[CPUFREQ] ondemand/conservative: deprecate sampling_rate{min,max}
[sfrench/cifs-2.6.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
35 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
36 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
37
38 /*
39  * The polling frequency of this governor depends on the capability of
40  * the processor. Default polling frequency is 1000 times the transition
41  * latency of the processor. The governor will work on any processor with
42  * transition latency <= 10mS, using appropriate sampling
43  * rate.
44  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
45  * this governor will not work.
46  * All times here are in uS.
47  */
48 static unsigned int def_sampling_rate;
49 #define MIN_SAMPLING_RATE_RATIO                 (2)
50 /* for correct statistics, we need at least 10 ticks between each measure */
51 #define MIN_STAT_SAMPLING_RATE                  \
52                         (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
53 #define MIN_SAMPLING_RATE                       \
54                         (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
56 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
57 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
58
59 static void do_dbs_timer(struct work_struct *work);
60
61 /* Sampling types */
62 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
63
64 struct cpu_dbs_info_s {
65         cputime64_t prev_cpu_idle;
66         cputime64_t prev_cpu_wall;
67         cputime64_t prev_cpu_nice;
68         struct cpufreq_policy *cur_policy;
69         struct delayed_work work;
70         struct cpufreq_frequency_table *freq_table;
71         unsigned int freq_lo;
72         unsigned int freq_lo_jiffies;
73         unsigned int freq_hi_jiffies;
74         int cpu;
75         unsigned int enable:1,
76                 sample_type:1;
77 };
78 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
79
80 static unsigned int dbs_enable; /* number of CPUs using this policy */
81
82 /*
83  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
84  * lock and dbs_mutex. cpu_hotplug lock should always be held before
85  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
86  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
87  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
88  * is recursive for the same process. -Venki
89  */
90 static DEFINE_MUTEX(dbs_mutex);
91
92 static struct workqueue_struct  *kondemand_wq;
93
94 static struct dbs_tuners {
95         unsigned int sampling_rate;
96         unsigned int up_threshold;
97         unsigned int down_differential;
98         unsigned int ignore_nice;
99         unsigned int powersave_bias;
100 } dbs_tuners_ins = {
101         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
102         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
103         .ignore_nice = 0,
104         .powersave_bias = 0,
105 };
106
107 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
108                                                         cputime64_t *wall)
109 {
110         cputime64_t idle_time;
111         cputime64_t cur_wall_time;
112         cputime64_t busy_time;
113
114         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
115         busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
116                         kstat_cpu(cpu).cpustat.system);
117
118         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
119         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
120         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
121         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
122
123         idle_time = cputime64_sub(cur_wall_time, busy_time);
124         if (wall)
125                 *wall = cur_wall_time;
126
127         return idle_time;
128 }
129
130 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
131 {
132         u64 idle_time = get_cpu_idle_time_us(cpu, wall);
133
134         if (idle_time == -1ULL)
135                 return get_cpu_idle_time_jiffy(cpu, wall);
136
137         return idle_time;
138 }
139
140 /*
141  * Find right freq to be set now with powersave_bias on.
