kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65         return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70         int mask, ret;
71
72         ret = fp_toint(x);
73         mask = (1 << FRAC_BITS) - 1;
74         if (x & mask)
75                 ret += 1;
76         return ret;
77 }
78
79 static inline int32_t percent_fp(int percent)
80 {
81         return div_fp(percent, 100);
82 }
83
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86         return (x * y) >> EXT_FRAC_BITS;
87 }
88
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91         return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
94 static inline int32_t percent_ext_fp(int percent)
95 {
96         return div_ext_fp(percent, 100);
97 }
98
99 /**
100  * struct sample -      Store performance sample
101  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
102  *                      performance during last sample period
103  * @busy_scaled:        Scaled busy value which is used to calculate next
104  *                      P state. This can be different than core_avg_perf
105  *                      to account for cpu idle period
106  * @aperf:              Difference of actual performance frequency clock count
107  *                      read from APERF MSR between last and current sample
108  * @mperf:              Difference of maximum performance frequency clock count
109  *                      read from MPERF MSR between last and current sample
110  * @tsc:                Difference of time stamp counter between last and
111  *                      current sample
112  * @time:               Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118         int32_t core_avg_perf;
119         int32_t busy_scaled;
120         u64 aperf;
121         u64 mperf;
122         u64 tsc;
123         u64 time;
124 };
125
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:     Current requested P state
129  * @min_pstate:         Min P state possible for this platform
130  * @max_pstate:         Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *                      This can be higher than the max_pstate which can
133  *                      be limited by platform thermal design power limits
134  * @scaling:            Scaling factor to  convert frequency to cpufreq
135  *                      frequency units
136  * @turbo_pstate:       Max Turbo P state possible for this platform
137  * @max_freq:           @max_pstate frequency in cpufreq units
138  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143         int     current_pstate;
144         int     min_pstate;
145         int     max_pstate;
146         int     max_pstate_physical;
147         int     scaling;
148         int     turbo_pstate;
149         unsigned int max_freq;
150         unsigned int turbo_freq;
151 };
152
153 /**
154  * struct vid_data -    Stores voltage information data
155  * @min:                VID data for this platform corresponding to
156  *                      the lowest P state
157  * @max:                VID data corresponding to the highest P State.
158  * @turbo:              VID data for turbo P state
159  * @ratio:              Ratio of (vid max - vid min) /
160  *                      (max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167         int min;
168         int max;
169         int turbo;
170         int32_t ratio;
171 };
172
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:           Whether or not to use turbo P-states.
176  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
177  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
178  *                      not the maximum reported turbo P-state is different from
179  *                      the maximum reported non-turbo one.
180  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
181  *                      P-state capacity.
182  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
183  *                      P-state capacity.
184  */
185 struct global_params {
186         bool no_turbo;
187         bool turbo_disabled;
188         int max_perf_pct;
189         int min_perf_pct;
190 };
191
192 /**
193  * struct cpudata -     Per CPU instance data storage
194  * @cpu:                CPU number for this instance data
195  * @policy:             CPUFreq policy value
196  * @update_util:        CPUFreq utility callback information
197  * @update_util_set:    CPUFreq utility callback is set
198  * @iowait_boost:       iowait-related boost fraction
199  * @last_update:        Time of the last update.
200  * @pstate:             Stores P state limits for this CPU
201  * @vid:                Stores VID limits for this CPU
202  * @last_sample_time:   Last Sample time
203  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
204  *                      This shift is a multiplier to mperf delta to
205  *                      calculate CPU busy.
206  * @prev_aperf:         Last APERF value read from APERF MSR
207  * @prev_mperf:         Last MPERF value read from MPERF MSR
208  * @prev_tsc:           Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *                      current sample
211  * @sample:             Storage for storing last Sample data
212  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
215  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:      Last saved HWP energy performance preference
217  *                      (EPP) or energy performance bias (EPB),
218  *                      when policy switched to performance
219  * @epp_policy:         Last saved policy used to set EPP/EPB
220  * @epp_default:        Power on default HWP energy performance
221  *                      preference/bias
222  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
223  *                      operation
224  * @hwp_req_cached:     Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
226  * @last_io_update:     Last time when IO wake flag was set
227  * @sched_flags:        Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:      Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233         int cpu;
234
235         unsigned int policy;
236         struct update_util_data update_util;
237         bool   update_util_set;
238
239         struct pstate_data pstate;
240         struct vid_data vid;
241
242         u64     last_update;
243         u64     last_sample_time;
244         u64     aperf_mperf_shift;
245         u64     prev_aperf;
246         u64     prev_mperf;
247         u64     prev_tsc;
248         u64     prev_cummulative_iowait;
249         struct sample sample;
250         int32_t min_perf_ratio;
251         int32_t max_perf_ratio;
252 #ifdef CONFIG_ACPI
253         struct acpi_processor_performance acpi_perf_data;
254         bool valid_pss_table;
255 #endif
256         unsigned int iowait_boost;
257         s16 epp_powersave;
258         s16 epp_policy;
259         s16 epp_default;
260         s16 epp_saved;
261         u64 hwp_req_cached;
262         u64 hwp_cap_cached;
263         u64 last_io_update;
264         unsigned int sched_flags;
265         u32 hwp_boost_min;
266 };
267
268 static struct cpudata **all_cpu_data;
269
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:            Callback to get maximum non turbo effective P state
273  * @get_max_physical:   Callback to get maximum non turbo physical P state
274  * @get_min:            Callback to get minimum P state
275  * @get_turbo:          Callback to get turbo P state
276  * @get_scaling:        Callback to get frequency scaling factor
277  * @get_val:            Callback to convert P state to actual MSR write value
278  * @get_vid:            Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284         int (*get_max)(void);
285         int (*get_max_physical)(void);
286         int (*get_min)(void);
287         int (*get_turbo)(void);
288         int (*get_scaling)(void);
289         int (*get_aperf_mperf_shift)(void);
290         u64 (*get_val)(struct cpudata*, int pstate);
291         void (*get_vid)(struct cpudata *);
292 };
293
294 static struct pstate_funcs pstate_funcs __read_mostly;
295
296 static int hwp_active __read_mostly;
297 static bool per_cpu_limits __read_mostly;
298 static bool hwp_boost __read_mostly;
299
300 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
301
302 #ifdef CONFIG_ACPI
303 static bool acpi_ppc;
304 #endif
305
306 static struct global_params global;
307
308 static DEFINE_MUTEX(intel_pstate_driver_lock);
309 static DEFINE_MUTEX(intel_pstate_limits_lock);
310
311 #ifdef CONFIG_ACPI
312
313 static bool intel_pstate_get_ppc_enable_status(void)
314 {
315         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
316             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
317                 return true;
318
319         return acpi_ppc;
320 }
321
322 #ifdef CONFIG_ACPI_CPPC_LIB
323
324 /* The work item is needed to avoid CPU hotplug locking issues */
325 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
326 {
327         sched_set_itmt_support();
328 }
329
330 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
331
332 static void intel_pstate_set_itmt_prio(int cpu)
333 {
334         struct cppc_perf_caps cppc_perf;
335         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
336         int ret;
337
338         ret = cppc_get_perf_caps(cpu, &cppc_perf);
339         if (ret)
340                 return;
341
342         /*
343          * The priorities can be set regardless of whether or not
344          * sched_set_itmt_support(true) has been called and it is valid to
345          * update them at any time after it has been called.
346          */
347         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
348
349         if (max_highest_perf <= min_highest_perf) {
350                 if (cppc_perf.highest_perf > max_highest_perf)
351                         max_highest_perf = cppc_perf.highest_perf;
352
353                 if (cppc_perf.highest_perf < min_highest_perf)
354                         min_highest_perf = cppc_perf.highest_perf;
355
356                 if (max_highest_perf > min_highest_perf) {
357                         /*
358                          * This code can be run during CPU online under the
359                          * CPU hotplug locks, so sched_set_itmt_support()
360                          * cannot be called from here.  Queue up a work item
361                          * to invoke it.
362                          */
363                         schedule_work(&sched_itmt_work);
364                 }
365         }
366 }
367 #else
368 static void intel_pstate_set_itmt_prio(int cpu)
369 {
370 }
371 #endif
372
373 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
374 {
375         struct cpudata *cpu;
376         int ret;
377         int i;
378
379         if (hwp_active) {
380                 intel_pstate_set_itmt_prio(policy->cpu);
381                 return;
382         }
383
384         if (!intel_pstate_get_ppc_enable_status())
385                 return;
386
387         cpu = all_cpu_data[policy->cpu];
388
389         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
390                                                   policy->cpu);
391         if (ret)
392                 return;
393
394         /*
395          * Check if the control value in _PSS is for PERF_CTL MSR, which should
396          * guarantee that the states returned by it map to the states in our
397          * list directly.
