Linux 4.8-rc1
[sfrench/cifs-2.6.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19
20 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40
41 #define POWERNV_MAX_PSTATES     256
42 #define PMSR_PSAFE_ENABLE       (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
44 #define PMSR_MAX(x)             ((x >> 32) & 0xFF)
45
46 #define MAX_RAMP_DOWN_TIME                              5120
47 /*
48  * On an idle system we want the global pstate to ramp-down from max value to
49  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
50  * then ramp-down rapidly later on.
51  *
52  * This gives a percentage rampdown for time elapsed in milliseconds.
53  * ramp_down_percentage = ((ms * ms) >> 18)
54  *                      ~= 3.8 * (sec * sec)
55  *
56  * At 0 ms      ramp_down_percent = 0
57  * At 5120 ms   ramp_down_percent = 100
58  */
59 #define ramp_down_percent(time)         ((time * time) >> 18)
60
61 /* Interval after which the timer is queued to bring down global pstate */
62 #define GPSTATE_TIMER_INTERVAL                          2000
63
64 /**
65  * struct global_pstate_info -  Per policy data structure to maintain history of
66  *                              global pstates
67  * @highest_lpstate_idx:        The local pstate index from which we are
68  *                              ramping down
69  * @elapsed_time:               Time in ms spent in ramping down from
70  *                              highest_lpstate_idx
71  * @last_sampled_time:          Time from boot in ms when global pstates were
72  *                              last set
73  * @last_lpstate_idx,           Last set value of local pstate and global
74  * last_gpstate_idx             pstate in terms of cpufreq table index
75  * @timer:                      Is used for ramping down if cpu goes idle for
76  *                              a long time with global pstate held high
77  * @gpstate_lock:               A spinlock to maintain synchronization between
78  *                              routines called by the timer handler and
79  *                              governer's target_index calls
80  */
81 struct global_pstate_info {
82         int highest_lpstate_idx;
83         unsigned int elapsed_time;
84         unsigned int last_sampled_time;
85         int last_lpstate_idx;
86         int last_gpstate_idx;
87         spinlock_t gpstate_lock;
88         struct timer_list timer;
89 };
90
91 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
92 static bool rebooting, throttled, occ_reset;
93
94 static const char * const throttle_reason[] = {
95         "No throttling",
96         "Power Cap",
97         "Processor Over Temperature",
98         "Power Supply Failure",
99         "Over Current",
100         "OCC Reset"
101 };
102
103 enum throttle_reason_type {
104         NO_THROTTLE = 0,
105         POWERCAP,
106         CPU_OVERTEMP,
107         POWER_SUPPLY_FAILURE,
108         OVERCURRENT,
109         OCC_RESET_THROTTLE,
110         OCC_MAX_REASON
111 };
112
113 static struct chip {
114         unsigned int id;
115         bool throttled;
116         bool restore;
117         u8 throttle_reason;
118         cpumask_t mask;
119         struct work_struct throttle;
120         int throttle_turbo;
121         int throttle_sub_turbo;
122         int reason[OCC_MAX_REASON];
123 } *chips;
124
125 static int nr_chips;
126 static DEFINE_PER_CPU(struct chip *, chip_info);
127
128 /*
129  * Note:
130  * The set of pstates consists of contiguous integers.
131  * powernv_pstate_info stores the index of the frequency table for
132  * max, min and nominal frequencies. It also stores number of
133  * available frequencies.
134  *
135  * powernv_pstate_info.nominal indicates the index to the highest
136  * non-turbo frequency.
