Merge tag 'sound-4.15-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19
20 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40
41 #define POWERNV_MAX_PSTATES     256
42 #define PMSR_PSAFE_ENABLE       (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
44 #define PMSR_MAX(x)             ((x >> 32) & 0xFF)
45 #define LPSTATE_SHIFT           48
46 #define GPSTATE_SHIFT           56
47 #define GET_LPSTATE(x)          (((x) >> LPSTATE_SHIFT) & 0xFF)
48 #define GET_GPSTATE(x)          (((x) >> GPSTATE_SHIFT) & 0xFF)
49
50 #define MAX_RAMP_DOWN_TIME                              5120
51 /*
52  * On an idle system we want the global pstate to ramp-down from max value to
53  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
54  * then ramp-down rapidly later on.
55  *
56  * This gives a percentage rampdown for time elapsed in milliseconds.
57  * ramp_down_percentage = ((ms * ms) >> 18)
58  *                      ~= 3.8 * (sec * sec)
59  *
60  * At 0 ms      ramp_down_percent = 0
61  * At 5120 ms   ramp_down_percent = 100
62  */
63 #define ramp_down_percent(time)         ((time * time) >> 18)
64
65 /* Interval after which the timer is queued to bring down global pstate */
66 #define GPSTATE_TIMER_INTERVAL                          2000
67
68 /**
69  * struct global_pstate_info -  Per policy data structure to maintain history of
70  *                              global pstates
71  * @highest_lpstate_idx:        The local pstate index from which we are
72  *                              ramping down
73  * @elapsed_time:               Time in ms spent in ramping down from
74  *                              highest_lpstate_idx
75  * @last_sampled_time:          Time from boot in ms when global pstates were
76  *                              last set
77  * @last_lpstate_idx,           Last set value of local pstate and global
78  * last_gpstate_idx             pstate in terms of cpufreq table index
79  * @timer:                      Is used for ramping down if cpu goes idle for
80  *                              a long time with global pstate held high
81  * @gpstate_lock:               A spinlock to maintain synchronization between
82  *                              routines called by the timer handler and
83  *                              governer's target_index calls
84  */
85 struct global_pstate_info {
86         int highest_lpstate_idx;
87         unsigned int elapsed_time;
88         unsigned int last_sampled_time;
89         int last_lpstate_idx;
90         int last_gpstate_idx;
91         spinlock_t gpstate_lock;
92         struct timer_list timer;
93         struct cpufreq_policy *policy;
94 };
95
96 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
97 static bool rebooting, throttled, occ_reset;
98
99 static const char * const throttle_reason[] = {
100         "No throttling",
101         "Power Cap",
102         "Processor Over Temperature",
103         "Power Supply Failure",
104         "Over Current",
105         "OCC Reset"
106 };
107
108 enum throttle_reason_type {
109         NO_THROTTLE = 0,
110         POWERCAP,
111         CPU_OVERTEMP,
112         POWER_SUPPLY_FAILURE,
113         OVERCURRENT,
114         OCC_RESET_THROTTLE,
115         OCC_MAX_REASON
116 };
117
118 static struct chip {
119         unsigned int id;
120         bool throttled;
121         bool restore;
122         u8 throttle_reason;
123         cpumask_t mask;
124         struct work_struct throttle;
125         int throttle_turbo;
126         int throttle_sub_turbo;
127         int reason[OCC_MAX_REASON];
128 } *chips;
129
130 static int nr_chips;
131 static DEFINE_PER_CPU(struct chip *, chip_info);
132
133 /*
134  * Note:
135  * The set of pstates consists of contiguous integers.
136  * powernv_pstate_info stores the index of the frequency table for
137  * max, min and nominal frequencies. It also stores number of
138  * available frequencies.
139  *
140  * powernv_pstate_info.nominal indicates the index to the highest
141  * non-turbo frequency.