398          */
399         if (cpu->acpi_perf_data.control_register.space_id !=
400                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
401                 goto err;
402
403         /*
404          * If there is only one entry _PSS, simply ignore _PSS and continue as
405          * usual without taking _PSS into account
406          */
407         if (cpu->acpi_perf_data.state_count < 2)
408                 goto err;
409
410         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
411         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
412                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
413                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
414                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
415                          (u32) cpu->acpi_perf_data.states[i].power,
416                          (u32) cpu->acpi_perf_data.states[i].control);
417         }
418
419         /*
420          * The _PSS table doesn't contain whole turbo frequency range.
421          * This just contains +1 MHZ above the max non turbo frequency,
422          * with control value corresponding to max turbo ratio. But
423          * when cpufreq set policy is called, it will call with this
424          * max frequency, which will cause a reduced performance as
425          * this driver uses real max turbo frequency as the max
426          * frequency. So correct this frequency in _PSS table to
427          * correct max turbo frequency based on the turbo state.
428          * Also need to convert to MHz as _PSS freq is in MHz.
429          */
430         if (!global.turbo_disabled)
431                 cpu->acpi_perf_data.states[0].core_frequency =
432                                         policy->cpuinfo.max_freq / 1000;
433         cpu->valid_pss_table = true;
434         pr_debug("_PPC limits will be enforced\n");
435
436         return;
437
438  err:
439         cpu->valid_pss_table = false;
440         acpi_processor_unregister_performance(policy->cpu);
441 }
442
443 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
444 {
445         struct cpudata *cpu;
446
447         cpu = all_cpu_data[policy->cpu];
448         if (!cpu->valid_pss_table)
449                 return;
450
451         acpi_processor_unregister_performance(policy->cpu);
452 }
453 #else
454 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
455 {
456 }
457
458 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
459 {
460 }
461 #endif
462
463 static inline void update_turbo_state(void)
464 {
465         u64 misc_en;
466         struct cpudata *cpu;
467
468         cpu = all_cpu_data[0];
469         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
470         global.turbo_disabled =
471                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
472                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
473 }
474
475 static int min_perf_pct_min(void)
476 {
477         struct cpudata *cpu = all_cpu_data[0];
478         int turbo_pstate = cpu->pstate.turbo_pstate;
479
480         return turbo_pstate ?
481                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
482 }
483
484 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
485 {
486         u64 epb;
487         int ret;
488
489         if (!static_cpu_has(X86_FEATURE_EPB))
490                 return -ENXIO;
491
492         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
493         if (ret)
494                 return (s16)ret;
495
496         return (s16)(epb & 0x0f);
497 }
498
499 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
500 {
501         s16 epp;
502
503         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
504                 /*
505                  * When hwp_req_data is 0, means that caller didn't read
506                  * MSR_HWP_REQUEST, so need to read and get EPP.
507                  */
508                 if (!hwp_req_data) {
509                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
510                                             &hwp_req_data);
511                         if (epp)
512                                 return epp;
513                 }
514                 epp = (hwp_req_data >> 24) & 0xff;
515         } else {
516                 /* When there is no EPP present, HWP uses EPB settings */
517                 epp = intel_pstate_get_epb(cpu_data);
518         }
519
520         return epp;
521 }
522
523 static int intel_pstate_set_epb(int cpu, s16 pref)
524 {
525         u64 epb;
526         int ret;
527
528         if (!static_cpu_has(X86_FEATURE_EPB))
529                 return -ENXIO;
530
531         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
532         if (ret)
533                 return ret;
534
535         epb = (epb & ~0x0f) | pref;
536         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
537
538         return 0;
539 }
540
541 /*
542  * EPP/EPB display strings corresponding to EPP index in the
543  * energy_perf_strings[]
544  *      index           String
545  *-------------------------------------
546  *      0               default
547  *      1               performance
548  *      2               balance_performance
549  *      3               balance_power
550  *      4               power
551  */
552 static const char * const energy_perf_strings[] = {
553         "default",
554         "performance",
555         "balance_performance",
556         "balance_power",
557         "power",
558         NULL
559 };
560 static const unsigned int epp_values[] = {
561         HWP_EPP_PERFORMANCE,
562         HWP_EPP_BALANCE_PERFORMANCE,
563         HWP_EPP_BALANCE_POWERSAVE,
564         HWP_EPP_POWERSAVE
565 };
566
567 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
568 {
569         s16 epp;
570         int index = -EINVAL;
571
572         epp = intel_pstate_get_epp(cpu_data, 0);
573         if (epp < 0)
574                 return epp;
575
576         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
577                 if (epp == HWP_EPP_PERFORMANCE)
578                         return 1;
579                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
580                         return 2;
581                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
582                         return 3;
583                 else
584                         return 4;
585         } else if (static_cpu_has(X86_FEATURE_EPB)) {
586                 /*
587                  * Range:
588                  *      0x00-0x03       :       Performance
589                  *      0x04-0x07       :       Balance performance
590                  *      0x08-0x0B       :       Balance power
591                  *      0x0C-0x0F       :       Power
592                  * The EPB is a 4 bit value, but our ranges restrict the
593                  * value which can be set. Here only using top two bits
594                  * effectively.
595                  */
596                 index = (epp >> 2) + 1;
597         }
598
599         return index;
600 }
601
602 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
603                                               int pref_index)
604 {
605         int epp = -EINVAL;
606         int ret;
607
608         if (!pref_index)
609                 epp = cpu_data->epp_default;
610
611         mutex_lock(&intel_pstate_limits_lock);
612
613         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
614                 u64 value;
615
616                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
617                 if (ret)
618                         goto return_pref;
619
620                 value &= ~GENMASK_ULL(31, 24);
621
622                 if (epp == -EINVAL)
623                         epp = epp_values[pref_index - 1];
624
625                 value |= (u64)epp << 24;
626                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
627         } else {
628                 if (epp == -EINVAL)
629                         epp = (pref_index - 1) << 2;
630                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
631         }
632 return_pref:
633         mutex_unlock(&intel_pstate_limits_lock);
634
635         return ret;
636 }
637
638 static ssize_t show_energy_performance_available_preferences(
639                                 struct cpufreq_policy *policy, char *buf)
640 {
641         int i = 0;
642         int ret = 0;
643
644         while (energy_perf_strings[i] != NULL)
645                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
646
647         ret += sprintf(&buf[ret], "\n");
648
649         return ret;
650 }
651
652 cpufreq_freq_attr_ro(energy_performance_available_preferences);
653
654 static ssize_t store_energy_performance_preference(
655                 struct cpufreq_policy *policy, const char *buf, size_t count)
656 {
657         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
658         char str_preference[21];
659         int ret, i = 0;
660
661         ret = sscanf(buf, "%20s", str_preference);
662         if (ret != 1)
663                 return -EINVAL;
664
665         while (energy_perf_strings[i] != NULL) {
666                 if (!strcmp(str_preference, energy_perf_strings[i])) {
667                         intel_pstate_set_energy_pref_index(cpu_data, i);
668                         return count;
669                 }
670                 ++i;
671         }
672
673         return -EINVAL;
674 }
675
676 static ssize_t show_energy_performance_preference(
677                                 struct cpufreq_policy *policy, char *buf)
678 {
679         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
680         int preference;
681
682         preference = intel_pstate_get_energy_pref_index(cpu_data);
683         if (preference < 0)
684                 return preference;
685
686         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
687 }
688
689 cpufreq_freq_attr_rw(energy_performance_preference);
690
691 static struct freq_attr *hwp_cpufreq_attrs[] = {
692         &energy_performance_preference,
693         &energy_performance_available_preferences,
694         NULL,
695 };
696
697 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
698                                      int *current_max)
699 {
700         u64 cap;
701
702         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
703         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
704         if (global.no_turbo)
705                 *current_max = HWP_GUARANTEED_PERF(cap);
706         else
