Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux
[sfrench/cifs-2.6.git] / drivers / cpufreq / cpufreq-dt.c
1 /*
2  * Copyright (C) 2012 Freescale Semiconductor, Inc.
3  *
4  * Copyright (C) 2014 Linaro.
5  * Viresh Kumar <viresh.kumar@linaro.org>
6  *
7  * The OPP code in function set_target() is reused from
8  * drivers/cpufreq/omap-cpufreq.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14
15 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
16
17 #include <linux/clk.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpumask.h>
22 #include <linux/err.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/pm_opp.h>
26 #include <linux/platform_device.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/slab.h>
29 #include <linux/thermal.h>
30
31 struct private_data {
32         struct device *cpu_dev;
33         struct regulator *cpu_reg;
34         struct thermal_cooling_device *cdev;
35         unsigned int voltage_tolerance; /* in percentage */
36 };
37
38 static int set_target(struct cpufreq_policy *policy, unsigned int index)
39 {
40         struct dev_pm_opp *opp;
41         struct cpufreq_frequency_table *freq_table = policy->freq_table;
42         struct clk *cpu_clk = policy->clk;
43         struct private_data *priv = policy->driver_data;
44         struct device *cpu_dev = priv->cpu_dev;
45         struct regulator *cpu_reg = priv->cpu_reg;
46         unsigned long volt = 0, volt_old = 0, tol = 0;
47         unsigned int old_freq, new_freq;
48         long freq_Hz, freq_exact;
49         int ret;
50
51         freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
52         if (freq_Hz <= 0)
53                 freq_Hz = freq_table[index].frequency * 1000;
54
55         freq_exact = freq_Hz;
56         new_freq = freq_Hz / 1000;
57         old_freq = clk_get_rate(cpu_clk) / 1000;
58
59         if (!IS_ERR(cpu_reg)) {
60                 rcu_read_lock();
61                 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
62                 if (IS_ERR(opp)) {
63                         rcu_read_unlock();
64                         dev_err(cpu_dev, "failed to find OPP for %ld\n",
65                                 freq_Hz);
66                         return PTR_ERR(opp);
67                 }
68                 volt = dev_pm_opp_get_voltage(opp);
69                 rcu_read_unlock();
70                 tol = volt * priv->voltage_tolerance / 100;
71                 volt_old = regulator_get_voltage(cpu_reg);
72         }
73
74         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
75                 old_freq / 1000, volt_old ? volt_old / 1000 : -1,
76                 new_freq / 1000, volt ? volt / 1000 : -1);
77
78         /* scaling up?  scale voltage before frequency */
79         if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
80                 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
81                 if (ret) {
82                         dev_err(cpu_dev, "failed to scale voltage up: %d\n",
83                                 ret);
84                         return ret;
85                 }
86         }
87
88         ret = clk_set_rate(cpu_clk, freq_exact);
89         if (ret) {
90                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
91                 if (!IS_ERR(cpu_reg))
92                         regulator_set_voltage_tol(cpu_reg, volt_old, tol);
93                 return ret;
94         }
95
96         /* scaling down?  scale voltage after frequency */
97         if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
98                 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
99                 if (ret) {
100                         dev_err(cpu_dev, "failed to scale voltage down: %d\n",
101                                 ret);
102                         clk_set_rate(cpu_clk, old_freq * 1000);
103                 }
104         }
105
106         return ret;
107 }
108
109 static int allocate_resources(int cpu, struct device **cdev,
110                               struct regulator **creg, struct clk **cclk)
111 {
112         struct device *cpu_dev;
113         struct regulator *cpu_reg;
114         struct clk *cpu_clk;
115         int ret = 0;
116         char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
117
118         cpu_dev = get_cpu_device(cpu);
119         if (!cpu_dev) {
120                 pr_err("failed to get cpu%d device\n", cpu);
121                 return -ENODEV;
122         }
123
124         /* Try "cpu0" for older DTs */
125         if (!cpu)
126                 reg = reg_cpu0;
127         else
128                 reg = reg_cpu;
129
130 try_again:
131         cpu_reg = regulator_get_optional(cpu_dev, reg);
132         if (IS_ERR(cpu_reg)) {
133                 /*
134                  * If cpu's regulator supply node is present, but regulator is
135                  * not yet registered, we should try defering probe.
136                  */
137                 if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
138                         dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
139                                 cpu);
140                         return -EPROBE_DEFER;
141                 }
142
143                 /* Try with "cpu-supply" */
144                 if (reg == reg_cpu0) {
145                         reg = reg_cpu;
146                         goto try_again;
147                 }
148
149                 dev_warn(cpu_dev, "failed to get cpu%d regulator: %ld\n",
150                          cpu, PTR_ERR(cpu_reg));
151         }
152
153         cpu_clk = clk_get(cpu_dev, NULL);
154         if (IS_ERR(cpu_clk)) {
155                 /* put regulator */
156                 if (!IS_ERR(cpu_reg))
157                         regulator_put(cpu_reg);
158
159                 ret = PTR_ERR(cpu_clk);
160
161                 /*
162                  * If cpu's clk node is present, but clock is not yet
163                  * registered, we should try defering probe.