142  */
143 static struct powernv_pstate_info {
144         unsigned int min;
145         unsigned int max;
146         unsigned int nominal;
147         unsigned int nr_pstates;
148         bool wof_enabled;
149 } powernv_pstate_info;
150
151 /* Use following macros for conversions between pstate_id and index */
152 static inline int idx_to_pstate(unsigned int i)
153 {
154         if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
155                 pr_warn_once("index %u is out of bound\n", i);
156                 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
157         }
158
159         return powernv_freqs[i].driver_data;
160 }
161
162 static inline unsigned int pstate_to_idx(int pstate)
163 {
164         int min = powernv_freqs[powernv_pstate_info.min].driver_data;
165         int max = powernv_freqs[powernv_pstate_info.max].driver_data;
166
167         if (min > 0) {
168                 if (unlikely((pstate < max) || (pstate > min))) {
169                         pr_warn_once("pstate %d is out of bound\n", pstate);
170                         return powernv_pstate_info.nominal;
171                 }
172         } else {
173                 if (unlikely((pstate > max) || (pstate < min))) {
174                         pr_warn_once("pstate %d is out of bound\n", pstate);
175                         return powernv_pstate_info.nominal;
176                 }
177         }
178         /*
179          * abs() is deliberately used so that is works with
180          * both monotonically increasing and decreasing
181          * pstate values
182          */
183         return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
184 }
185
186 static inline void reset_gpstates(struct cpufreq_policy *policy)
187 {
188         struct global_pstate_info *gpstates = policy->driver_data;
189
190         gpstates->highest_lpstate_idx = 0;
191         gpstates->elapsed_time = 0;
192         gpstates->last_sampled_time = 0;
193         gpstates->last_lpstate_idx = 0;
194         gpstates->last_gpstate_idx = 0;
195 }
196
197 /*
198  * Initialize the freq table based on data obtained
199  * from the firmware passed via device-tree
200  */
201 static int init_powernv_pstates(void)
202 {
203         struct device_node *power_mgt;
204         int i, nr_pstates = 0;
205         const __be32 *pstate_ids, *pstate_freqs;
206         u32 len_ids, len_freqs;
207         u32 pstate_min, pstate_max, pstate_nominal;
208         u32 pstate_turbo, pstate_ultra_turbo;
209
210         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
211         if (!power_mgt) {
212                 pr_warn("power-mgt node not found\n");
213                 return -ENODEV;
214         }
215
216         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
217                 pr_warn("ibm,pstate-min node not found\n");
218                 return -ENODEV;
219         }
220
221         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
222                 pr_warn("ibm,pstate-max node not found\n");
223                 return -ENODEV;
224         }
225
226         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
227                                  &pstate_nominal)) {
228                 pr_warn("ibm,pstate-nominal not found\n");
229                 return -ENODEV;
230         }
231
232         if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
233                                  &pstate_ultra_turbo)) {
234                 powernv_pstate_info.wof_enabled = false;
235                 goto next;
236         }
237
238         if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
239                                  &pstate_turbo)) {
240                 powernv_pstate_info.wof_enabled = false;
241                 goto next;
242         }
243
244         if (pstate_turbo == pstate_ultra_turbo)
245                 powernv_pstate_info.wof_enabled = false;
246         else
247                 powernv_pstate_info.wof_enabled = true;
248
249 next:
250         pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
251                 pstate_nominal, pstate_max);
252         pr_info("Workload Optimized Frequency is %s in the platform\n",
253                 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
254
255         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
256         if (!pstate_ids) {
257                 pr_warn("ibm,pstate-ids not found\n");
258                 return -ENODEV;
259         }
260
261         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
262                                       &len_freqs);
263         if (!pstate_freqs) {
264                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
265                 return -ENODEV;
266         }
267
268         if (len_ids != len_freqs) {
269                 pr_warn("Entries in ibm,pstate-ids and "
270                         "ibm,pstate-frequencies-mhz does not match\n");
271         }
272
273         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
274         if (!nr_pstates) {
275                 pr_warn("No PStates found\n");
276                 return -ENODEV;
277         }
278
