base.send = safexcel_ahash_send;
485
486         if (req->processed && ctx->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED)
487                 ctx->base.needs_inv = safexcel_ahash_needs_inv_get(areq);
488
489         if (ctx->base.ctxr) {
490                 if (ctx->base.needs_inv)
491                         ctx->base.send = safexcel_ahash_send_inv;
492         } else {
493                 ctx->base.ring = safexcel_select_ring(priv);
494                 ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
495                                                  EIP197_GFP_FLAGS(areq->base),
496                                                  &ctx->base.ctxr_dma);
497                 if (!ctx->base.ctxr)
498                         return -ENOMEM;
499         }
500
501         ring = ctx->base.ring;
502
503         spin_lock_bh(&priv->ring[ring].queue_lock);
504         ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base);
505         spin_unlock_bh(&priv->ring[ring].queue_lock);
506
507         if (!priv->ring[ring].need_dequeue)
508                 safexcel_dequeue(priv, ring);
509
510         return ret;
511 }
512
513 static int safexcel_ahash_update(struct ahash_request *areq)
514 {
515         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
516         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
517         struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
518
519         /* If the request is 0 length, do nothing */
520         if (!areq->nbytes)
521                 return 0;
522
523         req->len += areq->nbytes;
524
525         safexcel_ahash_cache(areq);
526
527         /*
528          * We're not doing partial updates when performing an hmac request.
529          * Everything will be handled by the final() call.
530          */
531         if (ctx->digest == CONTEXT_CONTROL_DIGEST_HMAC)
532                 return 0;
533
534         if (req->hmac)
535                 return safexcel_ahash_enqueue(areq);
536
537         if (!req->last_req &&
538             req->len - req->processed > crypto_ahash_blocksize(ahash))
539                 return safexcel_ahash_enqueue(areq);
540
541         return 0;
542 }
543
544 static int safexcel_ahash_final(struct ahash_request *areq)
545 {
546         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
547         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
548
549         req->last_req = true;
550         req->finish = true;
551
552         /* If we have an overall 0 length request */
553         if (!(req->len + areq->nbytes)) {
554                 if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
555                         memcpy(areq->result, sha1_zero_message_hash,
556                                SHA1_DIGEST_SIZE);
557                 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224)
558                         memcpy(areq->result, sha224_zero_message_hash,
559                                SHA224_DIGEST_SIZE);
560                 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
561                         memcpy(areq->result, sha256_zero_message_hash,
562                                SHA256_DIGEST_SIZE);
563
564                 return 0;
565         }
566
567         return safexcel_ahash_enqueue(areq);
568 }
569
570 static int safexcel_ahash_finup(struct ahash_request *areq)
571 {
572         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
573
574         req->last_req = true;
575         req->finish = true;
576
577         safexcel_ahash_update(areq);
578         return safexcel_ahash_final(areq);
579 }
580
581 static int safexcel_ahash_export(struct ahash_request *areq, void *out)
582 {
583         struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
584         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
585         struct safexcel_ahash_export_state *export = out;
586
587         export->len = req->len;
588         export->processed = req->processed;
589
590         memcpy(export->state, req->state, req->state_sz);
591         memset(export->cache, 0, crypto_ahash_blocksize(ahash));
592         memcpy(export->cache, req->cache, crypto_ahash_blocksize(ahash));
593
594         return 0;
595 }
596
597 static int safexcel_ahash_import(struct ahash_request *areq, const void *in)
598 {
599         struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
600         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
601         const struct safexcel_ahash_export_state *export = in;
602         int ret;
603
604         ret = crypto_ahash_init(areq);
605         if (ret)
606                 return ret;
607
608         req->len = export->len;
609         req->processed = export->processed;
610
611         memcpy(req->cache, export->cache, crypto_ahash_blocksize(ahash));
612         memcpy(req->state, export->state, req->state_sz);
613
614         return 0;
615 }
616
617 static int safexcel_ahash_cra_init(struct crypto_tfm *tfm)
618 {
619         struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
620         struct safexcel_alg_template *tmpl =
621                 container_of(__crypto_ahash_alg(tfm->__crt_alg),
622                              struct safexcel_alg_template, alg.ahash);
623
624         ctx->priv = tmpl->priv;
625
626         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