137  */
138 static struct powernv_pstate_info {
139         unsigned int min;
140         unsigned int max;
141         unsigned int nominal;
142         unsigned int nr_pstates;
143 } powernv_pstate_info;
144
145 /* Use following macros for conversions between pstate_id and index */
146 static inline int idx_to_pstate(unsigned int i)
147 {
148         return powernv_freqs[i].driver_data;
149 }
150
151 static inline unsigned int pstate_to_idx(int pstate)
152 {
153         /*
154          * abs() is deliberately used so that is works with
155          * both monotonically increasing and decreasing
156          * pstate values
157          */
158         return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
159 }
160
161 static inline void reset_gpstates(struct cpufreq_policy *policy)
162 {
163         struct global_pstate_info *gpstates = policy->driver_data;
164
165         gpstates->highest_lpstate_idx = 0;
166         gpstates->elapsed_time = 0;
167         gpstates->last_sampled_time = 0;
168         gpstates->last_lpstate_idx = 0;
169         gpstates->last_gpstate_idx = 0;
170 }
171
172 /*
173  * Initialize the freq table based on data obtained
174  * from the firmware passed via device-tree
175  */
176 static int init_powernv_pstates(void)
177 {
178         struct device_node *power_mgt;
179         int i, nr_pstates = 0;
180         const __be32 *pstate_ids, *pstate_freqs;
181         u32 len_ids, len_freqs;
182         u32 pstate_min, pstate_max, pstate_nominal;
183
184         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
185         if (!power_mgt) {
186                 pr_warn("power-mgt node not found\n");
187                 return -ENODEV;
188         }
189
190         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
191                 pr_warn("ibm,pstate-min node not found\n");
192                 return -ENODEV;
193         }
194
195         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
196                 pr_warn("ibm,pstate-max node not found\n");
197                 return -ENODEV;
198         }
199
200         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
201                                  &pstate_nominal)) {
202                 pr_warn("ibm,pstate-nominal not found\n");
203                 return -ENODEV;
204         }
205         pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
206                 pstate_nominal, pstate_max);
207
208         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
209         if (!pstate_ids) {
210                 pr_warn("ibm,pstate-ids not found\n");
211                 return -ENODEV;
212         }
213
214         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
215                                       &len_freqs);
216         if (!pstate_freqs) {
217                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
218                 return -ENODEV;
219         }
220
221         if (len_ids != len_freqs) {
222                 pr_warn("Entries in ibm,pstate-ids and "
223                         "ibm,pstate-frequencies-mhz does not match\n");
224         }
225
226         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
227         if (!nr_pstates) {
228                 pr_warn("No PStates found\n");
229                 return -ENODEV;
230         }
231
232         powernv_pstate_info.nr_pstates = nr_pstates;
233         pr_debug("NR PStates %d\n", nr_pstates);
234         for (i = 0; i < nr_pstates; i++) {
235                 u32 id = be32_to_cpu(pstate_ids[i]);
236                 u32 freq = be32_to_cpu(pstate_freqs[i]);
237
238                 pr_debug("PState id %d freq %d MHz\n", id, freq);
239                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
240                 powernv_freqs[i].driver_data = id;
241
242                 if (id == pstate_max)
243                         powernv_pstate_info.max = i;
244                 else if (id == pstate_nominal)
245                         powernv_pstate_info.nominal = i;
246                 else if (id == pstate_min)
247                         powernv_pstate_info.min = i;
248         }
249
250         /* End of list marker entry */
251         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
252         return 0;
253 }
254
255 /* Returns the CPU frequency corresponding to the pstate_id. */
256 static unsigned int pstate_id_to_freq(int pstate_id)
257 {
258         int i;
259
260         i = pstate_to_idx(pstate_id);
261         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
262                 pr_warn("PState id %d outside of PState table, "
263                         "reporting nominal id %d instead\n",
264                         pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
265                 i = powernv_pstate_info.nominal;
266         }
267
268         return powernv_freqs[i].frequency;
269 }
270
271 /*
272  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
273  * the firmware
274  */
275 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
276                                         char *buf)