707                 *current_max = HWP_HIGHEST_PERF(cap);
708
709         *phy_max = HWP_HIGHEST_PERF(cap);
710 }
711
712 static void intel_pstate_hwp_set(unsigned int cpu)
713 {
714         struct cpudata *cpu_data = all_cpu_data[cpu];
715         int max, min;
716         u64 value;
717         s16 epp;
718
719         max = cpu_data->max_perf_ratio;
720         min = cpu_data->min_perf_ratio;
721
722         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
723                 min = max;
724
725         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
726
727         value &= ~HWP_MIN_PERF(~0L);
728         value |= HWP_MIN_PERF(min);
729
730         value &= ~HWP_MAX_PERF(~0L);
731         value |= HWP_MAX_PERF(max);
732
733         if (cpu_data->epp_policy == cpu_data->policy)
734                 goto skip_epp;
735
736         cpu_data->epp_policy = cpu_data->policy;
737
738         if (cpu_data->epp_saved >= 0) {
739                 epp = cpu_data->epp_saved;
740                 cpu_data->epp_saved = -EINVAL;
741                 goto update_epp;
742         }
743
744         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
745                 epp = intel_pstate_get_epp(cpu_data, value);
746                 cpu_data->epp_powersave = epp;
747                 /* If EPP read was failed, then don't try to write */
748                 if (epp < 0)
749                         goto skip_epp;
750
751                 epp = 0;
752         } else {
753                 /* skip setting EPP, when saved value is invalid */
754                 if (cpu_data->epp_powersave < 0)
755                         goto skip_epp;
756
757                 /*
758                  * No need to restore EPP when it is not zero. This
759                  * means:
760                  *  - Policy is not changed
761                  *  - user has manually changed
762                  *  - Error reading EPB
763                  */
764                 epp = intel_pstate_get_epp(cpu_data, value);
765                 if (epp)
766                         goto skip_epp;
767
768                 epp = cpu_data->epp_powersave;
769         }
770 update_epp:
771         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
772                 value &= ~GENMASK_ULL(31, 24);
773                 value |= (u64)epp << 24;
774         } else {
775                 intel_pstate_set_epb(cpu, epp);
776         }
777 skip_epp:
778         WRITE_ONCE(cpu_data->hwp_req_cached, value);
779         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
780 }
781
782 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
783 {
784         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
785
786         if (!hwp_active)
787                 return 0;
788
789         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
790
791         return 0;
792 }
793
794 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
795
796 static int intel_pstate_resume(struct cpufreq_policy *policy)
797 {
798         if (!hwp_active)
799                 return 0;
800
801         mutex_lock(&intel_pstate_limits_lock);
802
803         if (policy->cpu == 0)
804                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
805
806         all_cpu_data[policy->cpu]->epp_policy = 0;
807         intel_pstate_hwp_set(policy->cpu);
808
809         mutex_unlock(&intel_pstate_limits_lock);
810
811         return 0;
812 }
813
814 static void intel_pstate_update_policies(void)
815 {
816         int cpu;
817
818         for_each_possible_cpu(cpu)
819                 cpufreq_update_policy(cpu);
820 }
821
822 /************************** sysfs begin ************************/
823 #define show_one(file_name, object)                                     \
824         static ssize_t show_##file_name                                 \
825         (struct kobject *kobj, struct attribute *attr, char *buf)       \
826         {                                                               \
827                 return sprintf(buf, "%u\n", global.object);             \
828         }
829
830 static ssize_t intel_pstate_show_status(char *buf);
831 static int intel_pstate_update_status(const char *buf, size_t size);
832
833 static ssize_t show_status(struct kobject *kobj,
834                            struct attribute *attr, char *buf)
835 {
836         ssize_t ret;
837
838         mutex_lock(&intel_pstate_driver_lock);
839         ret = intel_pstate_show_status(buf);
840         mutex_unlock(&intel_pstate_driver_lock);
841
842         return ret;
843 }
844
845 static ssize_t store_status(struct kobject *a, struct attribute *b,
846                             const char *buf, size_t count)
847 {
848         char *p = memchr(buf, '\n', count);
849         int ret;
850
851         mutex_lock(&intel_pstate_driver_lock);
852         ret = intel_pstate_update_status(buf, p ? p - buf : count);
853         mutex_unlock(&intel_pstate_driver_lock);
854
855         return ret < 0 ? ret : count;
856 }
857
858 static ssize_t show_turbo_pct(struct kobject *kobj,
859                                 struct attribute *attr, char *buf)
860 {
861         struct cpudata *cpu;
862         int total, no_turbo, turbo_pct;
863         uint32_t turbo_fp;
864
865         mutex_lock(&intel_pstate_driver_lock);
866
867         if (!intel_pstate_driver) {
868                 mutex_unlock(&intel_pstate_driver_lock);
869                 return -EAGAIN;
870         }
871
872         cpu = all_cpu_data[0];
873
874         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
875         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
876         turbo_fp = div_fp(no_turbo, total);
877         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
878
879         mutex_unlock(&intel_pstate_driver_lock);
880
881         return sprintf(buf, "%u\n", turbo_pct);
882 }
883
884 static ssize_t show_num_pstates(struct kobject *kobj,
885                                 struct attribute *attr, char *buf)
886 {
887         struct cpudata *cpu;
888         int total;
889
890         mutex_lock(&intel_pstate_driver_lock);
891
892         if (!intel_pstate_driver) {
893                 mutex_unlock(&intel_pstate_driver_lock);
894                 return -EAGAIN;
895         }
896
897         cpu = all_cpu_data[0];
898         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
899
900         mutex_unlock(&intel_pstate_driver_lock);
901
902         return sprintf(buf, "%u\n", total);
903 }
904
905 static ssize_t show_no_turbo(struct kobject *kobj,
906                              struct attribute *attr, char *buf)
907 {
908         ssize_t ret;
909
910         mutex_lock(&intel_pstate_driver_lock);
911
912         if (!intel_pstate_driver) {
913                 mutex_unlock(&intel_pstate_driver_lock);
914                 return -EAGAIN;
915         }
916
917         update_turbo_state();
918         if (global.turbo_disabled)
919                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
920         else
921                 ret = sprintf(buf, "%u\n", global.no_turbo);
922
923         mutex_unlock(&intel_pstate_driver_lock);
924
925         return ret;
926 }
927
928 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
929                               const char *buf, size_t count)
930 {
931         unsigned int input;
932         int ret;
933
934         ret = sscanf(buf, "%u", &input);
935         if (ret != 1)
936                 return -EINVAL;
937
938         mutex_lock(&intel_pstate_driver_lock);
939
940         if (!intel_pstate_driver) {
941                 mutex_unlock(&intel_pstate_driver_lock);
942                 return -EAGAIN;
943         }
944
945         mutex_lock(&intel_pstate_limits_lock);
946
947         update_turbo_state();
948         if (global.turbo_disabled) {
949                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
950                 mutex_unlock(&intel_pstate_limits_lock);
951                 mutex_unlock(&intel_pstate_driver_lock);
952                 return -EPERM;
953         }
954
955         global.no_turbo = clamp_t(int, input, 0, 1);
956
957         if (global.no_turbo) {
958                 struct cpudata *cpu = all_cpu_data[0];
959                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
960
961                 /* Squash the global minimum into the permitted range. */
962                 if (global.min_perf_pct > pct)
963                         global.min_perf_pct = pct;
964         }
965
966         mutex_unlock(&intel_pstate_limits_lock);
967
968         intel_pstate_update_policies();
969
970         mutex_unlock(&intel_pstate_driver_lock);
971
972         return count;
973 }
974
975 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
976                                   const char *buf, size_t count)
977 {
978         unsigned int input;
979         int ret;
980
981         ret = sscanf(buf, "%u", &input);
982         if (ret != 1)
983                 return -EINVAL;
984
985         mutex_lock(&intel_pstate_driver_lock);
986
987         if (!intel_pstate_driver) {
988                 mutex_unlock(&intel_pstate_driver_lock);
989                 return -EAGAIN;
990         }
991
992         mutex_lock(&intel_pstate_limits_lock);
993
994         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
995
996         mutex_unlock(&intel_pstate_limits_lock);
997
998         intel_pstate_update_policies();
999
1000         mutex_unlock(&intel_pstate_driver_lock);
1001
1002         return count;
1003 }
1004
1005 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1006                                   const char *buf, size_t count)
1007 {
1008         unsigned int input;
1009         int ret;
1010
1011         ret = sscanf(buf, "%u", &input);
1012         if (ret != 1)
1013                 return -EINVAL;
1014
1015         mutex_lock(&intel_pstate_driver_lock);
1016
1017         if (!intel_pstate_driver) {
1018                 mutex_unlock(&intel_pstate_driver_lock);
1019                 return -EAGAIN;
1020         }
1021
1022         mutex_lock(&intel_pstate_limits_lock);
1023
1024         global.min_perf_pct = clamp_t(int, input,
1025                                       min_perf_pct_min(), global.max_perf_pct);
1026
1027         mutex_unlock(&intel_pstate_limits_lock);
1028
1029         intel_pstate_update_policies();
1030
1031         mutex_unlock(&intel_pstate_driver_lock);
1032
1033         return count;
1034 }
1035
1036 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1037                                 struct attribute *attr, char *buf)
1038 {
