Merge branch 'fix/hda' into for-linus
[sfrench/cifs-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 #define DEVICE_NAME "ipmi_si"
111
112 static struct platform_driver ipmi_driver = {
113         .driver = {
114                 .name = DEVICE_NAME,
115                 .bus = &platform_bus_type
116         }
117 };
118
119
120 /*
121  * Indexes into stats[] in smi_info below.
122  */
123 enum si_stat_indexes {
124         /*
125          * Number of times the driver requested a timer while an operation
126          * was in progress.
127          */
128         SI_STAT_short_timeouts = 0,
129
130         /*
131          * Number of times the driver requested a timer while nothing was in
132          * progress.
133          */
134         SI_STAT_long_timeouts,
135
136         /* Number of times the interface was idle while being polled. */
137         SI_STAT_idles,
138
139         /* Number of interrupts the driver handled. */
140         SI_STAT_interrupts,
141
142         /* Number of time the driver got an ATTN from the hardware. */
143         SI_STAT_attentions,
144
145         /* Number of times the driver requested flags from the hardware. */
146         SI_STAT_flag_fetches,
147
148         /* Number of times the hardware didn't follow the state machine. */
149         SI_STAT_hosed_count,
150
151         /* Number of completed messages. */
152         SI_STAT_complete_transactions,
153
154         /* Number of IPMI events received from the hardware. */
155         SI_STAT_events,
156
157         /* Number of watchdog pretimeouts. */
158         SI_STAT_watchdog_pretimeouts,
159
160         /* Number of asyncronous messages received. */
161         SI_STAT_incoming_messages,
162
163
164         /* This *must* remain last, add new values above this. */
165         SI_NUM_STATS
166 };
167
168 struct smi_info {
169         int                    intf_num;
170         ipmi_smi_t             intf;
171         struct si_sm_data      *si_sm;
172         struct si_sm_handlers  *handlers;
173         enum si_type           si_type;
174         spinlock_t             si_lock;
175         spinlock_t             msg_lock;
176         struct list_head       xmit_msgs;
177         struct list_head       hp_xmit_msgs;
178         struct ipmi_smi_msg    *curr_msg;
179         enum si_intf_state     si_state;
180
181         /*
182          * Used to handle the various types of I/O that can occur with
183          * IPMI
184          */
185         struct si_sm_io io;
186         int (*io_setup)(struct smi_info *info);
187         void (*io_cleanup)(struct smi_info *info);
188         int (*irq_setup)(struct smi_info *info);
189         void (*irq_cleanup)(struct smi_info *info);
190         unsigned int io_size;
191         char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
192         void (*addr_source_cleanup)(struct smi_info *info);
193         void *addr_source_data;
194
195         /*
196          * Per-OEM handler, called from handle_flags().  Returns 1
197          * when handle_flags() needs to be re-run or 0 indicating it
198          * set si_state itself.
199          */
200         int (*oem_data_avail_handler)(struct smi_info *smi_info);
201
202         /*
203          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
204          * is set to hold the flags until we are done handling everything
205          * from the flags.
206          */
207 #define RECEIVE_MSG_AVAIL       0x01
208 #define EVENT_MSG_BUFFER_FULL   0x02
209 #define WDT_PRE_TIMEOUT_INT     0x08
210 #define OEM0_DATA_AVAIL     0x20
211 #define OEM1_DATA_AVAIL     0x40
212 #define OEM2_DATA_AVAIL     0x80
213 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
214                              OEM1_DATA_AVAIL | \
215                              OEM2_DATA_AVAIL)
216         unsigned char       msg_flags;
217
218         /* Does the BMC have an event buffer? */
219         char                has_event_buffer;
220
221         /*
222          * If set to true, this will request events the next time the
223          * state machine is idle.
224          */
225         atomic_t            req_events;
226
227         /*
228          * If true, run the state machine to completion on every send
229          * call.  Generally used after a panic to make sure stuff goes
230          * out.
231          */
232         int                 run_to_completion;
233
234         /* The I/O port of an SI interface. */
235         int                 port;
236
237         /*
238          * The space between start addresses of the two ports.  For
239          * instance, if the first port is 0xca2 and the spacing is 4, then
240          * the second port is 0xca6.
241          */
242         unsigned int        spacing;
243
244         /* zero if no irq; */
245         int                 irq;
246
247         /* The timer for this si. */
248         struct timer_list   si_timer;
249
250         /* The time (in jiffies) the last timeout occurred at. */
251         unsigned long       last_timeout_jiffies;
252
253         /* Used to gracefully stop the timer without race conditions. */
254         atomic_t            stop_operation;
255
256         /*
257          * The driver will disable interrupts when it gets into a
258          * situation where it cannot handle messages due to lack of
259          * memory.  Once that situation clears up, it will re-enable
260          * interrupts.
261          */
262         int interrupt_disabled;
263
264         /* From the get device id response... */
265         struct ipmi_device_id device_id;
266
267         /* Driver model stuff. */
268         struct device *dev;
269         struct platform_device *pdev;
270
271         /*
272          * True if we allocated the device, false if it came from
273          * someplace else (like PCI).
274          */
275         int dev_registered;
276
277         /* Slave address, could be reported from DMI. */
278         unsigned char slave_addr;
279
280         /* Counters and things for the proc filesystem. */
281         atomic_t stats[SI_NUM_STATS];
282
283         struct task_struct *thread;
284
285         struct list_head link;
286 };
287
288 #define smi_inc_stat(smi, stat) \
289         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292
293 #define SI_MAX_PARMS 4
294
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297
298 static int unload_when_empty = 1;
299
300 static int try_smi_init(struct smi_info *smi);
301 static void cleanup_one_si(struct smi_info *to_clean);
302
303 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
304 static int register_xaction_notifier(struct notifier_block *nb)
305 {
306         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
307 }
308
309 static void deliver_recv_msg(struct smi_info *smi_info,
310                              struct ipmi_smi_msg *msg)
311 {
312         /* Deliver the message to the upper layer with the lock
313            released. */
314         spin_unlock(&(smi_info->si_lock));
315         ipmi_smi_msg_received(smi_info->intf, msg);
316         spin_lock(&(smi_info->si_lock));
317 }
318
319 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
320 {
321         struct ipmi_smi_msg *msg = smi_info->curr_msg;
322
323         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
324                 cCode = IPMI_ERR_UNSPECIFIED;
325         /* else use it as is */
326
327         /* Make it a reponse */
328         msg->rsp[0] = msg->data[0] | 4;
329         msg->rsp[1] = msg->data[1];
330         msg->rsp[2] = cCode;
331         msg->rsp_size = 3;
332
333         smi_info->curr_msg = NULL;
334         deliver_recv_msg(smi_info, msg);
335 }
336
337 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
338 {
339         int              rv;
340         struct list_head *entry = NULL;
341 #ifdef DEBUG_TIMING
342         struct timeval t;
343 #endif
344
345         /*
346          * No need to save flags, we aleady have interrupts off and we
347          * already hold the SMI lock.
348          */
349         if (!smi_info->run_to_completion)
350                 spin_lock(&(smi_info->msg_lock));
351
352         /* Pick the high priority queue first. */
353         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
354                 entry = smi_info->hp_xmit_msgs.next;
355         } else if (!list_empty(&(smi_info->xmit_msgs))) {
356                 entry = smi_info->xmit_msgs.next;
357         }
358
359         if (!entry) {
360                 smi_info->curr_msg = NULL;
361                 rv = SI_SM_IDLE;
362         } else {
363                 int err;
364
365                 list_del(entry);
366                 smi_info->curr_msg = list_entry(entry,
367                                                 struct ipmi_smi_msg,
368                                                 link);
369 #ifdef DEBUG_TIMING
370                 do_gettimeofday(&t);
371                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
372 #endif
373                 err = atomic_notifier_call_chain(&xaction_notifier_list,
374                                 0, smi_info);
375                 if (err & NOTIFY_STOP_MASK) {
376                         rv = SI_SM_CALL_WITHOUT_DELAY;
377                         goto out;
378                 }
379                 err = smi_info->handlers->start_transaction(
380                         smi_info->si_sm,
381                         smi_info->curr_msg->data,
382                         smi_info->curr_msg->data_size);
383                 if (err)
384                         return_hosed_msg(smi_info, err);
385
386                 rv = SI_SM_CALL_WITHOUT_DELAY;
387         }
388  out:
389         if (!smi_info->run_to_completion)
390                 spin_unlock(&(smi_info->msg_lock));
391
392         return rv;
393 }
394
395 static void start_enable_irq(struct smi_info *smi_info)
396 {
397         unsigned char msg[2];
398
399         /*
400          * If we are enabling interrupts, we have to tell the
401          * BMC to use them.
402          */
403         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
404         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
405
406         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
407         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
408 }
409
410 static void start_disable_irq(struct smi_info *smi_info)
411 {
412         unsigned char msg[2];
413
414         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
415         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
416
417         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
418         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
419 }
420
421 static void start_clear_flags(struct smi_info *smi_info)
422 {
423         unsigned char msg[3];
424
425         /* Make sure the watchdog pre-timeout flag is not set at startup. */
426         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
428         msg[2] = WDT_PRE_TIMEOUT_INT;
429
430         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
431         smi_info->si_state = SI_CLEARING_FLAGS;
432 }
433
434 /*
435  * When we have a situtaion where we run out of memory and cannot
436  * allocate messages, we just leave them in the BMC and run the system
437  * polled until we can allocate some memory.  Once we have some
438  * memory, we will re-enable the interrupt.
