clocksource/drivers/npcm: select TIMER_OF
[sfrench/cifs-2.6.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/err.h>
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/percpu.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/clocksource.h>
25 #include <linux/sched_clock.h>
26
27 #define EXYNOS4_MCTREG(x)               (x)
28 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
29 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
30 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
31 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
32 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
33 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
34 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
35 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
36 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
37 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
38 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
39 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
40 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
41
42 #define MCT_L_TCNTB_OFFSET              (0x00)
43 #define MCT_L_ICNTB_OFFSET              (0x08)
44 #define MCT_L_TCON_OFFSET               (0x20)
45 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
46 #define MCT_L_INT_ENB_OFFSET            (0x34)
47 #define MCT_L_WSTAT_OFFSET              (0x40)
48 #define MCT_G_TCON_START                (1 << 8)
49 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
50 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
51 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
52 #define MCT_L_TCON_INT_START            (1 << 1)
53 #define MCT_L_TCON_TIMER_START          (1 << 0)
54
55 #define TICK_BASE_CNT   1
56
57 enum {
58         MCT_INT_SPI,
59         MCT_INT_PPI
60 };
61
62 enum {
63         MCT_G0_IRQ,
64         MCT_G1_IRQ,
65         MCT_G2_IRQ,
66         MCT_G3_IRQ,
67         MCT_L0_IRQ,
68         MCT_L1_IRQ,
69         MCT_L2_IRQ,
70         MCT_L3_IRQ,
71         MCT_L4_IRQ,
72         MCT_L5_IRQ,
73         MCT_L6_IRQ,
74         MCT_L7_IRQ,
75         MCT_NR_IRQS,
76 };
77
78 static void __iomem *reg_base;
79 static unsigned long clk_rate;
80 static unsigned int mct_int_type;
81 static int mct_irqs[MCT_NR_IRQS];
82
83 struct mct_clock_event_device {
84         struct clock_event_device evt;
85         unsigned long base;
86         char name[10];
87 };
88
89 static void exynos4_mct_write(unsigned int value, unsigned long offset)
90 {
91         unsigned long stat_addr;
92         u32 mask;
93         u32 i;
94
95         writel_relaxed(value, reg_base + offset);
96
97         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
98                 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
99                 switch (offset & ~EXYNOS4_MCT_L_MASK) {
100                 case MCT_L_TCON_OFFSET:
101                         mask = 1 << 3;          /* L_TCON write status */
102                         break;
103                 case MCT_L_ICNTB_OFFSET:
104                         mask = 1 << 1;          /* L_ICNTB write status */
105                         break;
106                 case MCT_L_TCNTB_OFFSET:
107                         mask = 1 << 0;          /* L_TCNTB write status */
108                         break;
109                 default:
110                         return;
111                 }
112         } else {
113                 switch (offset) {
114                 case EXYNOS4_MCT_G_TCON:
115                         stat_addr = EXYNOS4_MCT_G_WSTAT;
116                         mask = 1 << 16;         /* G_TCON write status */
117                         break;
118                 case EXYNOS4_MCT_G_COMP0_L:
119                         stat_addr = EXYNOS4_MCT_G_WSTAT;
120                         mask = 1 << 0;          /* G_COMP0_L write status */
121                         break;
122                 case EXYNOS4_MCT_G_COMP0_U:
123                         stat_addr = EXYNOS4_MCT_G_WSTAT;
124                         mask = 1 << 1;          /* G_COMP0_U write status */
125                         break;
126                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
127                         stat_addr = EXYNOS4_MCT_G_WSTAT;
128                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
129                         break;
130                 case EXYNOS4_MCT_G_CNT_L:
131                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
132                         mask = 1 << 0;          /* G_CNT_L write status */
133                         break;
134                 case EXYNOS4_MCT_G_CNT_U:
135                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
136                         mask = 1 << 1;          /* G_CNT_U write status */
137                         break;
138                 default:
139                         return;
140                 }
141         }
142
143         /* Wait maximum 1 ms until written values are applied */
144         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
145                 if (readl_relaxed(reg_base + stat_addr) & mask) {
146                         writel_relaxed(mask, reg_base + stat_addr);
147                         return;
148                 }
149
150         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
151 }
152
153 /* Clocksource handling */
154 static void exynos4_mct_frc_start(void)
155 {
156         u32 reg;
157
158         reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
159         reg |= MCT_G_TCON_START;
160         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
161 }
162
163 /**
164  * exynos4_read_count_64 - Read all 64-bits of the global counter
165  *
166  * This will read all 64-bits of the global counter taking care to make sure
167  * that the upper and lower half match.  Note that reading the MCT can be quite
168  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
169  * only) version when possible.