1039         return sprintf(buf, "%u\n", hwp_boost);
1040 }
1041
1042 static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1043                                        const char *buf, size_t count)
1044 {
1045         unsigned int input;
1046         int ret;
1047
1048         ret = kstrtouint(buf, 10, &input);
1049         if (ret)
1050                 return ret;
1051
1052         mutex_lock(&intel_pstate_driver_lock);
1053         hwp_boost = !!input;
1054         intel_pstate_update_policies();
1055         mutex_unlock(&intel_pstate_driver_lock);
1056
1057         return count;
1058 }
1059
1060 show_one(max_perf_pct, max_perf_pct);
1061 show_one(min_perf_pct, min_perf_pct);
1062
1063 define_one_global_rw(status);
1064 define_one_global_rw(no_turbo);
1065 define_one_global_rw(max_perf_pct);
1066 define_one_global_rw(min_perf_pct);
1067 define_one_global_ro(turbo_pct);
1068 define_one_global_ro(num_pstates);
1069 define_one_global_rw(hwp_dynamic_boost);
1070
1071 static struct attribute *intel_pstate_attributes[] = {
1072         &status.attr,
1073         &no_turbo.attr,
1074         &turbo_pct.attr,
1075         &num_pstates.attr,
1076         NULL
1077 };
1078
1079 static const struct attribute_group intel_pstate_attr_group = {
1080         .attrs = intel_pstate_attributes,
1081 };
1082
1083 static void __init intel_pstate_sysfs_expose_params(void)
1084 {
1085         struct kobject *intel_pstate_kobject;
1086         int rc;
1087
1088         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1089                                                 &cpu_subsys.dev_root->kobj);
1090         if (WARN_ON(!intel_pstate_kobject))
1091                 return;
1092
1093         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1094         if (WARN_ON(rc))
1095                 return;
1096
1097         /*
1098          * If per cpu limits are enforced there are no global limits, so
1099          * return without creating max/min_perf_pct attributes
1100          */
1101         if (per_cpu_limits)
1102                 return;
1103
1104         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1105         WARN_ON(rc);
1106
1107         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1108         WARN_ON(rc);
1109
1110         if (hwp_active) {
1111                 rc = sysfs_create_file(intel_pstate_kobject,
1112                                        &hwp_dynamic_boost.attr);
1113                 WARN_ON(rc);
1114         }
1115 }
1116 /************************** sysfs end ************************/
1117
1118 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1119 {
1120         /* First disable HWP notification interrupt as we don't process them */
1121         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1122                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1123
1124         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1125         cpudata->epp_policy = 0;
1126         if (cpudata->epp_default == -EINVAL)
1127                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1128 }
1129
1130 #define MSR_IA32_POWER_CTL_BIT_EE       19
1131
1132 /* Disable energy efficiency optimization */
1133 static void intel_pstate_disable_ee(int cpu)
1134 {
1135         u64 power_ctl;
1136         int ret;
1137
1138         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1139         if (ret)
1140                 return;
1141
1142         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1143                 pr_info("Disabling energy efficiency optimization\n");
1144                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1145                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1146         }
1147 }
1148
1149 static int atom_get_min_pstate(void)
1150 {
1151         u64 value;
1152
1153         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1154         return (value >> 8) & 0x7F;
1155 }
1156
1157 static int atom_get_max_pstate(void)
1158 {
1159         u64 value;
1160
1161         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1162         return (value >> 16) & 0x7F;
1163 }
1164
1165 static int atom_get_turbo_pstate(void)
1166 {
1167         u64 value;
1168
1169         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1170         return value & 0x7F;
1171 }
1172
1173 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1174 {
1175         u64 val;
1176         int32_t vid_fp;
1177         u32 vid;
1178
1179         val = (u64)pstate << 8;
1180         if (global.no_turbo && !global.turbo_disabled)
1181                 val |= (u64)1 << 32;
1182
1183         vid_fp = cpudata->vid.min + mul_fp(
1184                 int_tofp(pstate - cpudata->pstate.min_pstate),
1185                 cpudata->vid.ratio);
1186
1187         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1188         vid = ceiling_fp(vid_fp);
1189
1190         if (pstate > cpudata->pstate.max_pstate)
1191                 vid = cpudata->vid.turbo;
1192
1193         return val | vid;
1194 }
1195
1196 static int silvermont_get_scaling(void)
1197 {
1198         u64 value;
1199         int i;
1200         /* Defined in Table 35-6 from SDM (Sept 2015) */
1201         static int silvermont_freq_table[] = {
1202                 83300, 100000, 133300, 116700, 80000};
1203
1204         rdmsrl(MSR_FSB_FREQ, value);
1205         i = value & 0x7;
1206         WARN_ON(i > 4);
1207
1208         return silvermont_freq_table[i];
1209 }
1210
1211 static int airmont_get_scaling(void)
1212 {
1213         u64 value;
1214         int i;
1215         /* Defined in Table 35-10 from SDM (Sept 2015) */
1216         static int airmont_freq_table[] = {
1217                 83300, 100000, 133300, 116700, 80000,
1218                 93300, 90000, 88900, 87500};
1219
1220         rdmsrl(MSR_FSB_FREQ, value);
1221         i = value & 0xF;
1222         WARN_ON(i > 8);
1223
1224         return airmont_freq_table[i];
1225 }
1226
1227 static void atom_get_vid(struct cpudata *cpudata)
1228 {
1229         u64 value;
1230
1231         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1232         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1233         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1234         cpudata->vid.ratio = div_fp(
1235                 cpudata->vid.max - cpudata->vid.min,
1236                 int_tofp(cpudata->pstate.max_pstate -
1237                         cpudata->pstate.min_pstate));
1238
1239         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1240         cpudata->vid.turbo = value & 0x7f;
1241 }
1242
1243 static int core_get_min_pstate(void)
1244 {
1245         u64 value;
1246
1247         rdmsrl(MSR_PLATFORM_INFO, value);
1248         return (value >> 40) & 0xFF;
1249 }
1250
1251 static int core_get_max_pstate_physical(void)
1252 {
1253         u64 value;
1254
1255         rdmsrl(MSR_PLATFORM_INFO, value);
1256         return (value >> 8) & 0xFF;
1257 }
1258
1259 static int core_get_tdp_ratio(u64 plat_info)
1260 {
1261         /* Check how many TDP levels present */
1262         if (plat_info & 0x600000000) {
1263                 u64 tdp_ctrl;
1264                 u64 tdp_ratio;
1265                 int tdp_msr;
1266                 int err;
1267
1268                 /* Get the TDP level (0, 1, 2) to get ratios */
1269                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1270                 if (err)
1271                         return err;
1272
1273                 /* TDP MSR are continuous starting at 0x648 */
1274                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1275                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1276                 if (err)
1277                         return err;
1278
1279                 /* For level 1 and 2, bits[23:16] contain the ratio */
1280                 if (tdp_ctrl & 0x03)
1281                         tdp_ratio >>= 16;
1282
1283                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1284                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1285
1286                 return (int)tdp_ratio;
1287         }
1288
1289         return -ENXIO;
1290 }
1291
1292 static int core_get_max_pstate(void)
1293 {
1294         u64 tar;
1295         u64 plat_info;
1296         int max_pstate;
1297         int tdp_ratio;
1298         int err;
1299
1300         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1301         max_pstate = (plat_info >> 8) & 0xFF;
1302
1303         tdp_ratio = core_get_tdp_ratio(plat_info);
1304         if (tdp_ratio <= 0)
1305                 return max_pstate;
1306
1307         if (hwp_active) {
1308                 /* Turbo activation ratio is not used on HWP platforms */
1309                 return tdp_ratio;
1310         }
1311
1312         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1313         if (!err) {
1314                 int tar_levels;
1315
1316                 /* Do some sanity checking for safety */
1317                 tar_levels = tar & 0xff;
1318                 if (tdp_ratio - 1 == tar_levels) {
1319                         max_pstate = tar_levels;
1320                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1321                 }
1322         }
1323
1324         return max_pstate;
1325 }
1326
1327 static int core_get_turbo_pstate(void)
1328 {
1329         u64 value;
1330         int nont, ret;
1331
1332         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1333         nont = core_get_max_pstate();
1334         ret = (value) & 255;
1335         if (ret <= nont)
1336                 ret = nont;
1337         return ret;
1338 }
1339
1340 static inline int core_get_scaling(void)
1341 {
1342         return 100000;
1343 }
1344
1345 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1346 {
1347         u64 val;
1348
1349         val = (u64)pstate << 8;
1350         if (global.no_turbo && !global.turbo_disabled)
1351                 val |= (u64)1 << 32;
1352
1353         return val;
1354 }
1355
1356 static int knl_get_aperf_mperf_shift(void)
1357 {
1358         return 10;
1359 }
1360
1361 static int knl_get_turbo_pstate(void)
1362 {
1363         u64 value;
1364         int nont, ret;
1365
1366         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1367         nont = core_get_max_pstate();
1368         ret = (((value) >> 8) & 0xFF);
1369         if (ret <= nont)
1370                 ret = nont;
1371         return ret;
1372 }
1373
1374 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1375 {
1376         return global.no_turbo || global.turbo_disabled ?