439  */
440 static inline void disable_si_irq(struct smi_info *smi_info)
441 {
442         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
443                 start_disable_irq(smi_info);
444                 smi_info->interrupt_disabled = 1;
445         }
446 }
447
448 static inline void enable_si_irq(struct smi_info *smi_info)
449 {
450         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
451                 start_enable_irq(smi_info);
452                 smi_info->interrupt_disabled = 0;
453         }
454 }
455
456 static void handle_flags(struct smi_info *smi_info)
457 {
458  retry:
459         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
460                 /* Watchdog pre-timeout */
461                 smi_inc_stat(smi_info, watchdog_pretimeouts);
462
463                 start_clear_flags(smi_info);
464                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
465                 spin_unlock(&(smi_info->si_lock));
466                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
467                 spin_lock(&(smi_info->si_lock));
468         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
469                 /* Messages available. */
470                 smi_info->curr_msg = ipmi_alloc_smi_msg();
471                 if (!smi_info->curr_msg) {
472                         disable_si_irq(smi_info);
473                         smi_info->si_state = SI_NORMAL;
474                         return;
475                 }
476                 enable_si_irq(smi_info);
477
478                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
479                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
480                 smi_info->curr_msg->data_size = 2;
481
482                 smi_info->handlers->start_transaction(
483                         smi_info->si_sm,
484                         smi_info->curr_msg->data,
485                         smi_info->curr_msg->data_size);
486                 smi_info->si_state = SI_GETTING_MESSAGES;
487         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
488                 /* Events available. */
489                 smi_info->curr_msg = ipmi_alloc_smi_msg();
490                 if (!smi_info->curr_msg) {
491                         disable_si_irq(smi_info);
492                         smi_info->si_state = SI_NORMAL;
493                         return;
494                 }
495                 enable_si_irq(smi_info);
496
497                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
498                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
499                 smi_info->curr_msg->data_size = 2;
500
501                 smi_info->handlers->start_transaction(
502                         smi_info->si_sm,
503                         smi_info->curr_msg->data,
504                         smi_info->curr_msg->data_size);
505                 smi_info->si_state = SI_GETTING_EVENTS;
506         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
507                    smi_info->oem_data_avail_handler) {
508                 if (smi_info->oem_data_avail_handler(smi_info))
509                         goto retry;
510         } else
511                 smi_info->si_state = SI_NORMAL;
512 }
513
514 static void handle_transaction_done(struct smi_info *smi_info)
515 {
516         struct ipmi_smi_msg *msg;
517 #ifdef DEBUG_TIMING
518         struct timeval t;
519
520         do_gettimeofday(&t);
521         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
522 #endif
523         switch (smi_info->si_state) {
524         case SI_NORMAL:
525                 if (!smi_info->curr_msg)
526                         break;
527
528                 smi_info->curr_msg->rsp_size
529                         = smi_info->handlers->get_result(
530                                 smi_info->si_sm,
531                                 smi_info->curr_msg->rsp,
532                                 IPMI_MAX_MSG_LENGTH);
533
534                 /*
535                  * Do this here becase deliver_recv_msg() releases the
536                  * lock, and a new message can be put in during the
537                  * time the lock is released.
538                  */
539                 msg = smi_info->curr_msg;
540                 smi_info->curr_msg = NULL;
541                 deliver_recv_msg(smi_info, msg);
542                 break;
543
544         case SI_GETTING_FLAGS:
545         {
546                 unsigned char msg[4];
547                 unsigned int  len;
548
549                 /* We got the flags from the SMI, now handle them. */
550                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
551                 if (msg[2] != 0) {
552                         /* Error fetching flags, just give up for now. */
553                         smi_info->si_state = SI_NORMAL;
554                 } else if (len < 4) {
555                         /*
556                          * Hmm, no flags.  That's technically illegal, but
557                          * don't use uninitialized data.
558                          */
559                         smi_info->si_state = SI_NORMAL;
560                 } else {
561                         smi_info->msg_flags = msg[3];
562                         handle_flags(smi_info);
563                 }
564                 break;
565         }
566
567         case SI_CLEARING_FLAGS:
568         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
569         {
570                 unsigned char msg[3];
571
572                 /* We cleared the flags. */
573                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
574                 if (msg[2] != 0) {
575                         /* Error clearing flags */
576                         printk(KERN_WARNING
577                                "ipmi_si: Error clearing flags: %2.2x\n",
578                                msg[2]);
579                 }
580                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
581                         start_enable_irq(smi_info);
582                 else
583                         smi_info->si_state = SI_NORMAL;
584                 break;
585         }
586
587         case SI_GETTING_EVENTS:
588         {
589                 smi_info->curr_msg->rsp_size
590                         = smi_info->handlers->get_result(
591                                 smi_info->si_sm,
592                                 smi_info->curr_msg->rsp,
593                                 IPMI_MAX_MSG_LENGTH);
594
595                 /*
596                  * Do this here becase deliver_recv_msg() releases the
597                  * lock, and a new message can be put in during the
598                  * time the lock is released.
599                  */
600                 msg = smi_info->curr_msg;
601                 smi_info->curr_msg = NULL;
602                 if (msg->rsp[2] != 0) {
603                         /* Error getting event, probably done. */
604                         msg->done(msg);
605
606                         /* Take off the event flag. */
607                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
608                         handle_flags(smi_info);
609                 } else {
610                         smi_inc_stat(smi_info, events);
611
612                         /*
613                          * Do this before we deliver the message
614                          * because delivering the message releases the
615                          * lock and something else can mess with the
616                          * state.
617                          */
618                         handle_flags(smi_info);
619
620                         deliver_recv_msg(smi_info, msg);
621                 }
622                 break;
623         }
624
625         case SI_GETTING_MESSAGES:
626         {
627                 smi_info->curr_msg->rsp_size
628                         = smi_info->handlers->get_result(
629                                 smi_info->si_sm,
630                                 smi_info->curr_msg->rsp,
631                                 IPMI_MAX_MSG_LENGTH);
632
633                 /*
634                  * Do this here becase deliver_recv_msg() releases the
635                  * lock, and a new message can be put in during the
636                  * time the lock is released.
637                  */
638                 msg = smi_info->curr_msg;
639                 smi_info->curr_msg = NULL;
640                 if (msg->rsp[2] != 0) {
641                         /* Error getting event, probably done. */
642                         msg->done(msg);
643
644                         /* Take off the msg flag. */
645                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
646                         handle_flags(smi_info);
647                 } else {
648                         smi_inc_stat(smi_info, incoming_messages);
649
650                         /*
651                          * Do this before we deliver the message
652                          * because delivering the message releases the
653                          * lock and something else can mess with the
654                          * state.
655                          */
656                         handle_flags(smi_info);
657
658                         deliver_recv_msg(smi_info, msg);
659                 }
660                 break;
661         }
662
663         case SI_ENABLE_INTERRUPTS1:
664         {
665                 unsigned char msg[4];
666
667                 /* We got the flags from the SMI, now handle them. */
668                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
669                 if (msg[2] != 0) {
670                         printk(KERN_WARNING
671                                "ipmi_si: Could not enable interrupts"
672                                ", failed get, using polled mode.\n");
673                         smi_info->si_state = SI_NORMAL;
674                 } else {
675                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
676                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
677                         msg[2] = (msg[3] |
678                                   IPMI_BMC_RCV_MSG_INTR |
679                                   IPMI_BMC_EVT_MSG_INTR);
680                         smi_info->handlers->start_transaction(
681                                 smi_info->si_sm, msg, 3);
682                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
683                 }
684                 break;
685         }
686
687         case SI_ENABLE_INTERRUPTS2:
688         {
689                 unsigned char msg[4];
690
691                 /* We got the flags from the SMI, now handle them. */
692                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
693                 if (msg[2] != 0) {
694                         printk(KERN_WARNING
695                                "ipmi_si: Could not enable interrupts"
696                                ", failed set, using polled mode.\n");
697                 }
698                 smi_info->si_state = SI_NORMAL;
699                 break;
700         }
701
702         case SI_DISABLE_INTERRUPTS1:
703         {
704                 unsigned char msg[4];
705
706                 /* We got the flags from the SMI, now handle them. */
707                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
708                 if (msg[2] != 0) {
709                         printk(KERN_WARNING
710                                "ipmi_si: Could not disable interrupts"
711                                ", failed get.\n");
712                         smi_info->si_state = SI_NORMAL;
713                 } else {
714                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
715                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
716                         msg[2] = (msg[3] &
717                                   ~(IPMI_BMC_RCV_MSG_INTR |
718                                     IPMI_BMC_EVT_MSG_INTR));
719                         smi_info->handlers->start_transaction(
720                                 smi_info->si_sm, msg, 3);
721                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
722                 }
723                 break;
724         }
725
726         case SI_DISABLE_INTERRUPTS2:
727         {
728                 unsigned char msg[4];
729
730                 /* We got the flags from the SMI, now handle them. */
731                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
732                 if (msg[2] != 0) {
733                         printk(KERN_WARNING
734                                "ipmi_si: Could not disable interrupts"
735                                ", failed set.\n");
736                 }
737                 smi_info->si_state = SI_NORMAL;
738                 break;
739         }
740         }
741 }
742
743 /*
744  * Called on timeouts and events.  Timeouts should pass the elapsed
745  * time, interrupts should pass in zero.  Must be called with
746  * si_lock held and interrupts disabled.
747  */
748 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
749                                            int time)
750 {
751         enum si_sm_result si_sm_result;
752
753  restart:
754         /*
755          * There used to be a loop here that waited a little while
756          * (around 25us) before giving up.  That turned out to be
757          * pointless, the minimum delays I was seeing were in the 300us
758          * range, which is far too long to wait in an interrupt.  So
759          * we just run until the state machine tells us something
760          * happened or it needs a delay.
761          */
762         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
763         time = 0;
764         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
765                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
766
767         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
768                 smi_inc_stat(smi_info, complete_transactions);
769
770                 handle_transaction_done(smi_info);
771                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
772         } else if (si_sm_result == SI_SM_HOSED) {
773                 smi_inc_stat(smi_info, hosed_count);
774
775                 /*
776                  * Do the before return_hosed_msg, because that
777                  * releases the lock.
778                  */
779                 smi_info->si_state = SI_NORMAL;
780                 if (smi_info->curr_msg != NULL) {
781                         /*
782                          * If we were handling a user message, format
783                          * a response to send to the upper layer to
784                          * tell it about the error.