142  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
143  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
144  */
145 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
146                                           unsigned int freq_next,
147                                           unsigned int relation)
148 {
149         unsigned int freq_req, freq_reduc, freq_avg;
150         unsigned int freq_hi, freq_lo;
151         unsigned int index = 0;
152         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
153         struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
154
155         if (!dbs_info->freq_table) {
156                 dbs_info->freq_lo = 0;
157                 dbs_info->freq_lo_jiffies = 0;
158                 return freq_next;
159         }
160
161         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
162                         relation, &index);
163         freq_req = dbs_info->freq_table[index].frequency;
164         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
165         freq_avg = freq_req - freq_reduc;
166
167         /* Find freq bounds for freq_avg in freq_table */
168         index = 0;
169         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
170                         CPUFREQ_RELATION_H, &index);
171         freq_lo = dbs_info->freq_table[index].frequency;
172         index = 0;
173         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
174                         CPUFREQ_RELATION_L, &index);
175         freq_hi = dbs_info->freq_table[index].frequency;
176
177         /* Find out how long we have to be in hi and lo freqs */
178         if (freq_hi == freq_lo) {
179                 dbs_info->freq_lo = 0;
180                 dbs_info->freq_lo_jiffies = 0;
181                 return freq_lo;
182         }
183         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
184         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
185         jiffies_hi += ((freq_hi - freq_lo) / 2);
186         jiffies_hi /= (freq_hi - freq_lo);
187         jiffies_lo = jiffies_total - jiffies_hi;
188         dbs_info->freq_lo = freq_lo;
189         dbs_info->freq_lo_jiffies = jiffies_lo;
190         dbs_info->freq_hi_jiffies = jiffies_hi;
191         return freq_hi;
192 }
193
194 static void ondemand_powersave_bias_init(void)
195 {
196         int i;
197         for_each_online_cpu(i) {
198                 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
199                 dbs_info->freq_table = cpufreq_frequency_get_table(i);
200                 dbs_info->freq_lo = 0;
201         }
202 }
203
204 /************************** sysfs interface ************************/
205 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
206 {
207         static int print_once;
208
209         if (!print_once) {
210                 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
211                        "sysfs file is deprecated - used by: %s\n",
212                        current->comm);
213                 print_once = 1;
214         }
215         return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
216 }
217
218 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
219 {
220         static int print_once;
221
222         if (!print_once) {
223                 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_min "
224                        "sysfs file is deprecated - used by: %s\n",
225                        current->comm);
226                 print_once = 1;
227         }
228         return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
229 }
230
231 #define define_one_ro(_name)            \
232 static struct freq_attr _name =         \
233 __ATTR(_name, 0444, show_##_name, NULL)
234
235 define_one_ro(sampling_rate_max);
236 define_one_ro(sampling_rate_min);
237
238 /* cpufreq_ondemand Governor Tunables */
239 #define show_one(file_name, object)                                     \
240 static ssize_t show_##file_name                                         \
241 (struct cpufreq_policy *unused, char *buf)                              \
242 {                                                                       \
243         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
244 }
245 show_one(sampling_rate, sampling_rate);
246 show_one(up_threshold, up_threshold);
247 show_one(ignore_nice_load, ignore_nice);
248 show_one(powersave_bias, powersave_bias);
249
250 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
251                 const char *buf, size_t count)
252 {
253         unsigned int input;
254         int ret;
255         ret = sscanf(buf, "%u", &input);
256
257         mutex_lock(&dbs_mutex);
258         if (ret != 1 || input > MAX_SAMPLING_RATE
259                      || input < MIN_SAMPLING_RATE) {
260                 mutex_unlock(&dbs_mutex);
261                 return -EINVAL;
262         }
263
264         dbs_tuners_ins.sampling_rate = input;
265         mutex_unlock(&dbs_mutex);
266
267         return count;
268 }
269
270 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
271                 const char *buf, size_t count)
272 {
273         unsigned int input;
274         int ret;
275         ret = sscanf(buf, "%u", &input);
276
277         mutex_lock(&dbs_mutex);
278         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
279                         input < MIN_FREQUENCY_UP_THRESHOLD) {
280                 mutex_unlock(&dbs_mutex);
281                 return -EINVAL;
282         }
283
284         dbs_tuners_ins.up_threshold = input;
285         mutex_unlock(&dbs_mutex);
286
287         return count;
288 }
289
290 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
291                 const char *buf, size_t count)
292 {
293         unsigned int input;
294         int ret;
295
296         unsigned int j;
297
298         ret = sscanf(buf, "%u", &input);
299         if (ret != 1)
300                 return -EINVAL;
301
302         if (input > 1)
303                 input = 1;
304
305         mutex_lock(&dbs_mutex);
306         if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
307                 mutex_unlock(&dbs_mutex);
308                 return count;
309         }
310         dbs_tuners_ins.ignore_nice = input;
311
312         /* we need to re-evaluate prev_cpu_idle */
313         for_each_online_cpu(j) {
314                 struct cpu_dbs_info_s *dbs_info;