1377                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1378 }
1379
1380 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1381 {
1382         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1383         cpu->pstate.current_pstate = pstate;
1384         /*
1385          * Generally, there is no guarantee that this code will always run on
1386          * the CPU being updated, so force the register update to run on the
1387          * right CPU.
1388          */
1389         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1390                       pstate_funcs.get_val(cpu, pstate));
1391 }
1392
1393 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1394 {
1395         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1396 }
1397
1398 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1399 {
1400         int pstate;
1401
1402         update_turbo_state();
1403         pstate = intel_pstate_get_base_pstate(cpu);
1404         pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1405         intel_pstate_set_pstate(cpu, pstate);
1406 }
1407
1408 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1409 {
1410         cpu->pstate.min_pstate = pstate_funcs.get_min();
1411         cpu->pstate.max_pstate = pstate_funcs.get_max();
1412         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1413         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1414         cpu->pstate.scaling = pstate_funcs.get_scaling();
1415         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1416         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1417
1418         if (pstate_funcs.get_aperf_mperf_shift)
1419                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1420
1421         if (pstate_funcs.get_vid)
1422                 pstate_funcs.get_vid(cpu);
1423
1424         intel_pstate_set_min_pstate(cpu);
1425 }
1426
1427 /*
1428  * Long hold time will keep high perf limits for long time,
1429  * which negatively impacts perf/watt for some workloads,
1430  * like specpower. 3ms is based on experiements on some
1431  * workoads.
1432  */
1433 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1434
1435 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1436 {
1437         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1438         u32 max_limit = (hwp_req & 0xff00) >> 8;
1439         u32 min_limit = (hwp_req & 0xff);
1440         u32 boost_level1;
1441
1442         /*
1443          * Cases to consider (User changes via sysfs or boot time):
1444          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1445          *      No boost, return.
1446          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1447          *     Should result in one level boost only for P0.
1448          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1449          *     Should result in two level boost:
1450          *         (min + p1)/2 and P1.
1451          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1452          *     Should result in three level boost:
1453          *        (min + p1)/2, P1 and P0.
1454          */
1455
1456         /* If max and min are equal or already at max, nothing to boost */
1457         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1458                 return;
1459
1460         if (!cpu->hwp_boost_min)
1461                 cpu->hwp_boost_min = min_limit;
1462
1463         /* level at half way mark between min and guranteed */
1464         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1465
1466         if (cpu->hwp_boost_min < boost_level1)
1467                 cpu->hwp_boost_min = boost_level1;
1468         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1469                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1470         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1471                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1472                 cpu->hwp_boost_min = max_limit;
1473         else
1474                 return;
1475
1476         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1477         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1478         cpu->last_update = cpu->sample.time;
1479 }
1480
1481 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1482 {
1483         if (cpu->hwp_boost_min) {
1484                 bool expired;
1485
1486                 /* Check if we are idle for hold time to boost down */
1487                 expired = time_after64(cpu->sample.time, cpu->last_update +
1488                                        hwp_boost_hold_time_ns);
1489                 if (expired) {
1490                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1491                         cpu->hwp_boost_min = 0;
1492                 }
1493         }
1494         cpu->last_update = cpu->sample.time;
1495 }
1496
1497 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1498                                                       u64 time)
1499 {
1500         cpu->sample.time = time;
1501
1502         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1503                 bool do_io = false;
1504
1505                 cpu->sched_flags = 0;
1506                 /*
1507                  * Set iowait_boost flag and update time. Since IO WAIT flag
1508                  * is set all the time, we can't just conclude that there is
1509                  * some IO bound activity is scheduled on this CPU with just
1510                  * one occurrence. If we receive at least two in two
1511                  * consecutive ticks, then we treat as boost candidate.
1512                  */
1513                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1514                         do_io = true;
1515
1516                 cpu->last_io_update = time;
1517
1518                 if (do_io)
1519                         intel_pstate_hwp_boost_up(cpu);
1520
1521         } else {
1522                 intel_pstate_hwp_boost_down(cpu);
1523         }
1524 }
1525
1526 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1527                                                 u64 time, unsigned int flags)
1528 {
1529         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1530
1531         cpu->sched_flags |= flags;
1532
1533         if (smp_processor_id() == cpu->cpu)
1534                 intel_pstate_update_util_hwp_local(cpu, time);
1535 }
1536
1537 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1538 {
1539         struct sample *sample = &cpu->sample;
1540
1541         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1542 }
1543
1544 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1545 {
1546         u64 aperf, mperf;
1547         unsigned long flags;
1548         u64 tsc;
1549
1550         local_irq_save(flags);
1551         rdmsrl(MSR_IA32_APERF, aperf);
1552         rdmsrl(MSR_IA32_MPERF, mperf);
1553         tsc = rdtsc();
1554         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1555                 local_irq_restore(flags);
1556                 return false;
1557         }
1558         local_irq_restore(flags);
1559
1560         cpu->last_sample_time = cpu->sample.time;
1561         cpu->sample.time = time;
1562         cpu->sample.aperf = aperf;
1563         cpu->sample.mperf = mperf;
1564         cpu->sample.tsc =  tsc;
1565         cpu->sample.aperf -= cpu->prev_aperf;
1566         cpu->sample.mperf -= cpu->prev_mperf;
1567         cpu->sample.tsc -= cpu->prev_tsc;
1568
1569         cpu->prev_aperf = aperf;
1570         cpu->prev_mperf = mperf;
1571         cpu->prev_tsc = tsc;
1572         /*
1573          * First time this function is invoked in a given cycle, all of the
1574          * previous sample data fields are equal to zero or stale and they must
1575          * be populated with meaningful numbers for things to work, so assume
1576          * that sample.time will always be reset before setting the utilization
1577          * update hook and make the caller skip the sample then.
1578          */
1579         if (cpu->last_sample_time) {
1580                 intel_pstate_calc_avg_perf(cpu);
1581                 return true;
1582         }
1583         return false;
1584 }
1585
1586 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1587 {
1588         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1589 }
1590
1591 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1592 {
1593         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1594                           cpu->sample.core_avg_perf);
1595 }
1596
1597 static inline int32_t get_target_pstate(struct cpudata *cpu)
1598 {
1599         struct sample *sample = &cpu->sample;
1600         int32_t busy_frac, boost;
1601         int target, avg_pstate;
1602
1603         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1604                            sample->tsc);
1605
1606         boost = cpu->iowait_boost;
1607         cpu->iowait_boost >>= 1;
1608
1609         if (busy_frac < boost)
1610                 busy_frac = boost;
1611
1612         sample->busy_scaled = busy_frac * 100;
1613
1614         target = global.no_turbo || global.turbo_disabled ?
1615                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1616         target += target >> 2;
1617         target = mul_fp(target, busy_frac);
1618         if (target < cpu->pstate.min_pstate)
1619                 target = cpu->pstate.min_pstate;
1620
1621         /*
1622          * If the average P-state during the previous cycle was higher than the
1623          * current target, add 50% of the difference to the target to reduce
1624          * possible performance oscillations and offset possible performance
1625          * loss related to moving the workload from one CPU to another within
1626          * a package/module.
1627          */
1628         avg_pstate = get_avg_pstate(cpu);
1629         if (avg_pstate > target)
1630                 target += (avg_pstate - target) >> 1;
1631
1632         return target;
1633 }
1634
1635 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1636 {
1637         int max_pstate = intel_pstate_get_base_pstate(cpu);
1638         int min_pstate;
1639
1640         min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1641         max_pstate = max(min_pstate, cpu->max_perf_ratio);
1642         return clamp_t(int, pstate, min_pstate, max_pstate);
1643 }
1644
1645 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1646 {
1647         if (pstate == cpu->pstate.current_pstate)
1648                 return;
1649
1650         cpu->pstate.current_pstate = pstate;
1651         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1652 }
1653
1654 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1655 {
1656         int from = cpu->pstate.current_pstate;
1657         struct sample *sample;
1658         int target_pstate;
1659
1660         update_turbo_state();
1661
1662         target_pstate = get_target_pstate(cpu);
1663         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1664         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1665         intel_pstate_update_pstate(cpu, target_pstate);
1666
1667         sample = &cpu->sample;
1668         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1669                 fp_toint(sample->busy_scaled),
1670                 from,
1671                 cpu->pstate.current_pstate,
1672                 sample->mperf,
1673                 sample->aperf,
1674                 sample->tsc,
1675                 get_avg_frequency(cpu),
1676                 fp_toint(cpu->iowait_boost * 100));
1677 }
1678
1679 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1680                                      unsigned int flags)
1681 {
1682         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1683         u64 delta_ns;
1684
1685         /* Don't allow remote callbacks */
1686         if (smp_processor_id() != cpu->cpu)
1687                 return;
1688
1689         if (flags & SCHED_CPUFREQ_IOWAIT) {
1690                 cpu->iowait_boost = int_tofp(1);
1691                 cpu->last_update = time;
1692                 /*
1693                  * The last time the busy was 100% so P-state was max anyway
1694                  * so avoid overhead of computation.