785                          */
786                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
787                 }
788                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
789         }
790
791         /*
792          * We prefer handling attn over new messages.  But don't do
793          * this if there is not yet an upper layer to handle anything.
794          */
795         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
796                 unsigned char msg[2];
797
798                 smi_inc_stat(smi_info, attentions);
799
800                 /*
801                  * Got a attn, send down a get message flags to see
802                  * what's causing it.  It would be better to handle
803                  * this in the upper layer, but due to the way
804                  * interrupts work with the SMI, that's not really
805                  * possible.
806                  */
807                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
808                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
809
810                 smi_info->handlers->start_transaction(
811                         smi_info->si_sm, msg, 2);
812                 smi_info->si_state = SI_GETTING_FLAGS;
813                 goto restart;
814         }
815
816         /* If we are currently idle, try to start the next message. */
817         if (si_sm_result == SI_SM_IDLE) {
818                 smi_inc_stat(smi_info, idles);
819
820                 si_sm_result = start_next_msg(smi_info);
821                 if (si_sm_result != SI_SM_IDLE)
822                         goto restart;
823         }
824
825         if ((si_sm_result == SI_SM_IDLE)
826             && (atomic_read(&smi_info->req_events))) {
827                 /*
828                  * We are idle and the upper layer requested that I fetch
829                  * events, so do so.
830                  */
831                 atomic_set(&smi_info->req_events, 0);
832
833                 smi_info->curr_msg = ipmi_alloc_smi_msg();
834                 if (!smi_info->curr_msg)
835                         goto out;
836
837                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
838                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
839                 smi_info->curr_msg->data_size = 2;
840
841                 smi_info->handlers->start_transaction(
842                         smi_info->si_sm,
843                         smi_info->curr_msg->data,
844                         smi_info->curr_msg->data_size);
845                 smi_info->si_state = SI_GETTING_EVENTS;
846                 goto restart;
847         }
848  out:
849         return si_sm_result;
850 }
851
852 static void sender(void                *send_info,
853                    struct ipmi_smi_msg *msg,
854                    int                 priority)
855 {
856         struct smi_info   *smi_info = send_info;
857         enum si_sm_result result;
858         unsigned long     flags;
859 #ifdef DEBUG_TIMING
860         struct timeval    t;
861 #endif
862
863         if (atomic_read(&smi_info->stop_operation)) {
864                 msg->rsp[0] = msg->data[0] | 4;
865                 msg->rsp[1] = msg->data[1];
866                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
867                 msg->rsp_size = 3;
868                 deliver_recv_msg(smi_info, msg);
869                 return;
870         }
871
872 #ifdef DEBUG_TIMING
873         do_gettimeofday(&t);
874         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
875 #endif
876
877         if (smi_info->run_to_completion) {
878                 /*
879                  * If we are running to completion, then throw it in
880                  * the list and run transactions until everything is
881                  * clear.  Priority doesn't matter here.
882                  */
883
884                 /*
885                  * Run to completion means we are single-threaded, no
886                  * need for locks.
887                  */
888                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
889
890                 result = smi_event_handler(smi_info, 0);
891                 while (result != SI_SM_IDLE) {
892                         udelay(SI_SHORT_TIMEOUT_USEC);
893                         result = smi_event_handler(smi_info,
894                                                    SI_SHORT_TIMEOUT_USEC);
895                 }
896                 return;
897         }
898
899         spin_lock_irqsave(&smi_info->msg_lock, flags);
900         if (priority > 0)
901                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
902         else
903                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
904         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
905
906         spin_lock_irqsave(&smi_info->si_lock, flags);
907         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
908                 start_next_msg(smi_info);
909         spin_unlock_irqrestore(&smi_info->si_lock, flags);
910 }
911
912 static void set_run_to_completion(void *send_info, int i_run_to_completion)
913 {
914         struct smi_info   *smi_info = send_info;
915         enum si_sm_result result;
916
917         smi_info->run_to_completion = i_run_to_completion;
918         if (i_run_to_completion) {
919                 result = smi_event_handler(smi_info, 0);
920                 while (result != SI_SM_IDLE) {
921                         udelay(SI_SHORT_TIMEOUT_USEC);
922                         result = smi_event_handler(smi_info,
923                                                    SI_SHORT_TIMEOUT_USEC);
924                 }
925         }
926 }
927
928 static int ipmi_thread(void *data)
929 {
930         struct smi_info *smi_info = data;
931         unsigned long flags;
932         enum si_sm_result smi_result;
933
934         set_user_nice(current, 19);
935         while (!kthread_should_stop()) {
936                 spin_lock_irqsave(&(smi_info->si_lock), flags);
937                 smi_result = smi_event_handler(smi_info, 0);
938                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
939                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
940                         ; /* do nothing */
941                 else if (smi_result == SI_SM_CALL_WITH_DELAY)
942                         schedule();
943                 else
944                         schedule_timeout_interruptible(1);
945         }
946         return 0;
947 }
948
949
950 static void poll(void *send_info)
951 {
952         struct smi_info *smi_info = send_info;
953         unsigned long flags;
954
955         /*
956          * Make sure there is some delay in the poll loop so we can
957          * drive time forward and timeout things.
958          */
959         udelay(10);
960         spin_lock_irqsave(&smi_info->si_lock, flags);
961         smi_event_handler(smi_info, 10);
962         spin_unlock_irqrestore(&smi_info->si_lock, flags);
963 }
964
965 static void request_events(void *send_info)
966 {
967         struct smi_info *smi_info = send_info;
968
969         if (atomic_read(&smi_info->stop_operation) ||
970                                 !smi_info->has_event_buffer)
971                 return;
972
973         atomic_set(&smi_info->req_events, 1);
974 }
975
976 static int initialized;
977
978 static void smi_timeout(unsigned long data)
979 {
980         struct smi_info   *smi_info = (struct smi_info *) data;
981         enum si_sm_result smi_result;
982         unsigned long     flags;
983         unsigned long     jiffies_now;
984         long              time_diff;
985 #ifdef DEBUG_TIMING
986         struct timeval    t;
987 #endif
988
989         spin_lock_irqsave(&(smi_info->si_lock), flags);
990 #ifdef DEBUG_TIMING
991         do_gettimeofday(&t);
992         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
993 #endif
994         jiffies_now = jiffies;
995         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
996                      * SI_USEC_PER_JIFFY);
997         smi_result = smi_event_handler(smi_info, time_diff);
998
999         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1000
1001         smi_info->last_timeout_jiffies = jiffies_now;
1002
1003         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1004                 /* Running with interrupts, only do long timeouts. */
1005                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1006                 smi_inc_stat(smi_info, long_timeouts);
1007                 goto do_add_timer;
1008         }
1009
1010         /*
1011          * If the state machine asks for a short delay, then shorten
1012          * the timer timeout.
1013          */
1014         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1015                 smi_inc_stat(smi_info, short_timeouts);
1016                 smi_info->si_timer.expires = jiffies + 1;
1017         } else {
1018                 smi_inc_stat(smi_info, long_timeouts);
1019                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1020         }
1021
1022  do_add_timer:
1023         add_timer(&(smi_info->si_timer));
1024 }
1025
1026 static irqreturn_t si_irq_handler(int irq, void *data)
1027 {
1028         struct smi_info *smi_info = data;
1029         unsigned long   flags;
1030 #ifdef DEBUG_TIMING
1031         struct timeval  t;
1032 #endif
1033
1034         spin_lock_irqsave(&(smi_info->si_lock), flags);
1035
1036         smi_inc_stat(smi_info, interrupts);
1037
1038 #ifdef DEBUG_TIMING
1039         do_gettimeofday(&t);
1040         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1041 #endif
1042         smi_event_handler(smi_info, 0);
1043         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1044         return IRQ_HANDLED;
1045 }
1046
1047 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1048 {
1049         struct smi_info *smi_info = data;
1050         /* We need to clear the IRQ flag for the BT interface. */
1051         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1052                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1053                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1054         return si_irq_handler(irq, data);
1055 }
1056
1057 static int smi_start_processing(void       *send_info,
1058                                 ipmi_smi_t intf)
1059 {
1060         struct smi_info *new_smi = send_info;
1061         int             enable = 0;
1062
1063         new_smi->intf = intf;
1064
1065         /* Try to claim any interrupts. */
1066         if (new_smi->irq_setup)
1067                 new_smi->irq_setup(new_smi);
1068
1069         /* Set up the timer that drives the interface. */
1070         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1071         new_smi->last_timeout_jiffies = jiffies;
1072         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1073
1074         /*
1075          * Check if the user forcefully enabled the daemon.
1076          */
1077         if (new_smi->intf_num < num_force_kipmid)
1078                 enable = force_kipmid[new_smi->intf_num];
1079         /*
1080          * The BT interface is efficient enough to not need a thread,
1081          * and there is no need for a thread if we have interrupts.