627                                  sizeof(struct safexcel_ahash_req));
628         return 0;
629 }
630
631 static int safexcel_sha1_init(struct ahash_request *areq)
632 {
633         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
634         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
635
636         memset(req, 0, sizeof(*req));
637
638         req->state[0] = SHA1_H0;
639         req->state[1] = SHA1_H1;
640         req->state[2] = SHA1_H2;
641         req->state[3] = SHA1_H3;
642         req->state[4] = SHA1_H4;
643
644         ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
645         ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
646         req->state_sz = SHA1_DIGEST_SIZE;
647
648         return 0;
649 }
650
651 static int safexcel_sha1_digest(struct ahash_request *areq)
652 {
653         int ret = safexcel_sha1_init(areq);
654
655         if (ret)
656                 return ret;
657
658         return safexcel_ahash_finup(areq);
659 }
660
661 static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm)
662 {
663         struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
664         struct safexcel_crypto_priv *priv = ctx->priv;
665         int ret;
666
667         /* context not allocated, skip invalidation */
668         if (!ctx->base.ctxr)
669                 return;
670
671         ret = safexcel_ahash_exit_inv(tfm);
672         if (ret)
673                 dev_warn(priv->dev, "hash: invalidation error %d\n", ret);
674 }
675
676 struct safexcel_alg_template safexcel_alg_sha1 = {
677         .type = SAFEXCEL_ALG_TYPE_AHASH,
678         .alg.ahash = {
679                 .init = safexcel_sha1_init,
680                 .update = safexcel_ahash_update,
681                 .final = safexcel_ahash_final,
682                 .finup = safexcel_ahash_finup,
683                 .digest = safexcel_sha1_digest,
684                 .export = safexcel_ahash_export,
685                 .import = safexcel_ahash_import,
686                 .halg = {
687                         .digestsize = SHA1_DIGEST_SIZE,
688                         .statesize = sizeof(struct safexcel_ahash_export_state),
689                         .base = {
690                                 .cra_name = "sha1",
691                                 .cra_driver_name = "safexcel-sha1",
692                                 .cra_priority = 300,
693                                 .cra_flags = CRYPTO_ALG_ASYNC |
694                                              CRYPTO_ALG_KERN_DRIVER_ONLY,
695                                 .cra_blocksize = SHA1_BLOCK_SIZE,
696                                 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
697                                 .cra_init = safexcel_ahash_cra_init,
698                                 .cra_exit = safexcel_ahash_cra_exit,
699                                 .cra_module = THIS_MODULE,
700                         },
701                 },
702         },
703 };
704
705 static int safexcel_hmac_sha1_init(struct ahash_request *areq)
706 {
707         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
708
709         safexcel_sha1_init(areq);
710         ctx->digest = CONTEXT_CONTROL_DIGEST_HMAC;
711         return 0;
712 }
713
714 static int safexcel_hmac_sha1_digest(struct ahash_request *areq)
715 {
716         int ret = safexcel_hmac_sha1_init(areq);
717
718         if (ret)
719                 return ret;
720
721         return safexcel_ahash_finup(areq);
722 }
723
724 struct safexcel_ahash_result {
725         struct completion completion;
726         int error;
727 };
728
729 static void safexcel_ahash_complete(struct crypto_async_request *req, int error)
730 {
731         struct safexcel_ahash_result *result = req->data;
732
733         if (error == -EINPROGRESS)
734                 return;
735
736         result->error = error;
737         complete(&result->completion);
738 }
739
740 static int safexcel_hmac_init_pad(struct ahash_request *areq,
741                                   unsigned int blocksize, const u8 *key,
742                                   unsigned int keylen, u8 *ipad, u8 *opad)
743 {
744         struct safexcel_ahash_result result;
745         struct scatterlist sg;
746         int ret, i;
747         u8 *keydup;
748
749         if (keylen <= blocksize) {
750                 memcpy(ipad, key, keylen);
751         } else {
752                 keydup = kmemdup(key, keylen, GFP_KERNEL);
753                 if (!keydup)
754                         return -ENOMEM;
755
756                 ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
757                                            safexcel_ahash_complete, &result);
758                 sg_init_one(&sg, keydup, keylen);
759                 ahash_request_set_crypt(areq, &sg, ipad, keylen);
760                 init_completion(&result.completion);
761
762                 ret = crypto_ahash_digest(areq);
763                 if (ret == -EINPROGRESS) {
764                         wait_for_completion_interruptible(&result.completion);
765                         ret = result.error;
766                 }
767
768                 /* Avoid leaking */
769                 memzero_explicit(keydup, keylen);
770                 kfree(keydup);
771
772                 if (ret)
773                         return ret;
774
