Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65         return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70         int mask, ret;
71
72         ret = fp_toint(x);
73         mask = (1 << FRAC_BITS) - 1;
74         if (x & mask)
75                 ret += 1;
76         return ret;
77 }
78
79 static inline int32_t percent_fp(int percent)
80 {
81         return div_fp(percent, 100);
82 }
83
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86         return (x * y) >> EXT_FRAC_BITS;
87 }
88
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91         return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
94 static inline int32_t percent_ext_fp(int percent)
95 {
96         return div_ext_fp(percent, 100);
97 }
98
99 /**
100  * struct sample -      Store performance sample
101  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
102  *                      performance during last sample period
103  * @busy_scaled:        Scaled busy value which is used to calculate next
104  *                      P state. This can be different than core_avg_perf
105  *                      to account for cpu idle period
106  * @aperf:              Difference of actual performance frequency clock count
107  *                      read from APERF MSR between last and current sample
108  * @mperf:              Difference of maximum performance frequency clock count
109  *                      read from MPERF MSR between last and current sample
110  * @tsc:                Difference of time stamp counter between last and
111  *                      current sample
112  * @time:               Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118         int32_t core_avg_perf;
119         int32_t busy_scaled;
120         u64 aperf;
121         u64 mperf;
122         u64 tsc;
123         u64 time;
124 };
125
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:     Current requested P state
129  * @min_pstate:         Min P state possible for this platform
130  * @max_pstate:         Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *                      This can be higher than the max_pstate which can
133  *                      be limited by platform thermal design power limits
134  * @scaling:            Scaling factor to  convert frequency to cpufreq
135  *                      frequency units
136  * @turbo_pstate:       Max Turbo P state possible for this platform
137  * @max_freq:           @max_pstate frequency in cpufreq units
138  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143         int     current_pstate;
144         int     min_pstate;
145         int     max_pstate;
146         int     max_pstate_physical;
147         int     scaling;
148         int     turbo_pstate;
149         unsigned int max_freq;
150         unsigned int turbo_freq;
151 };
152
153 /**
154  * struct vid_data -    Stores voltage information data
155  * @min:                VID data for this platform corresponding to
156  *                      the lowest P state
157  * @max:                VID data corresponding to the highest P State.
158  * @turbo:              VID data for turbo P state
159  * @ratio:              Ratio of (vid max - vid min) /
160  *                      (max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167         int min;
168         int max;
169         int turbo;
170         int32_t ratio;
171 };
172
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:           Whether or not to use turbo P-states.
176  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
177  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
178  *                      not the maximum reported turbo P-state is different from
179  *                      the maximum reported non-turbo one.
180  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
181  *                      P-state capacity.
182  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
183  *                      P-state capacity.
184  */
185 struct global_params {
186         bool no_turbo;
187         bool turbo_disabled;
188         int max_perf_pct;
189         int min_perf_pct;
190 };
191
192 /**
193  * struct cpudata -     Per CPU instance data storage
194  * @cpu:                CPU number for this instance data
195  * @policy:             CPUFreq policy value
196  * @update_util:        CPUFreq utility callback information
197  * @update_util_set:    CPUFreq utility callback is set
198  * @iowait_boost:       iowait-related boost fraction
199  * @last_update:        Time of the last update.
200  * @pstate:             Stores P state limits for this CPU
201  * @vid:                Stores VID limits for this CPU
202  * @last_sample_time:   Last Sample time
203  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
204  *                      This shift is a multiplier to mperf delta to
205  *                      calculate CPU busy.
206  * @prev_aperf:         Last APERF value read from APERF MSR
207  * @prev_mperf:         Last MPERF value read from MPERF MSR
208  * @prev_tsc:           Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *                      current sample
211  * @sample:             Storage for storing last Sample data
212  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
215  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:      Last saved HWP energy performance preference
217  *                      (EPP) or energy performance bias (EPB),
218  *                      when policy switched to performance
219  * @epp_policy:         Last saved policy used to set EPP/EPB
220  * @epp_default:        Power on default HWP energy performance
221  *                      preference/bias
222  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
223  *                      operation
224  * @hwp_req_cached:     Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
226  * @last_io_update:     Last time when IO wake flag was set
227  * @sched_flags:        Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:      Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233         int cpu;
234
235         unsigned int policy;
236         struct update_util_data update_util;
237         bool   update_util_set;
238
239         struct pstate_data pstate;
240         struct vid_data vid;
241
242         u64     last_update;
243         u64     last_sample_time;
244         u64     aperf_mperf_shift;
245         u64     prev_aperf;
246         u64     prev_mperf;
247         u64     prev_tsc;
248         u64     prev_cummulative_iowait;
249         struct sample sample;
250         int32_t min_perf_ratio;
251         int32_t max_perf_ratio;
252 #ifdef CONFIG_ACPI
253         struct acpi_processor_performance acpi_perf_data;
254         bool valid_pss_table;
255 #endif
256         unsigned int iowait_boost;
257         s16 epp_powersave;
258         s16 epp_policy;
259         s16 epp_default;
260         s16 epp_saved;
261         u64 hwp_req_cached;
262         u64 hwp_cap_cached;
263         u64 last_io_update;
264         unsigned int sched_flags;
265         u32 hwp_boost_min;
266 };
267
268 static struct cpudata **all_cpu_data;
269
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:            Callback to get maximum non turbo effective P state
273  * @get_max_physical:   Callback to get maximum non turbo physical P state
274  * @get_min:            Callback to get minimum P state
275  * @get_turbo:          Callback to get turbo P state
276  * @get_scaling:        Callback to get frequency scaling factor
277  * @get_val:            Callback to convert P state to actual MSR write value
278  * @get_vid:            Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284         int (*get_max)(void);
285         int (*get_max_physical)(void);
286         int (*get_min)(void);
287         int (*get_turbo)(void);
288         int (*get_scaling)(void);
289         int (*get_aperf_mperf_shift)(void);
290         u64 (*get_val)(struct cpudata*, int pstate);
291         void (*get_vid)(struct cpudata *);
292 };
293
294 static struct pstate_funcs pstate_funcs __read_mostly;
295
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306
307 static struct global_params global;
308
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311
312 #ifdef CONFIG_ACPI
313
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318                 return true;
319
320         return false;
321 }
322
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325         if (intel_pstate_acpi_pm_profile_server())
326                 return true;
327
328         return acpi_ppc;
329 }
330
331 #ifdef CONFIG_ACPI_CPPC_LIB
332
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336         sched_set_itmt_support();
337 }
338
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343         struct cppc_perf_caps cppc_perf;
344         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345         int ret;
346
347         ret = cppc_get_perf_caps(cpu, &cppc_perf);
348         if (ret)
349                 return;
350
351         /*
352          * The priorities can be set regardless of whether or not
353          * sched_set_itmt_support(true) has been called and it is valid to
354          * update them at any time after it has been called.
355          */
356         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357
358         if (max_highest_perf <= min_highest_perf) {
359                 if (cppc_perf.highest_perf > max_highest_perf)
360                         max_highest_perf = cppc_perf.highest_perf;
361
362                 if (cppc_perf.highest_perf < min_highest_perf)
363                         min_highest_perf = cppc_perf.highest_perf;
364
365                 if (max_highest_perf > min_highest_perf) {
366                         /*
367                          * This code can be run during CPU online under the
368                          * CPU hotplug locks, so sched_set_itmt_support()
369                          * cannot be called from here.  Queue up a work item
370                          * to invoke it.
371                          */
372                         schedule_work(&sched_itmt_work);
373                 }
374         }
375 }
376 #else
377 static void intel_pstate_set_itmt_prio(int cpu)
378 {
379 }
380 #endif
381
382 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
383 {
384         struct cpudata *cpu;
385         int ret;
386         int i;
387
388         if (hwp_active) {
389                 intel_pstate_set_itmt_prio(policy->cpu);
390                 return;
391         }
392
393         if (!intel_pstate_get_ppc_enable_status())
394                 return;
395
396         cpu = all_cpu_data[policy->cpu];
397
398         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
399                                                   policy->cpu);
400         if (ret)
401                 return;
402
403         /*
404          * Check if the control value in _PSS is for PERF_CTL MSR, which should
405          * guarantee that the states returned by it map to the states in our
406          * list directly.
407          */
408         if (cpu->acpi_perf_data.control_register.space_id !=
409                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
410                 goto err;
411
412         /*
413          * If there is only one entry _PSS, simply ignore _PSS and continue as
414          * usual without taking _PSS into account
415          */
416         if (cpu->acpi_perf_data.state_count < 2)
417                 goto err;
418
419         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
420         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
421                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
422                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
423                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
424                          (u32) cpu->acpi_perf_data.states[i].power,
425                          (u32) cpu->acpi_perf_data.states[i].control);
426         }
427
428         /*
429          * The _PSS table doesn't contain whole turbo frequency range.