1082          */
1083         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1084                 enable = 1;
1085
1086         if (enable) {
1087                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1088                                               "kipmi%d", new_smi->intf_num);
1089                 if (IS_ERR(new_smi->thread)) {
1090                         printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1091                                " kernel thread due to error %ld, only using"
1092                                " timers to drive the interface\n",
1093                                PTR_ERR(new_smi->thread));
1094                         new_smi->thread = NULL;
1095                 }
1096         }
1097
1098         return 0;
1099 }
1100
1101 static void set_maintenance_mode(void *send_info, int enable)
1102 {
1103         struct smi_info   *smi_info = send_info;
1104
1105         if (!enable)
1106                 atomic_set(&smi_info->req_events, 0);
1107 }
1108
1109 static struct ipmi_smi_handlers handlers = {
1110         .owner                  = THIS_MODULE,
1111         .start_processing       = smi_start_processing,
1112         .sender                 = sender,
1113         .request_events         = request_events,
1114         .set_maintenance_mode   = set_maintenance_mode,
1115         .set_run_to_completion  = set_run_to_completion,
1116         .poll                   = poll,
1117 };
1118
1119 /*
1120  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1121  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1122  */
1123
1124 static LIST_HEAD(smi_infos);
1125 static DEFINE_MUTEX(smi_infos_lock);
1126 static int smi_num; /* Used to sequence the SMIs */
1127
1128 #define DEFAULT_REGSPACING      1
1129 #define DEFAULT_REGSIZE         1
1130
1131 static int           si_trydefaults = 1;
1132 static char          *si_type[SI_MAX_PARMS];
1133 #define MAX_SI_TYPE_STR 30
1134 static char          si_type_str[MAX_SI_TYPE_STR];
1135 static unsigned long addrs[SI_MAX_PARMS];
1136 static unsigned int num_addrs;
1137 static unsigned int  ports[SI_MAX_PARMS];
1138 static unsigned int num_ports;
1139 static int           irqs[SI_MAX_PARMS];
1140 static unsigned int num_irqs;
1141 static int           regspacings[SI_MAX_PARMS];
1142 static unsigned int num_regspacings;
1143 static int           regsizes[SI_MAX_PARMS];
1144 static unsigned int num_regsizes;
1145 static int           regshifts[SI_MAX_PARMS];
1146 static unsigned int num_regshifts;
1147 static int slave_addrs[SI_MAX_PARMS];
1148 static unsigned int num_slave_addrs;
1149
1150 #define IPMI_IO_ADDR_SPACE  0
1151 #define IPMI_MEM_ADDR_SPACE 1
1152 static char *addr_space_to_str[] = { "i/o", "mem" };
1153
1154 static int hotmod_handler(const char *val, struct kernel_param *kp);
1155
1156 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1157 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1158                  " Documentation/IPMI.txt in the kernel sources for the"
1159                  " gory details.");
1160
1161 module_param_named(trydefaults, si_trydefaults, bool, 0);
1162 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1163                  " default scan of the KCS and SMIC interface at the standard"
1164                  " address");
1165 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1166 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1167                  " interface separated by commas.  The types are 'kcs',"
1168                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1169                  " the first interface to kcs and the second to bt");
1170 module_param_array(addrs, ulong, &num_addrs, 0);
1171 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1172                  " addresses separated by commas.  Only use if an interface"
1173                  " is in memory.  Otherwise, set it to zero or leave"
1174                  " it blank.");
1175 module_param_array(ports, uint, &num_ports, 0);
1176 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1177                  " addresses separated by commas.  Only use if an interface"
1178                  " is a port.  Otherwise, set it to zero or leave"
1179                  " it blank.");
1180 module_param_array(irqs, int, &num_irqs, 0);
1181 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1182                  " addresses separated by commas.  Only use if an interface"
1183                  " has an interrupt.  Otherwise, set it to zero or leave"
1184                  " it blank.");
1185 module_param_array(regspacings, int, &num_regspacings, 0);
1186 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1187                  " and each successive register used by the interface.  For"
1188                  " instance, if the start address is 0xca2 and the spacing"
1189                  " is 2, then the second address is at 0xca4.  Defaults"
1190                  " to 1.");
1191 module_param_array(regsizes, int, &num_regsizes, 0);
1192 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1193                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1194                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1195                  " the 8-bit IPMI register has to be read from a larger"
1196                  " register.");
1197 module_param_array(regshifts, int, &num_regshifts, 0);
1198 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1199                  " IPMI register, in bits.  For instance, if the data"
1200                  " is read from a 32-bit word and the IPMI data is in"
1201                  " bit 8-15, then the shift would be 8");
1202 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1203 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1204                  " the controller.  Normally this is 0x20, but can be"
1205                  " overridden by this parm.  This is an array indexed"
1206                  " by interface number.");
1207 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1208 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1209                  " disabled(0).  Normally the IPMI driver auto-detects"
1210                  " this, but the value may be overridden by this parm.");
1211 module_param(unload_when_empty, int, 0);
1212 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1213                  " specified or found, default is 1.  Setting to 0"
1214                  " is useful for hot add of devices using hotmod.");
1215
1216
1217 static void std_irq_cleanup(struct smi_info *info)
1218 {
1219         if (info->si_type == SI_BT)
1220                 /* Disable the interrupt in the BT interface. */
1221                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1222         free_irq(info->irq, info);
1223 }
1224
1225 static int std_irq_setup(struct smi_info *info)
1226 {
1227         int rv;
1228
1229         if (!info->irq)
1230                 return 0;
1231
1232         if (info->si_type == SI_BT) {
1233                 rv = request_irq(info->irq,
1234                                  si_bt_irq_handler,
1235                                  IRQF_SHARED | IRQF_DISABLED,
1236                                  DEVICE_NAME,
1237                                  info);
1238                 if (!rv)
1239                         /* Enable the interrupt in the BT interface. */
1240                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1241                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1242         } else
1243                 rv = request_irq(info->irq,
1244                                  si_irq_handler,
1245                                  IRQF_SHARED | IRQF_DISABLED,
1246                                  DEVICE_NAME,
1247                                  info);
1248         if (rv) {
1249                 printk(KERN_WARNING
1250                        "ipmi_si: %s unable to claim interrupt %d,"
1251                        " running polled\n",
1252                        DEVICE_NAME, info->irq);
1253                 info->irq = 0;
1254         } else {
1255                 info->irq_cleanup = std_irq_cleanup;
1256                 printk("  Using irq %d\n", info->irq);
1257         }
1258
1259         return rv;
1260 }
1261
1262 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1263 {
1264         unsigned int addr = io->addr_data;
1265
1266         return inb(addr + (offset * io->regspacing));
1267 }
1268
1269 static void port_outb(struct si_sm_io *io, unsigned int offset,
1270                       unsigned char b)
1271 {
1272         unsigned int addr = io->addr_data;
1273
1274         outb(b, addr + (offset * io->regspacing));
1275 }
1276
1277 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1278 {
1279         unsigned int addr = io->addr_data;
1280
1281         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1282 }
1283
1284 static void port_outw(struct si_sm_io *io, unsigned int offset,
1285                       unsigned char b)
1286 {
1287         unsigned int addr = io->addr_data;
1288
1289         outw(b << io->regshift, addr + (offset * io->regspacing));
1290 }
1291
1292 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1293 {
1294         unsigned int addr = io->addr_data;
1295
1296         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1297 }
1298
1299 static void port_outl(struct si_sm_io *io, unsigned int offset,
1300                       unsigned char b)
1301 {
1302         unsigned int addr = io->addr_data;
1303
1304         outl(b << io->regshift, addr+(offset * io->regspacing));
1305 }
1306
1307 static void port_cleanup(struct smi_info *info)
1308 {
1309         unsigned int addr = info->io.addr_data;
1310         int          idx;
1311
1312         if (addr) {
1313                 for (idx = 0; idx < info->io_size; idx++)
1314                         release_region(addr + idx * info->io.regspacing,
1315                                        info->io.regsize);
1316         }
1317 }
1318
1319 static int port_setup(struct smi_info *info)
1320 {
1321         unsigned int addr = info->io.addr_data;
1322         int          idx;
1323
1324         if (!addr)
1325                 return -ENODEV;
1326
1327         info->io_cleanup = port_cleanup;
1328
1329         /*
1330          * Figure out the actual inb/inw/inl/etc routine to use based
1331          * upon the register size.
1332          */
1333         switch (info->io.regsize) {
1334         case 1:
1335                 info->io.inputb = port_inb;
1336                 info->io.outputb = port_outb;
1337                 break;
1338         case 2:
1339                 info->io.inputb = port_inw;
1340                 info->io.outputb = port_outw;
1341                 break;
1342         case 4:
1343                 info->io.inputb = port_inl;
1344                 info->io.outputb = port_outl;
1345                 break;
1346         default:
1347                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1348                        info->io.regsize);
1349                 return -EINVAL;
1350         }
1351
1352         /*
1353          * Some BIOSes reserve disjoint I/O regions in their ACPI
1354          * tables.  This causes problems when trying to register the
1355          * entire I/O region.  Therefore we must register each I/O
1356          * port separately.
1357          */
1358         for (idx = 0; idx < info->io_size; idx++) {
1359                 if (request_region(addr + idx * info->io.regspacing,
1360                                    info->io.regsize, DEVICE_NAME) == NULL) {
1361                         /* Undo allocations */
1362                         while (idx--) {
1363                                 release_region(addr + idx * info->io.regspacing,
1364                                                info->io.regsize);
1365                         }
1366                         return -EIO;
1367                 }
1368         }
1369         return 0;
1370 }
1371
1372 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1373 {
1374         return readb((io->addr)+(offset * io->regspacing));
1375 }
1376
1377 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1378                      unsigned char b)
1379 {
1380         writeb(b, (io->addr)+(offset * io->regspacing));
1381 }
1382
1383 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1384 {
1385         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1386                 & 0xff;
1387 }
1388
1389 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1390                      unsigned char b)
1391 {
1392         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1393 }
1394
1395 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1396 {
1397         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1398                 & 0xff;
1399 }
1400
1401 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1402                      unsigned char b)
1403 {
1404         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1405 }
1406
1407 #ifdef readq
1408 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1409 {
1410         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1411                 & 0xff;
1412 }
1413
1414 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1415                      unsigned char b)
1416 {
1417         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1418 }
1419 #endif
1420
1421 static void mem_cleanup(struct smi_info *info)
1422 {
1423         unsigned long addr = info->io.addr_data;
1424         int           mapsize;
1425
1426         if (info->io.addr) {
1427                 iounmap(info->io.addr);
1428
1429                 mapsize = ((info->io_size * info->io.regspacing)
1430                            - (info->io.regspacing - info->io.regsize));
1431
1432                 release_mem_region(addr, mapsize);
1433         }
1434 }
1435
1436 static int mem_setup(struct smi_info *info)
1437 {
1438         unsigned long addr = info->io.addr_data;
1439         int           mapsize;
1440
1441         if (!addr)
1442                 return -ENODEV;
1443
1444         info->io_cleanup = mem_cleanup;
1445
1446         /*
1447          * Figure out the actual readb/readw/readl/etc routine to use based
1448          * upon the register size.