277 {
278         return sprintf(buf, "%u\n",
279                 powernv_freqs[powernv_pstate_info.nominal].frequency);
280 }
281
282 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
283         __ATTR_RO(cpuinfo_nominal_freq);
284
285 static struct freq_attr *powernv_cpu_freq_attr[] = {
286         &cpufreq_freq_attr_scaling_available_freqs,
287         &cpufreq_freq_attr_cpuinfo_nominal_freq,
288         NULL,
289 };
290
291 #define throttle_attr(name, member)                                     \
292 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
293 {                                                                       \
294         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
295                                                                         \
296         return sprintf(buf, "%u\n", chip->member);                      \
297 }                                                                       \
298                                                                         \
299 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
300
301 throttle_attr(unthrottle, reason[NO_THROTTLE]);
302 throttle_attr(powercap, reason[POWERCAP]);
303 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
304 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
305 throttle_attr(overcurrent, reason[OVERCURRENT]);
306 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
307 throttle_attr(turbo_stat, throttle_turbo);
308 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
309
310 static struct attribute *throttle_attrs[] = {
311         &throttle_attr_unthrottle.attr,
312         &throttle_attr_powercap.attr,
313         &throttle_attr_overtemp.attr,
314         &throttle_attr_supply_fault.attr,
315         &throttle_attr_overcurrent.attr,
316         &throttle_attr_occ_reset.attr,
317         &throttle_attr_turbo_stat.attr,
318         &throttle_attr_sub_turbo_stat.attr,
319         NULL,
320 };
321
322 static const struct attribute_group throttle_attr_grp = {
323         .name   = "throttle_stats",
324         .attrs  = throttle_attrs,
325 };
326
327 /* Helper routines */
328
329 /* Access helpers to power mgt SPR */
330
331 static inline unsigned long get_pmspr(unsigned long sprn)
332 {
333         switch (sprn) {
334         case SPRN_PMCR:
335                 return mfspr(SPRN_PMCR);
336
337         case SPRN_PMICR:
338                 return mfspr(SPRN_PMICR);
339
340         case SPRN_PMSR:
341                 return mfspr(SPRN_PMSR);
342         }
343         BUG();
344 }
345
346 static inline void set_pmspr(unsigned long sprn, unsigned long val)
347 {
348         switch (sprn) {
349         case SPRN_PMCR:
350                 mtspr(SPRN_PMCR, val);
351                 return;
352
353         case SPRN_PMICR:
354                 mtspr(SPRN_PMICR, val);
355                 return;
356         }
357         BUG();
358 }
359
360 /*
361  * Use objects of this type to query/update
362  * pstates on a remote CPU via smp_call_function.
363  */
364 struct powernv_smp_call_data {
365         unsigned int freq;
366         int pstate_id;
367         int gpstate_id;
368 };
369
370 /*
371  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
372  *
373  * Called via smp_call_function.
374  *
375  * Note: The caller of the smp_call_function should pass an argument of
376  * the type 'struct powernv_smp_call_data *' along with this function.
377  *
378  * The current frequency on this CPU will be returned via
379  * ((struct powernv_smp_call_data *)arg)->freq;
380  */
381 static void powernv_read_cpu_freq(void *arg)
382 {
383         unsigned long pmspr_val;
384         s8 local_pstate_id;
385         struct powernv_smp_call_data *freq_data = arg;
386
387         pmspr_val = get_pmspr(SPRN_PMSR);
388
389         /*
390          * The local pstate id corresponds bits 48..55 in the PMSR.
391          * Note: Watch out for the sign!
392          */
393         local_pstate_id = (pmspr_val >> 48) & 0xFF;
394         freq_data->pstate_id = local_pstate_id;
395         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
396
397         pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
398                 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
399                 freq_data->freq);
400 }
401
402 /*
403  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
404  * firmware for CPU 'cpu'. This value is reported through the sysfs
405  * file cpuinfo_cur_freq.
406  */
407 static unsigned int powernv_cpufreq_get(unsigned int cpu)
408 {
409         struct powernv_smp_call_data freq_data;
410
411         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
412                         &freq_data, 1);
413
414         return freq_data.freq;
415 }
416
417 /*
418  * set_pstate: Sets the pstate on this CPU.
419  *
420  * This is called via an smp_call_function.
421  *
422  * The caller must ensure that freq_data is of the type
423  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
424  * on this CPU should be present in freq_data->pstate_id.