164                  */
165                 if (ret == -EPROBE_DEFER)
166                         dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
167                 else
168                         dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", ret,
169                                 cpu);
170         } else {
171                 *cdev = cpu_dev;
172                 *creg = cpu_reg;
173                 *cclk = cpu_clk;
174         }
175
176         return ret;
177 }
178
179 static int cpufreq_init(struct cpufreq_policy *policy)
180 {
181         struct cpufreq_frequency_table *freq_table;
182         struct thermal_cooling_device *cdev;
183         struct device_node *np;
184         struct private_data *priv;
185         struct device *cpu_dev;
186         struct regulator *cpu_reg;
187         struct clk *cpu_clk;
188         unsigned int transition_latency;
189         int ret;
190
191         ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
192         if (ret) {
193                 pr_err("%s: Failed to allocate resources\n: %d", __func__, ret);
194                 return ret;
195         }
196
197         np = of_node_get(cpu_dev->of_node);
198         if (!np) {
199                 dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
200                 ret = -ENOENT;
201                 goto out_put_reg_clk;
202         }
203
204         /* OPPs might be populated at runtime, don't check for error here */
205         of_init_opp_table(cpu_dev);
206
207         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
208         if (ret) {
209                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
210                 goto out_put_node;
211         }
212
213         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
214         if (!priv) {
215                 ret = -ENOMEM;
216                 goto out_free_table;
217         }
218
219         of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
220
221         if (of_property_read_u32(np, "clock-latency", &transition_latency))
222                 transition_latency = CPUFREQ_ETERNAL;
223
224         if (!IS_ERR(cpu_reg)) {
225                 struct dev_pm_opp *opp;
226                 unsigned long min_uV, max_uV;
227                 int i;
228
229                 /*
230                  * OPP is maintained in order of increasing frequency, and
231                  * freq_table initialised from OPP is therefore sorted in the
232                  * same order.
233                  */
234                 for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
235                         ;
236                 rcu_read_lock();
237                 opp = dev_pm_opp_find_freq_exact(cpu_dev,
238                                 freq_table[0].frequency * 1000, true);
239                 min_uV = dev_pm_opp_get_voltage(opp);
240                 opp = dev_pm_opp_find_freq_exact(cpu_dev,
241                                 freq_table[i-1].frequency * 1000, true);
242                 max_uV = dev_pm_opp_get_voltage(opp);
243                 rcu_read_unlock();
244                 ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
245                 if (ret > 0)
246                         transition_latency += ret * 1000;
247         }
248
249         /*
250          * For now, just loading the cooling device;
251          * thermal DT code takes care of matching them.
252          */
253         if (of_find_property(np, "#cooling-cells", NULL)) {
254                 cdev = of_cpufreq_cooling_register(np, cpu_present_mask);
255                 if (IS_ERR(cdev))
256                         dev_err(cpu_dev,
257                                 "running cpufreq without cooling device: %ld\n",
258                                 PTR_ERR(cdev));
259                 else
260                         priv->cdev = cdev;
261         }
262
263         priv->cpu_dev = cpu_dev;
264         priv->cpu_reg = cpu_reg;
265         policy->driver_data = priv;
266
267         policy->clk = cpu_clk;
268         ret = cpufreq_generic_init(policy, freq_table, transition_latency);
269         if (ret)
270                 goto out_cooling_unregister;
271
272         of_node_put(np);
273
274         return 0;
275
276 out_cooling_unregister:
277         cpufreq_cooling_unregister(priv->cdev);
278         kfree(priv);
279 out_free_table:
280         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
281 out_put_node:
282         of_node_put(np);
283 out_put_reg_clk:
284         clk_put(cpu_clk);
285         if (!IS_ERR(cpu_reg))
286                 regulator_put(cpu_reg);
287
288         return ret;
289 }
290
291 static int cpufreq_exit(struct cpufreq_policy *policy)
292 {
293         struct private_data *priv = policy->driver_data;
294
295         cpufreq_cooling_unregister(priv->cdev);
296         dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
297         clk_put(policy->clk);
298         if (!IS_ERR(priv->cpu_reg))
299                 regulator_put(priv->cpu_reg);
300         kfree(priv);
301
302         return 0;
303 }
304
305 static struct cpufreq_driver dt_cpufreq_driver = {
306         .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
307         .verify = cpufreq_generic_frequency_table_verify,
308         .target_index = set_target,
309         .get = cpufreq_generic_get,
310         .init = cpufreq_init,
311         .exit = cpufreq_exit,
312         .name = "cpufreq-dt",
313         .attr = cpufreq_generic_attr,
314 };
315
316 static int dt_cpufreq_probe(struct platform_device *pdev)
317 {
318         struct device *cpu_dev;
319         struct regulator *cpu_reg;
320         struct clk *cpu_clk;
321         int ret;
322
323         /*
324          * All per-cluster (CPUs sharing clock/voltages) initialization is done
325          * from ->init(). In probe(), we just need to make sure that clk and
326          * regulators are available. Else defer probe and retry.
327          *
328          * FIXME: Is checking this only for CPU0 sufficient ?
329          */
330         ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
331         if (ret)
332                 return ret;
333
334         clk_put(cpu_clk);
335         if (!IS_ERR(cpu_reg))
336                 regulator_put(cpu_reg);
337
338         ret = cpufreq_register_driver(&dt_cpufreq_driver);
339         if (ret)
340                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
341
342         return ret;
343 }
344
345 static int dt_cpufreq_remove(struct platform_device *pdev)
346 {
347         cpufreq_unregister_driver(&dt_cpufreq_driver);
348         return 0;
349 }
350
351 static struct platform_driver dt_cpufreq_platdrv = {
352         .driver = {
353                 .name   = "cpufreq-dt",
354                 .owner  = THIS_MODULE,
355         },
356         .probe          = dt_cpufreq_probe,
357         .remove         = dt_cpufreq_remove,
358 };
359 module_platform_driver(dt_cpufreq_platdrv);
360
361 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
362 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
363 MODULE_DESCRIPTION("Generic cpufreq driver");
364 MODULE_LICENSE("GPL");