1449          */
1450         switch (info->io.regsize) {
1451         case 1:
1452                 info->io.inputb = intf_mem_inb;
1453                 info->io.outputb = intf_mem_outb;
1454                 break;
1455         case 2:
1456                 info->io.inputb = intf_mem_inw;
1457                 info->io.outputb = intf_mem_outw;
1458                 break;
1459         case 4:
1460                 info->io.inputb = intf_mem_inl;
1461                 info->io.outputb = intf_mem_outl;
1462                 break;
1463 #ifdef readq
1464         case 8:
1465                 info->io.inputb = mem_inq;
1466                 info->io.outputb = mem_outq;
1467                 break;
1468 #endif
1469         default:
1470                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1471                        info->io.regsize);
1472                 return -EINVAL;
1473         }
1474
1475         /*
1476          * Calculate the total amount of memory to claim.  This is an
1477          * unusual looking calculation, but it avoids claiming any
1478          * more memory than it has to.  It will claim everything
1479          * between the first address to the end of the last full
1480          * register.
1481          */
1482         mapsize = ((info->io_size * info->io.regspacing)
1483                    - (info->io.regspacing - info->io.regsize));
1484
1485         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1486                 return -EIO;
1487
1488         info->io.addr = ioremap(addr, mapsize);
1489         if (info->io.addr == NULL) {
1490                 release_mem_region(addr, mapsize);
1491                 return -EIO;
1492         }
1493         return 0;
1494 }
1495
1496 /*
1497  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1498  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1499  * Options are:
1500  *   rsp=<regspacing>
1501  *   rsi=<regsize>
1502  *   rsh=<regshift>
1503  *   irq=<irq>
1504  *   ipmb=<ipmb addr>
1505  */
1506 enum hotmod_op { HM_ADD, HM_REMOVE };
1507 struct hotmod_vals {
1508         char *name;
1509         int  val;
1510 };
1511 static struct hotmod_vals hotmod_ops[] = {
1512         { "add",        HM_ADD },
1513         { "remove",     HM_REMOVE },
1514         { NULL }
1515 };
1516 static struct hotmod_vals hotmod_si[] = {
1517         { "kcs",        SI_KCS },
1518         { "smic",       SI_SMIC },
1519         { "bt",         SI_BT },
1520         { NULL }
1521 };
1522 static struct hotmod_vals hotmod_as[] = {
1523         { "mem",        IPMI_MEM_ADDR_SPACE },
1524         { "i/o",        IPMI_IO_ADDR_SPACE },
1525         { NULL }
1526 };
1527
1528 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1529 {
1530         char *s;
1531         int  i;
1532
1533         s = strchr(*curr, ',');
1534         if (!s) {
1535                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1536                 return -EINVAL;
1537         }
1538         *s = '\0';
1539         s++;
1540         for (i = 0; hotmod_ops[i].name; i++) {
1541                 if (strcmp(*curr, v[i].name) == 0) {
1542                         *val = v[i].val;
1543                         *curr = s;
1544                         return 0;
1545                 }
1546         }
1547
1548         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1549         return -EINVAL;
1550 }
1551
1552 static int check_hotmod_int_op(const char *curr, const char *option,
1553                                const char *name, int *val)
1554 {
1555         char *n;
1556
1557         if (strcmp(curr, name) == 0) {
1558                 if (!option) {
1559                         printk(KERN_WARNING PFX
1560                                "No option given for '%s'\n",
1561                                curr);
1562                         return -EINVAL;
1563                 }
1564                 *val = simple_strtoul(option, &n, 0);
1565                 if ((*n != '\0') || (*option == '\0')) {
1566                         printk(KERN_WARNING PFX
1567                                "Bad option given for '%s'\n",
1568                                curr);
1569                         return -EINVAL;
1570                 }
1571                 return 1;
1572         }
1573         return 0;
1574 }
1575
1576 static int hotmod_handler(const char *val, struct kernel_param *kp)
1577 {
1578         char *str = kstrdup(val, GFP_KERNEL);
1579         int  rv;
1580         char *next, *curr, *s, *n, *o;
1581         enum hotmod_op op;
1582         enum si_type si_type;
1583         int  addr_space;
1584         unsigned long addr;
1585         int regspacing;
1586         int regsize;
1587         int regshift;
1588         int irq;
1589         int ipmb;
1590         int ival;
1591         int len;
1592         struct smi_info *info;
1593
1594         if (!str)
1595                 return -ENOMEM;
1596
1597         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1598         len = strlen(str);
1599         ival = len - 1;
1600         while ((ival >= 0) && isspace(str[ival])) {
1601                 str[ival] = '\0';
1602                 ival--;
1603         }
1604
1605         for (curr = str; curr; curr = next) {
1606                 regspacing = 1;
1607                 regsize = 1;
1608                 regshift = 0;
1609                 irq = 0;
1610                 ipmb = 0x20;
1611
1612                 next = strchr(curr, ':');
1613                 if (next) {
1614                         *next = '\0';
1615                         next++;
1616                 }
1617
1618                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1619                 if (rv)
1620                         break;
1621                 op = ival;
1622
1623                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1624                 if (rv)
1625                         break;
1626                 si_type = ival;
1627
1628                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1629                 if (rv)
1630                         break;
1631
1632                 s = strchr(curr, ',');
1633                 if (s) {
1634                         *s = '\0';
1635                         s++;
1636                 }
1637                 addr = simple_strtoul(curr, &n, 0);
1638                 if ((*n != '\0') || (*curr == '\0')) {
1639                         printk(KERN_WARNING PFX "Invalid hotmod address"
1640                                " '%s'\n", curr);
1641                         break;
1642                 }
1643
1644                 while (s) {
1645                         curr = s;
1646                         s = strchr(curr, ',');
1647                         if (s) {
1648                                 *s = '\0';
1649                                 s++;
1650                         }
1651                         o = strchr(curr, '=');
1652                         if (o) {
1653                                 *o = '\0';
1654                                 o++;
1655                         }
1656                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1657                         if (rv < 0)
1658                                 goto out;
1659                         else if (rv)
1660                                 continue;
1661                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1662                         if (rv < 0)
1663                                 goto out;
1664                         else if (rv)
1665                                 continue;
1666                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1667                         if (rv < 0)
1668                                 goto out;
1669                         else if (rv)
1670                                 continue;
1671                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1672                         if (rv < 0)
1673                                 goto out;
1674                         else if (rv)
1675                                 continue;
1676                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1677                         if (rv < 0)
1678                                 goto out;
1679                         else if (rv)
1680                                 continue;
1681
1682                         rv = -EINVAL;
1683                         printk(KERN_WARNING PFX
1684                                "Invalid hotmod option '%s'\n",
1685                                curr);
1686                         goto out;
1687                 }
1688
1689                 if (op == HM_ADD) {
1690                         info = kzalloc(sizeof(*info), GFP_KERNEL);
1691                         if (!info) {
1692                                 rv = -ENOMEM;
1693                                 goto out;
1694                         }
1695
1696                         info->addr_source = "hotmod";
1697                         info->si_type = si_type;
1698                         info->io.addr_data = addr;
1699                         info->io.addr_type = addr_space;
1700                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1701                                 info->io_setup = mem_setup;
1702                         else
1703                                 info->io_setup = port_setup;
1704
1705                         info->io.addr = NULL;
1706                         info->io.regspacing = regspacing;
1707                         if (!info->io.regspacing)
1708                                 info->io.regspacing = DEFAULT_REGSPACING;
1709                         info->io.regsize = regsize;
1710                         if (!info->io.regsize)
1711                                 info->io.regsize = DEFAULT_REGSPACING;
1712                         info->io.regshift = regshift;
1713                         info->irq = irq;
1714                         if (info->irq)
1715                                 info->irq_setup = std_irq_setup;
1716                         info->slave_addr = ipmb;
1717
1718                         try_smi_init(info);
1719                 } else {
1720                         /* remove */
1721                         struct smi_info *e, *tmp_e;
1722
1723                         mutex_lock(&smi_infos_lock);
1724                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1725                                 if (e->io.addr_type != addr_space)
1726                                         continue;
1727                                 if (e->si_type != si_type)
1728                                         continue;
1729                                 if (e->io.addr_data == addr)
1730                                         cleanup_one_si(e);
1731                         }
1732                         mutex_unlock(&smi_infos_lock);
1733                 }
1734         }
1735         rv = len;
1736  out:
1737         kfree(str);
1738         return rv;
1739 }
1740
1741 static __devinit void hardcode_find_bmc(void)
1742 {
1743         int             i;
1744         struct smi_info *info;
1745
1746         for (i = 0; i < SI_MAX_PARMS; i++) {
1747                 if (!ports[i] && !addrs[i])
1748                         continue;
1749
1750                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1751                 if (!info)
1752                         return;
1753
1754                 info->addr_source = "hardcoded";
1755
1756                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1757                         info->si_type = SI_KCS;
1758                 } else if (strcmp(si_type[i], "smic") == 0) {
1759                         info->si_type = SI_SMIC;
1760                 } else if (strcmp(si_type[i], "bt") == 0) {
1761                         info->si_type = SI_BT;
1762                 } else {
1763                         printk(KERN_WARNING
1764                                "ipmi_si: Interface type specified "
1765                                "for interface %d, was invalid: %s\n",
1766                                i, si_type[i]);
1767                         kfree(info);
1768                         continue;
1769                 }
1770
1771                 if (ports[i]) {
1772                         /* An I/O port */
1773                         info->io_setup = port_setup;
1774                         info->io.addr_data = ports[i];
1775                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1776                 } else if (addrs[i]) {
1777                         /* A memory port */
1778                         info->io_setup = mem_setup;
1779                         info->io.addr_data = addrs[i];
1780                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1781                 } else {
1782                         printk(KERN_WARNING
1783                                "ipmi_si: Interface type specified "
1784                                "for interface %d, "
1785                                "but port and address were not set or "
1786                                "set to zero.\n", i);
1787                         kfree(info);
1788                         continue;
1789                 }
1790
1791                 info->io.addr = NULL;
1792                 info->io.regspacing = regspacings[i];
1793                 if (!info->io.regspacing)
1794                         info->io.regspacing = DEFAULT_REGSPACING;
1795                 info->io.regsize = regsizes[i];
1796                 if (!info->io.regsize)
1797                         info->io.regsize = DEFAULT_REGSPACING;
1798                 info->io.regshift = regshifts[i];
1799                 info->irq = irqs[i];
1800                 if (info->irq)
1801                         info->irq_setup = std_irq_setup;
1802
1803                 try_smi_init(info);
1804         }
1805 }
1806
1807 #ifdef CONFIG_ACPI
1808
1809 #include <linux/acpi.h>
1810
1811 /*
1812  * Once we get an ACPI failure, we don't try any more, because we go
1813  * through the tables sequentially.  Once we don't find a table, there
1814  * are no more.