425  */
426 static void set_pstate(void *data)
427 {
428         unsigned long val;
429         struct powernv_smp_call_data *freq_data = data;
430         unsigned long pstate_ul = freq_data->pstate_id;
431         unsigned long gpstate_ul = freq_data->gpstate_id;
432
433         val = get_pmspr(SPRN_PMCR);
434         val = val & 0x0000FFFFFFFFFFFFULL;
435
436         pstate_ul = pstate_ul & 0xFF;
437         gpstate_ul = gpstate_ul & 0xFF;
438
439         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
440         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
441
442         pr_debug("Setting cpu %d pmcr to %016lX\n",
443                         raw_smp_processor_id(), val);
444         set_pmspr(SPRN_PMCR, val);
445 }
446
447 /*
448  * get_nominal_index: Returns the index corresponding to the nominal
449  * pstate in the cpufreq table
450  */
451 static inline unsigned int get_nominal_index(void)
452 {
453         return powernv_pstate_info.nominal;
454 }
455
456 static void powernv_cpufreq_throttle_check(void *data)
457 {
458         struct chip *chip;
459         unsigned int cpu = smp_processor_id();
460         unsigned long pmsr;
461         int pmsr_pmax;
462         unsigned int pmsr_pmax_idx;
463
464         pmsr = get_pmspr(SPRN_PMSR);
465         chip = this_cpu_read(chip_info);
466
467         /* Check for Pmax Capping */
468         pmsr_pmax = (s8)PMSR_MAX(pmsr);
469         pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
470         if (pmsr_pmax_idx != powernv_pstate_info.max) {
471                 if (chip->throttled)
472                         goto next;
473                 chip->throttled = true;
474                 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
475                         pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
476                                      cpu, chip->id, pmsr_pmax,
477                                      idx_to_pstate(powernv_pstate_info.nominal));
478                         chip->throttle_sub_turbo++;
479                 } else {
480                         chip->throttle_turbo++;
481                 }
482                 trace_powernv_throttle(chip->id,
483                                       throttle_reason[chip->throttle_reason],
484                                       pmsr_pmax);
485         } else if (chip->throttled) {
486                 chip->throttled = false;
487                 trace_powernv_throttle(chip->id,
488                                       throttle_reason[chip->throttle_reason],
489                                       pmsr_pmax);
490         }
491
492         /* Check if Psafe_mode_active is set in PMSR. */
493 next:
494         if (pmsr & PMSR_PSAFE_ENABLE) {
495                 throttled = true;
496                 pr_info("Pstate set to safe frequency\n");
497         }
498
499         /* Check if SPR_EM_DISABLE is set in PMSR */
500         if (pmsr & PMSR_SPR_EM_DISABLE) {
501                 throttled = true;
502                 pr_info("Frequency Control disabled from OS\n");
503         }
504
505         if (throttled) {
506                 pr_info("PMSR = %16lx\n", pmsr);
507                 pr_warn("CPU Frequency could be throttled\n");
508         }
509 }
510
511 /**
512  * calc_global_pstate - Calculate global pstate
513  * @elapsed_time:               Elapsed time in milliseconds
514  * @local_pstate_idx:           New local pstate
515  * @highest_lpstate_idx:        pstate from which its ramping down
516  *
517  * Finds the appropriate global pstate based on the pstate from which its
518  * ramping down and the time elapsed in ramping down. It follows a quadratic
519  * equation which ensures that it reaches ramping down to pmin in 5sec.
520  */
521 static inline int calc_global_pstate(unsigned int elapsed_time,
522                                      int highest_lpstate_idx,
523                                      int local_pstate_idx)
524 {
525         int index_diff;
526
527         /*
528          * Using ramp_down_percent we get the percentage of rampdown
529          * that we are expecting to be dropping. Difference between
530          * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
531          * number of how many pstates we will drop eventually by the end of
532          * 5 seconds, then just scale it get the number pstates to be dropped.
533          */
534         index_diff =  ((int)ramp_down_percent(elapsed_time) *
535                         (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
536
537         /* Ensure that global pstate is >= to local pstate */
538         if (highest_lpstate_idx + index_diff >= local_pstate_idx)
539                 return local_pstate_idx;
540         else
541                 return highest_lpstate_idx + index_diff;
542 }
543
544 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
545 {
546         unsigned int timer_interval;
547
548         /*
549          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
550          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
551          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
552          * seconds of ramp down time.