170  *
171  * Returns the number of cycles in the global counter.
172  */
173 static u64 exynos4_read_count_64(void)
174 {
175         unsigned int lo, hi;
176         u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
177
178         do {
179                 hi = hi2;
180                 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
181                 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
182         } while (hi != hi2);
183
184         return ((u64)hi << 32) | lo;
185 }
186
187 /**
188  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
189  *
190  * This will read just the lower 32-bits of the global counter.  This is marked
191  * as notrace so it can be used by the scheduler clock.
192  *
193  * Returns the number of cycles in the global counter (lower 32 bits).
194  */
195 static u32 notrace exynos4_read_count_32(void)
196 {
197         return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
198 }
199
200 static u64 exynos4_frc_read(struct clocksource *cs)
201 {
202         return exynos4_read_count_32();
203 }
204
205 static void exynos4_frc_resume(struct clocksource *cs)
206 {
207         exynos4_mct_frc_start();
208 }
209
210 static struct clocksource mct_frc = {
211         .name           = "mct-frc",
212         .rating         = 400,
213         .read           = exynos4_frc_read,
214         .mask           = CLOCKSOURCE_MASK(32),
215         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
216         .resume         = exynos4_frc_resume,
217 };
218
219 static u64 notrace exynos4_read_sched_clock(void)
220 {
221         return exynos4_read_count_32();
222 }
223
224 #if defined(CONFIG_ARM)
225 static struct delay_timer exynos4_delay_timer;
226
227 static cycles_t exynos4_read_current_timer(void)
228 {
229         BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
230                          "cycles_t needs to move to 32-bit for ARM64 usage");
231         return exynos4_read_count_32();
232 }
233 #endif
234
235 static int __init exynos4_clocksource_init(void)
236 {
237         exynos4_mct_frc_start();
238
239 #if defined(CONFIG_ARM)
240         exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
241         exynos4_delay_timer.freq = clk_rate;
242         register_current_timer_delay(&exynos4_delay_timer);
243 #endif
244
245         if (clocksource_register_hz(&mct_frc, clk_rate))
246                 panic("%s: can't register clocksource\n", mct_frc.name);
247
248         sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
249
250         return 0;
251 }
252
253 static void exynos4_mct_comp0_stop(void)
254 {
255         unsigned int tcon;
256
257         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
258         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
259
260         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
261         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
262 }
263
264 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
265 {
266         unsigned int tcon;
267         u64 comp_cycle;
268
269         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
270
271         if (periodic) {
272                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
273                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
274         }
275
276         comp_cycle = exynos4_read_count_64() + cycles;
277         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
278         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
279
280         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
281
282         tcon |= MCT_G_TCON_COMP0_ENABLE;
283         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
284 }
285
286 static int exynos4_comp_set_next_event(unsigned long cycles,
287                                        struct clock_event_device *evt)
288 {
289         exynos4_mct_comp0_start(false, cycles);
290
291         return 0;
292 }
293
294 static int mct_set_state_shutdown(struct clock_event_device *evt)
295 {
296         exynos4_mct_comp0_stop();
297         return 0;
298 }
299
300 static int mct_set_state_periodic(struct clock_event_device *evt)
301 {
302         unsigned long cycles_per_jiffy;
303
304         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
305                             >> evt->shift);
306         exynos4_mct_comp0_stop();
307         exynos4_mct_comp0_start(true, cycles_per_jiffy);
308         return 0;
309 }
310
311 static struct clock_event_device mct_comp_device = {
312         .name                   = "mct-comp",