775                 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
776         }
777
778         memset(ipad + keylen, 0, blocksize - keylen);
779         memcpy(opad, ipad, blocksize);
780
781         for (i = 0; i < blocksize; i++) {
782                 ipad[i] ^= HMAC_IPAD_VALUE;
783                 opad[i] ^= HMAC_OPAD_VALUE;
784         }
785
786         return 0;
787 }
788
789 static int safexcel_hmac_init_iv(struct ahash_request *areq,
790                                  unsigned int blocksize, u8 *pad, void *state)
791 {
792         struct safexcel_ahash_result result;
793         struct safexcel_ahash_req *req;
794         struct scatterlist sg;
795         int ret;
796
797         ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
798                                    safexcel_ahash_complete, &result);
799         sg_init_one(&sg, pad, blocksize);
800         ahash_request_set_crypt(areq, &sg, pad, blocksize);
801         init_completion(&result.completion);
802
803         ret = crypto_ahash_init(areq);
804         if (ret)
805                 return ret;
806
807         req = ahash_request_ctx(areq);
808         req->hmac = true;
809         req->last_req = true;
810
811         ret = crypto_ahash_update(areq);
812         if (ret && ret != -EINPROGRESS)
813                 return ret;
814
815         wait_for_completion_interruptible(&result.completion);
816         if (result.error)
817                 return result.error;
818
819         return crypto_ahash_export(areq, state);
820 }
821
822 static int safexcel_hmac_setkey(const char *alg, const u8 *key,
823                                 unsigned int keylen, void *istate, void *ostate)
824 {
825         struct ahash_request *areq;
826         struct crypto_ahash *tfm;
827         unsigned int blocksize;
828         u8 *ipad, *opad;
829         int ret;
830
831         tfm = crypto_alloc_ahash(alg, CRYPTO_ALG_TYPE_AHASH,
832                                  CRYPTO_ALG_TYPE_AHASH_MASK);
833         if (IS_ERR(tfm))
834                 return PTR_ERR(tfm);
835
836         areq = ahash_request_alloc(tfm, GFP_KERNEL);
837         if (!areq) {
838                 ret = -ENOMEM;
839                 goto free_ahash;
840         }
841
842         crypto_ahash_clear_flags(tfm, ~0);
843         blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
844
845         ipad = kzalloc(2 * blocksize, GFP_KERNEL);
846         if (!ipad) {
847                 ret = -ENOMEM;
848                 goto free_request;
849         }
850
851         opad = ipad + blocksize;
852
853         ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad);
854         if (ret)
855                 goto free_ipad;
856
857         ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate);
858         if (ret)
859                 goto free_ipad;
860
861         ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate);
862
863 free_ipad:
864         kfree(ipad);
865 free_request:
866         ahash_request_free(areq);
867 free_ahash:
868         crypto_free_ahash(tfm);
869
870         return ret;
871 }
872
873 static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
874                                      unsigned int keylen)
875 {
876         struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
877         struct safexcel_ahash_export_state istate, ostate;
878         int ret, i;
879
880         ret = safexcel_hmac_setkey("safexcel-sha1", key, keylen, &istate, &ostate);
881         if (ret)
882                 return ret;
883
884         for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++) {
885                 if (ctx->ipad[i] != le32_to_cpu(istate.state[i]) ||
886                     ctx->opad[i] != le32_to_cpu(ostate.state[i])) {
887                         ctx->base.needs_inv = true;
888                         break;
889                 }
890         }
891
892         memcpy(ctx->ipad, &istate.state, SHA1_DIGEST_SIZE);
893         memcpy(ctx->opad, &ostate.state, SHA1_DIGEST_SIZE);
894
895         return 0;
896 }
897
898 struct safexcel_alg_template safexcel_alg_hmac_sha1 = {
899         .type = SAFEXCEL_ALG_TYPE_AHASH,
900         .alg.ahash = {
901                 .init = safexcel_hmac_sha1_init,
902                 .update = safexcel_ahash_update,
903                 .final = safexcel_ahash_final,
904                 .finup = safexcel_ahash_finup,
905                 .digest = safexcel_hmac_sha1_digest,
906                 .setkey = safexcel_hmac_sha1_setkey,
907                 .export = safexcel_ahash_export,
908                 .import = safexcel_ahash_import,
909                 .halg = {
910                         .digestsize = SHA1_DIGEST_SIZE,
911                         .statesize = sizeof(struct safexcel_ahash_export_state),
912                         .base = {
913                                 .cra_name = "hmac(sha1)",
914                                 .cra_driver_name = "safexcel-hmac-sha1",
915                                 .cra_priority = 300,
916                                 .cra_flags = CRYPTO_ALG_ASYNC |
917                                              CRYPTO_ALG_KERN_DRIVER_ONLY,
918                                 .cra_blocksize = SHA1_BLOCK_SIZE,
919                                 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