430          * This just contains +1 MHZ above the max non turbo frequency,
431          * with control value corresponding to max turbo ratio. But
432          * when cpufreq set policy is called, it will call with this
433          * max frequency, which will cause a reduced performance as
434          * this driver uses real max turbo frequency as the max
435          * frequency. So correct this frequency in _PSS table to
436          * correct max turbo frequency based on the turbo state.
437          * Also need to convert to MHz as _PSS freq is in MHz.
438          */
439         if (!global.turbo_disabled)
440                 cpu->acpi_perf_data.states[0].core_frequency =
441                                         policy->cpuinfo.max_freq / 1000;
442         cpu->valid_pss_table = true;
443         pr_debug("_PPC limits will be enforced\n");
444
445         return;
446
447  err:
448         cpu->valid_pss_table = false;
449         acpi_processor_unregister_performance(policy->cpu);
450 }
451
452 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
453 {
454         struct cpudata *cpu;
455
456         cpu = all_cpu_data[policy->cpu];
457         if (!cpu->valid_pss_table)
458                 return;
459
460         acpi_processor_unregister_performance(policy->cpu);
461 }
462 #else
463 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
464 {
465 }
466
467 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
468 {
469 }
470
471 static inline bool intel_pstate_acpi_pm_profile_server(void)
472 {
473         return false;
474 }
475 #endif
476
477 static inline void update_turbo_state(void)
478 {
479         u64 misc_en;
480         struct cpudata *cpu;
481
482         cpu = all_cpu_data[0];
483         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
484         global.turbo_disabled =
485                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
486                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
487 }
488
489 static int min_perf_pct_min(void)
490 {
491         struct cpudata *cpu = all_cpu_data[0];
492         int turbo_pstate = cpu->pstate.turbo_pstate;
493
494         return turbo_pstate ?
495                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
496 }
497
498 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
499 {
500         u64 epb;
501         int ret;
502
503         if (!static_cpu_has(X86_FEATURE_EPB))
504                 return -ENXIO;
505
506         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
507         if (ret)
508                 return (s16)ret;
509
510         return (s16)(epb & 0x0f);
511 }
512
513 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
514 {
515         s16 epp;
516
517         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
518                 /*
519                  * When hwp_req_data is 0, means that caller didn't read
520                  * MSR_HWP_REQUEST, so need to read and get EPP.
521                  */
522                 if (!hwp_req_data) {
523                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
524                                             &hwp_req_data);
525                         if (epp)
526                                 return epp;
527                 }
528                 epp = (hwp_req_data >> 24) & 0xff;
529         } else {
530                 /* When there is no EPP present, HWP uses EPB settings */
531                 epp = intel_pstate_get_epb(cpu_data);
532         }
533
534         return epp;
535 }
536
537 static int intel_pstate_set_epb(int cpu, s16 pref)
538 {
539         u64 epb;
540         int ret;
541
542         if (!static_cpu_has(X86_FEATURE_EPB))
543                 return -ENXIO;
544
545         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
546         if (ret)
547                 return ret;
548
549         epb = (epb & ~0x0f) | pref;
550         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
551
552         return 0;
553 }
554
555 /*
556  * EPP/EPB display strings corresponding to EPP index in the
557  * energy_perf_strings[]
558  *      index           String
559  *-------------------------------------
560  *      0               default
561  *      1               performance
562  *      2               balance_performance
563  *      3               balance_power
564  *      4               power
565  */
566 static const char * const energy_perf_strings[] = {
567         "default",
568         "performance",
569         "balance_performance",
570         "balance_power",
571         "power",
572         NULL
573 };
574 static const unsigned int epp_values[] = {
575         HWP_EPP_PERFORMANCE,
576         HWP_EPP_BALANCE_PERFORMANCE,
577         HWP_EPP_BALANCE_POWERSAVE,
578         HWP_EPP_POWERSAVE
579 };
580
581 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
582 {
583         s16 epp;
584         int index = -EINVAL;
585
586         epp = intel_pstate_get_epp(cpu_data, 0);
587         if (epp < 0)
588                 return epp;
589
590         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
591                 if (epp == HWP_EPP_PERFORMANCE)
592                         return 1;
593                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
594                         return 2;
595                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
596                         return 3;
597                 else
598                         return 4;
599         } else if (static_cpu_has(X86_FEATURE_EPB)) {
600                 /*
601                  * Range:
602                  *      0x00-0x03       :       Performance
603                  *      0x04-0x07       :       Balance performance
604                  *      0x08-0x0B       :       Balance power
605                  *      0x0C-0x0F       :       Power
606                  * The EPB is a 4 bit value, but our ranges restrict the
607                  * value which can be set. Here only using top two bits
608                  * effectively.
609                  */
610                 index = (epp >> 2) + 1;
611         }
612
613         return index;
614 }
615
616 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
617                                               int pref_index)
618 {
619         int epp = -EINVAL;
620         int ret;
621
622         if (!pref_index)
623                 epp = cpu_data->epp_default;
624
625         mutex_lock(&intel_pstate_limits_lock);
626
627         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
628                 u64 value;
629
630                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
631                 if (ret)
632                         goto return_pref;
633
634                 value &= ~GENMASK_ULL(31, 24);
635
636                 if (epp == -EINVAL)
637                         epp = epp_values[pref_index - 1];
638
639                 value |= (u64)epp << 24;
640                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
641         } else {
642                 if (epp == -EINVAL)
643                         epp = (pref_index - 1) << 2;
644                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
645         }
646 return_pref:
647         mutex_unlock(&intel_pstate_limits_lock);
648
649         return ret;
650 }
651
652 static ssize_t show_energy_performance_available_preferences(
653                                 struct cpufreq_policy *policy, char *buf)
654 {
655         int i = 0;
656         int ret = 0;
657
658         while (energy_perf_strings[i] != NULL)
659                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
660
661         ret += sprintf(&buf[ret], "\n");
662
663         return ret;
664 }
665
666 cpufreq_freq_attr_ro(energy_performance_available_preferences);
667
668 static ssize_t store_energy_performance_preference(
669                 struct cpufreq_policy *policy, const char *buf, size_t count)
670 {
671         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
672         char str_preference[21];
673         int ret, i = 0;
674
675         ret = sscanf(buf, "%20s", str_preference);
676         if (ret != 1)
677                 return -EINVAL;
678
679         while (energy_perf_strings[i] != NULL) {
680                 if (!strcmp(str_preference, energy_perf_strings[i])) {
681                         intel_pstate_set_energy_pref_index(cpu_data, i);
682                         return count;
683                 }
684                 ++i;
685         }
686
687         return -EINVAL;
688 }
689
690 static ssize_t show_energy_performance_preference(
691                                 struct cpufreq_policy *policy, char *buf)
692 {
693         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
694         int preference;
695
696         preference = intel_pstate_get_energy_pref_index(cpu_data);
697         if (preference < 0)
698                 return preference;
699
700         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
701 }
702
703 cpufreq_freq_attr_rw(energy_performance_preference);
704
705 static struct freq_attr *hwp_cpufreq_attrs[] = {
706         &energy_performance_preference,
707         &energy_performance_available_preferences,
708         NULL,
709 };
710
711 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
712                                      int *current_max)
713 {
714         u64 cap;
715
716         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
717         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
718         if (global.no_turbo)
719                 *current_max = HWP_GUARANTEED_PERF(cap);
720         else
721                 *current_max = HWP_HIGHEST_PERF(cap);
722
723         *phy_max = HWP_HIGHEST_PERF(cap);
724 }
725
726 static void intel_pstate_hwp_set(unsigned int cpu)
727 {
728         struct cpudata *cpu_data = all_cpu_data[cpu];
729         int max, min;
730         u64 value;
731         s16 epp;
732
733         max = cpu_data->max_perf_ratio;
734         min = cpu_data->min_perf_ratio;
735
736         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
737                 min = max;
738
739         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
740
741         value &= ~HWP_MIN_PERF(~0L);
742         value |= HWP_MIN_PERF(min);