315                 dbs_info = &per_cpu(cpu_dbs_info, j);
316                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
317                                                 &dbs_info->prev_cpu_wall);
318                 if (dbs_tuners_ins.ignore_nice)
319                         dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
320
321         }
322         mutex_unlock(&dbs_mutex);
323
324         return count;
325 }
326
327 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
328                 const char *buf, size_t count)
329 {
330         unsigned int input;
331         int ret;
332         ret = sscanf(buf, "%u", &input);
333
334         if (ret != 1)
335                 return -EINVAL;
336
337         if (input > 1000)
338                 input = 1000;
339
340         mutex_lock(&dbs_mutex);
341         dbs_tuners_ins.powersave_bias = input;
342         ondemand_powersave_bias_init();
343         mutex_unlock(&dbs_mutex);
344
345         return count;
346 }
347
348 #define define_one_rw(_name) \
349 static struct freq_attr _name = \
350 __ATTR(_name, 0644, show_##_name, store_##_name)
351
352 define_one_rw(sampling_rate);
353 define_one_rw(up_threshold);
354 define_one_rw(ignore_nice_load);
355 define_one_rw(powersave_bias);
356
357 static struct attribute *dbs_attributes[] = {
358         &sampling_rate_max.attr,
359         &sampling_rate_min.attr,
360         &sampling_rate.attr,
361         &up_threshold.attr,
362         &ignore_nice_load.attr,
363         &powersave_bias.attr,
364         NULL
365 };
366
367 static struct attribute_group dbs_attr_group = {
368         .attrs = dbs_attributes,
369         .name = "ondemand",
370 };
371
372 /************************** sysfs end ************************/
373
374 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
375 {
376         unsigned int max_load_freq;
377
378         struct cpufreq_policy *policy;
379         unsigned int j;
380
381         if (!this_dbs_info->enable)
382                 return;
383
384         this_dbs_info->freq_lo = 0;
385         policy = this_dbs_info->cur_policy;
386
387         /*
388          * Every sampling_rate, we check, if current idle time is less
389          * than 20% (default), then we try to increase frequency
390          * Every sampling_rate, we look for a the lowest
391          * frequency which can sustain the load while keeping idle time over
392          * 30%. If such a frequency exist, we try to decrease to this frequency.
393          *
394          * Any frequency increase takes it to the maximum frequency.
395          * Frequency reduction happens at minimum steps of
396          * 5% (default) of current frequency
397          */
398
399         /* Get Absolute Load - in terms of freq */
400         max_load_freq = 0;
401
402         for_each_cpu(j, policy->cpus) {
403                 struct cpu_dbs_info_s *j_dbs_info;
404                 cputime64_t cur_wall_time, cur_idle_time;
405                 unsigned int idle_time, wall_time;
406                 unsigned int load, load_freq;
407                 int freq_avg;
408
409                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
410
411                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
412
413                 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
414                                 j_dbs_info->prev_cpu_wall);
415                 j_dbs_info->prev_cpu_wall = cur_wall_time;
416
417                 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
418                                 j_dbs_info->prev_cpu_idle);
419                 j_dbs_info->prev_cpu_idle = cur_idle_time;
420
421                 if (dbs_tuners_ins.ignore_nice) {
422                         cputime64_t cur_nice;
423                         unsigned long cur_nice_jiffies;
424
425                         cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
426                                          j_dbs_info->prev_cpu_nice);
427                         /*
428                          * Assumption: nice time between sampling periods will
429                          * be less than 2^32 jiffies for 32 bit sys
430                          */
431                         cur_nice_jiffies = (unsigned long)
432                                         cputime64_to_jiffies64(cur_nice);
433
434                         j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
435                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
436                 }
437
438                 if (unlikely(!wall_time || wall_time < idle_time))
439                         continue;
440
441                 load = 100 * (wall_time - idle_time) / wall_time;
442
443                 freq_avg = __cpufreq_driver_getavg(policy, j);
444                 if (freq_avg <= 0)
445                         freq_avg = policy->cur;
446
447                 load_freq = load * freq_avg;
448                 if (load_freq > max_load_freq)
449                         max_load_freq = load_freq;
450         }
451
452         /* Check for frequency increase */
453         if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
454                 /* if we are already at full speed then break out early */
455                 if (!dbs_tuners_ins.powersave_bias) {
456                         if (policy->cur == policy->max)
457                                 return;
458
459                         __cpufreq_driver_target(policy, policy->max,
460                                 CPUFREQ_RELATION_H);
461                 } else {
462                         int freq = powersave_bias_target(policy, policy->max,
463                                         CPUFREQ_RELATION_H);
464                         __cpufreq_driver_target(policy, freq,
465                                 CPUFREQ_RELATION_L);
466                 }
467                 return;
468         }
469
470         /* Check for frequency decrease */
471         /* if we cannot reduce the frequency anymore, break out early */
472         if (policy->cur == policy->min)
473                 return;
474
475         /*
476          * The optimal frequency is the frequency that is the lowest that
477          * can support the current CPU usage without triggering the up
478          * policy. To be safe, we focus 10 points under the threshold.