553          */
554         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
555              > MAX_RAMP_DOWN_TIME)
556                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
557         else
558                 timer_interval = GPSTATE_TIMER_INTERVAL;
559
560         mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
561 }
562
563 /**
564  * gpstate_timer_handler
565  *
566  * @data: pointer to cpufreq_policy on which timer was queued
567  *
568  * This handler brings down the global pstate closer to the local pstate
569  * according quadratic equation. Queues a new timer if it is still not equal
570  * to local pstate
571  */
572 void gpstate_timer_handler(unsigned long data)
573 {
574         struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
575         struct global_pstate_info *gpstates = policy->driver_data;
576         int gpstate_idx;
577         unsigned int time_diff = jiffies_to_msecs(jiffies)
578                                         - gpstates->last_sampled_time;
579         struct powernv_smp_call_data freq_data;
580
581         if (!spin_trylock(&gpstates->gpstate_lock))
582                 return;
583
584         gpstates->last_sampled_time += time_diff;
585         gpstates->elapsed_time += time_diff;
586         freq_data.pstate_id = idx_to_pstate(gpstates->last_lpstate_idx);
587
588         if ((gpstates->last_gpstate_idx == gpstates->last_lpstate_idx) ||
589             (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) {
590                 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
591                 reset_gpstates(policy);
592                 gpstates->highest_lpstate_idx = gpstate_idx;
593         } else {
594                 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
595                                                  gpstates->highest_lpstate_idx,
596                                                  freq_data.pstate_id);
597         }
598
599         /*
600          * If local pstate is equal to global pstate, rampdown is over
601          * So timer is not required to be queued.
602          */
603         if (gpstate_idx != gpstates->last_lpstate_idx)
604                 queue_gpstate_timer(gpstates);
605
606         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
607         gpstates->last_gpstate_idx = pstate_to_idx(freq_data.gpstate_id);
608         gpstates->last_lpstate_idx = pstate_to_idx(freq_data.pstate_id);
609
610         spin_unlock(&gpstates->gpstate_lock);
611
612         /* Timer may get migrated to a different cpu on cpu hot unplug */
613         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
614 }
615
616 /*
617  * powernv_cpufreq_target_index: Sets the frequency corresponding to
618  * the cpufreq table entry indexed by new_index on the cpus in the
619  * mask policy->cpus
620  */
621 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
622                                         unsigned int new_index)
623 {
624         struct powernv_smp_call_data freq_data;
625         unsigned int cur_msec, gpstate_idx;
626         struct global_pstate_info *gpstates = policy->driver_data;
627
628         if (unlikely(rebooting) && new_index != get_nominal_index())
629                 return 0;
630
631         if (!throttled)
632                 powernv_cpufreq_throttle_check(NULL);
633
634         cur_msec = jiffies_to_msecs(get_jiffies_64());
635
636         spin_lock(&gpstates->gpstate_lock);
637         freq_data.pstate_id = idx_to_pstate(new_index);
638
639         if (!gpstates->last_sampled_time) {
640                 gpstate_idx = new_index;
641                 gpstates->highest_lpstate_idx = new_index;
642                 goto gpstates_done;
643         }
644
645         if (gpstates->last_gpstate_idx < new_index) {
646                 gpstates->elapsed_time += cur_msec -
647                                                  gpstates->last_sampled_time;
648
649                 /*
650                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
651                  * we should be resetting all global pstate related data. Set it
652                  * equal to local pstate to start fresh.
653                  */
654                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
655                         reset_gpstates(policy);
656                         gpstates->highest_lpstate_idx = new_index;
657                         gpstate_idx = new_index;
658                 } else {
659                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
660                         gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
661                                                          gpstates->highest_lpstate_idx,
662                                                          new_index);
663                 }
664         } else {
665                 reset_gpstates(policy);
666                 gpstates->highest_lpstate_idx = new_index;
667                 gpstate_idx = new_index;
668         }
669
670         /*
671          * If local pstate is equal to global pstate, rampdown is over
672          * So timer is not required to be queued.