743
744         value &= ~HWP_MAX_PERF(~0L);
745         value |= HWP_MAX_PERF(max);
746
747         if (cpu_data->epp_policy == cpu_data->policy)
748                 goto skip_epp;
749
750         cpu_data->epp_policy = cpu_data->policy;
751
752         if (cpu_data->epp_saved >= 0) {
753                 epp = cpu_data->epp_saved;
754                 cpu_data->epp_saved = -EINVAL;
755                 goto update_epp;
756         }
757
758         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
759                 epp = intel_pstate_get_epp(cpu_data, value);
760                 cpu_data->epp_powersave = epp;
761                 /* If EPP read was failed, then don't try to write */
762                 if (epp < 0)
763                         goto skip_epp;
764
765                 epp = 0;
766         } else {
767                 /* skip setting EPP, when saved value is invalid */
768                 if (cpu_data->epp_powersave < 0)
769                         goto skip_epp;
770
771                 /*
772                  * No need to restore EPP when it is not zero. This
773                  * means:
774                  *  - Policy is not changed
775                  *  - user has manually changed
776                  *  - Error reading EPB
777                  */
778                 epp = intel_pstate_get_epp(cpu_data, value);
779                 if (epp)
780                         goto skip_epp;
781
782                 epp = cpu_data->epp_powersave;
783         }
784 update_epp:
785         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
786                 value &= ~GENMASK_ULL(31, 24);
787                 value |= (u64)epp << 24;
788         } else {
789                 intel_pstate_set_epb(cpu, epp);
790         }
791 skip_epp:
792         WRITE_ONCE(cpu_data->hwp_req_cached, value);
793         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
794 }
795
796 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
797 {
798         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
799
800         if (!hwp_active)
801                 return 0;
802
803         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
804
805         return 0;
806 }
807
808 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
809
810 static int intel_pstate_resume(struct cpufreq_policy *policy)
811 {
812         if (!hwp_active)
813                 return 0;
814
815         mutex_lock(&intel_pstate_limits_lock);
816
817         if (policy->cpu == 0)
818                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
819
820         all_cpu_data[policy->cpu]->epp_policy = 0;
821         intel_pstate_hwp_set(policy->cpu);
822
823         mutex_unlock(&intel_pstate_limits_lock);
824
825         return 0;
826 }
827
828 static void intel_pstate_update_policies(void)
829 {
830         int cpu;
831
832         for_each_possible_cpu(cpu)
833                 cpufreq_update_policy(cpu);
834 }
835
836 /************************** sysfs begin ************************/
837 #define show_one(file_name, object)                                     \
838         static ssize_t show_##file_name                                 \
839         (struct kobject *kobj, struct attribute *attr, char *buf)       \
840         {                                                               \
841                 return sprintf(buf, "%u\n", global.object);             \
842         }
843
844 static ssize_t intel_pstate_show_status(char *buf);
845 static int intel_pstate_update_status(const char *buf, size_t size);
846
847 static ssize_t show_status(struct kobject *kobj,
848                            struct attribute *attr, char *buf)
849 {
850         ssize_t ret;
851
852         mutex_lock(&intel_pstate_driver_lock);
853         ret = intel_pstate_show_status(buf);
854         mutex_unlock(&intel_pstate_driver_lock);
855
856         return ret;
857 }
858
859 static ssize_t store_status(struct kobject *a, struct attribute *b,
860                             const char *buf, size_t count)
861 {
862         char *p = memchr(buf, '\n', count);
863         int ret;
864
865         mutex_lock(&intel_pstate_driver_lock);
866         ret = intel_pstate_update_status(buf, p ? p - buf : count);
867         mutex_unlock(&intel_pstate_driver_lock);
868
869         return ret < 0 ? ret : count;
870 }
871
872 static ssize_t show_turbo_pct(struct kobject *kobj,
873                                 struct attribute *attr, char *buf)
874 {
875         struct cpudata *cpu;
876         int total, no_turbo, turbo_pct;
877         uint32_t turbo_fp;
878
879         mutex_lock(&intel_pstate_driver_lock);
880
881         if (!intel_pstate_driver) {
882                 mutex_unlock(&intel_pstate_driver_lock);
883                 return -EAGAIN;
884         }
885
886         cpu = all_cpu_data[0];
887
888         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
889         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
890         turbo_fp = div_fp(no_turbo, total);
891         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
892
893         mutex_unlock(&intel_pstate_driver_lock);
894
895         return sprintf(buf, "%u\n", turbo_pct);
896 }
897
898 static ssize_t show_num_pstates(struct kobject *kobj,
899                                 struct attribute *attr, char *buf)
900 {
901         struct cpudata *cpu;
902         int total;
903
904         mutex_lock(&intel_pstate_driver_lock);
905
906         if (!intel_pstate_driver) {
907                 mutex_unlock(&intel_pstate_driver_lock);
908                 return -EAGAIN;
909         }
910
911         cpu = all_cpu_data[0];
912         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
913
914         mutex_unlock(&intel_pstate_driver_lock);
915
916         return sprintf(buf, "%u\n", total);
917 }
918
919 static ssize_t show_no_turbo(struct kobject *kobj,
920                              struct attribute *attr, char *buf)
921 {
922         ssize_t ret;
923
924         mutex_lock(&intel_pstate_driver_lock);
925
926         if (!intel_pstate_driver) {
927                 mutex_unlock(&intel_pstate_driver_lock);
928                 return -EAGAIN;
929         }
930
931         update_turbo_state();
932         if (global.turbo_disabled)
933                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
934         else
935                 ret = sprintf(buf, "%u\n", global.no_turbo);
936
937         mutex_unlock(&intel_pstate_driver_lock);
938
939         return ret;
940 }
941
942 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
943                               const char *buf, size_t count)
944 {
945         unsigned int input;
946         int ret;
947
948         ret = sscanf(buf, "%u", &input);
949         if (ret != 1)
950                 return -EINVAL;
951
952         mutex_lock(&intel_pstate_driver_lock);
953
954         if (!intel_pstate_driver) {
955                 mutex_unlock(&intel_pstate_driver_lock);
956                 return -EAGAIN;
957         }
958
959         mutex_lock(&intel_pstate_limits_lock);
960
961         update_turbo_state();
962         if (global.turbo_disabled) {
963                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
964                 mutex_unlock(&intel_pstate_limits_lock);
965                 mutex_unlock(&intel_pstate_driver_lock);
966                 return -EPERM;
967         }
968
969         global.no_turbo = clamp_t(int, input, 0, 1);
970
971         if (global.no_turbo) {
972                 struct cpudata *cpu = all_cpu_data[0];
973                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
974
975                 /* Squash the global minimum into the permitted range. */
976                 if (global.min_perf_pct > pct)
977                         global.min_perf_pct = pct;
978         }
979
980         mutex_unlock(&intel_pstate_limits_lock);
981
982         intel_pstate_update_policies();
983
984         mutex_unlock(&intel_pstate_driver_lock);
985
986         return count;
987 }
988
989 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
990                                   const char *buf, size_t count)
991 {
992         unsigned int input;
993         int ret;
994
995         ret = sscanf(buf, "%u", &input);
996         if (ret != 1)
997                 return -EINVAL;
998
999         mutex_lock(&intel_pstate_driver_lock);
1000
1001         if (!intel_pstate_driver) {
1002                 mutex_unlock(&intel_pstate_driver_lock);
1003                 return -EAGAIN;
1004         }
1005
1006         mutex_lock(&intel_pstate_limits_lock);
1007
1008         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1009
1010         mutex_unlock(&intel_pstate_limits_lock);
1011
1012         intel_pstate_update_policies();
1013
1014         mutex_unlock(&intel_pstate_driver_lock);
1015
1016         return count;
1017 }
1018
1019 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1020                                   const char *buf, size_t count)
1021 {
1022         unsigned int input;
1023         int ret;
1024
1025         ret = sscanf(buf, "%u", &input);
1026         if (ret != 1)
1027                 return -EINVAL;
1028
1029         mutex_lock(&intel_pstate_driver_lock);
1030
1031         if (!intel_pstate_driver) {
1032                 mutex_unlock(&intel_pstate_driver_lock);
1033                 return -EAGAIN;
1034         }
1035
1036         mutex_lock(&intel_pstate_limits_lock);
1037
1038         global.min_perf_pct = clamp_t(int, input,
1039                                       min_perf_pct_min(), global.max_perf_pct);
1040
1041         mutex_unlock(&intel_pstate_limits_lock);
1042
1043         intel_pstate_update_policies();
1044
1045         mutex_unlock(&intel_pstate_driver_lock);
1046
1047         return count;
1048 }
1049
1050 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1051                                 struct attribute *attr, char *buf)
1052 {
1053         return sprintf(buf, "%u\n", hwp_boost);
1054 }
1055
1056 static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1057                                        const char *buf, size_t count)
1058 {
1059         unsigned int input;
1060         int ret;
1061
1062         ret = kstrtouint(buf, 10, &input);