479          */
480         if (max_load_freq <
481             (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
482              policy->cur) {
483                 unsigned int freq_next;
484                 freq_next = max_load_freq /
485                                 (dbs_tuners_ins.up_threshold -
486                                  dbs_tuners_ins.down_differential);
487
488                 if (!dbs_tuners_ins.powersave_bias) {
489                         __cpufreq_driver_target(policy, freq_next,
490                                         CPUFREQ_RELATION_L);
491                 } else {
492                         int freq = powersave_bias_target(policy, freq_next,
493                                         CPUFREQ_RELATION_L);
494                         __cpufreq_driver_target(policy, freq,
495                                 CPUFREQ_RELATION_L);
496                 }
497         }
498 }
499
500 static void do_dbs_timer(struct work_struct *work)
501 {
502         struct cpu_dbs_info_s *dbs_info =
503                 container_of(work, struct cpu_dbs_info_s, work.work);
504         unsigned int cpu = dbs_info->cpu;
505         int sample_type = dbs_info->sample_type;
506
507         /* We want all CPUs to do sampling nearly on same jiffy */
508         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
509
510         delay -= jiffies % delay;
511
512         if (lock_policy_rwsem_write(cpu) < 0)
513                 return;
514
515         if (!dbs_info->enable) {
516                 unlock_policy_rwsem_write(cpu);
517                 return;
518         }
519
520         /* Common NORMAL_SAMPLE setup */
521         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
522         if (!dbs_tuners_ins.powersave_bias ||
523             sample_type == DBS_NORMAL_SAMPLE) {
524                 dbs_check_cpu(dbs_info);
525                 if (dbs_info->freq_lo) {
526                         /* Setup timer for SUB_SAMPLE */
527                         dbs_info->sample_type = DBS_SUB_SAMPLE;
528                         delay = dbs_info->freq_hi_jiffies;
529                 }
530         } else {
531                 __cpufreq_driver_target(dbs_info->cur_policy,
532                         dbs_info->freq_lo, CPUFREQ_RELATION_H);
533         }
534         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
535         unlock_policy_rwsem_write(cpu);
536 }
537
538 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
539 {
540         /* We want all CPUs to do sampling nearly on same jiffy */
541         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
542         delay -= jiffies % delay;
543
544         dbs_info->enable = 1;
545         ondemand_powersave_bias_init();
546         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
547         INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
548         queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
549                 delay);
550 }
551
552 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
553 {
554         dbs_info->enable = 0;
555         cancel_delayed_work(&dbs_info->work);
556 }
557
558 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
559                                    unsigned int event)
560 {
561         unsigned int cpu = policy->cpu;
562         struct cpu_dbs_info_s *this_dbs_info;
563         unsigned int j;
564         int rc;
565
566         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
567
568         switch (event) {
569         case CPUFREQ_GOV_START:
570                 if ((!cpu_online(cpu)) || (!policy->cur))
571                         return -EINVAL;
572
573                 if (this_dbs_info->enable) /* Already enabled */
574                         break;
575
576                 mutex_lock(&dbs_mutex);
577                 dbs_enable++;
578
579                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
580                 if (rc) {
581                         dbs_enable--;
582                         mutex_unlock(&dbs_mutex);
583                         return rc;
584                 }
585
586                 for_each_cpu(j, policy->cpus) {
587                         struct cpu_dbs_info_s *j_dbs_info;
588                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
589                         j_dbs_info->cur_policy = policy;
590
591                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
