Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / cpufreq / ia64-acpi-cpufreq.c
1 /*
2  * This file provides the ACPI based P-state support. This
3  * module works with generic cpufreq infrastructure. Most of
4  * the code is based on i386 version
5  * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
6  *
7  * Copyright (C) 2005 Intel Corp
8  *      Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <asm/io.h>
21 #include <linux/uaccess.h>
22 #include <asm/pal.h>
23
24 #include <linux/acpi.h>
25 #include <acpi/processor.h>
26
27 MODULE_AUTHOR("Venkatesh Pallipadi");
28 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
29 MODULE_LICENSE("GPL");
30
31
32 struct cpufreq_acpi_io {
33         struct acpi_processor_performance       acpi_data;
34         unsigned int                            resume;
35 };
36
37 struct cpufreq_acpi_req {
38         unsigned int            cpu;
39         unsigned int            state;
40 };
41
42 static struct cpufreq_acpi_io   *acpi_io_data[NR_CPUS];
43
44 static struct cpufreq_driver acpi_cpufreq_driver;
45
46
47 static int
48 processor_set_pstate (
49         u32     value)
50 {
51         s64 retval;
52
53         pr_debug("processor_set_pstate\n");
54
55         retval = ia64_pal_set_pstate((u64)value);
56
57         if (retval) {
58                 pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n",
59                         value, retval);
60                 return -ENODEV;
61         }
62         return (int)retval;
63 }
64
65
66 static int
67 processor_get_pstate (
68         u32     *value)
69 {
70         u64     pstate_index = 0;
71         s64     retval;
72
73         pr_debug("processor_get_pstate\n");
74
75         retval = ia64_pal_get_pstate(&pstate_index,
76                                      PAL_GET_PSTATE_TYPE_INSTANT);
77         *value = (u32) pstate_index;
78
79         if (retval)
80                 pr_debug("Failed to get current freq with "
81                         "error 0x%lx, idx 0x%x\n", retval, *value);
82
83         return (int)retval;
84 }
85
86
87 /* To be used only after data->acpi_data is initialized */
88 static unsigned
89 extract_clock (
90         struct cpufreq_acpi_io *data,
91         unsigned value)
92 {
93         unsigned long i;
94
95         pr_debug("extract_clock\n");
96
97         for (i = 0; i < data->acpi_data.state_count; i++) {
98                 if (value == data->acpi_data.states[i].status)
99                         return data->acpi_data.states[i].core_frequency;
100         }
101         return data->acpi_data.states[i-1].core_frequency;
102 }
103
104
105 static long
106 processor_get_freq (
107         void *arg)
108 {
109         struct cpufreq_acpi_req *req = arg;
110         unsigned int            cpu = req->cpu;
111         struct cpufreq_acpi_io  *data = acpi_io_data[cpu];
112         u32                     value;
113         int                     ret;
114
115         pr_debug("processor_get_freq\n");
116         if (smp_processor_id() != cpu)
117                 return -EAGAIN;
118
119         /* processor_get_pstate gets the instantaneous frequency */
120         ret = processor_get_pstate(&value);
121         if (ret) {
122                 pr_warn("get performance failed with error %d\n", ret);
123                 return ret;
124         }
125         return 1000 * extract_clock(data, value);
126 }
127
128
129 static long
130 processor_set_freq (
131         void *arg)
132 {
133         struct cpufreq_acpi_req *req = arg;
134         unsigned int            cpu = req->cpu;
135         struct cpufreq_acpi_io  *data = acpi_io_data[cpu];
136         int                     ret, state = req->state;
137         u32                     value;
138
139         pr_debug("processor_set_freq\n");
140         if (smp_processor_id() != cpu)
141                 return -EAGAIN;
142
143         if (state == data->acpi_data.state) {
144                 if (unlikely(data->resume)) {
145                         pr_debug("Called after resume, resetting to P%d\n", state);
146                         data->resume = 0;
147                 } else {
148                         pr_debug("Already at target state (P%d)\n", state);
149                         return 0;
150                 }
151         }
152
153         pr_debug("Transitioning from P%d to P%d\n",
154                 data->acpi_data.state, state);
155
156         /*
157          * First we write the target state's 'control' value to the
158          * control_register.