1695                  */
1696                 if (fp_toint(cpu->sample.busy_scaled) == 100)
1697                         return;
1698
1699                 goto set_pstate;
1700         } else if (cpu->iowait_boost) {
1701                 /* Clear iowait_boost if the CPU may have been idle. */
1702                 delta_ns = time - cpu->last_update;
1703                 if (delta_ns > TICK_NSEC)
1704                         cpu->iowait_boost = 0;
1705         }
1706         cpu->last_update = time;
1707         delta_ns = time - cpu->sample.time;
1708         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1709                 return;
1710
1711 set_pstate:
1712         if (intel_pstate_sample(cpu, time))
1713                 intel_pstate_adjust_pstate(cpu);
1714 }
1715
1716 static struct pstate_funcs core_funcs = {
1717         .get_max = core_get_max_pstate,
1718         .get_max_physical = core_get_max_pstate_physical,
1719         .get_min = core_get_min_pstate,
1720         .get_turbo = core_get_turbo_pstate,
1721         .get_scaling = core_get_scaling,
1722         .get_val = core_get_val,
1723 };
1724
1725 static const struct pstate_funcs silvermont_funcs = {
1726         .get_max = atom_get_max_pstate,
1727         .get_max_physical = atom_get_max_pstate,
1728         .get_min = atom_get_min_pstate,
1729         .get_turbo = atom_get_turbo_pstate,
1730         .get_val = atom_get_val,
1731         .get_scaling = silvermont_get_scaling,
1732         .get_vid = atom_get_vid,
1733 };
1734
1735 static const struct pstate_funcs airmont_funcs = {
1736         .get_max = atom_get_max_pstate,
1737         .get_max_physical = atom_get_max_pstate,
1738         .get_min = atom_get_min_pstate,
1739         .get_turbo = atom_get_turbo_pstate,
1740         .get_val = atom_get_val,
1741         .get_scaling = airmont_get_scaling,
1742         .get_vid = atom_get_vid,
1743 };
1744
1745 static const struct pstate_funcs knl_funcs = {
1746         .get_max = core_get_max_pstate,
1747         .get_max_physical = core_get_max_pstate_physical,
1748         .get_min = core_get_min_pstate,
1749         .get_turbo = knl_get_turbo_pstate,
1750         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1751         .get_scaling = core_get_scaling,
1752         .get_val = core_get_val,
1753 };
1754
1755 #define ICPU(model, policy) \
1756         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1757                         (unsigned long)&policy }
1758
1759 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1760         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1761         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1762         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_funcs),
1763         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1764         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1765         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1766         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1767         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1768         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1769         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1770         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1771         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1772         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1773         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1774         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1775         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1776         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1777         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1778         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1779         ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1780         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1781         {}
1782 };
1783 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1784
1785 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1786         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1787         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1788         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1789         {}
1790 };
1791
1792 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1793         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1794         {}
1795 };
1796
1797 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1798         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1799         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1800         {}
1801 };
1802
1803 static int intel_pstate_init_cpu(unsigned int cpunum)
1804 {
1805         struct cpudata *cpu;
1806
1807         cpu = all_cpu_data[cpunum];
1808
1809         if (!cpu) {
1810                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1811                 if (!cpu)
1812                         return -ENOMEM;
1813
1814                 all_cpu_data[cpunum] = cpu;
1815
1816                 cpu->epp_default = -EINVAL;
1817                 cpu->epp_powersave = -EINVAL;
1818                 cpu->epp_saved = -EINVAL;
1819         }
1820
1821         cpu = all_cpu_data[cpunum];
1822
1823         cpu->cpu = cpunum;
1824
1825         if (hwp_active) {
1826                 const struct x86_cpu_id *id;
1827
1828                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1829                 if (id)
1830                         intel_pstate_disable_ee(cpunum);
1831
1832                 intel_pstate_hwp_enable(cpu);
1833
1834                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1835                 if (id)
1836                         hwp_boost = true;
1837         }
1838
1839         intel_pstate_get_cpu_pstates(cpu);
1840
1841         pr_debug("controlling: cpu %d\n", cpunum);
1842
1843         return 0;
1844 }
1845
1846 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1847 {
1848         struct cpudata *cpu = all_cpu_data[cpu_num];
1849
1850         if (hwp_active && !hwp_boost)
1851                 return;
1852
1853         if (cpu->update_util_set)
1854                 return;
1855
1856         /* Prevent intel_pstate_update_util() from using stale data. */
1857         cpu->sample.time = 0;
1858         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1859                                      (hwp_active ?
1860                                       intel_pstate_update_util_hwp :
1861                                       intel_pstate_update_util));
1862         cpu->update_util_set = true;
1863 }
1864
1865 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1866 {
1867         struct cpudata *cpu_data = all_cpu_data[cpu];
1868
1869         if (!cpu_data->update_util_set)
1870                 return;
1871
1872         cpufreq_remove_update_util_hook(cpu);
1873         cpu_data->update_util_set = false;
1874         synchronize_sched();
1875 }
1876
1877 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1878 {
1879         return global.turbo_disabled || global.no_turbo ?
1880                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1881 }
1882
1883 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1884                                             struct cpudata *cpu)
1885 {
1886         int max_freq = intel_pstate_get_max_freq(cpu);
1887         int32_t max_policy_perf, min_policy_perf;
1888         int max_state, turbo_max;
1889
1890         /*
1891          * HWP needs some special consideration, because on BDX the
1892          * HWP_REQUEST uses abstract value to represent performance
1893          * rather than pure ratios.
1894          */
1895         if (hwp_active) {
1896                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1897         } else {
1898                 max_state = intel_pstate_get_base_pstate(cpu);
1899                 turbo_max = cpu->pstate.turbo_pstate;
1900         }
1901
1902         max_policy_perf = max_state * policy->max / max_freq;
1903         if (policy->max == policy->min) {
1904                 min_policy_perf = max_policy_perf;
1905         } else {
1906                 min_policy_perf = max_state * policy->min / max_freq;
1907                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1908                                           0, max_policy_perf);
1909         }
1910
1911         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1912                  policy->cpu, max_state,
1913                  min_policy_perf, max_policy_perf);
1914
1915         /* Normalize user input to [min_perf, max_perf] */
1916         if (per_cpu_limits) {
1917                 cpu->min_perf_ratio = min_policy_perf;
1918                 cpu->max_perf_ratio = max_policy_perf;
1919         } else {
1920                 int32_t global_min, global_max;
1921
1922                 /* Global limits are in percent of the maximum turbo P-state. */
1923                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1924                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1925                 global_min = clamp_t(int32_t, global_min, 0, global_max);
1926
1927                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1928                          global_min, global_max);
1929
1930                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
1931                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1932                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
1933                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1934
1935                 /* Make sure min_perf <= max_perf */
1936                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1937                                           cpu->max_perf_ratio);
1938
1939         }
1940         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1941                  cpu->max_perf_ratio,
1942                  cpu->min_perf_ratio);
1943 }
1944
1945 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1946 {
1947         struct cpudata *cpu;
1948
1949         if (!policy->cpuinfo.max_freq)
1950                 return -ENODEV;
1951
1952         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1953                  policy->cpuinfo.max_freq, policy->max);
1954
1955         cpu = all_cpu_data[policy->cpu];
1956         cpu->policy = policy->policy;
1957
1958         mutex_lock(&intel_pstate_limits_lock);
1959
1960         intel_pstate_update_perf_limits(policy, cpu);
1961
1962         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1963                 /*
1964                  * NOHZ_FULL CPUs need this as the governor callback may not
1965                  * be invoked on them.