279         powernv_pstate_info.nr_pstates = nr_pstates;
280         pr_debug("NR PStates %d\n", nr_pstates);
281         for (i = 0; i < nr_pstates; i++) {
282                 u32 id = be32_to_cpu(pstate_ids[i]);
283                 u32 freq = be32_to_cpu(pstate_freqs[i]);
284
285                 pr_debug("PState id %d freq %d MHz\n", id, freq);
286                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
287                 powernv_freqs[i].driver_data = id;
288
289                 if (id == pstate_max)
290                         powernv_pstate_info.max = i;
291                 else if (id == pstate_nominal)
292                         powernv_pstate_info.nominal = i;
293                 else if (id == pstate_min)
294                         powernv_pstate_info.min = i;
295
296                 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
297                         int j;
298
299                         for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
300                                 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
301                 }
302         }
303
304         /* End of list marker entry */
305         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
306         return 0;
307 }
308
309 /* Returns the CPU frequency corresponding to the pstate_id. */
310 static unsigned int pstate_id_to_freq(int pstate_id)
311 {
312         int i;
313
314         i = pstate_to_idx(pstate_id);
315         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
316                 pr_warn("PState id %d outside of PState table, "
317                         "reporting nominal id %d instead\n",
318                         pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
319                 i = powernv_pstate_info.nominal;
320         }
321
322         return powernv_freqs[i].frequency;
323 }
324
325 /*
326  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
327  * the firmware
328  */
329 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
330                                         char *buf)
331 {
332         return sprintf(buf, "%u\n",
333                 powernv_freqs[powernv_pstate_info.nominal].frequency);
334 }
335
336 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
337         __ATTR_RO(cpuinfo_nominal_freq);
338
339 #define SCALING_BOOST_FREQS_ATTR_INDEX          2
340
341 static struct freq_attr *powernv_cpu_freq_attr[] = {
342         &cpufreq_freq_attr_scaling_available_freqs,
343         &cpufreq_freq_attr_cpuinfo_nominal_freq,
344         &cpufreq_freq_attr_scaling_boost_freqs,
345         NULL,
346 };
347
348 #define throttle_attr(name, member)                                     \
349 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
350 {                                                                       \
351         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
352                                                                         \
353         return sprintf(buf, "%u\n", chip->member);                      \
354 }                                                                       \
355                                                                         \
356 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
357
358 throttle_attr(unthrottle, reason[NO_THROTTLE]);
359 throttle_attr(powercap, reason[POWERCAP]);
360 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
361 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
362 throttle_attr(overcurrent, reason[OVERCURRENT]);
363 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
364 throttle_attr(turbo_stat, throttle_turbo);
365 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
366
367 static struct attribute *throttle_attrs[] = {
368         &throttle_attr_unthrottle.attr,
369         &throttle_attr_powercap.attr,
370         &throttle_attr_overtemp.attr,
371         &throttle_attr_supply_fault.attr,
372         &throttle_attr_overcurrent.attr,
373         &throttle_attr_occ_reset.attr,
374         &throttle_attr_turbo_stat.attr,
375         &throttle_attr_sub_turbo_stat.attr,
376         NULL,
377 };
378
379 static const struct attribute_group throttle_attr_grp = {
380         .name   = "throttle_stats",
381         .attrs  = throttle_attrs,
382 };
383
384 /* Helper routines */
385
386 /* Access helpers to power mgt SPR */
387
388 static inline unsigned long get_pmspr(unsigned long sprn)
389 {
390         switch (sprn) {
391         case SPRN_PMCR:
392                 return mfspr(SPRN_PMCR);
393
394         case SPRN_PMICR:
395                 return mfspr(SPRN_PMICR);
396
397         case SPRN_PMSR:
398                 return mfspr(SPRN_PMSR);
399         }
400         BUG();
401 }
402
403 static inline void set_pmspr(unsigned long sprn, unsigned long val)
404 {
405         switch (sprn) {
406         case SPRN_PMCR:
407                 mtspr(SPRN_PMCR, val);
408                 return;
409
410         case SPRN_PMICR:
411                 mtspr(SPRN_PMICR, val);
412                 return;
413         }
414         BUG();
415 }
416
417 /*
418  * Use objects of this type to query/update
419  * pstates on a remote CPU via smp_call_function.