592                                                 &j_dbs_info->prev_cpu_wall);
593                         if (dbs_tuners_ins.ignore_nice) {
594                                 j_dbs_info->prev_cpu_nice =
595                                                 kstat_cpu(j).cpustat.nice;
596                         }
597                 }
598                 this_dbs_info->cpu = cpu;
599                 /*
600                  * Start the timerschedule work, when this governor
601                  * is used for first time
602                  */
603                 if (dbs_enable == 1) {
604                         unsigned int latency;
605                         /* policy latency is in nS. Convert it to uS first */
606                         latency = policy->cpuinfo.transition_latency / 1000;
607                         if (latency == 0)
608                                 latency = 1;
609
610                         def_sampling_rate = latency *
611                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
612
613                         if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
614                                 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
615
616                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
617                 }
618                 dbs_timer_init(this_dbs_info);
619
620                 mutex_unlock(&dbs_mutex);
621                 break;
622
623         case CPUFREQ_GOV_STOP:
624                 mutex_lock(&dbs_mutex);
625                 dbs_timer_exit(this_dbs_info);
626                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
627                 dbs_enable--;
628                 mutex_unlock(&dbs_mutex);
629
630                 break;
631
632         case CPUFREQ_GOV_LIMITS:
633                 mutex_lock(&dbs_mutex);
634                 if (policy->max < this_dbs_info->cur_policy->cur)
635                         __cpufreq_driver_target(this_dbs_info->cur_policy,
636                                 policy->max, CPUFREQ_RELATION_H);
637                 else if (policy->min > this_dbs_info->cur_policy->cur)
638                         __cpufreq_driver_target(this_dbs_info->cur_policy,
639                                 policy->min, CPUFREQ_RELATION_L);
640                 mutex_unlock(&dbs_mutex);
641                 break;
642         }
643         return 0;
644 }
645
646 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
647 static
648 #endif
649 struct cpufreq_governor cpufreq_gov_ondemand = {
650         .name                   = "ondemand",
651         .governor               = cpufreq_governor_dbs,
652         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
653         .owner                  = THIS_MODULE,
654 };
655
656 static int __init cpufreq_gov_dbs_init(void)
657 {
658         int err;
659         cputime64_t wall;
660         u64 idle_time;
661         int cpu = get_cpu();
662
663         idle_time = get_cpu_idle_time_us(cpu, &wall);
664         put_cpu();
665         if (idle_time != -1ULL) {
666                 /* Idle micro accounting is supported. Use finer thresholds */
667                 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
668                 dbs_tuners_ins.down_differential =
669                                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
670         }
671
672         kondemand_wq = create_workqueue("kondemand");
673         if (!kondemand_wq) {
674                 printk(KERN_ERR "Creation of kondemand failed\n");
675                 return -EFAULT;
676         }
677         err = cpufreq_register_governor(&cpufreq_gov_ondemand);
678         if (err)
679                 destroy_workqueue(kondemand_wq);
680
681         return err;
682 }
683
684 static void __exit cpufreq_gov_dbs_exit(void)
685 {
686         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
687         destroy_workqueue(kondemand_wq);
688 }
689
690
691 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
692 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
693 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
694         "Low Latency Frequency Transition capable processors");
695 MODULE_LICENSE("GPL");
696
697 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
698 fs_initcall(cpufreq_gov_dbs_init);
699 #else
700 module_init(cpufreq_gov_dbs_init);
701 #endif
702 module_exit(cpufreq_gov_dbs_exit);