1063         if (ret)
1064                 return ret;
1065
1066         mutex_lock(&intel_pstate_driver_lock);
1067         hwp_boost = !!input;
1068         intel_pstate_update_policies();
1069         mutex_unlock(&intel_pstate_driver_lock);
1070
1071         return count;
1072 }
1073
1074 show_one(max_perf_pct, max_perf_pct);
1075 show_one(min_perf_pct, min_perf_pct);
1076
1077 define_one_global_rw(status);
1078 define_one_global_rw(no_turbo);
1079 define_one_global_rw(max_perf_pct);
1080 define_one_global_rw(min_perf_pct);
1081 define_one_global_ro(turbo_pct);
1082 define_one_global_ro(num_pstates);
1083 define_one_global_rw(hwp_dynamic_boost);
1084
1085 static struct attribute *intel_pstate_attributes[] = {
1086         &status.attr,
1087         &no_turbo.attr,
1088         &turbo_pct.attr,
1089         &num_pstates.attr,
1090         NULL
1091 };
1092
1093 static const struct attribute_group intel_pstate_attr_group = {
1094         .attrs = intel_pstate_attributes,
1095 };
1096
1097 static void __init intel_pstate_sysfs_expose_params(void)
1098 {
1099         struct kobject *intel_pstate_kobject;
1100         int rc;
1101
1102         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1103                                                 &cpu_subsys.dev_root->kobj);
1104         if (WARN_ON(!intel_pstate_kobject))
1105                 return;
1106
1107         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1108         if (WARN_ON(rc))
1109                 return;
1110
1111         /*
1112          * If per cpu limits are enforced there are no global limits, so
1113          * return without creating max/min_perf_pct attributes
1114          */
1115         if (per_cpu_limits)
1116                 return;
1117
1118         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1119         WARN_ON(rc);
1120
1121         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1122         WARN_ON(rc);
1123
1124         if (hwp_active) {
1125                 rc = sysfs_create_file(intel_pstate_kobject,
1126                                        &hwp_dynamic_boost.attr);
1127                 WARN_ON(rc);
1128         }
1129 }
1130 /************************** sysfs end ************************/
1131
1132 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1133 {
1134         /* First disable HWP notification interrupt as we don't process them */
1135         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1136                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1137
1138         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1139         cpudata->epp_policy = 0;
1140         if (cpudata->epp_default == -EINVAL)
1141                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1142 }
1143
1144 #define MSR_IA32_POWER_CTL_BIT_EE       19
1145
1146 /* Disable energy efficiency optimization */
1147 static void intel_pstate_disable_ee(int cpu)
1148 {
1149         u64 power_ctl;
1150         int ret;
1151
1152         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1153         if (ret)
1154                 return;
1155
1156         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1157                 pr_info("Disabling energy efficiency optimization\n");
1158                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1159                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1160         }
1161 }
1162
1163 static int atom_get_min_pstate(void)
1164 {
1165         u64 value;
1166
1167         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1168         return (value >> 8) & 0x7F;
1169 }
1170
1171 static int atom_get_max_pstate(void)
1172 {
1173         u64 value;
1174
1175         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1176         return (value >> 16) & 0x7F;
1177 }
1178
1179 static int atom_get_turbo_pstate(void)
1180 {
1181         u64 value;
1182
1183         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1184         return value & 0x7F;
1185 }
1186
1187 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1188 {
1189         u64 val;
1190         int32_t vid_fp;
1191         u32 vid;
1192
1193         val = (u64)pstate << 8;
1194         if (global.no_turbo && !global.turbo_disabled)
1195                 val |= (u64)1 << 32;
1196
1197         vid_fp = cpudata->vid.min + mul_fp(
1198                 int_tofp(pstate - cpudata->pstate.min_pstate),
1199                 cpudata->vid.ratio);
1200
1201         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1202         vid = ceiling_fp(vid_fp);
1203
1204         if (pstate > cpudata->pstate.max_pstate)
1205                 vid = cpudata->vid.turbo;
1206
1207         return val | vid;
1208 }
1209
1210 static int silvermont_get_scaling(void)
1211 {
1212         u64 value;
1213         int i;
1214         /* Defined in Table 35-6 from SDM (Sept 2015) */
1215         static int silvermont_freq_table[] = {
1216                 83300, 100000, 133300, 116700, 80000};
1217
1218         rdmsrl(MSR_FSB_FREQ, value);
1219         i = value & 0x7;
1220         WARN_ON(i > 4);
1221
1222         return silvermont_freq_table[i];
1223 }
1224
1225 static int airmont_get_scaling(void)
1226 {
1227         u64 value;
1228         int i;
1229         /* Defined in Table 35-10 from SDM (Sept 2015) */
1230         static int airmont_freq_table[] = {
1231                 83300, 100000, 133300, 116700, 80000,
1232                 93300, 90000, 88900, 87500};
1233
1234         rdmsrl(MSR_FSB_FREQ, value);
1235         i = value & 0xF;
1236         WARN_ON(i > 8);
1237
1238         return airmont_freq_table[i];
1239 }
1240
1241 static void atom_get_vid(struct cpudata *cpudata)
1242 {
1243         u64 value;
1244
1245         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1246         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1247         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1248         cpudata->vid.ratio = div_fp(
1249                 cpudata->vid.max - cpudata->vid.min,
1250                 int_tofp(cpudata->pstate.max_pstate -
1251                         cpudata->pstate.min_pstate));
1252
1253         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1254         cpudata->vid.turbo = value & 0x7f;
1255 }
1256
1257 static int core_get_min_pstate(void)
1258 {
1259         u64 value;
1260
1261         rdmsrl(MSR_PLATFORM_INFO, value);
1262         return (value >> 40) & 0xFF;
1263 }
1264
1265 static int core_get_max_pstate_physical(void)
1266 {
1267         u64 value;
1268
1269         rdmsrl(MSR_PLATFORM_INFO, value);
1270         return (value >> 8) & 0xFF;
1271 }
1272
1273 static int core_get_tdp_ratio(u64 plat_info)
1274 {
1275         /* Check how many TDP levels present */
1276         if (plat_info & 0x600000000) {
1277                 u64 tdp_ctrl;
1278                 u64 tdp_ratio;
1279                 int tdp_msr;
1280                 int err;
1281
1282                 /* Get the TDP level (0, 1, 2) to get ratios */
1283                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1284                 if (err)
1285                         return err;
1286
1287                 /* TDP MSR are continuous starting at 0x648 */
1288                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1289                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1290                 if (err)
1291                         return err;
1292
1293                 /* For level 1 and 2, bits[23:16] contain the ratio */
1294                 if (tdp_ctrl & 0x03)
1295                         tdp_ratio >>= 16;
1296
1297                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1298                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1299
1300                 return (int)tdp_ratio;
1301         }
1302
1303         return -ENXIO;
1304 }
1305
1306 static int core_get_max_pstate(void)
1307 {
1308         u64 tar;
1309         u64 plat_info;
1310         int max_pstate;
1311         int tdp_ratio;
1312         int err;
1313
1314         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1315         max_pstate = (plat_info >> 8) & 0xFF;
1316
1317         tdp_ratio = core_get_tdp_ratio(plat_info);
1318         if (tdp_ratio <= 0)
1319                 return max_pstate;
1320
1321         if (hwp_active) {
1322                 /* Turbo activation ratio is not used on HWP platforms */
1323                 return tdp_ratio;
1324         }
1325
1326         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1327         if (!err) {
1328                 int tar_levels;
1329
1330                 /* Do some sanity checking for safety */
1331                 tar_levels = tar & 0xff;
1332                 if (tdp_ratio - 1 == tar_levels) {
1333                         max_pstate = tar_levels;
1334                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1335                 }
1336         }
1337
1338         return max_pstate;
1339 }
1340
1341 static int core_get_turbo_pstate(void)
1342 {
1343         u64 value;
1344         int nont, ret;
1345
1346         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1347         nont = core_get_max_pstate();
1348         ret = (value) & 255;
1349         if (ret <= nont)
1350                 ret = nont;
1351         return ret;
1352 }
1353
1354 static inline int core_get_scaling(void)
1355 {
1356         return 100000;
1357 }
1358
1359 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1360 {
1361         u64 val;
1362
1363         val = (u64)pstate << 8;
1364         if (global.no_turbo && !global.turbo_disabled)
1365                 val |= (u64)1 << 32;
1366
1367         return val;
1368 }
1369
1370 static int knl_get_aperf_mperf_shift(void)
1371 {
1372         return 10;
1373 }
1374
1375 static int knl_get_turbo_pstate(void)
1376 {
1377         u64 value;
1378         int nont, ret;
1379
1380         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1381         nont = core_get_max_pstate();
1382         ret = (((value) >> 8) & 0xFF);
1383         if (ret <= nont)
1384                 ret = nont;
1385         return ret;
1386 }
1387
1388 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1389 {
1390         return global.no_turbo || global.turbo_disabled ?