673          */
674         if (gpstate_idx != new_index)
675                 queue_gpstate_timer(gpstates);
676         else
677                 del_timer_sync(&gpstates->timer);
678
679 gpstates_done:
680         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
681         gpstates->last_sampled_time = cur_msec;
682         gpstates->last_gpstate_idx = gpstate_idx;
683         gpstates->last_lpstate_idx = new_index;
684
685         spin_unlock(&gpstates->gpstate_lock);
686
687         /*
688          * Use smp_call_function to send IPI and execute the
689          * mtspr on target CPU.  We could do that without IPI
690          * if current CPU is within policy->cpus (core)
691          */
692         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
693         return 0;
694 }
695
696 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
697 {
698         int base, i, ret;
699         struct kernfs_node *kn;
700         struct global_pstate_info *gpstates;
701
702         base = cpu_first_thread_sibling(policy->cpu);
703
704         for (i = 0; i < threads_per_core; i++)
705                 cpumask_set_cpu(base + i, policy->cpus);
706
707         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
708         if (!kn) {
709                 int ret;
710
711                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
712                 if (ret) {
713                         pr_info("Failed to create throttle stats directory for cpu %d\n",
714                                 policy->cpu);
715                         return ret;
716                 }
717         } else {
718                 kernfs_put(kn);
719         }
720
721         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
722         if (!gpstates)
723                 return -ENOMEM;
724
725         policy->driver_data = gpstates;
726
727         /* initialize timer */
728         init_timer_pinned_deferrable(&gpstates->timer);
729         gpstates->timer.data = (unsigned long)policy;
730         gpstates->timer.function = gpstate_timer_handler;
731         gpstates->timer.expires = jiffies +
732                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
733         spin_lock_init(&gpstates->gpstate_lock);
734         ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
735
736         if (ret < 0)
737                 kfree(policy->driver_data);
738
739         return ret;
740 }
741
742 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
743 {
744         /* timer is deleted in cpufreq_cpu_stop() */
745         kfree(policy->driver_data);
746
747         return 0;
748 }
749
750 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
751                                 unsigned long action, void *unused)
752 {
753         int cpu;
754         struct cpufreq_policy cpu_policy;
755
756         rebooting = true;
757         for_each_online_cpu(cpu) {
758                 cpufreq_get_policy(&cpu_policy, cpu);
759                 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
760         }
761
762         return NOTIFY_DONE;
763 }
764
765 static struct notifier_block powernv_cpufreq_reboot_nb = {
766         .notifier_call = powernv_cpufreq_reboot_notifier,
767 };
768
769 void powernv_cpufreq_work_fn(struct work_struct *work)
770 {
771         struct chip *chip = container_of(work, struct chip, throttle);
772         unsigned int cpu;
773         cpumask_t mask;
774
775         get_online_cpus();
776         cpumask_and(&mask, &chip->mask, cpu_online_mask);
777         smp_call_function_any(&mask,
778                               powernv_cpufreq_throttle_check, NULL, 0);
779
780         if (!chip->restore)
781                 goto out;
782
783         chip->restore = false;
784         for_each_cpu(cpu, &mask) {
785                 int index;
786                 struct cpufreq_policy policy;
787
788                 cpufreq_get_policy(&policy, cpu);
789                 index = cpufreq_table_find_index_c(&policy, policy.cur);
790                 powernv_cpufreq_target_index(&policy, index);
791                 cpumask_andnot(&mask, &mask, policy.cpus);
792         }
793 out:
794         put_online_cpus();
795 }
796
797 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
798                                    unsigned long msg_type, void *_msg)
799 {
800         struct opal_msg *msg = _msg;
801         struct opal_occ_msg omsg;
802         int i;
803
804         if (msg_type != OPAL_MSG_OCC)
805                 return 0;
806
807         omsg.type = be64_to_cpu(msg->params[0]);
808
809         switch (omsg.type) {
810         case OCC_RESET:
811                 occ_reset = true;
812                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
813                 /*
814                  * powernv_cpufreq_throttle_check() is called in
815                  * target() callback which can detect the throttle state
816                  * for governors like ondemand.
817                  * But static governors will not call target() often thus
818                  * report throttling here.