920                                 .cra_init = safexcel_ahash_cra_init,
921                                 .cra_exit = safexcel_ahash_cra_exit,
922                                 .cra_module = THIS_MODULE,
923                         },
924                 },
925         },
926 };
927
928 static int safexcel_sha256_init(struct ahash_request *areq)
929 {
930         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
931         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
932
933         memset(req, 0, sizeof(*req));
934
935         req->state[0] = SHA256_H0;
936         req->state[1] = SHA256_H1;
937         req->state[2] = SHA256_H2;
938         req->state[3] = SHA256_H3;
939         req->state[4] = SHA256_H4;
940         req->state[5] = SHA256_H5;
941         req->state[6] = SHA256_H6;
942         req->state[7] = SHA256_H7;
943
944         ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
945         ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
946         req->state_sz = SHA256_DIGEST_SIZE;
947
948         return 0;
949 }
950
951 static int safexcel_sha256_digest(struct ahash_request *areq)
952 {
953         int ret = safexcel_sha256_init(areq);
954
955         if (ret)
956                 return ret;
957
958         return safexcel_ahash_finup(areq);
959 }
960
961 struct safexcel_alg_template safexcel_alg_sha256 = {
962         .type = SAFEXCEL_ALG_TYPE_AHASH,
963         .alg.ahash = {
964                 .init = safexcel_sha256_init,
965                 .update = safexcel_ahash_update,
966                 .final = safexcel_ahash_final,
967                 .finup = safexcel_ahash_finup,
968                 .digest = safexcel_sha256_digest,
969                 .export = safexcel_ahash_export,
970                 .import = safexcel_ahash_import,
971                 .halg = {
972                         .digestsize = SHA256_DIGEST_SIZE,
973                         .statesize = sizeof(struct safexcel_ahash_export_state),
974                         .base = {
975                                 .cra_name = "sha256",
976                                 .cra_driver_name = "safexcel-sha256",
977                                 .cra_priority = 300,
978                                 .cra_flags = CRYPTO_ALG_ASYNC |
979                                              CRYPTO_ALG_KERN_DRIVER_ONLY,
980                                 .cra_blocksize = SHA256_BLOCK_SIZE,
981                                 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
982                                 .cra_init = safexcel_ahash_cra_init,
983                                 .cra_exit = safexcel_ahash_cra_exit,
984                                 .cra_module = THIS_MODULE,
985                         },
986                 },
987         },
988 };
989
990 static int safexcel_sha224_init(struct ahash_request *areq)
991 {
992         struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
993         struct safexcel_ahash_req *req = ahash_request_ctx(areq);
994
995         memset(req, 0, sizeof(*req));
996
997         req->state[0] = SHA224_H0;
998         req->state[1] = SHA224_H1;
999         req->state[2] = SHA224_H2;
1000         req->state[3] = SHA224_H3;
1001         req->state[4] = SHA224_H4;
1002         req->state[5] = SHA224_H5;
1003         req->state[6] = SHA224_H6;
1004         req->state[7] = SHA224_H7;
1005
1006         ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1007         ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1008         req->state_sz = SHA256_DIGEST_SIZE;
1009
1010         return 0;
1011 }
1012
1013 static int safexcel_sha224_digest(struct ahash_request *areq)
1014 {
1015         int ret = safexcel_sha224_init(areq);
1016
1017         if (ret)
1018                 return ret;
1019
1020         return safexcel_ahash_finup(areq);
1021 }
1022
1023 struct safexcel_alg_template safexcel_alg_sha224 = {
1024         .type = SAFEXCEL_ALG_TYPE_AHASH,
1025         .alg.ahash = {
1026                 .init = safexcel_sha224_init,
1027                 .update = safexcel_ahash_update,
1028                 .final = safexcel_ahash_final,
1029                 .finup = safexcel_ahash_finup,
1030                 .digest = safexcel_sha224_digest,
1031                 .export = safexcel_ahash_export,
1032                 .import = safexcel_ahash_import,
1033                 .halg = {
1034                         .digestsize = SHA224_DIGEST_SIZE,
1035                         .statesize = sizeof(struct safexcel_ahash_export_state),
1036                         .base = {
1037                                 .cra_name = "sha224",
1038                                 .cra_driver_name = "safexcel-sha224",
1039                                 .cra_priority = 300,
1040                                 .cra_flags = CRYPTO_ALG_ASYNC |
1041                                              CRYPTO_ALG_KERN_DRIVER_ONLY,
1042                                 .cra_blocksize = SHA224_BLOCK_SIZE,
1043                                 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1044                                 .cra_init = safexcel_ahash_cra_init,
1045                                 .cra_exit = safexcel_ahash_cra_exit,
1046                                 .cra_module = THIS_MODULE,
1047                         },
1048                 },
1049         },
1050 };