1391                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1392 }
1393
1394 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1395 {
1396         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1397         cpu->pstate.current_pstate = pstate;
1398         /*
1399          * Generally, there is no guarantee that this code will always run on
1400          * the CPU being updated, so force the register update to run on the
1401          * right CPU.
1402          */
1403         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1404                       pstate_funcs.get_val(cpu, pstate));
1405 }
1406
1407 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1408 {
1409         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1410 }
1411
1412 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1413 {
1414         int pstate;
1415
1416         update_turbo_state();
1417         pstate = intel_pstate_get_base_pstate(cpu);
1418         pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1419         intel_pstate_set_pstate(cpu, pstate);
1420 }
1421
1422 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1423 {
1424         cpu->pstate.min_pstate = pstate_funcs.get_min();
1425         cpu->pstate.max_pstate = pstate_funcs.get_max();
1426         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1427         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1428         cpu->pstate.scaling = pstate_funcs.get_scaling();
1429         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1430
1431         if (hwp_active && !hwp_mode_bdw) {
1432                 unsigned int phy_max, current_max;
1433
1434                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1435                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1436         } else {
1437                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1438         }
1439
1440         if (pstate_funcs.get_aperf_mperf_shift)
1441                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1442
1443         if (pstate_funcs.get_vid)
1444                 pstate_funcs.get_vid(cpu);
1445
1446         intel_pstate_set_min_pstate(cpu);
1447 }
1448
1449 /*
1450  * Long hold time will keep high perf limits for long time,
1451  * which negatively impacts perf/watt for some workloads,
1452  * like specpower. 3ms is based on experiements on some
1453  * workoads.
1454  */
1455 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1456
1457 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1458 {
1459         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1460         u32 max_limit = (hwp_req & 0xff00) >> 8;
1461         u32 min_limit = (hwp_req & 0xff);
1462         u32 boost_level1;
1463
1464         /*
1465          * Cases to consider (User changes via sysfs or boot time):
1466          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1467          *      No boost, return.
1468          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1469          *     Should result in one level boost only for P0.
1470          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1471          *     Should result in two level boost:
1472          *         (min + p1)/2 and P1.
1473          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1474          *     Should result in three level boost:
1475          *        (min + p1)/2, P1 and P0.
1476          */
1477
1478         /* If max and min are equal or already at max, nothing to boost */
1479         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1480                 return;
1481
1482         if (!cpu->hwp_boost_min)
1483                 cpu->hwp_boost_min = min_limit;
1484
1485         /* level at half way mark between min and guranteed */
1486         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1487
1488         if (cpu->hwp_boost_min < boost_level1)
1489                 cpu->hwp_boost_min = boost_level1;
1490         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1491                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1492         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1493                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1494                 cpu->hwp_boost_min = max_limit;
1495         else
1496                 return;
1497
1498         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1499         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1500         cpu->last_update = cpu->sample.time;
1501 }
1502
1503 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1504 {
1505         if (cpu->hwp_boost_min) {
1506                 bool expired;
1507
1508                 /* Check if we are idle for hold time to boost down */
1509                 expired = time_after64(cpu->sample.time, cpu->last_update +
1510                                        hwp_boost_hold_time_ns);
1511                 if (expired) {
1512                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1513                         cpu->hwp_boost_min = 0;
1514                 }
1515         }
1516         cpu->last_update = cpu->sample.time;
1517 }
1518
1519 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1520                                                       u64 time)
1521 {
1522         cpu->sample.time = time;
1523
1524         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1525                 bool do_io = false;
1526
1527                 cpu->sched_flags = 0;
1528                 /*
1529                  * Set iowait_boost flag and update time. Since IO WAIT flag
1530                  * is set all the time, we can't just conclude that there is
1531                  * some IO bound activity is scheduled on this CPU with just
1532                  * one occurrence. If we receive at least two in two
1533                  * consecutive ticks, then we treat as boost candidate.
1534                  */
1535                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1536                         do_io = true;
1537
1538                 cpu->last_io_update = time;
1539
1540                 if (do_io)
1541                         intel_pstate_hwp_boost_up(cpu);
1542
1543         } else {
1544                 intel_pstate_hwp_boost_down(cpu);
1545         }
1546 }
1547
1548 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1549                                                 u64 time, unsigned int flags)
1550 {
1551         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1552
1553         cpu->sched_flags |= flags;
1554
1555         if (smp_processor_id() == cpu->cpu)
1556                 intel_pstate_update_util_hwp_local(cpu, time);
1557 }
1558
1559 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1560 {
1561         struct sample *sample = &cpu->sample;
1562
1563         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1564 }
1565
1566 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1567 {
1568         u64 aperf, mperf;
1569         unsigned long flags;
1570         u64 tsc;
1571
1572         local_irq_save(flags);
1573         rdmsrl(MSR_IA32_APERF, aperf);
1574         rdmsrl(MSR_IA32_MPERF, mperf);
1575         tsc = rdtsc();
1576         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1577                 local_irq_restore(flags);
1578                 return false;
1579         }
1580         local_irq_restore(flags);
1581
1582         cpu->last_sample_time = cpu->sample.time;
1583         cpu->sample.time = time;
1584         cpu->sample.aperf = aperf;
1585         cpu->sample.mperf = mperf;
1586         cpu->sample.tsc =  tsc;
1587         cpu->sample.aperf -= cpu->prev_aperf;
1588         cpu->sample.mperf -= cpu->prev_mperf;
1589         cpu->sample.tsc -= cpu->prev_tsc;
1590
1591         cpu->prev_aperf = aperf;
1592         cpu->prev_mperf = mperf;
1593         cpu->prev_tsc = tsc;
1594         /*
1595          * First time this function is invoked in a given cycle, all of the
1596          * previous sample data fields are equal to zero or stale and they must
1597          * be populated with meaningful numbers for things to work, so assume
1598          * that sample.time will always be reset before setting the utilization
1599          * update hook and make the caller skip the sample then.
1600          */
1601         if (cpu->last_sample_time) {
1602                 intel_pstate_calc_avg_perf(cpu);
1603                 return true;
1604         }
1605         return false;
1606 }
1607
1608 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1609 {
1610         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1611 }
1612
1613 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1614 {
1615         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1616                           cpu->sample.core_avg_perf);
1617 }
1618
1619 static inline int32_t get_target_pstate(struct cpudata *cpu)
1620 {
1621         struct sample *sample = &cpu->sample;
1622         int32_t busy_frac, boost;
1623         int target, avg_pstate;
1624
1625         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1626                            sample->tsc);
1627
1628         boost = cpu->iowait_boost;
1629         cpu->iowait_boost >>= 1;
1630
1631         if (busy_frac < boost)
1632                 busy_frac = boost;
1633
1634         sample->busy_scaled = busy_frac * 100;
1635
1636         target = global.no_turbo || global.turbo_disabled ?
1637                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1638         target += target >> 2;
1639         target = mul_fp(target, busy_frac);
1640         if (target < cpu->pstate.min_pstate)
1641                 target = cpu->pstate.min_pstate;
1642
1643         /*
1644          * If the average P-state during the previous cycle was higher than the
1645          * current target, add 50% of the difference to the target to reduce
1646          * possible performance oscillations and offset possible performance
1647          * loss related to moving the workload from one CPU to another within
1648          * a package/module.
1649          */
1650         avg_pstate = get_avg_pstate(cpu);
1651         if (avg_pstate > target)
1652                 target += (avg_pstate - target) >> 1;
1653
1654         return target;
1655 }
1656
1657 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1658 {
1659         int max_pstate = intel_pstate_get_base_pstate(cpu);
1660         int min_pstate;
1661
1662         min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1663         max_pstate = max(min_pstate, cpu->max_perf_ratio);
1664         return clamp_t(int, pstate, min_pstate, max_pstate);
1665 }
1666
1667 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1668 {
1669         if (pstate == cpu->pstate.current_pstate)
1670                 return;
1671
1672         cpu->pstate.current_pstate = pstate;
1673         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1674 }
1675
1676 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1677 {
1678         int from = cpu->pstate.current_pstate;
1679         struct sample *sample;
1680         int target_pstate;
1681
1682         update_turbo_state();
1683
1684         target_pstate = get_target_pstate(cpu);
1685         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1686         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1687         intel_pstate_update_pstate(cpu, target_pstate);
1688
1689         sample = &cpu->sample;
1690         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1691                 fp_toint(sample->busy_scaled),
1692                 from,
1693                 cpu->pstate.current_pstate,
1694                 sample->mperf,
1695                 sample->aperf,
1696                 sample->tsc,
1697                 get_avg_frequency(cpu),
1698                 fp_toint(cpu->iowait_boost * 100));
1699 }
1700
1701 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1702                                      unsigned int flags)
1703 {
1704         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1705         u64 delta_ns;
1706
1707         /* Don't allow remote callbacks */
1708         if (smp_processor_id() != cpu->cpu)
1709                 return;
1710
1711         if (flags & SCHED_CPUFREQ_IOWAIT) {
1712                 cpu->iowait_boost = int_tofp(1);
1713                 cpu->last_update = time;
1714                 /*
1715                  * The last time the busy was 100% so P-state was max anyway
1716                  * so avoid overhead of computation.