1966                  */
1967                 intel_pstate_clear_update_util_hook(policy->cpu);
1968                 intel_pstate_max_within_limits(cpu);
1969         } else {
1970                 intel_pstate_set_update_util_hook(policy->cpu);
1971         }
1972
1973         if (hwp_active) {
1974                 /*
1975                  * When hwp_boost was active before and dynamically it
1976                  * was turned off, in that case we need to clear the
1977                  * update util hook.
1978                  */
1979                 if (!hwp_boost)
1980                         intel_pstate_clear_update_util_hook(policy->cpu);
1981                 intel_pstate_hwp_set(policy->cpu);
1982         }
1983
1984         mutex_unlock(&intel_pstate_limits_lock);
1985
1986         return 0;
1987 }
1988
1989 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1990                                          struct cpudata *cpu)
1991 {
1992         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1993             policy->max < policy->cpuinfo.max_freq &&
1994             policy->max > cpu->pstate.max_freq) {
1995                 pr_debug("policy->max > max non turbo frequency\n");
1996                 policy->max = policy->cpuinfo.max_freq;
1997         }
1998 }
1999
2000 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2001 {
2002         struct cpudata *cpu = all_cpu_data[policy->cpu];
2003
2004         update_turbo_state();
2005         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2006                                      intel_pstate_get_max_freq(cpu));
2007
2008         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2009             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2010                 return -EINVAL;
2011
2012         intel_pstate_adjust_policy_max(policy, cpu);
2013
2014         return 0;
2015 }
2016
2017 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2018 {
2019         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2020 }
2021
2022 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2023 {
2024         pr_debug("CPU %d exiting\n", policy->cpu);
2025
2026         intel_pstate_clear_update_util_hook(policy->cpu);
2027         if (hwp_active)
2028                 intel_pstate_hwp_save_state(policy);
2029         else
2030                 intel_cpufreq_stop_cpu(policy);
2031 }
2032
2033 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2034 {
2035         intel_pstate_exit_perf_limits(policy);
2036
2037         policy->fast_switch_possible = false;
2038
2039         return 0;
2040 }
2041
2042 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2043 {
2044         struct cpudata *cpu;
2045         int rc;
2046
2047         rc = intel_pstate_init_cpu(policy->cpu);
2048         if (rc)
2049                 return rc;
2050
2051         cpu = all_cpu_data[policy->cpu];
2052
2053         cpu->max_perf_ratio = 0xFF;
2054         cpu->min_perf_ratio = 0;
2055
2056         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2057         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2058
2059         /* cpuinfo and default policy values */
2060         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2061         update_turbo_state();
2062         policy->cpuinfo.max_freq = global.turbo_disabled ?
2063                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2064         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2065
2066         intel_pstate_init_acpi_perf_limits(policy);
2067
2068         policy->fast_switch_possible = true;
2069
2070         return 0;
2071 }
2072
2073 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2074 {
2075         int ret = __intel_pstate_cpu_init(policy);
2076
2077         if (ret)
2078                 return ret;
2079
2080         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2081                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2082         else
2083                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2084
2085         return 0;
2086 }
2087
2088 static struct cpufreq_driver intel_pstate = {
2089         .flags          = CPUFREQ_CONST_LOOPS,
2090         .verify         = intel_pstate_verify_policy,
2091         .setpolicy      = intel_pstate_set_policy,
2092         .suspend        = intel_pstate_hwp_save_state,
2093         .resume         = intel_pstate_resume,
2094         .init           = intel_pstate_cpu_init,
2095         .exit           = intel_pstate_cpu_exit,
2096         .stop_cpu       = intel_pstate_stop_cpu,
2097         .name           = "intel_pstate",
2098 };
2099
2100 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2101 {
2102         struct cpudata *cpu = all_cpu_data[policy->cpu];
2103
2104         update_turbo_state();
2105         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2106                                      intel_pstate_get_max_freq(cpu));
2107
2108         intel_pstate_adjust_policy_max(policy, cpu);
2109
2110         intel_pstate_update_perf_limits(policy, cpu);
2111
2112         return 0;
2113 }
2114
2115 /* Use of trace in passive mode:
2116  *
2117  * In passive mode the trace core_busy field (also known as the
2118  * performance field, and lablelled as such on the graphs; also known as
2119  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2120  * driver call was via the normal or fast switch path. Various graphs
2121  * output from the intel_pstate_tracer.py utility that include core_busy
2122  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2123  * so we use 10 to indicate the the normal path through the driver, and
2124  * 90 to indicate the fast switch path through the driver.
2125  * The scaled_busy field is not used, and is set to 0.
2126  */
2127
2128 #define INTEL_PSTATE_TRACE_TARGET 10
2129 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2130
2131 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2132 {
2133         struct sample *sample;
2134
2135         if (!trace_pstate_sample_enabled())
2136                 return;
2137
2138         if (!intel_pstate_sample(cpu, ktime_get()))
2139                 return;
2140
2141         sample = &cpu->sample;
2142         trace_pstate_sample(trace_type,
2143                 0,
2144                 old_pstate,
2145                 cpu->pstate.current_pstate,
2146                 sample->mperf,
2147                 sample->aperf,
2148                 sample->tsc,
2149                 get_avg_frequency(cpu),
2150                 fp_toint(cpu->iowait_boost * 100));
2151 }
2152
2153 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2154                                 unsigned int target_freq,
2155                                 unsigned int relation)
2156 {
2157         struct cpudata *cpu = all_cpu_data[policy->cpu];
2158         struct cpufreq_freqs freqs;
2159         int target_pstate, old_pstate;
2160
2161         update_turbo_state();
2162
2163         freqs.old = policy->cur;
2164         freqs.new = target_freq;
2165
2166         cpufreq_freq_transition_begin(policy, &freqs);
2167         switch (relation) {
2168         case CPUFREQ_RELATION_L:
2169                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2170                 break;
2171         case CPUFREQ_RELATION_H:
2172                 target_pstate = freqs.new / cpu->pstate.scaling;
2173                 break;
2174         default:
2175                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2176                 break;
2177         }
2178         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2179         old_pstate = cpu->pstate.current_pstate;
2180         if (target_pstate != cpu->pstate.current_pstate) {
2181                 cpu->pstate.current_pstate = target_pstate;
2182                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2183                               pstate_funcs.get_val(cpu, target_pstate));
2184         }
2185         freqs.new = target_pstate * cpu->pstate.scaling;
2186         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2187         cpufreq_freq_transition_end(policy, &freqs, false);
2188
2189         return 0;
2190 }
2191
2192 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2193                                               unsigned int target_freq)
2194 {
2195         struct cpudata *cpu = all_cpu_data[policy->cpu];
2196         int target_pstate, old_pstate;
2197
2198         update_turbo_state();
2199
2200         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2201         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2202         old_pstate = cpu->pstate.current_pstate;
2203         intel_pstate_update_pstate(cpu, target_pstate);
2204         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2205         return target_pstate * cpu->pstate.scaling;
2206 }
2207
2208 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2209 {
2210         int ret = __intel_pstate_cpu_init(policy);
2211
2212         if (ret)
2213                 return ret;
2214
2215         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2216         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2217         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2218         policy->cur = policy->cpuinfo.min_freq;
2219
2220         return 0;
2221 }
2222
2223 static struct cpufreq_driver intel_cpufreq = {
2224         .flags          = CPUFREQ_CONST_LOOPS,
2225         .verify         = intel_cpufreq_verify_policy,
2226         .target         = intel_cpufreq_target,
2227         .fast_switch    = intel_cpufreq_fast_switch,
2228         .init           = intel_cpufreq_cpu_init,
2229         .exit           = intel_pstate_cpu_exit,
2230         .stop_cpu       = intel_cpufreq_stop_cpu,
2231         .name           = "intel_cpufreq",
2232 };
2233
2234 static struct cpufreq_driver *default_driver = &intel_pstate;
2235
2236 static void intel_pstate_driver_cleanup(void)
2237 {
2238         unsigned int cpu;
2239
2240         get_online_cpus();
2241         for_each_online_cpu(cpu) {
2242                 if (all_cpu_data[cpu]) {
2243                         if (intel_pstate_driver == &intel_pstate)
2244                                 intel_pstate_clear_update_util_hook(cpu);
2245
2246                         kfree(all_cpu_data[cpu]);
2247                         all_cpu_data[cpu] = NULL;
2248                 }
2249         }
2250         put_online_cpus();
2251         intel_pstate_driver = NULL;
2252 }
2253
2254 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2255 {
2256         int ret;
2257
2258         memset(&global, 0, sizeof(global));
2259         global.max_perf_pct = 100;
2260
2261         intel_pstate_driver = driver;
2262         ret = cpufreq_register_driver(intel_pstate_driver);
2263         if (ret) {
2264                 intel_pstate_driver_cleanup();
2265                 return ret;
2266         }
2267
2268         global.min_perf_pct = min_perf_pct_min();
2269
2270         return 0;
2271 }
2272
2273 static int intel_pstate_unregister_driver(void)
2274 {
2275         if (hwp_active)
2276                 return -EBUSY;
2277
2278         cpufreq_unregister_driver(intel_pstate_driver);
2279         intel_pstate_driver_cleanup();
2280
2281         return 0;
2282 }
2283
2284 static ssize_t intel_pstate_show_status(char *buf)
2285 {
2286         if (!intel_pstate_driver)
2287                 return sprintf(buf, "off\n");
2288
2289         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2290                                         "active" : "passive");
2291 }
2292
2293 static int intel_pstate_update_status(const char *buf, size_t size)
2294 {
2295         int ret;
2296
2297         if (size == 3 && !strncmp(buf, "off", size))
2298                 return intel_pstate_driver ?