159          */
160         value = (u32) data->acpi_data.states[state].control;
161
162         pr_debug("Transitioning to state: 0x%08x\n", value);
163
164         ret = processor_set_pstate(value);
165         if (ret) {
166                 pr_warn("Transition failed with error %d\n", ret);
167                 return -ENODEV;
168         }
169
170         data->acpi_data.state = state;
171         return 0;
172 }
173
174
175 static unsigned int
176 acpi_cpufreq_get (
177         unsigned int            cpu)
178 {
179         struct cpufreq_acpi_req req;
180         long ret;
181
182         req.cpu = cpu;
183         ret = work_on_cpu(cpu, processor_get_freq, &req);
184
185         return ret > 0 ? (unsigned int) ret : 0;
186 }
187
188
189 static int
190 acpi_cpufreq_target (
191         struct cpufreq_policy   *policy,
192         unsigned int index)
193 {
194         struct cpufreq_acpi_req req;
195
196         req.cpu = policy->cpu;
197         req.state = index;
198
199         return work_on_cpu(req.cpu, processor_set_freq, &req);
200 }
201
202 static int
203 acpi_cpufreq_cpu_init (
204         struct cpufreq_policy   *policy)
205 {
206         unsigned int            i;
207         unsigned int            cpu = policy->cpu;
208         struct cpufreq_acpi_io  *data;
209         unsigned int            result = 0;
210         struct cpufreq_frequency_table *freq_table;
211
212         pr_debug("acpi_cpufreq_cpu_init\n");
213
214         data = kzalloc(sizeof(*data), GFP_KERNEL);
215         if (!data)
216                 return (-ENOMEM);
217
218         acpi_io_data[cpu] = data;
219
220         result = acpi_processor_register_performance(&data->acpi_data, cpu);
221
222         if (result)
223                 goto err_free;
224
225         /* capability check */
226         if (data->acpi_data.state_count <= 1) {
227                 pr_debug("No P-States\n");
228                 result = -ENODEV;
229                 goto err_unreg;
230         }
231
232         if ((data->acpi_data.control_register.space_id !=
233                                         ACPI_ADR_SPACE_FIXED_HARDWARE) ||
234             (data->acpi_data.status_register.space_id !=
235                                         ACPI_ADR_SPACE_FIXED_HARDWARE)) {
236                 pr_debug("Unsupported address space [%d, %d]\n",
237                         (u32) (data->acpi_data.control_register.space_id),
238                         (u32) (data->acpi_data.status_register.space_id));
239                 result = -ENODEV;
240                 goto err_unreg;
241         }
242
243         /* alloc freq_table */
244         freq_table = kcalloc(data->acpi_data.state_count + 1,
245                                    sizeof(*freq_table),
246                                    GFP_KERNEL);
247         if (!freq_table) {
248                 result = -ENOMEM;
249                 goto err_unreg;
250         }
251
252         /* detect transition latency */
253         policy->cpuinfo.transition_latency = 0;
254         for (i=0; i<data->acpi_data.state_count; i++) {
255                 if ((data->acpi_data.states[i].transition_latency * 1000) >
256                     policy->cpuinfo.transition_latency) {
257                         policy->cpuinfo.transition_latency =
258                             data->acpi_data.states[i].transition_latency * 1000;
259                 }
260         }
261
262         /* table init */
263         for (i = 0; i <= data->acpi_data.state_count; i++)
264         {
265                 if (i < data->acpi_data.state_count) {
266                         freq_table[i].frequency =
267                               data->acpi_data.states[i].core_frequency * 1000;
268                 } else {
269                         freq_table[i].frequency = CPUFREQ_TABLE_END;
270                 }
271         }
272
273         policy->freq_table = freq_table;
274
275         /* notify BIOS that we exist */
276         acpi_processor_notify_smm(THIS_MODULE);
277
278         pr_info("CPU%u - ACPI performance management activated\n", cpu);
279
280         for (i = 0; i < data->acpi_data.state_count; i++)
281                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
282                         (i == data->acpi_data.state?'*':' '), i,
283                         (u32) data->acpi_data.states[i].core_frequency,
284                         (u32) data->acpi_data.states[i].power,
285                         (u32) data->acpi_data.states[i].transition_latency,
286                         (u32) data->acpi_data.states[i].bus_master_latency,
287                         (u32) data->acpi_data.states[i].status,
288                         (u32) data->acpi_data.states[i].control);
289
290         /* the first call to ->target() should result in us actually
291          * writing something to the appropriate registers. */
292         data->resume = 1;
293
294         return (result);
295
296  err_unreg:
297         acpi_processor_unregister_performance(cpu);
298  err_free:
299         kfree(data);
300         acpi_io_data[cpu] = NULL;
301
302         return (result);
303 }
304
305
306 static int
307 acpi_cpufreq_cpu_exit (
308         struct cpufreq_policy   *policy)
309 {
310         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
311
312         pr_debug("acpi_cpufreq_cpu_exit\n");
313
314         if (data) {
315                 acpi_io_data[policy->cpu] = NULL;
316                 acpi_processor_unregister_performance(policy->cpu);
317                 kfree(policy->freq_table);
318                 kfree(data);
319         }
320
321         return (0);
322 }
323
324
325 static struct cpufreq_driver acpi_cpufreq_driver = {
326         .verify         = cpufreq_generic_frequency_table_verify,
327         .target_index   = acpi_cpufreq_target,
328         .get            = acpi_cpufreq_get,
329         .init           = acpi_cpufreq_cpu_init,
330         .exit           = acpi_cpufreq_cpu_exit,
331         .name           = "acpi-cpufreq",
332         .attr           = cpufreq_generic_attr,
333 };
334
335
336 static int __init
337 acpi_cpufreq_init (void)
338 {
339         pr_debug("acpi_cpufreq_init\n");
340
341         return cpufreq_register_driver(&acpi_cpufreq_driver);
342 }
343
344
345 static void __exit
346 acpi_cpufreq_exit (void)
347 {
348         pr_debug("acpi_cpufreq_exit\n");
349
350         cpufreq_unregister_driver(&acpi_cpufreq_driver);
351         return;
352 }
353
354
355 late_initcall(acpi_cpufreq_init);
356 module_exit(acpi_cpufreq_exit);
357