1717                  */
1718                 if (fp_toint(cpu->sample.busy_scaled) == 100)
1719                         return;
1720
1721                 goto set_pstate;
1722         } else if (cpu->iowait_boost) {
1723                 /* Clear iowait_boost if the CPU may have been idle. */
1724                 delta_ns = time - cpu->last_update;
1725                 if (delta_ns > TICK_NSEC)
1726                         cpu->iowait_boost = 0;
1727         }
1728         cpu->last_update = time;
1729         delta_ns = time - cpu->sample.time;
1730         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1731                 return;
1732
1733 set_pstate:
1734         if (intel_pstate_sample(cpu, time))
1735                 intel_pstate_adjust_pstate(cpu);
1736 }
1737
1738 static struct pstate_funcs core_funcs = {
1739         .get_max = core_get_max_pstate,
1740         .get_max_physical = core_get_max_pstate_physical,
1741         .get_min = core_get_min_pstate,
1742         .get_turbo = core_get_turbo_pstate,
1743         .get_scaling = core_get_scaling,
1744         .get_val = core_get_val,
1745 };
1746
1747 static const struct pstate_funcs silvermont_funcs = {
1748         .get_max = atom_get_max_pstate,
1749         .get_max_physical = atom_get_max_pstate,
1750         .get_min = atom_get_min_pstate,
1751         .get_turbo = atom_get_turbo_pstate,
1752         .get_val = atom_get_val,
1753         .get_scaling = silvermont_get_scaling,
1754         .get_vid = atom_get_vid,
1755 };
1756
1757 static const struct pstate_funcs airmont_funcs = {
1758         .get_max = atom_get_max_pstate,
1759         .get_max_physical = atom_get_max_pstate,
1760         .get_min = atom_get_min_pstate,
1761         .get_turbo = atom_get_turbo_pstate,
1762         .get_val = atom_get_val,
1763         .get_scaling = airmont_get_scaling,
1764         .get_vid = atom_get_vid,
1765 };
1766
1767 static const struct pstate_funcs knl_funcs = {
1768         .get_max = core_get_max_pstate,
1769         .get_max_physical = core_get_max_pstate_physical,
1770         .get_min = core_get_min_pstate,
1771         .get_turbo = knl_get_turbo_pstate,
1772         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1773         .get_scaling = core_get_scaling,
1774         .get_val = core_get_val,
1775 };
1776
1777 #define ICPU(model, policy) \
1778         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1779                         (unsigned long)&policy }
1780
1781 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1782         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1783         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1784         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_funcs),
1785         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1786         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1787         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1788         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1789         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1790         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1791         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1792         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1793         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1794         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1795         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1796         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1797         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1798         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1799         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1800         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1801         ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1802         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1803         {}
1804 };
1805 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1806
1807 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1808         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1809         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1810         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1811         {}
1812 };
1813
1814 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1815         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1816         {}
1817 };
1818
1819 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1820         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1821         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1822         {}
1823 };
1824
1825 static int intel_pstate_init_cpu(unsigned int cpunum)
1826 {
1827         struct cpudata *cpu;
1828
1829         cpu = all_cpu_data[cpunum];
1830
1831         if (!cpu) {
1832                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1833                 if (!cpu)
1834                         return -ENOMEM;
1835
1836                 all_cpu_data[cpunum] = cpu;
1837
1838                 cpu->epp_default = -EINVAL;
1839                 cpu->epp_powersave = -EINVAL;
1840                 cpu->epp_saved = -EINVAL;
1841         }
1842
1843         cpu = all_cpu_data[cpunum];
1844
1845         cpu->cpu = cpunum;
1846
1847         if (hwp_active) {
1848                 const struct x86_cpu_id *id;
1849
1850                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1851                 if (id)
1852                         intel_pstate_disable_ee(cpunum);
1853
1854                 intel_pstate_hwp_enable(cpu);
1855
1856                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1857                 if (id && intel_pstate_acpi_pm_profile_server())
1858                         hwp_boost = true;
1859         }
1860
1861         intel_pstate_get_cpu_pstates(cpu);
1862
1863         pr_debug("controlling: cpu %d\n", cpunum);
1864
1865         return 0;
1866 }
1867
1868 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1869 {
1870         struct cpudata *cpu = all_cpu_data[cpu_num];
1871
1872         if (hwp_active && !hwp_boost)
1873                 return;
1874
1875         if (cpu->update_util_set)
1876                 return;
1877
1878         /* Prevent intel_pstate_update_util() from using stale data. */
1879         cpu->sample.time = 0;
1880         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1881                                      (hwp_active ?
1882                                       intel_pstate_update_util_hwp :
1883                                       intel_pstate_update_util));
1884         cpu->update_util_set = true;
1885 }
1886
1887 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1888 {
1889         struct cpudata *cpu_data = all_cpu_data[cpu];
1890
1891         if (!cpu_data->update_util_set)
1892                 return;
1893
1894         cpufreq_remove_update_util_hook(cpu);
1895         cpu_data->update_util_set = false;
1896         synchronize_sched();
1897 }
1898
1899 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1900 {
1901         return global.turbo_disabled || global.no_turbo ?
1902                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1903 }
1904
1905 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1906                                             struct cpudata *cpu)
1907 {
1908         int max_freq = intel_pstate_get_max_freq(cpu);
1909         int32_t max_policy_perf, min_policy_perf;
1910         int max_state, turbo_max;
1911
1912         /*
1913          * HWP needs some special consideration, because on BDX the
1914          * HWP_REQUEST uses abstract value to represent performance
1915          * rather than pure ratios.
1916          */
1917         if (hwp_active) {
1918                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1919         } else {
1920                 max_state = intel_pstate_get_base_pstate(cpu);
1921                 turbo_max = cpu->pstate.turbo_pstate;
1922         }
1923
1924         max_policy_perf = max_state * policy->max / max_freq;
1925         if (policy->max == policy->min) {
1926                 min_policy_perf = max_policy_perf;
1927         } else {
1928                 min_policy_perf = max_state * policy->min / max_freq;
1929                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1930                                           0, max_policy_perf);
1931         }
1932
1933         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1934                  policy->cpu, max_state,
1935                  min_policy_perf, max_policy_perf);
1936
1937         /* Normalize user input to [min_perf, max_perf] */
1938         if (per_cpu_limits) {
1939                 cpu->min_perf_ratio = min_policy_perf;
1940                 cpu->max_perf_ratio = max_policy_perf;
1941         } else {
1942                 int32_t global_min, global_max;
1943
1944                 /* Global limits are in percent of the maximum turbo P-state. */
1945                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1946                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1947                 global_min = clamp_t(int32_t, global_min, 0, global_max);
1948
1949                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1950                          global_min, global_max);
1951
1952                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
1953                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1954                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
1955                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1956
1957                 /* Make sure min_perf <= max_perf */
1958                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1959                                           cpu->max_perf_ratio);
1960
1961         }
1962         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1963                  cpu->max_perf_ratio,
1964                  cpu->min_perf_ratio);
1965 }
1966
1967 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1968 {
1969         struct cpudata *cpu;
1970
1971         if (!policy->cpuinfo.max_freq)
1972                 return -ENODEV;
1973
1974         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1975                  policy->cpuinfo.max_freq, policy->max);
1976
1977         cpu = all_cpu_data[policy->cpu];
1978         cpu->policy = policy->policy;
1979
1980         mutex_lock(&intel_pstate_limits_lock);
1981
1982         intel_pstate_update_perf_limits(policy, cpu);
1983
1984         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1985                 /*
1986                  * NOHZ_FULL CPUs need this as the governor callback may not
1987                  * be invoked on them.
1988                  */
1989                 intel_pstate_clear_update_util_hook(policy->cpu);
1990                 intel_pstate_max_within_limits(cpu);
1991         } else {
1992                 intel_pstate_set_update_util_hook(policy->cpu);
1993         }
1994
1995         if (hwp_active) {
1996                 /*
1997                  * When hwp_boost was active before and dynamically it
1998                  * was turned off, in that case we need to clear the
1999                  * update util hook.
