clk: mediatek: using CLK_MUX_ROUND_CLOSEST for the clock of dpi1_sel
[sfrench/cifs-2.6.git] / drivers / clk / meson / gxbb-aoclk-32k.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2017 BayLibre, SAS.
4  * Author: Neil Armstrong <narmstrong@baylibre.com>
5  */
6
7 #include <linux/clk-provider.h>
8 #include <linux/bitfield.h>
9 #include <linux/regmap.h>
10 #include "gxbb-aoclk.h"
11
12 /*
13  * The AO Domain embeds a dual/divider to generate a more precise
14  * 32,768KHz clock for low-power suspend mode and CEC.
15  *                      ______   ______
16  *                     |      | |      |
17  *         ______      | Div1 |-| Cnt1 |       ______
18  *        |      |    /|______| |______|\     |      |
19  * Xtal-->| Gate |---|  ______   ______  X-X--| Gate |-->
20  *        |______| |  \|      | |      |/  |  |______|
21  *                 |   | Div2 |-| Cnt2 |   |
22  *                 |   |______| |______|   |
23  *                 |_______________________|
24  *
25  * The dividing can be switched to single or dual, with a counter
26  * for each divider to set when the switching is done.
27  * The entire dividing mechanism can be also bypassed.
28  */
29
30 #define CLK_CNTL0_N1_MASK       GENMASK(11, 0)
31 #define CLK_CNTL0_N2_MASK       GENMASK(23, 12)
32 #define CLK_CNTL0_DUALDIV_EN    BIT(28)
33 #define CLK_CNTL0_OUT_GATE_EN   BIT(30)
34 #define CLK_CNTL0_IN_GATE_EN    BIT(31)
35
36 #define CLK_CNTL1_M1_MASK       GENMASK(11, 0)
37 #define CLK_CNTL1_M2_MASK       GENMASK(23, 12)
38 #define CLK_CNTL1_BYPASS_EN     BIT(24)
39 #define CLK_CNTL1_SELECT_OSC    BIT(27)
40
41 #define PWR_CNTL_ALT_32K_SEL    GENMASK(13, 10)
42
43 struct cec_32k_freq_table {
44         unsigned long parent_rate;
45         unsigned long target_rate;
46         bool dualdiv;
47         unsigned int n1;
48         unsigned int n2;
49         unsigned int m1;
50         unsigned int m2;
51 };
52
53 static const struct cec_32k_freq_table aoclk_cec_32k_table[] = {
54         [0] = {
55                 .parent_rate = 24000000,
56                 .target_rate = 32768,
57                 .dualdiv = true,
58                 .n1 = 733,
59                 .n2 = 732,
60                 .m1 = 8,
61                 .m2 = 11,
62         },
63 };
64
65 /*
66  * If CLK_CNTL0_DUALDIV_EN == 0
67  *  - will use N1 divider only
68  * If CLK_CNTL0_DUALDIV_EN == 1
69  *  - hold M1 cycles of N1 divider then changes to N2
70  *  - hold M2 cycles of N2 divider then changes to N1
71  * Then we can get more accurate division.