420  */
421 struct powernv_smp_call_data {
422         unsigned int freq;
423         int pstate_id;
424         int gpstate_id;
425 };
426
427 /*
428  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
429  *
430  * Called via smp_call_function.
431  *
432  * Note: The caller of the smp_call_function should pass an argument of
433  * the type 'struct powernv_smp_call_data *' along with this function.
434  *
435  * The current frequency on this CPU will be returned via
436  * ((struct powernv_smp_call_data *)arg)->freq;
437  */
438 static void powernv_read_cpu_freq(void *arg)
439 {
440         unsigned long pmspr_val;
441         s8 local_pstate_id;
442         struct powernv_smp_call_data *freq_data = arg;
443
444         pmspr_val = get_pmspr(SPRN_PMSR);
445
446         /*
447          * The local pstate id corresponds bits 48..55 in the PMSR.
448          * Note: Watch out for the sign!
449          */
450         local_pstate_id = (pmspr_val >> 48) & 0xFF;
451         freq_data->pstate_id = local_pstate_id;
452         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
453
454         pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
455                 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
456                 freq_data->freq);
457 }
458
459 /*
460  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
461  * firmware for CPU 'cpu'. This value is reported through the sysfs
462  * file cpuinfo_cur_freq.
463  */
464 static unsigned int powernv_cpufreq_get(unsigned int cpu)
465 {
466         struct powernv_smp_call_data freq_data;
467
468         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
469                         &freq_data, 1);
470
471         return freq_data.freq;
472 }
473
474 /*
475  * set_pstate: Sets the pstate on this CPU.
476  *
477  * This is called via an smp_call_function.
478  *
479  * The caller must ensure that freq_data is of the type
480  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
481  * on this CPU should be present in freq_data->pstate_id.
482  */
483 static void set_pstate(void *data)
484 {
485         unsigned long val;
486         struct powernv_smp_call_data *freq_data = data;
487         unsigned long pstate_ul = freq_data->pstate_id;
488         unsigned long gpstate_ul = freq_data->gpstate_id;
489
490         val = get_pmspr(SPRN_PMCR);
491         val = val & 0x0000FFFFFFFFFFFFULL;
492
493         pstate_ul = pstate_ul & 0xFF;
494         gpstate_ul = gpstate_ul & 0xFF;
495
496         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
497         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
498
499         pr_debug("Setting cpu %d pmcr to %016lX\n",
500                         raw_smp_processor_id(), val);
501         set_pmspr(SPRN_PMCR, val);
502 }
503
504 /*
505  * get_nominal_index: Returns the index corresponding to the nominal
506  * pstate in the cpufreq table
507  */
508 static inline unsigned int get_nominal_index(void)
509 {
510         return powernv_pstate_info.nominal;
511 }
512
513 static void powernv_cpufreq_throttle_check(void *data)
514 {
515         struct chip *chip;
516         unsigned int cpu = smp_processor_id();
517         unsigned long pmsr;
518         int pmsr_pmax;
519         unsigned int pmsr_pmax_idx;
520
521         pmsr = get_pmspr(SPRN_PMSR);
522         chip = this_cpu_read(chip_info);
523
524         /* Check for Pmax Capping */
525         pmsr_pmax = (s8)PMSR_MAX(pmsr);
526         pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
527         if (pmsr_pmax_idx != powernv_pstate_info.max) {
528                 if (chip->throttled)
529                         goto next;
530                 chip->throttled = true;
531                 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
532                         pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
533                                      cpu, chip->id, pmsr_pmax,
534                                      idx_to_pstate(powernv_pstate_info.nominal));
535                         chip->throttle_sub_turbo++;
536                 } else {
537                         chip->throttle_turbo++;
538                 }
539                 trace_powernv_throttle(chip->id,
540                                       throttle_reason[chip->throttle_reason],
541                                       pmsr_pmax);
542         } else if (chip->throttled) {
543                 chip->throttled = false;
544                 trace_powernv_throttle(chip->id,
545                                       throttle_reason[chip->throttle_reason],
546                                       pmsr_pmax);
547         }
548
549         /* Check if Psafe_mode_active is set in PMSR. */
550 next:
551         if (pmsr & PMSR_PSAFE_ENABLE) {
552                 throttled = true;
553                 pr_info("Pstate set to safe frequency\n");
554         }
555
556         /* Check if SPR_EM_DISABLE is set in PMSR */
557         if (pmsr & PMSR_SPR_EM_DISABLE) {
558                 throttled = true;
559                 pr_info("Frequency Control disabled from OS\n");
560         }
561
562         if (throttled) {
563                 pr_info("PMSR = %16lx\n", pmsr);
564                 pr_warn("CPU Frequency could be throttled\n");
565         }
566 }
567
568 /**
569  * calc_global_pstate - Calculate global pstate
570  * @elapsed_time:               Elapsed time in milliseconds
571  * @local_pstate_idx:           New local pstate
572  * @highest_lpstate_idx:        pstate from which its ramping down
573  *
574  * Finds the appropriate global pstate based on the pstate from which its
575  * ramping down and the time elapsed in ramping down. It follows a quadratic
576  * equation which ensures that it reaches ramping down to pmin in 5sec.