2000                  */
2001                 if (!hwp_boost)
2002                         intel_pstate_clear_update_util_hook(policy->cpu);
2003                 intel_pstate_hwp_set(policy->cpu);
2004         }
2005
2006         mutex_unlock(&intel_pstate_limits_lock);
2007
2008         return 0;
2009 }
2010
2011 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2012                                          struct cpudata *cpu)
2013 {
2014         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2015             policy->max < policy->cpuinfo.max_freq &&
2016             policy->max > cpu->pstate.max_freq) {
2017                 pr_debug("policy->max > max non turbo frequency\n");
2018                 policy->max = policy->cpuinfo.max_freq;
2019         }
2020 }
2021
2022 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2023 {
2024         struct cpudata *cpu = all_cpu_data[policy->cpu];
2025
2026         update_turbo_state();
2027         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2028                                      intel_pstate_get_max_freq(cpu));
2029
2030         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2031             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2032                 return -EINVAL;
2033
2034         intel_pstate_adjust_policy_max(policy, cpu);
2035
2036         return 0;
2037 }
2038
2039 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2040 {
2041         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2042 }
2043
2044 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2045 {
2046         pr_debug("CPU %d exiting\n", policy->cpu);
2047
2048         intel_pstate_clear_update_util_hook(policy->cpu);
2049         if (hwp_active)
2050                 intel_pstate_hwp_save_state(policy);
2051         else
2052                 intel_cpufreq_stop_cpu(policy);
2053 }
2054
2055 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2056 {
2057         intel_pstate_exit_perf_limits(policy);
2058
2059         policy->fast_switch_possible = false;
2060
2061         return 0;
2062 }
2063
2064 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2065 {
2066         struct cpudata *cpu;
2067         int rc;
2068
2069         rc = intel_pstate_init_cpu(policy->cpu);
2070         if (rc)
2071                 return rc;
2072
2073         cpu = all_cpu_data[policy->cpu];
2074
2075         cpu->max_perf_ratio = 0xFF;
2076         cpu->min_perf_ratio = 0;
2077
2078         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2079         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2080
2081         /* cpuinfo and default policy values */
2082         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2083         update_turbo_state();
2084         policy->cpuinfo.max_freq = global.turbo_disabled ?
2085                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2086         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2087
2088         intel_pstate_init_acpi_perf_limits(policy);
2089
2090         policy->fast_switch_possible = true;
2091
2092         return 0;
2093 }
2094
2095 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2096 {
2097         int ret = __intel_pstate_cpu_init(policy);
2098
2099         if (ret)
2100                 return ret;
2101
2102         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2103                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2104         else
2105                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2106
2107         return 0;
2108 }
2109
2110 static struct cpufreq_driver intel_pstate = {
2111         .flags          = CPUFREQ_CONST_LOOPS,
2112         .verify         = intel_pstate_verify_policy,
2113         .setpolicy      = intel_pstate_set_policy,
2114         .suspend        = intel_pstate_hwp_save_state,
2115         .resume         = intel_pstate_resume,
2116         .init           = intel_pstate_cpu_init,
2117         .exit           = intel_pstate_cpu_exit,
2118         .stop_cpu       = intel_pstate_stop_cpu,
2119         .name           = "intel_pstate",
2120 };
2121
2122 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2123 {
2124         struct cpudata *cpu = all_cpu_data[policy->cpu];
2125
2126         update_turbo_state();
2127         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2128                                      intel_pstate_get_max_freq(cpu));
2129
2130         intel_pstate_adjust_policy_max(policy, cpu);
2131
2132         intel_pstate_update_perf_limits(policy, cpu);
2133
2134         return 0;
2135 }
2136
2137 /* Use of trace in passive mode:
2138  *
2139  * In passive mode the trace core_busy field (also known as the
2140  * performance field, and lablelled as such on the graphs; also known as
2141  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2142  * driver call was via the normal or fast switch path. Various graphs
2143  * output from the intel_pstate_tracer.py utility that include core_busy
2144  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2145  * so we use 10 to indicate the the normal path through the driver, and
2146  * 90 to indicate the fast switch path through the driver.
2147  * The scaled_busy field is not used, and is set to 0.
2148  */
2149
2150 #define INTEL_PSTATE_TRACE_TARGET 10
2151 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2152
2153 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2154 {
2155         struct sample *sample;
2156
2157         if (!trace_pstate_sample_enabled())
2158                 return;
2159
2160         if (!intel_pstate_sample(cpu, ktime_get()))
2161                 return;
2162
2163         sample = &cpu->sample;
2164         trace_pstate_sample(trace_type,
2165                 0,
2166                 old_pstate,
2167                 cpu->pstate.current_pstate,
2168                 sample->mperf,
2169                 sample->aperf,
2170                 sample->tsc,
2171                 get_avg_frequency(cpu),
2172                 fp_toint(cpu->iowait_boost * 100));
2173 }
2174
2175 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2176                                 unsigned int target_freq,
2177                                 unsigned int relation)
2178 {
2179         struct cpudata *cpu = all_cpu_data[policy->cpu];
2180         struct cpufreq_freqs freqs;
2181         int target_pstate, old_pstate;
2182
2183         update_turbo_state();
2184
2185         freqs.old = policy->cur;
2186         freqs.new = target_freq;
2187
2188         cpufreq_freq_transition_begin(policy, &freqs);
2189         switch (relation) {
2190         case CPUFREQ_RELATION_L:
2191                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2192                 break;
2193         case CPUFREQ_RELATION_H:
2194                 target_pstate = freqs.new / cpu->pstate.scaling;
2195                 break;
2196         default:
2197                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2198                 break;
2199         }
2200         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2201         old_pstate = cpu->pstate.current_pstate;
2202         if (target_pstate != cpu->pstate.current_pstate) {
2203                 cpu->pstate.current_pstate = target_pstate;
2204                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2205                               pstate_funcs.get_val(cpu, target_pstate));
2206         }
2207         freqs.new = target_pstate * cpu->pstate.scaling;
2208         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2209         cpufreq_freq_transition_end(policy, &freqs, false);
2210
2211         return 0;
2212 }
2213
2214 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2215                                               unsigned int target_freq)
2216 {
2217         struct cpudata *cpu = all_cpu_data[policy->cpu];
2218         int target_pstate, old_pstate;
2219
2220         update_turbo_state();
2221
2222         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2223         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2224         old_pstate = cpu->pstate.current_pstate;
2225         intel_pstate_update_pstate(cpu, target_pstate);
2226         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2227         return target_pstate * cpu->pstate.scaling;
2228 }
2229
2230 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2231 {
2232         int ret = __intel_pstate_cpu_init(policy);
2233
2234         if (ret)
2235                 return ret;
2236
2237         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2238         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2239         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2240         policy->cur = policy->cpuinfo.min_freq;
2241
2242         return 0;
2243 }
2244
2245 static struct cpufreq_driver intel_cpufreq = {
2246         .flags          = CPUFREQ_CONST_LOOPS,
2247         .verify         = intel_cpufreq_verify_policy,
2248         .target         = intel_cpufreq_target,
2249         .fast_switch    = intel_cpufreq_fast_switch,
2250         .init           = intel_cpufreq_cpu_init,
2251         .exit           = intel_pstate_cpu_exit,
2252         .stop_cpu       = intel_cpufreq_stop_cpu,
2253         .name           = "intel_cpufreq",
2254 };
2255
2256 static struct cpufreq_driver *default_driver = &intel_pstate;
2257
2258 static void intel_pstate_driver_cleanup(void)
2259 {
2260         unsigned int cpu;
2261
2262         get_online_cpus();
2263         for_each_online_cpu(cpu) {
2264                 if (all_cpu_data[cpu]) {
2265                         if (intel_pstate_driver == &intel_pstate)
2266                                 intel_pstate_clear_update_util_hook(cpu);
2267
2268                         kfree(all_cpu_data[cpu]);
2269                         all_cpu_data[cpu] = NULL;
2270                 }
2271         }
2272         put_online_cpus();
2273         intel_pstate_driver = NULL;
2274 }
2275
2276 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2277 {
2278         int ret;
2279
2280         memset(&global, 0, sizeof(global));
2281         global.max_perf_pct = 100;
2282
2283         intel_pstate_driver = driver;
2284         ret = cpufreq_register_driver(intel_pstate_driver);
2285         if (ret) {
2286                 intel_pstate_driver_cleanup();
2287                 return ret;
2288         }
2289
2290         global.min_perf_pct = min_perf_pct_min();
2291
2292         return 0;
2293 }
2294
2295 static int intel_pstate_unregister_driver(void)
2296 {
2297         if (hwp_active)
2298                 return -EBUSY;
2299
2300         cpufreq_unregister_driver(intel_pstate_driver);
2301         intel_pstate_driver_cleanup();
2302
2303         return 0;
2304 }
2305
2306 static ssize_t intel_pstate_show_status(char *buf)
2307 {
2308         if (!intel_pstate_driver)
2309                 return sprintf(buf, "off\n");
2310
2311         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2312                                         "active" : "passive");
2313 }
2314
2315 static int intel_pstate_update_status(const char *buf, size_t size)
2316 {
2317         int ret;
2318
2319         if (size == 3 && !strncmp(buf, "off", size))
2320                 return intel_pstate_driver ?