313         .features               = CLOCK_EVT_FEAT_PERIODIC |
314                                   CLOCK_EVT_FEAT_ONESHOT,
315         .rating                 = 250,
316         .set_next_event         = exynos4_comp_set_next_event,
317         .set_state_periodic     = mct_set_state_periodic,
318         .set_state_shutdown     = mct_set_state_shutdown,
319         .set_state_oneshot      = mct_set_state_shutdown,
320         .set_state_oneshot_stopped = mct_set_state_shutdown,
321         .tick_resume            = mct_set_state_shutdown,
322 };
323
324 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
325 {
326         struct clock_event_device *evt = dev_id;
327
328         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
329
330         evt->event_handler(evt);
331
332         return IRQ_HANDLED;
333 }
334
335 static struct irqaction mct_comp_event_irq = {
336         .name           = "mct_comp_irq",
337         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
338         .handler        = exynos4_mct_comp_isr,
339         .dev_id         = &mct_comp_device,
340 };
341
342 static int exynos4_clockevent_init(void)
343 {
344         mct_comp_device.cpumask = cpumask_of(0);
345         clockevents_config_and_register(&mct_comp_device, clk_rate,
346                                         0xf, 0xffffffff);
347         setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
348
349         return 0;
350 }
351
352 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
353
354 /* Clock event handling */
355 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
356 {
357         unsigned long tmp;
358         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
359         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
360
361         tmp = readl_relaxed(reg_base + offset);
362         if (tmp & mask) {
363                 tmp &= ~mask;
364                 exynos4_mct_write(tmp, offset);
365         }
366 }
367
368 static void exynos4_mct_tick_start(unsigned long cycles,
369                                    struct mct_clock_event_device *mevt)
370 {
371         unsigned long tmp;
372
373         exynos4_mct_tick_stop(mevt);
374
375         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
376
377         /* update interrupt count buffer */
378         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
379
380         /* enable MCT tick interrupt */
381         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
382
383         tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
384         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
385                MCT_L_TCON_INTERVAL_MODE;
386         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
387 }
388
389 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
390 {
391         /* Clear the MCT tick interrupt */
392         if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
393                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
394 }
395
396 static int exynos4_tick_set_next_event(unsigned long cycles,
397                                        struct clock_event_device *evt)
398 {
399         struct mct_clock_event_device *mevt;
400
401         mevt = container_of(evt, struct mct_clock_event_device, evt);
402         exynos4_mct_tick_start(cycles, mevt);
403         return 0;
404 }
405
406 static int set_state_shutdown(struct clock_event_device *evt)
407 {
408         struct mct_clock_event_device *mevt;
409
410         mevt = container_of(evt, struct mct_clock_event_device, evt);
411         exynos4_mct_tick_stop(mevt);
412         exynos4_mct_tick_clear(mevt);
413         return 0;
414 }
415
416 static int set_state_periodic(struct clock_event_device *evt)
417 {
418         struct mct_clock_event_device *mevt;
419         unsigned long cycles_per_jiffy;
420
421         mevt = container_of(evt, struct mct_clock_event_device, evt);
422         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
423                             >> evt->shift);
424         exynos4_mct_tick_stop(mevt);
425         exynos4_mct_tick_start(cycles_per_jiffy, mevt);
426         return 0;
427 }
428
429 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
430 {
431         struct mct_clock_event_device *mevt = dev_id;
432         struct clock_event_device *evt = &mevt->evt;
433
434         /*
435          * This is for supporting oneshot mode.
436          * Mct would generate interrupt periodically
437          * without explicit stopping.