72  */
73 static unsigned long aoclk_cec_32k_recalc_rate(struct clk_hw *hw,
74                                                unsigned long parent_rate)
75 {
76         struct aoclk_cec_32k *cec_32k = to_aoclk_cec_32k(hw);
77         unsigned long n1;
78         u32 reg0, reg1;
79
80         regmap_read(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, &reg0);
81         regmap_read(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL1, &reg1);
82
83         if (reg1 & CLK_CNTL1_BYPASS_EN)
84                 return parent_rate;
85
86         if (reg0 & CLK_CNTL0_DUALDIV_EN) {
87                 unsigned long n2, m1, m2, f1, f2, p1, p2;
88
89                 n1 = FIELD_GET(CLK_CNTL0_N1_MASK, reg0) + 1;
90                 n2 = FIELD_GET(CLK_CNTL0_N2_MASK, reg0) + 1;
91
92                 m1 = FIELD_GET(CLK_CNTL1_M1_MASK, reg1) + 1;
93                 m2 = FIELD_GET(CLK_CNTL1_M2_MASK, reg1) + 1;
94
95                 f1 = DIV_ROUND_CLOSEST(parent_rate, n1);
96                 f2 = DIV_ROUND_CLOSEST(parent_rate, n2);
97
98                 p1 = DIV_ROUND_CLOSEST(100000000 * m1, f1 * (m1 + m2));
99                 p2 = DIV_ROUND_CLOSEST(100000000 * m2, f2 * (m1 + m2));
100
101                 return DIV_ROUND_UP(100000000, p1 + p2);
102         }
103
104         n1 = FIELD_GET(CLK_CNTL0_N1_MASK, reg0) + 1;
105
106         return DIV_ROUND_CLOSEST(parent_rate, n1);
107 }
108
109 static const struct cec_32k_freq_table *find_cec_32k_freq(unsigned long rate,
110                                                           unsigned long prate)
111 {
112         int i;
113
114         for (i = 0 ; i < ARRAY_SIZE(aoclk_cec_32k_table) ; ++i)
115                 if (aoclk_cec_32k_table[i].parent_rate == prate &&
116                     aoclk_cec_32k_table[i].target_rate == rate)
117                         return &aoclk_cec_32k_table[i];
118
119         return NULL;
120 }
121
122 static long aoclk_cec_32k_round_rate(struct clk_hw *hw, unsigned long rate,
123                                      unsigned long *prate)
124 {
125         const struct cec_32k_freq_table *freq = find_cec_32k_freq(rate,
126                                                                   *prate);
127
128         /* If invalid return first one */
129         if (!freq)
130                 return aoclk_cec_32k_table[0].target_rate;
131
132         return freq->target_rate;
133 }
134
135 /*
136  * From the Amlogic init procedure, the IN and OUT gates needs to be handled
137  * in the init procedure to avoid any glitches.
138  */
139
140 static int aoclk_cec_32k_set_rate(struct clk_hw *hw, unsigned long rate,
141                                   unsigned long parent_rate)
142 {
143         const struct cec_32k_freq_table *freq = find_cec_32k_freq(rate,
144                                                                   parent_rate);
145         struct aoclk_cec_32k *cec_32k = to_aoclk_cec_32k(hw);
146         u32 reg = 0;
147
148         if (!freq)
149                 return -EINVAL;
150
151         /* Disable clock */
152         regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0,
153                            CLK_CNTL0_IN_GATE_EN | CLK_CNTL0_OUT_GATE_EN, 0);
154
155         reg = FIELD_PREP(CLK_CNTL0_N1_MASK, freq->n1 - 1);
156         if (freq->dualdiv)
157                 reg |= CLK_CNTL0_DUALDIV_EN |
158                        FIELD_PREP(CLK_CNTL0_N2_MASK, freq->n2 - 1);
159
160         regmap_write(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, reg);
161
162         reg = FIELD_PREP(CLK_CNTL1_M1_MASK, freq->m1 - 1);
163         if (freq->dualdiv)
164                 reg |= FIELD_PREP(CLK_CNTL1_M2_MASK, freq->m2 - 1);
165
166         regmap_write(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL1, reg);
167
168         /* Enable clock */
169         regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0,
170                            CLK_CNTL0_IN_GATE_EN, CLK_CNTL0_IN_GATE_EN);
171
172         udelay(200);
173
174         regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0,
175                            CLK_CNTL0_OUT_GATE_EN, CLK_CNTL0_OUT_GATE_EN);
176
177         regmap_update_bits(cec_32k->regmap, AO_CRT_CLK_CNTL1,
178                            CLK_CNTL1_SELECT_OSC, CLK_CNTL1_SELECT_OSC);
179
180         /* Select 32k from XTAL */
181         regmap_update_bits(cec_32k->regmap,
182                           AO_RTI_PWR_CNTL_REG0,
183                           PWR_CNTL_ALT_32K_SEL,
184                           FIELD_PREP(PWR_CNTL_ALT_32K_SEL, 4));
185
186         return 0;
187 }
188
189 const struct clk_ops meson_aoclk_cec_32k_ops = {
190         .recalc_rate = aoclk_cec_32k_recalc_rate,
191         .round_rate = aoclk_cec_32k_round_rate,
192         .set_rate = aoclk_cec_32k_set_rate,
193 };