2299                         intel_pstate_unregister_driver() : -EINVAL;
2300
2301         if (size == 6 && !strncmp(buf, "active", size)) {
2302                 if (intel_pstate_driver) {
2303                         if (intel_pstate_driver == &intel_pstate)
2304                                 return 0;
2305
2306                         ret = intel_pstate_unregister_driver();
2307                         if (ret)
2308                                 return ret;
2309                 }
2310
2311                 return intel_pstate_register_driver(&intel_pstate);
2312         }
2313
2314         if (size == 7 && !strncmp(buf, "passive", size)) {
2315                 if (intel_pstate_driver) {
2316                         if (intel_pstate_driver == &intel_cpufreq)
2317                                 return 0;
2318
2319                         ret = intel_pstate_unregister_driver();
2320                         if (ret)
2321                                 return ret;
2322                 }
2323
2324                 return intel_pstate_register_driver(&intel_cpufreq);
2325         }
2326
2327         return -EINVAL;
2328 }
2329
2330 static int no_load __initdata;
2331 static int no_hwp __initdata;
2332 static int hwp_only __initdata;
2333 static unsigned int force_load __initdata;
2334
2335 static int __init intel_pstate_msrs_not_valid(void)
2336 {
2337         if (!pstate_funcs.get_max() ||
2338             !pstate_funcs.get_min() ||
2339             !pstate_funcs.get_turbo())
2340                 return -ENODEV;
2341
2342         return 0;
2343 }
2344
2345 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2346 {
2347         pstate_funcs.get_max   = funcs->get_max;
2348         pstate_funcs.get_max_physical = funcs->get_max_physical;
2349         pstate_funcs.get_min   = funcs->get_min;
2350         pstate_funcs.get_turbo = funcs->get_turbo;
2351         pstate_funcs.get_scaling = funcs->get_scaling;
2352         pstate_funcs.get_val   = funcs->get_val;
2353         pstate_funcs.get_vid   = funcs->get_vid;
2354         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2355 }
2356
2357 #ifdef CONFIG_ACPI
2358
2359 static bool __init intel_pstate_no_acpi_pss(void)
2360 {
2361         int i;
2362
2363         for_each_possible_cpu(i) {
2364                 acpi_status status;
2365                 union acpi_object *pss;
2366                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2367                 struct acpi_processor *pr = per_cpu(processors, i);
2368
2369                 if (!pr)
2370                         continue;
2371
2372                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2373                 if (ACPI_FAILURE(status))
2374                         continue;
2375
2376                 pss = buffer.pointer;
2377                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2378                         kfree(pss);
2379                         return false;
2380                 }
2381
2382                 kfree(pss);
2383         }
2384
2385         return true;
2386 }
2387
2388 static bool __init intel_pstate_has_acpi_ppc(void)
2389 {
2390         int i;
2391
2392         for_each_possible_cpu(i) {
2393                 struct acpi_processor *pr = per_cpu(processors, i);
2394
2395                 if (!pr)
2396                         continue;
2397                 if (acpi_has_method(pr->handle, "_PPC"))
2398                         return true;
2399         }
2400         return false;
2401 }
2402
2403 enum {
2404         PSS,
2405         PPC,
2406 };
2407
2408 /* Hardware vendor-specific info that has its own power management modes */
2409 static struct acpi_platform_list plat_info[] __initdata = {
2410         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2411         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2412         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2413         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2414         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2415         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2416         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2417         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2418         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2419         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2420         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2421         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2422         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2423         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2424         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2425         { } /* End */
2426 };
2427
2428 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2429 {
2430         const struct x86_cpu_id *id;
2431         u64 misc_pwr;
2432         int idx;
2433
2434         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2435         if (id) {
2436                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2437                 if ( misc_pwr & (1 << 8))
2438                         return true;
2439         }
2440
2441         idx = acpi_match_platform_list(plat_info);
2442         if (idx < 0)
2443                 return false;
2444
2445         switch (plat_info[idx].data) {
2446         case PSS:
2447                 return intel_pstate_no_acpi_pss();
2448         case PPC:
2449                 return intel_pstate_has_acpi_ppc() && !force_load;
2450         }
2451
2452         return false;
2453 }
2454
2455 static void intel_pstate_request_control_from_smm(void)
2456 {
2457         /*
2458          * It may be unsafe to request P-states control from SMM if _PPC support
2459          * has not been enabled.
2460          */
2461         if (acpi_ppc)
2462                 acpi_processor_pstate_control();
2463 }
2464 #else /* CONFIG_ACPI not enabled */
2465 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2466 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2467 static inline void intel_pstate_request_control_from_smm(void) {}
2468 #endif /* CONFIG_ACPI */
2469
2470 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2471         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2472         {}
2473 };
2474
2475 static int __init intel_pstate_init(void)
2476 {
2477         int rc;
2478
2479         if (no_load)
2480                 return -ENODEV;
2481
2482         if (x86_match_cpu(hwp_support_ids)) {
2483                 copy_cpu_funcs(&core_funcs);
2484                 if (!no_hwp) {
2485                         hwp_active++;
2486                         intel_pstate.attr = hwp_cpufreq_attrs;
2487                         goto hwp_cpu_matched;
2488                 }
2489         } else {
2490                 const struct x86_cpu_id *id;
2491
2492                 id = x86_match_cpu(intel_pstate_cpu_ids);
2493                 if (!id)
2494                         return -ENODEV;
2495
2496                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2497         }
2498
2499         if (intel_pstate_msrs_not_valid())
2500                 return -ENODEV;
2501
2502 hwp_cpu_matched:
2503         /*
2504          * The Intel pstate driver will be ignored if the platform
2505          * firmware has its own power management modes.
2506          */
2507         if (intel_pstate_platform_pwr_mgmt_exists())
2508                 return -ENODEV;
2509
2510         if (!hwp_active && hwp_only)
2511                 return -ENOTSUPP;
2512
2513         pr_info("Intel P-state driver initializing\n");
2514
2515         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2516         if (!all_cpu_data)
2517                 return -ENOMEM;
2518
2519         intel_pstate_request_control_from_smm();
2520
2521         intel_pstate_sysfs_expose_params();
2522
2523         mutex_lock(&intel_pstate_driver_lock);
2524         rc = intel_pstate_register_driver(default_driver);
2525         mutex_unlock(&intel_pstate_driver_lock);
2526         if (rc)
2527                 return rc;
2528
2529         if (hwp_active)
2530                 pr_info("HWP enabled\n");
2531
2532         return 0;
2533 }
2534 device_initcall(intel_pstate_init);
2535
2536 static int __init intel_pstate_setup(char *str)
2537 {
2538         if (!str)
2539                 return -EINVAL;
2540
2541         if (!strcmp(str, "disable")) {
2542                 no_load = 1;
2543         } else if (!strcmp(str, "passive")) {
2544                 pr_info("Passive mode enabled\n");
2545                 default_driver = &intel_cpufreq;
2546                 no_hwp = 1;
2547         }
2548         if (!strcmp(str, "no_hwp")) {
2549                 pr_info("HWP disabled\n");
2550                 no_hwp = 1;
2551         }
2552         if (!strcmp(str, "force"))
2553                 force_load = 1;
2554         if (!strcmp(str, "hwp_only"))
2555                 hwp_only = 1;
2556         if (!strcmp(str, "per_cpu_perf_limits"))
2557                 per_cpu_limits = true;
2558
2559 #ifdef CONFIG_ACPI
2560         if (!strcmp(str, "support_acpi_ppc"))
2561                 acpi_ppc = true;
2562 #endif
2563
2564         return 0;
2565 }
2566 early_param("intel_pstate", intel_pstate_setup);
2567
2568 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2569 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2570 MODULE_LICENSE("GPL");