438          */
439         if (!clockevent_state_periodic(&mevt->evt))
440                 exynos4_mct_tick_stop(mevt);
441
442         exynos4_mct_tick_clear(mevt);
443
444         evt->event_handler(evt);
445
446         return IRQ_HANDLED;
447 }
448
449 static int exynos4_mct_starting_cpu(unsigned int cpu)
450 {
451         struct mct_clock_event_device *mevt =
452                 per_cpu_ptr(&percpu_mct_tick, cpu);
453         struct clock_event_device *evt = &mevt->evt;
454
455         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
456         snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
457
458         evt->name = mevt->name;
459         evt->cpumask = cpumask_of(cpu);
460         evt->set_next_event = exynos4_tick_set_next_event;
461         evt->set_state_periodic = set_state_periodic;
462         evt->set_state_shutdown = set_state_shutdown;
463         evt->set_state_oneshot = set_state_shutdown;
464         evt->set_state_oneshot_stopped = set_state_shutdown;
465         evt->tick_resume = set_state_shutdown;
466         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
467         evt->rating = 450;
468
469         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
470
471         if (mct_int_type == MCT_INT_SPI) {
472
473                 if (evt->irq == -1)
474                         return -EIO;
475
476                 irq_force_affinity(evt->irq, cpumask_of(cpu));
477                 enable_irq(evt->irq);
478         } else {
479                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
480         }
481         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
482                                         0xf, 0x7fffffff);
483
484         return 0;
485 }
486
487 static int exynos4_mct_dying_cpu(unsigned int cpu)
488 {
489         struct mct_clock_event_device *mevt =
490                 per_cpu_ptr(&percpu_mct_tick, cpu);
491         struct clock_event_device *evt = &mevt->evt;
492
493         evt->set_state_shutdown(evt);
494         if (mct_int_type == MCT_INT_SPI) {
495                 if (evt->irq != -1)
496                         disable_irq_nosync(evt->irq);
497                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
498         } else {
499                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
500         }
501         return 0;
502 }
503
504 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
505 {
506         int err, cpu;
507         struct clk *mct_clk, *tick_clk;
508
509         tick_clk = of_clk_get_by_name(np, "fin_pll");
510         if (IS_ERR(tick_clk))
511                 panic("%s: unable to determine tick clock rate\n", __func__);
512         clk_rate = clk_get_rate(tick_clk);
513
514         mct_clk = of_clk_get_by_name(np, "mct");
515         if (IS_ERR(mct_clk))
516                 panic("%s: unable to retrieve mct clock instance\n", __func__);
517         clk_prepare_enable(mct_clk);
518
519         reg_base = base;
520         if (!reg_base)
521                 panic("%s: unable to ioremap mct address space\n", __func__);
522
523         if (mct_int_type == MCT_INT_PPI) {
524
525                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
526                                          exynos4_mct_tick_isr, "MCT",
527                                          &percpu_mct_tick);
528                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
529                      mct_irqs[MCT_L0_IRQ], err);
530         } else {
531                 for_each_possible_cpu(cpu) {
532                         int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
533                         struct mct_clock_event_device *pcpu_mevt =
534                                 per_cpu_ptr(&percpu_mct_tick, cpu);
535
536                         pcpu_mevt->evt.irq = -1;
537
538                         irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
539                         if (request_irq(mct_irq,
540                                         exynos4_mct_tick_isr,
541                                         IRQF_TIMER | IRQF_NOBALANCING,
542                                         pcpu_mevt->name, pcpu_mevt)) {
543                                 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
544                                                                         cpu);
545
546                                 continue;
547                         }
548                         pcpu_mevt->evt.irq = mct_irq;
549                 }
550         }
551
552         /* Install hotplug callbacks which configure the timer on this CPU */
553         err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
554                                 "clockevents/exynos4/mct_timer:starting",
555                                 exynos4_mct_starting_cpu,
556                                 exynos4_mct_dying_cpu);
557         if (err)
558                 goto out_irq;
559
560         return 0;
561
562 out_irq:
563         if (mct_int_type == MCT_INT_PPI) {
564                 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
565         } else {
566                 for_each_possible_cpu(cpu) {
567                         struct mct_clock_event_device *pcpu_mevt =
568                                 per_cpu_ptr(&percpu_mct_tick, cpu);
569
570                         if (pcpu_mevt->evt.irq != -1) {
571                                 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
572                                 pcpu_mevt->evt.irq = -1;
573                         }
574                 }
575         }
576         return err;
577 }
578
579 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
580 {
581         u32 nr_irqs, i;
582         int ret;
583
584         mct_int_type = int_type;
585
586         /* This driver uses only one global timer interrupt */
587         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
588
589         /*
590          * Find out the number of local irqs specified. The local
591          * timer irqs are specified after the four global timer
592          * irqs are specified.
593          */
594         nr_irqs = of_irq_count(np);
595         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
596                 mct_irqs[i] = irq_of_parse_and_map(np, i);
597
598         ret = exynos4_timer_resources(np, of_iomap(np, 0));
599         if (ret)
600                 return ret;
601
602         ret = exynos4_clocksource_init();
603         if (ret)
604                 return ret;
605
606         return exynos4_clockevent_init();
607 }
608
609
610 static int __init mct_init_spi(struct device_node *np)
611 {
612         return mct_init_dt(np, MCT_INT_SPI);
613 }
614
615 static int __init mct_init_ppi(struct device_node *np)
616 {
617         return mct_init_dt(np, MCT_INT_PPI);
618 }
619 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
620 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);