1815  */
1816 static int acpi_failure;
1817
1818 /* For GPE-type interrupts. */
1819 static u32 ipmi_acpi_gpe(void *context)
1820 {
1821         struct smi_info *smi_info = context;
1822         unsigned long   flags;
1823 #ifdef DEBUG_TIMING
1824         struct timeval t;
1825 #endif
1826
1827         spin_lock_irqsave(&(smi_info->si_lock), flags);
1828
1829         smi_inc_stat(smi_info, interrupts);
1830
1831 #ifdef DEBUG_TIMING
1832         do_gettimeofday(&t);
1833         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1834 #endif
1835         smi_event_handler(smi_info, 0);
1836         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1837
1838         return ACPI_INTERRUPT_HANDLED;
1839 }
1840
1841 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1842 {
1843         if (!info->irq)
1844                 return;
1845
1846         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1847 }
1848
1849 static int acpi_gpe_irq_setup(struct smi_info *info)
1850 {
1851         acpi_status status;
1852
1853         if (!info->irq)
1854                 return 0;
1855
1856         /* FIXME - is level triggered right? */
1857         status = acpi_install_gpe_handler(NULL,
1858                                           info->irq,
1859                                           ACPI_GPE_LEVEL_TRIGGERED,
1860                                           &ipmi_acpi_gpe,
1861                                           info);
1862         if (status != AE_OK) {
1863                 printk(KERN_WARNING
1864                        "ipmi_si: %s unable to claim ACPI GPE %d,"
1865                        " running polled\n",
1866                        DEVICE_NAME, info->irq);
1867                 info->irq = 0;
1868                 return -EINVAL;
1869         } else {
1870                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1871                 printk("  Using ACPI GPE %d\n", info->irq);
1872                 return 0;
1873         }
1874 }
1875
1876 /*
1877  * Defined at
1878  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1879  * Docs/TechPapers/IA64/hpspmi.pdf
1880  */
1881 struct SPMITable {
1882         s8      Signature[4];
1883         u32     Length;
1884         u8      Revision;
1885         u8      Checksum;
1886         s8      OEMID[6];
1887         s8      OEMTableID[8];
1888         s8      OEMRevision[4];
1889         s8      CreatorID[4];
1890         s8      CreatorRevision[4];
1891         u8      InterfaceType;
1892         u8      IPMIlegacy;
1893         s16     SpecificationRevision;
1894
1895         /*
1896          * Bit 0 - SCI interrupt supported
1897          * Bit 1 - I/O APIC/SAPIC
1898          */
1899         u8      InterruptType;
1900
1901         /*
1902          * If bit 0 of InterruptType is set, then this is the SCI
1903          * interrupt in the GPEx_STS register.
1904          */
1905         u8      GPE;
1906
1907         s16     Reserved;
1908
1909         /*
1910          * If bit 1 of InterruptType is set, then this is the I/O
1911          * APIC/SAPIC interrupt.
1912          */
1913         u32     GlobalSystemInterrupt;
1914
1915         /* The actual register address. */
1916         struct acpi_generic_address addr;
1917
1918         u8      UID[4];
1919
1920         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1921 };
1922
1923 static __devinit int try_init_spmi(struct SPMITable *spmi)
1924 {
1925         struct smi_info  *info;
1926         u8               addr_space;
1927
1928         if (spmi->IPMIlegacy != 1) {
1929             printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1930             return -ENODEV;
1931         }
1932
1933         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1934                 addr_space = IPMI_MEM_ADDR_SPACE;
1935         else
1936                 addr_space = IPMI_IO_ADDR_SPACE;
1937
1938         info = kzalloc(sizeof(*info), GFP_KERNEL);
1939         if (!info) {
1940                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1941                 return -ENOMEM;
1942         }
1943
1944         info->addr_source = "SPMI";
1945
1946         /* Figure out the interface type. */
1947         switch (spmi->InterfaceType) {
1948         case 1: /* KCS */
1949                 info->si_type = SI_KCS;
1950                 break;
1951         case 2: /* SMIC */
1952                 info->si_type = SI_SMIC;
1953                 break;
1954         case 3: /* BT */
1955                 info->si_type = SI_BT;
1956                 break;
1957         default:
1958                 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1959                         spmi->InterfaceType);
1960                 kfree(info);
1961                 return -EIO;
1962         }
1963
1964         if (spmi->InterruptType & 1) {
1965                 /* We've got a GPE interrupt. */
1966                 info->irq = spmi->GPE;
1967                 info->irq_setup = acpi_gpe_irq_setup;
1968         } else if (spmi->InterruptType & 2) {
1969                 /* We've got an APIC/SAPIC interrupt. */
1970                 info->irq = spmi->GlobalSystemInterrupt;
1971                 info->irq_setup = std_irq_setup;
1972         } else {
1973                 /* Use the default interrupt setting. */
1974                 info->irq = 0;
1975                 info->irq_setup = NULL;
1976         }
1977
1978         if (spmi->addr.bit_width) {
1979                 /* A (hopefully) properly formed register bit width. */
1980                 info->io.regspacing = spmi->addr.bit_width / 8;
1981         } else {
1982                 info->io.regspacing = DEFAULT_REGSPACING;
1983         }
1984         info->io.regsize = info->io.regspacing;
1985         info->io.regshift = spmi->addr.bit_offset;
1986
1987         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1988                 info->io_setup = mem_setup;
1989                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1990         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1991                 info->io_setup = port_setup;
1992                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1993         } else {
1994                 kfree(info);
1995                 printk(KERN_WARNING
1996                        "ipmi_si: Unknown ACPI I/O Address type\n");
1997                 return -EIO;
1998         }
1999         info->io.addr_data = spmi->addr.address;
2000
2001         try_smi_init(info);
2002
2003         return 0;
2004 }
2005
2006 static __devinit void spmi_find_bmc(void)
2007 {
2008         acpi_status      status;
2009         struct SPMITable *spmi;
2010         int              i;
2011
2012         if (acpi_disabled)
2013                 return;
2014
2015         if (acpi_failure)
2016                 return;
2017
2018         for (i = 0; ; i++) {
2019                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2020                                         (struct acpi_table_header **)&spmi);
2021                 if (status != AE_OK)
2022                         return;
2023
2024                 try_init_spmi(spmi);
2025         }
2026 }
2027
2028 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2029                                     const struct pnp_device_id *dev_id)
2030 {
2031         struct acpi_device *acpi_dev;
2032         struct smi_info *info;
2033         acpi_handle handle;
2034         acpi_status status;
2035         unsigned long long tmp;
2036
2037         acpi_dev = pnp_acpi_device(dev);
2038         if (!acpi_dev)
2039                 return -ENODEV;
2040
2041         info = kzalloc(sizeof(*info), GFP_KERNEL);
2042         if (!info)
2043                 return -ENOMEM;
2044
2045         info->addr_source = "ACPI";
2046
2047         handle = acpi_dev->handle;
2048
2049         /* _IFT tells us the interface type: KCS, BT, etc */
2050         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2051         if (ACPI_FAILURE(status))
2052                 goto err_free;
2053
2054         switch (tmp) {
2055         case 1:
2056                 info->si_type = SI_KCS;
2057                 break;
2058         case 2:
2059                 info->si_type = SI_SMIC;
2060                 break;
2061         case 3:
2062                 info->si_type = SI_BT;
2063                 break;
2064         default:
2065                 dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2066                 goto err_free;
2067         }
2068
2069         if (pnp_port_valid(dev, 0)) {
2070                 info->io_setup = port_setup;
2071                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2072                 info->io.addr_data = pnp_port_start(dev, 0);
2073         } else if (pnp_mem_valid(dev, 0)) {
2074                 info->io_setup = mem_setup;
2075                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2076                 info->io.addr_data = pnp_mem_start(dev, 0);
2077         } else {
2078                 dev_err(&dev->dev, "no I/O or memory address\n");
2079                 goto err_free;
2080         }
2081
2082         info->io.regspacing = DEFAULT_REGSPACING;
2083         info->io.regsize = DEFAULT_REGSPACING;
2084         info->io.regshift = 0;
2085
2086         /* If _GPE exists, use it; otherwise use standard interrupts */
2087         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2088         if (ACPI_SUCCESS(status)) {
2089                 info->irq = tmp;
2090                 info->irq_setup = acpi_gpe_irq_setup;
2091         } else if (pnp_irq_valid(dev, 0)) {
2092                 info->irq = pnp_irq(dev, 0);
2093                 info->irq_setup = std_irq_setup;
2094         }
2095
2096         info->dev = &acpi_dev->dev;
2097         pnp_set_drvdata(dev, info);
2098
2099         return try_smi_init(info);
2100
2101 err_free:
2102         kfree(info);
2103         return -EINVAL;
2104 }
2105
2106 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2107 {
2108         struct smi_info *info = pnp_get_drvdata(dev);
2109
2110         cleanup_one_si(info);
2111 }
2112
2113 static const struct pnp_device_id pnp_dev_table[] = {
2114         {"IPI0001", 0},
2115         {"", 0},
2116 };
2117
2118 static struct pnp_driver ipmi_pnp_driver = {
2119         .name           = DEVICE_NAME,
2120         .probe          = ipmi_pnp_probe,
2121         .remove         = __devexit_p(ipmi_pnp_remove),
2122         .id_table       = pnp_dev_table,
2123 };
2124 #endif
2125
2126 #ifdef CONFIG_DMI
2127 struct dmi_ipmi_data {
2128         u8              type;
2129         u8              addr_space;
2130         unsigned long   base_addr;
2131         u8              irq;
2132         u8              offset;
2133         u8              slave_addr;
2134 };
2135
2136 static int __devinit decode_dmi(const struct dmi_header *dm,
2137                                 struct dmi_ipmi_data *dmi)
2138 {
2139         const u8        *data = (const u8 *)dm;
2140         unsigned long   base_addr;
2141         u8              reg_spacing;
2142         u8              len = dm->length;
2143
2144         dmi->type = data[4];
2145
2146         memcpy(&base_addr, data+8, sizeof(unsigned long));
2147         if (len >= 0x11) {
2148                 if (base_addr & 1) {
2149                         /* I/O */
2150                         base_addr &= 0xFFFE;
2151                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2152                 } else
2153                         /* Memory */
2154                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2155
2156                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2157                    is odd. */
2158                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2159
2160                 dmi->irq = data[0x11];
2161
2162                 /* The top two bits of byte 0x10 hold the register spacing. */
2163                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2164                 switch (reg_spacing) {
2165                 case 0x00: /* Byte boundaries */
2166                     dmi->offset = 1;
2167                     break;
2168                 case 0x01: /* 32-bit boundaries */
2169                     dmi->offset = 4;
2170                     break;
2171                 case 0x02: /* 16-byte boundaries */
2172                     dmi->offset = 16;
2173                     break;
2174                 default:
2175                     /* Some other interface, just ignore it. */
2176                     return -EIO;
2177                 }
2178         } else {
2179                 /* Old DMI spec. */
2180                 /*
2181                  * Note that technically, the lower bit of the base
2182                  * address should be 1 if the address is I/O and 0 if
2183                  * the address is in memory.  So many systems get that
2184                  * wrong (and all that I have seen are I/O) so we just
2185                  * ignore that bit and assume I/O.  Systems that use
2186                  * memory should use the newer spec, anyway.