2321                         intel_pstate_unregister_driver() : -EINVAL;
2322
2323         if (size == 6 && !strncmp(buf, "active", size)) {
2324                 if (intel_pstate_driver) {
2325                         if (intel_pstate_driver == &intel_pstate)
2326                                 return 0;
2327
2328                         ret = intel_pstate_unregister_driver();
2329                         if (ret)
2330                                 return ret;
2331                 }
2332
2333                 return intel_pstate_register_driver(&intel_pstate);
2334         }
2335
2336         if (size == 7 && !strncmp(buf, "passive", size)) {
2337                 if (intel_pstate_driver) {
2338                         if (intel_pstate_driver == &intel_cpufreq)
2339                                 return 0;
2340
2341                         ret = intel_pstate_unregister_driver();
2342                         if (ret)
2343                                 return ret;
2344                 }
2345
2346                 return intel_pstate_register_driver(&intel_cpufreq);
2347         }
2348
2349         return -EINVAL;
2350 }
2351
2352 static int no_load __initdata;
2353 static int no_hwp __initdata;
2354 static int hwp_only __initdata;
2355 static unsigned int force_load __initdata;
2356
2357 static int __init intel_pstate_msrs_not_valid(void)
2358 {
2359         if (!pstate_funcs.get_max() ||
2360             !pstate_funcs.get_min() ||
2361             !pstate_funcs.get_turbo())
2362                 return -ENODEV;
2363
2364         return 0;
2365 }
2366
2367 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2368 {
2369         pstate_funcs.get_max   = funcs->get_max;
2370         pstate_funcs.get_max_physical = funcs->get_max_physical;
2371         pstate_funcs.get_min   = funcs->get_min;
2372         pstate_funcs.get_turbo = funcs->get_turbo;
2373         pstate_funcs.get_scaling = funcs->get_scaling;
2374         pstate_funcs.get_val   = funcs->get_val;
2375         pstate_funcs.get_vid   = funcs->get_vid;
2376         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2377 }
2378
2379 #ifdef CONFIG_ACPI
2380
2381 static bool __init intel_pstate_no_acpi_pss(void)
2382 {
2383         int i;
2384
2385         for_each_possible_cpu(i) {
2386                 acpi_status status;
2387                 union acpi_object *pss;
2388                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2389                 struct acpi_processor *pr = per_cpu(processors, i);
2390
2391                 if (!pr)
2392                         continue;
2393
2394                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2395                 if (ACPI_FAILURE(status))
2396                         continue;
2397
2398                 pss = buffer.pointer;
2399                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2400                         kfree(pss);
2401                         return false;
2402                 }
2403
2404                 kfree(pss);
2405         }
2406
2407         return true;
2408 }
2409
2410 static bool __init intel_pstate_no_acpi_pcch(void)
2411 {
2412         acpi_status status;
2413         acpi_handle handle;
2414
2415         status = acpi_get_handle(NULL, "\\_SB", &handle);
2416         if (ACPI_FAILURE(status))
2417                 return true;
2418
2419         return !acpi_has_method(handle, "PCCH");
2420 }
2421
2422 static bool __init intel_pstate_has_acpi_ppc(void)
2423 {
2424         int i;
2425
2426         for_each_possible_cpu(i) {
2427                 struct acpi_processor *pr = per_cpu(processors, i);
2428
2429                 if (!pr)
2430                         continue;
2431                 if (acpi_has_method(pr->handle, "_PPC"))
2432                         return true;
2433         }
2434         return false;
2435 }
2436
2437 enum {
2438         PSS,
2439         PPC,
2440 };
2441
2442 /* Hardware vendor-specific info that has its own power management modes */
2443 static struct acpi_platform_list plat_info[] __initdata = {
2444         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2445         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2446         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2447         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2448         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2449         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2450         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2451         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2452         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2453         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2454         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2455         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2456         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2457         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2458         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2459         { } /* End */
2460 };
2461
2462 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2463 {
2464         const struct x86_cpu_id *id;
2465         u64 misc_pwr;
2466         int idx;
2467
2468         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2469         if (id) {
2470                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2471                 if ( misc_pwr & (1 << 8))
2472                         return true;
2473         }
2474
2475         idx = acpi_match_platform_list(plat_info);
2476         if (idx < 0)
2477                 return false;
2478
2479         switch (plat_info[idx].data) {
2480         case PSS:
2481                 if (!intel_pstate_no_acpi_pss())
2482                         return false;
2483
2484                 return intel_pstate_no_acpi_pcch();
2485         case PPC:
2486                 return intel_pstate_has_acpi_ppc() && !force_load;
2487         }
2488
2489         return false;
2490 }
2491
2492 static void intel_pstate_request_control_from_smm(void)
2493 {
2494         /*
2495          * It may be unsafe to request P-states control from SMM if _PPC support
2496          * has not been enabled.
2497          */
2498         if (acpi_ppc)
2499                 acpi_processor_pstate_control();
2500 }
2501 #else /* CONFIG_ACPI not enabled */
2502 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2503 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2504 static inline void intel_pstate_request_control_from_smm(void) {}
2505 #endif /* CONFIG_ACPI */
2506
2507 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2508
2509 #define ICPU_HWP(model, hwp_mode) \
2510         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2511
2512 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2513         ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2514         ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2515         ICPU_HWP(X86_MODEL_ANY, 0),
2516         {}
2517 };
2518
2519 static int __init intel_pstate_init(void)
2520 {
2521         const struct x86_cpu_id *id;
2522         int rc;
2523
2524         if (no_load)
2525                 return -ENODEV;
2526
2527         id = x86_match_cpu(hwp_support_ids);
2528         if (id) {
2529                 copy_cpu_funcs(&core_funcs);
2530                 if (!no_hwp) {
2531                         hwp_active++;
2532                         hwp_mode_bdw = id->driver_data;
2533                         intel_pstate.attr = hwp_cpufreq_attrs;
2534                         goto hwp_cpu_matched;
2535                 }
2536         } else {
2537                 id = x86_match_cpu(intel_pstate_cpu_ids);
2538                 if (!id)
2539                         return -ENODEV;
2540
2541                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2542         }
2543
2544         if (intel_pstate_msrs_not_valid())
2545                 return -ENODEV;
2546
2547 hwp_cpu_matched:
2548         /*
2549          * The Intel pstate driver will be ignored if the platform
2550          * firmware has its own power management modes.
2551          */
2552         if (intel_pstate_platform_pwr_mgmt_exists())
2553                 return -ENODEV;
2554
2555         if (!hwp_active && hwp_only)
2556                 return -ENOTSUPP;
2557
2558         pr_info("Intel P-state driver initializing\n");
2559
2560         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2561         if (!all_cpu_data)
2562                 return -ENOMEM;
2563
2564         intel_pstate_request_control_from_smm();
2565
2566         intel_pstate_sysfs_expose_params();
2567
2568         mutex_lock(&intel_pstate_driver_lock);
2569         rc = intel_pstate_register_driver(default_driver);
2570         mutex_unlock(&intel_pstate_driver_lock);
2571         if (rc)
2572                 return rc;
2573
2574         if (hwp_active)
2575                 pr_info("HWP enabled\n");
2576
2577         return 0;
2578 }
2579 device_initcall(intel_pstate_init);
2580
2581 static int __init intel_pstate_setup(char *str)
2582 {
2583         if (!str)
2584                 return -EINVAL;
2585
2586         if (!strcmp(str, "disable")) {
2587                 no_load = 1;
2588         } else if (!strcmp(str, "passive")) {
2589                 pr_info("Passive mode enabled\n");
2590                 default_driver = &intel_cpufreq;
2591                 no_hwp = 1;
2592         }
2593         if (!strcmp(str, "no_hwp")) {
2594                 pr_info("HWP disabled\n");
2595                 no_hwp = 1;
2596         }
2597         if (!strcmp(str, "force"))
2598                 force_load = 1;
2599         if (!strcmp(str, "hwp_only"))
2600                 hwp_only = 1;
2601         if (!strcmp(str, "per_cpu_perf_limits"))
2602                 per_cpu_limits = true;
2603
2604 #ifdef CONFIG_ACPI
2605         if (!strcmp(str, "support_acpi_ppc"))
2606                 acpi_ppc = true;
2607 #endif
2608
2609         return 0;
2610 }
2611 early_param("intel_pstate", intel_pstate_setup);
2612
2613 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2614 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2615 MODULE_LICENSE("GPL");