819                  */
820                 if (!throttled) {
821                         throttled = true;
822                         pr_warn("CPU frequency is throttled for duration\n");
823                 }
824
825                 break;
826         case OCC_LOAD:
827                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
828                 break;
829         case OCC_THROTTLE:
830                 omsg.chip = be64_to_cpu(msg->params[1]);
831                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
832
833                 if (occ_reset) {
834                         occ_reset = false;
835                         throttled = false;
836                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
837
838                         for (i = 0; i < nr_chips; i++) {
839                                 chips[i].restore = true;
840                                 schedule_work(&chips[i].throttle);
841                         }
842
843                         return 0;
844                 }
845
846                 for (i = 0; i < nr_chips; i++)
847                         if (chips[i].id == omsg.chip)
848                                 break;
849
850                 if (omsg.throttle_status >= 0 &&
851                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
852                         chips[i].throttle_reason = omsg.throttle_status;
853                         chips[i].reason[omsg.throttle_status]++;
854                 }
855
856                 if (!omsg.throttle_status)
857                         chips[i].restore = true;
858
859                 schedule_work(&chips[i].throttle);
860         }
861         return 0;
862 }
863
864 static struct notifier_block powernv_cpufreq_opal_nb = {
865         .notifier_call  = powernv_cpufreq_occ_msg,
866         .next           = NULL,
867         .priority       = 0,
868 };
869
870 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
871 {
872         struct powernv_smp_call_data freq_data;
873         struct global_pstate_info *gpstates = policy->driver_data;
874
875         freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
876         freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
877         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
878         del_timer_sync(&gpstates->timer);
879 }
880
881 static struct cpufreq_driver powernv_cpufreq_driver = {
882         .name           = "powernv-cpufreq",
883         .flags          = CPUFREQ_CONST_LOOPS,
884         .init           = powernv_cpufreq_cpu_init,
885         .exit           = powernv_cpufreq_cpu_exit,
886         .verify         = cpufreq_generic_frequency_table_verify,
887         .target_index   = powernv_cpufreq_target_index,
888         .get            = powernv_cpufreq_get,
889         .stop_cpu       = powernv_cpufreq_stop_cpu,
890         .attr           = powernv_cpu_freq_attr,
891 };
892
893 static int init_chip_info(void)
894 {
895         unsigned int chip[256];
896         unsigned int cpu, i;
897         unsigned int prev_chip_id = UINT_MAX;
898
899         for_each_possible_cpu(cpu) {
900                 unsigned int id = cpu_to_chip_id(cpu);
901
902                 if (prev_chip_id != id) {
903                         prev_chip_id = id;
904                         chip[nr_chips++] = id;
905                 }
906         }
907
908         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
909         if (!chips)
910                 return -ENOMEM;
911
912         for (i = 0; i < nr_chips; i++) {
913                 chips[i].id = chip[i];
914                 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
915                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
916                 for_each_cpu(cpu, &chips[i].mask)
917                         per_cpu(chip_info, cpu) =  &chips[i];
918         }
919
920         return 0;
921 }
922
923 static inline void clean_chip_info(void)
924 {
925         kfree(chips);
926 }
927
928 static inline void unregister_all_notifiers(void)
929 {
930         opal_message_notifier_unregister(OPAL_MSG_OCC,
931                                          &powernv_cpufreq_opal_nb);
932         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
933 }
934
935 static int __init powernv_cpufreq_init(void)
936 {
937         int rc = 0;
938
939         /* Don't probe on pseries (guest) platforms */
940         if (!firmware_has_feature(FW_FEATURE_OPAL))
941                 return -ENODEV;
942
943         /* Discover pstates from device tree and init */
944         rc = init_powernv_pstates();
945         if (rc)
946                 goto out;
947
948         /* Populate chip info */
949         rc = init_chip_info();
950         if (rc)
951                 goto out;
952
953         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
954         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
955
956         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
957         if (!rc)
958                 return 0;
959
960         pr_info("Failed to register the cpufreq driver (%d)\n", rc);
961         unregister_all_notifiers();
962         clean_chip_info();
963 out:
964         pr_info("Platform driver disabled. System does not support PState control\n");
965         return rc;
966 }
967 module_init(powernv_cpufreq_init);
968
969 static void __exit powernv_cpufreq_exit(void)
970 {
971         cpufreq_unregister_driver(&powernv_cpufreq_driver);
972         unregister_all_notifiers();
973         clean_chip_info();
974 }
975 module_exit(powernv_cpufreq_exit);
976
977 MODULE_LICENSE("GPL");
978 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");