2187                  */
2188                 dmi->base_addr = base_addr & 0xfffe;
2189                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2190                 dmi->offset = 1;
2191         }
2192
2193         dmi->slave_addr = data[6];
2194
2195         return 0;
2196 }
2197
2198 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2199 {
2200         struct smi_info *info;
2201
2202         info = kzalloc(sizeof(*info), GFP_KERNEL);
2203         if (!info) {
2204                 printk(KERN_ERR
2205                        "ipmi_si: Could not allocate SI data\n");
2206                 return;
2207         }
2208
2209         info->addr_source = "SMBIOS";
2210
2211         switch (ipmi_data->type) {
2212         case 0x01: /* KCS */
2213                 info->si_type = SI_KCS;
2214                 break;
2215         case 0x02: /* SMIC */
2216                 info->si_type = SI_SMIC;
2217                 break;
2218         case 0x03: /* BT */
2219                 info->si_type = SI_BT;
2220                 break;
2221         default:
2222                 kfree(info);
2223                 return;
2224         }
2225
2226         switch (ipmi_data->addr_space) {
2227         case IPMI_MEM_ADDR_SPACE:
2228                 info->io_setup = mem_setup;
2229                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2230                 break;
2231
2232         case IPMI_IO_ADDR_SPACE:
2233                 info->io_setup = port_setup;
2234                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2235                 break;
2236
2237         default:
2238                 kfree(info);
2239                 printk(KERN_WARNING
2240                        "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2241                        ipmi_data->addr_space);
2242                 return;
2243         }
2244         info->io.addr_data = ipmi_data->base_addr;
2245
2246         info->io.regspacing = ipmi_data->offset;
2247         if (!info->io.regspacing)
2248                 info->io.regspacing = DEFAULT_REGSPACING;
2249         info->io.regsize = DEFAULT_REGSPACING;
2250         info->io.regshift = 0;
2251
2252         info->slave_addr = ipmi_data->slave_addr;
2253
2254         info->irq = ipmi_data->irq;
2255         if (info->irq)
2256                 info->irq_setup = std_irq_setup;
2257
2258         try_smi_init(info);
2259 }
2260
2261 static void __devinit dmi_find_bmc(void)
2262 {
2263         const struct dmi_device *dev = NULL;
2264         struct dmi_ipmi_data data;
2265         int                  rv;
2266
2267         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2268                 memset(&data, 0, sizeof(data));
2269                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2270                                 &data);
2271                 if (!rv)
2272                         try_init_dmi(&data);
2273         }
2274 }
2275 #endif /* CONFIG_DMI */
2276
2277 #ifdef CONFIG_PCI
2278
2279 #define PCI_ERMC_CLASSCODE              0x0C0700
2280 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2281 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2282 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2283 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2284 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2285
2286 #define PCI_HP_VENDOR_ID    0x103C
2287 #define PCI_MMC_DEVICE_ID   0x121A
2288 #define PCI_MMC_ADDR_CW     0x10
2289
2290 static void ipmi_pci_cleanup(struct smi_info *info)
2291 {
2292         struct pci_dev *pdev = info->addr_source_data;
2293
2294         pci_disable_device(pdev);
2295 }
2296
2297 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2298                                     const struct pci_device_id *ent)
2299 {
2300         int rv;
2301         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2302         struct smi_info *info;
2303
2304         info = kzalloc(sizeof(*info), GFP_KERNEL);
2305         if (!info)
2306                 return -ENOMEM;
2307
2308         info->addr_source = "PCI";
2309
2310         switch (class_type) {
2311         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2312                 info->si_type = SI_SMIC;
2313                 break;
2314
2315         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2316                 info->si_type = SI_KCS;
2317                 break;
2318
2319         case PCI_ERMC_CLASSCODE_TYPE_BT:
2320                 info->si_type = SI_BT;
2321                 break;
2322
2323         default:
2324                 kfree(info);
2325                 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2326                        pci_name(pdev), class_type);
2327                 return -ENOMEM;
2328         }
2329
2330         rv = pci_enable_device(pdev);
2331         if (rv) {
2332                 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2333                        pci_name(pdev));
2334                 kfree(info);
2335                 return rv;
2336         }
2337
2338         info->addr_source_cleanup = ipmi_pci_cleanup;
2339         info->addr_source_data = pdev;
2340
2341         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2342                 info->io_setup = port_setup;
2343                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2344         } else {
2345                 info->io_setup = mem_setup;
2346                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2347         }
2348         info->io.addr_data = pci_resource_start(pdev, 0);
2349
2350         info->io.regspacing = DEFAULT_REGSPACING;
2351         info->io.regsize = DEFAULT_REGSPACING;
2352         info->io.regshift = 0;
2353
2354         info->irq = pdev->irq;
2355         if (info->irq)
2356                 info->irq_setup = std_irq_setup;
2357
2358         info->dev = &pdev->dev;
2359         pci_set_drvdata(pdev, info);
2360
2361         return try_smi_init(info);
2362 }
2363
2364 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2365 {
2366         struct smi_info *info = pci_get_drvdata(pdev);
2367         cleanup_one_si(info);
2368 }
2369
2370 #ifdef CONFIG_PM
2371 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2372 {
2373         return 0;
2374 }
2375
2376 static int ipmi_pci_resume(struct pci_dev *pdev)
2377 {
2378         return 0;
2379 }
2380 #endif
2381
2382 static struct pci_device_id ipmi_pci_devices[] = {
2383         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2384         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2385         { 0, }
2386 };
2387 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2388
2389 static struct pci_driver ipmi_pci_driver = {
2390         .name =         DEVICE_NAME,
2391         .id_table =     ipmi_pci_devices,
2392         .probe =        ipmi_pci_probe,
2393         .remove =       __devexit_p(ipmi_pci_remove),
2394 #ifdef CONFIG_PM
2395         .suspend =      ipmi_pci_suspend,
2396         .resume =       ipmi_pci_resume,
2397 #endif
2398 };
2399 #endif /* CONFIG_PCI */
2400
2401
2402 #ifdef CONFIG_PPC_OF
2403 static int __devinit ipmi_of_probe(struct of_device *dev,
2404                          const struct of_device_id *match)
2405 {
2406         struct smi_info *info;
2407         struct resource resource;
2408         const int *regsize, *regspacing, *regshift;
2409         struct device_node *np = dev->node;
2410         int ret;
2411         int proplen;
2412
2413         dev_info(&dev->dev, PFX "probing via device tree\n");
2414
2415         ret = of_address_to_resource(np, 0, &resource);
2416         if (ret) {
2417                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2418                 return ret;
2419         }
2420
2421         regsize = of_get_property(np, "reg-size", &proplen);
2422         if (regsize && proplen != 4) {
2423                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2424                 return -EINVAL;
2425         }
2426
2427         regspacing = of_get_property(np, "reg-spacing", &proplen);
2428         if (regspacing && proplen != 4) {
2429                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2430                 return -EINVAL;
2431         }
2432
2433         regshift = of_get_property(np, "reg-shift", &proplen);
2434         if (regshift && proplen != 4) {
2435                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2436                 return -EINVAL;
2437         }
2438
2439         info = kzalloc(sizeof(*info), GFP_KERNEL);
2440
2441         if (!info) {
2442                 dev_err(&dev->dev,
2443                         PFX "could not allocate memory for OF probe\n");
2444                 return -ENOMEM;
2445         }
2446
2447         info->si_type           = (enum si_type) match->data;
2448         info->addr_source       = "device-tree";
2449         info->irq_setup         = std_irq_setup;
2450
2451         if (resource.flags & IORESOURCE_IO) {
2452                 info->io_setup          = port_setup;
2453                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2454         } else {
2455                 info->io_setup          = mem_setup;
2456                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2457         }
2458
2459         info->io.addr_data      = resource.start;
2460
2461         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2462         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2463         info->io.regshift       = regshift ? *regshift : 0;
2464
2465         info->irq               = irq_of_parse_and_map(dev->node, 0);
2466         info->dev               = &dev->dev;
2467
2468         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2469                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2470                 info->irq);
2471
2472         dev_set_drvdata(&dev->dev, info);
2473
2474         return try_smi_init(info);
2475 }
2476
2477 static int __devexit ipmi_of_remove(struct of_device *dev)
2478 {
2479         cleanup_one_si(dev_get_drvdata(&dev->dev));
2480         return 0;
2481 }
2482
2483 static struct of_device_id ipmi_match[] =
2484 {
2485         { .type = "ipmi", .compatible = "ipmi-kcs",
2486           .data = (void *)(unsigned long) SI_KCS },
2487         { .type = "ipmi", .compatible = "ipmi-smic",
2488           .data = (void *)(unsigned long) SI_SMIC },
2489         { .type = "ipmi", .compatible = "ipmi-bt",
2490           .data = (void *)(unsigned long) SI_BT },
2491         {},
2492 };
2493
2494 static struct of_platform_driver ipmi_of_platform_driver = {
2495         .name           = "ipmi",
2496         .match_table    = ipmi_match,
2497         .probe          = ipmi_of_probe,
2498         .remove         = __devexit_p(ipmi_of_remove),
2499 };
2500 #endif /* CONFIG_PPC_OF */
2501
2502 static int wait_for_msg_done(struct smi_info *smi_info)
2503 {
2504         enum si_sm_result     smi_result;
2505
2506         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2507         for (;;) {
2508                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2509                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2510                         schedule_timeout_uninterruptible(1);
2511                         smi_result = smi_info->handlers->event(
2512                                 smi_info->si_sm, 100);
2513                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2514                         smi_result = smi_info->handlers->event(
2515                                 smi_info->si_sm, 0);
2516                 } else
2517                         break;
2518         }
2519         if (smi_result == SI_SM_HOSED)
2520                 /*
2521                  * We couldn't get the state machine to run, so whatever's at
2522                  * the port is probably not an IPMI SMI interface.