577  */
578 static inline int calc_global_pstate(unsigned int elapsed_time,
579                                      int highest_lpstate_idx,
580                                      int local_pstate_idx)
581 {
582         int index_diff;
583
584         /*
585          * Using ramp_down_percent we get the percentage of rampdown
586          * that we are expecting to be dropping. Difference between
587          * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
588          * number of how many pstates we will drop eventually by the end of
589          * 5 seconds, then just scale it get the number pstates to be dropped.
590          */
591         index_diff =  ((int)ramp_down_percent(elapsed_time) *
592                         (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
593
594         /* Ensure that global pstate is >= to local pstate */
595         if (highest_lpstate_idx + index_diff >= local_pstate_idx)
596                 return local_pstate_idx;
597         else
598                 return highest_lpstate_idx + index_diff;
599 }
600
601 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
602 {
603         unsigned int timer_interval;
604
605         /*
606          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
607          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
608          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
609          * seconds of ramp down time.
610          */
611         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
612              > MAX_RAMP_DOWN_TIME)
613                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
614         else
615                 timer_interval = GPSTATE_TIMER_INTERVAL;
616
617         mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
618 }
619
620 /**
621  * gpstate_timer_handler
622  *
623  * @data: pointer to cpufreq_policy on which timer was queued
624  *
625  * This handler brings down the global pstate closer to the local pstate
626  * according quadratic equation. Queues a new timer if it is still not equal
627  * to local pstate
628  */
629 void gpstate_timer_handler(struct timer_list *t)
630 {
631         struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
632         struct cpufreq_policy *policy = gpstates->policy;
633         int gpstate_idx, lpstate_idx;
634         unsigned long val;
635         unsigned int time_diff = jiffies_to_msecs(jiffies)
636                                         - gpstates->last_sampled_time;
637         struct powernv_smp_call_data freq_data;
638
639         if (!spin_trylock(&gpstates->gpstate_lock))
640                 return;
641
642         /*
643          * If PMCR was last updated was using fast_swtich then
644          * We may have wrong in gpstate->last_lpstate_idx
645          * value. Hence, read from PMCR to get correct data.
646          */
647         val = get_pmspr(SPRN_PMCR);
648         freq_data.gpstate_id = (s8)GET_GPSTATE(val);
649         freq_data.pstate_id = (s8)GET_LPSTATE(val);
650         if (freq_data.gpstate_id  == freq_data.pstate_id) {
651                 reset_gpstates(policy);
652                 spin_unlock(&gpstates->gpstate_lock);
653                 return;
654         }
655
656         gpstates->last_sampled_time += time_diff;
657         gpstates->elapsed_time += time_diff;
658
659         if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
660                 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
661                 lpstate_idx = gpstate_idx;
662                 reset_gpstates(policy);
663                 gpstates->highest_lpstate_idx = gpstate_idx;
664         } else {
665                 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
666                 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
667                                                  gpstates->highest_lpstate_idx,
668                                                  lpstate_idx);
669         }
670         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
671         gpstates->last_gpstate_idx = gpstate_idx;
672         gpstates->last_lpstate_idx = lpstate_idx;
673         /*
674          * If local pstate is equal to global pstate, rampdown is over
675          * So timer is not required to be queued.
676          */
677         if (gpstate_idx != gpstates->last_lpstate_idx)
678                 queue_gpstate_timer(gpstates);
679
680         spin_unlock(&gpstates->gpstate_lock);
681
682         /* Timer may get migrated to a different cpu on cpu hot unplug */
683         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
684 }
685
686 /*
687  * powernv_cpufreq_target_index: Sets the frequency corresponding to
688  * the cpufreq table entry indexed by new_index on the cpus in the
689  * mask policy->cpus
690  */
691 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
692                                         unsigned int new_index)
693 {
694         struct powernv_smp_call_data freq_data;
695         unsigned int cur_msec, gpstate_idx;
696         struct global_pstate_info *gpstates = policy->driver_data;
697
698         if (unlikely(rebooting) && new_index != get_nominal_index())
699                 return 0;
700
701         if (!throttled) {
702                 /* we don't want to be preempted while
703                  * checking if the CPU frequency has been throttled
704                  */
705                 preempt_disable();
706                 powernv_cpufreq_throttle_check(NULL);
707                 preempt_enable();
708         }
709
710         cur_msec = jiffies_to_msecs(get_jiffies_64());
711
712         spin_lock(&gpstates->gpstate_lock);
713         freq_data.pstate_id = idx_to_pstate(new_index);
714
715         if (!gpstates->last_sampled_time) {
716                 gpstate_idx = new_index;
717                 gpstates->highest_lpstate_idx = new_index;
718                 goto gpstates_done;
719         }
720
721         if (gpstates->last_gpstate_idx < new_index) {
722                 gpstates->elapsed_time += cur_msec -
723                                                  gpstates->last_sampled_time;
724
725                 /*
726                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
727                  * we should be resetting all global pstate related data. Set it
728                  * equal to local pstate to start fresh.
729                  */
730                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
731                         reset_gpstates(policy);
732                         gpstates->highest_lpstate_idx = new_index;
733                         gpstate_idx = new_index;
734                 } else {
735                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
736                         gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
737                                                          gpstates->highest_lpstate_idx,
738                                                          new_index);
739                 }
740         } else {
741                 reset_gpstates(policy);
742                 gpstates->highest_lpstate_idx = new_index;
743                 gpstate_idx = new_index;
744         }
745
746         /*
747          * If local pstate is equal to global pstate, rampdown is over
748          * So timer is not required to be queued.
749          */
750         if (gpstate_idx != new_index)
751                 queue_gpstate_timer(gpstates);
752         else
753                 del_timer_sync(&gpstates->timer);
754
755 gpstates_done:
756         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
757         gpstates->last_sampled_time = cur_msec;
758         gpstates->last_gpstate_idx = gpstate_idx;
759         gpstates->last_lpstate_idx = new_index;
760
761         spin_unlock(&gpstates->gpstate_lock);
762
763         /*
764          * Use smp_call_function to send IPI and execute the
765          * mtspr on target CPU.  We could do that without IPI
766          * if current CPU is within policy->cpus (core)
767          */
768         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
769         return 0;
770 }
771
772 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
773 {
774         int base, i, ret;
775         struct kernfs_node *kn;
776         struct global_pstate_info *gpstates;
777
778         base = cpu_first_thread_sibling(policy->cpu);
779
780         for (i = 0; i < threads_per_core; i++)
781                 cpumask_set_cpu(base + i, policy->cpus);
782
783         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
784         if (!kn) {
785                 int ret;
786
787                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
788                 if (ret) {
789                         pr_info("Failed to create throttle stats directory for cpu %d\n",
790                                 policy->cpu);
791                         return ret;
792                 }
793         } else {
794                 kernfs_put(kn);
795         }
796
797         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
798         if (!gpstates)
799                 return -ENOMEM;
800
801         policy->driver_data = gpstates;
802
803         /* initialize timer */
804         gpstates->policy = policy;
805         timer_setup(&gpstates->timer, gpstate_timer_handler,
806                     TIMER_PINNED | TIMER_DEFERRABLE);
807         gpstates->timer.expires = jiffies +
808                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
809         spin_lock_init(&gpstates->gpstate_lock);
810         ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
811
812         if (ret < 0) {
813                 kfree(policy->driver_data);
814                 return ret;
815         }
816
817         policy->fast_switch_possible = true;
818         return ret;
819 }
820
821 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
822 {
823         /* timer is deleted in cpufreq_cpu_stop() */
824         kfree(policy->driver_data);
825
826         return 0;
827 }
828
829 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
830                                 unsigned long action, void *unused)
831 {
832         int cpu;
833         struct cpufreq_policy cpu_policy;
834
835         rebooting = true;
836         for_each_online_cpu(cpu) {
837                 cpufreq_get_policy(&cpu_policy, cpu);
838                 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
839         }
840
841         return NOTIFY_DONE;
842 }
843
844 static struct notifier_block powernv_cpufreq_reboot_nb = {
845         .notifier_call = powernv_cpufreq_reboot_notifier,
846 };
847
848 void powernv_cpufreq_work_fn(struct work_struct *work)
849 {
850         struct chip *chip = container_of(work, struct chip, throttle);
851         unsigned int cpu;
852         cpumask_t mask;
853
854         get_online_cpus();
855         cpumask_and(&mask, &chip->mask, cpu_online_mask);
856         smp_call_function_any(&mask,
857                               powernv_cpufreq_throttle_check, NULL, 0);
858
859         if (!chip->restore)
860                 goto out;
861
862         chip->restore = false;
863         for_each_cpu(cpu, &mask) {
864                 int index;
865                 struct cpufreq_policy policy;
866
867                 cpufreq_get_policy(&policy, cpu);
868                 index = cpufreq_table_find_index_c(&policy, policy.cur);
869                 powernv_cpufreq_target_index(&policy, index);
870                 cpumask_andnot(&mask, &mask, policy.cpus);
871         }
872 out:
873         put_online_cpus();
874 }
875
876 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
877                                    unsigned long msg_type, void *_msg)
878 {
879         struct opal_msg *msg = _msg;
880         struct opal_occ_msg omsg;
881         int i;
882
883         if (msg_type != OPAL_MSG_OCC)
884                 return 0;
885
886         omsg.type = be64_to_cpu(msg->params[0]);
887
888         switch (omsg.type) {
889         case OCC_RESET:
890                 occ_reset = true;
891                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
892                 /*
893                  * powernv_cpufreq_throttle_check() is called in
894                  * target() callback which can detect the throttle state
895                  * for governors like ondemand.
896                  * But static governors will not call target() often thus
897                  * report throttling here.
898                  */
899                 if (!throttled) {
900                         throttled = true;
901                         pr_warn("CPU frequency is throttled for duration\n");
902                 }
903
904                 break;
905         case OCC_LOAD:
906                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
907                 break;
908         case OCC_THROTTLE:
909                 omsg.chip = be64_to_cpu(msg->params[1]);
910                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
911
912                 if (occ_reset) {
913                         occ_reset = false;
914                         throttled = false;
915                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
916
917                         for (i = 0; i < nr_chips; i++) {
918                                 chips[i].restore = true;
919                                 schedule_work(&chips[i].throttle);
920                         }
921
922                         return 0;
923                 }
924
925                 for (i = 0; i < nr_chips; i++)
926                         if (chips[i].id == omsg.chip)
927                                 break;
928
929                 if (omsg.throttle_status >= 0 &&
930                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
931                         chips[i].throttle_reason = omsg.throttle_status;
932                         chips[i].reason[omsg.throttle_status]++;
933                 }
934
935                 if (!omsg.throttle_status)
936                         chips[i].restore = true;
937
938                 schedule_work(&chips[i].throttle);
939         }
940         return 0;
941 }
942
943 static struct notifier_block powernv_cpufreq_opal_nb = {
944         .notifier_call  = powernv_cpufreq_occ_msg,
945         .next           = NULL,
946         .priority       = 0,
947 };
948
949 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
950 {
951         struct powernv_smp_call_data freq_data;
952         struct global_pstate_info *gpstates = policy->driver_data;
953
954         freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
955         freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
956         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
957         del_timer_sync(&gpstates->timer);
958 }
959
960 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
961                                         unsigned int target_freq)
962 {
963         int index;
964         struct powernv_smp_call_data freq_data;
965
966         index = cpufreq_table_find_index_dl(policy, target_freq);
967         freq_data.pstate_id = powernv_freqs[index].driver_data;
968         freq_data.gpstate_id = powernv_freqs[index].driver_data;
969         set_pstate(&freq_data);
970
971         return powernv_freqs[index].frequency;
972 }
973
974 static struct cpufreq_driver powernv_cpufreq_driver = {
975         .name           = "powernv-cpufreq",
976         .flags          = CPUFREQ_CONST_LOOPS,
977         .init           = powernv_cpufreq_cpu_init,
978         .exit           = powernv_cpufreq_cpu_exit,
979         .verify         = cpufreq_generic_frequency_table_verify,
980         .target_index   = powernv_cpufreq_target_index,
981         .fast_switch    = powernv_fast_switch,
982         .get            = powernv_cpufreq_get,
983         .stop_cpu       = powernv_cpufreq_stop_cpu,
984         .attr           = powernv_cpu_freq_attr,
985 };
986
987 static int init_chip_info(void)
988 {
989         unsigned int chip[256];
990         unsigned int cpu, i;
991         unsigned int prev_chip_id = UINT_MAX;
992
993         for_each_possible_cpu(cpu) {
994                 unsigned int id = cpu_to_chip_id(cpu);
995
996                 if (prev_chip_id != id) {
997                         prev_chip_id = id;
998                         chip[nr_chips++] = id;
999                 }
1000         }
1001
1002         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1003         if (!chips)
1004                 return -ENOMEM;
1005
1006         for (i = 0; i < nr_chips; i++) {
1007                 chips[i].id = chip[i];
1008                 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1009                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1010                 for_each_cpu(cpu, &chips[i].mask)
1011                         per_cpu(chip_info, cpu) =  &chips[i];
1012         }
1013
1014         return 0;
1015 }
1016
1017 static inline void clean_chip_info(void)
1018 {
1019         kfree(chips);
1020 }
1021
1022 static inline void unregister_all_notifiers(void)
1023 {
1024         opal_message_notifier_unregister(OPAL_MSG_OCC,
1025                                          &powernv_cpufreq_opal_nb);
1026         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1027 }
1028
1029 static int __init powernv_cpufreq_init(void)
1030 {
1031         int rc = 0;
1032
1033         /* Don't probe on pseries (guest) platforms */
1034         if (!firmware_has_feature(FW_FEATURE_OPAL))
1035                 return -ENODEV;
1036
1037         /* Discover pstates from device tree and init */
1038         rc = init_powernv_pstates();
1039         if (rc)
1040                 goto out;
1041
1042         /* Populate chip info */
1043         rc = init_chip_info();
1044         if (rc)
1045                 goto out;
1046
1047         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1048         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1049
1050         if (powernv_pstate_info.wof_enabled)
1051                 powernv_cpufreq_driver.boost_enabled = true;
1052         else
1053                 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1054
1055         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1056         if (rc) {
1057                 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1058                 goto cleanup_notifiers;
1059         }
1060
1061         if (powernv_pstate_info.wof_enabled)
1062                 cpufreq_enable_boost_support();
1063
1064         return 0;
1065 cleanup_notifiers:
1066         unregister_all_notifiers();
1067         clean_chip_info();
1068 out:
1069         pr_info("Platform driver disabled. System does not support PState control\n");
1070         return rc;
1071 }
1072 module_init(powernv_cpufreq_init);
1073
1074 static void __exit powernv_cpufreq_exit(void)
1075 {
1076         cpufreq_unregister_driver(&powernv_cpufreq_driver);
1077         unregister_all_notifiers();
1078         clean_chip_info();
1079 }
1080 module_exit(powernv_cpufreq_exit);
1081
1082 MODULE_LICENSE("GPL");
1083 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");