2523                  */
2524                 return -ENODEV;
2525
2526         return 0;
2527 }
2528
2529 static int try_get_dev_id(struct smi_info *smi_info)
2530 {
2531         unsigned char         msg[2];
2532         unsigned char         *resp;
2533         unsigned long         resp_len;
2534         int                   rv = 0;
2535
2536         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2537         if (!resp)
2538                 return -ENOMEM;
2539
2540         /*
2541          * Do a Get Device ID command, since it comes back with some
2542          * useful info.
2543          */
2544         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2545         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2546         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2547
2548         rv = wait_for_msg_done(smi_info);
2549         if (rv)
2550                 goto out;
2551
2552         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2553                                                   resp, IPMI_MAX_MSG_LENGTH);
2554
2555         /* Check and record info from the get device id, in case we need it. */
2556         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2557
2558  out:
2559         kfree(resp);
2560         return rv;
2561 }
2562
2563 static int try_enable_event_buffer(struct smi_info *smi_info)
2564 {
2565         unsigned char         msg[3];
2566         unsigned char         *resp;
2567         unsigned long         resp_len;
2568         int                   rv = 0;
2569
2570         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2571         if (!resp)
2572                 return -ENOMEM;
2573
2574         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2575         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2576         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2577
2578         rv = wait_for_msg_done(smi_info);
2579         if (rv) {
2580                 printk(KERN_WARNING
2581                        "ipmi_si: Error getting response from get global,"
2582                        " enables command, the event buffer is not"
2583                        " enabled.\n");
2584                 goto out;
2585         }
2586
2587         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2588                                                   resp, IPMI_MAX_MSG_LENGTH);
2589
2590         if (resp_len < 4 ||
2591                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2592                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2593                         resp[2] != 0) {
2594                 printk(KERN_WARNING
2595                        "ipmi_si: Invalid return from get global"
2596                        " enables command, cannot enable the event"
2597                        " buffer.\n");
2598                 rv = -EINVAL;
2599                 goto out;
2600         }
2601
2602         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2603                 /* buffer is already enabled, nothing to do. */
2604                 goto out;
2605
2606         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2607         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2608         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2609         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2610
2611         rv = wait_for_msg_done(smi_info);
2612         if (rv) {
2613                 printk(KERN_WARNING
2614                        "ipmi_si: Error getting response from set global,"
2615                        " enables command, the event buffer is not"
2616                        " enabled.\n");
2617                 goto out;
2618         }
2619
2620         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2621                                                   resp, IPMI_MAX_MSG_LENGTH);
2622
2623         if (resp_len < 3 ||
2624                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2625                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2626                 printk(KERN_WARNING
2627                        "ipmi_si: Invalid return from get global,"
2628                        "enables command, not enable the event"
2629                        " buffer.\n");
2630                 rv = -EINVAL;
2631                 goto out;
2632         }
2633
2634         if (resp[2] != 0)
2635                 /*
2636                  * An error when setting the event buffer bit means
2637                  * that the event buffer is not supported.
2638                  */
2639                 rv = -ENOENT;
2640  out:
2641         kfree(resp);
2642         return rv;
2643 }
2644
2645 static int type_file_read_proc(char *page, char **start, off_t off,
2646                                int count, int *eof, void *data)
2647 {
2648         struct smi_info *smi = data;
2649
2650         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2651 }
2652
2653 static int stat_file_read_proc(char *page, char **start, off_t off,
2654                                int count, int *eof, void *data)
2655 {
2656         char            *out = (char *) page;
2657         struct smi_info *smi = data;
2658
2659         out += sprintf(out, "interrupts_enabled:    %d\n",
2660                        smi->irq && !smi->interrupt_disabled);
2661         out += sprintf(out, "short_timeouts:        %u\n",
2662                        smi_get_stat(smi, short_timeouts));
2663         out += sprintf(out, "long_timeouts:         %u\n",
2664                        smi_get_stat(smi, long_timeouts));
2665         out += sprintf(out, "idles:                 %u\n",
2666                        smi_get_stat(smi, idles));
2667         out += sprintf(out, "interrupts:            %u\n",
2668                        smi_get_stat(smi, interrupts));
2669         out += sprintf(out, "attentions:            %u\n",
2670                        smi_get_stat(smi, attentions));
2671         out += sprintf(out, "flag_fetches:          %u\n",
2672                        smi_get_stat(smi, flag_fetches));
2673         out += sprintf(out, "hosed_count:           %u\n",
2674                        smi_get_stat(smi, hosed_count));
2675         out += sprintf(out, "complete_transactions: %u\n",
2676                        smi_get_stat(smi, complete_transactions));
2677         out += sprintf(out, "events:                %u\n",
2678                        smi_get_stat(smi, events));
2679         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2680                        smi_get_stat(smi, watchdog_pretimeouts));
2681         out += sprintf(out, "incoming_messages:     %u\n",
2682                        smi_get_stat(smi, incoming_messages));
2683
2684         return out - page;
2685 }
2686
2687 static int param_read_proc(char *page, char **start, off_t off,
2688                            int count, int *eof, void *data)
2689 {
2690         struct smi_info *smi = data;
2691
2692         return sprintf(page,
2693                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2694                        si_to_str[smi->si_type],
2695                        addr_space_to_str[smi->io.addr_type],
2696                        smi->io.addr_data,
2697                        smi->io.regspacing,
2698                        smi->io.regsize,
2699                        smi->io.regshift,
2700                        smi->irq,
2701                        smi->slave_addr);
2702 }
2703
2704 /*
2705  * oem_data_avail_to_receive_msg_avail
2706  * @info - smi_info structure with msg_flags set
2707  *
2708  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2709  * Returns 1 indicating need to re-run handle_flags().
2710  */
2711 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2712 {
2713         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2714                                RECEIVE_MSG_AVAIL);
2715         return 1;
2716 }
2717
2718 /*
2719  * setup_dell_poweredge_oem_data_handler
2720  * @info - smi_info.device_id must be populated
2721  *
2722  * Systems that match, but have firmware version < 1.40 may assert
2723  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2724  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2725  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2726  * as RECEIVE_MSG_AVAIL instead.
2727  *
2728  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2729  * assert the OEM[012] bits, and if it did, the driver would have to
2730  * change to handle that properly, we don't actually check for the
2731  * firmware version.
2732  * Device ID = 0x20                BMC on PowerEdge 8G servers
2733  * Device Revision = 0x80
2734  * Firmware Revision1 = 0x01       BMC version 1.40
2735  * Firmware Revision2 = 0x40       BCD encoded
2736  * IPMI Version = 0x51             IPMI 1.5
2737  * Manufacturer ID = A2 02 00      Dell IANA
2738  *
2739  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2740  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2741  *
2742  */
2743 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2744 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2745 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2746 #define DELL_IANA_MFR_ID 0x0002a2
2747 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2748 {
2749         struct ipmi_device_id *id = &smi_info->device_id;
2750         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2751                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2752                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2753                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2754                         smi_info->oem_data_avail_handler =
2755                                 oem_data_avail_to_receive_msg_avail;
2756                 } else if (ipmi_version_major(id) < 1 ||
2757                            (ipmi_version_major(id) == 1 &&
2758                             ipmi_version_minor(id) < 5)) {
2759                         smi_info->oem_data_avail_handler =
2760                                 oem_data_avail_to_receive_msg_avail;
2761                 }
2762         }
2763 }
2764
2765 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2766 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2767 {
2768         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2769
2770         /* Make it a reponse */
2771         msg->rsp[0] = msg->data[0] | 4;
2772         msg->rsp[1] = msg->data[1];
2773         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2774         msg->rsp_size = 3;
2775         smi_info->curr_msg = NULL;
2776         deliver_recv_msg(smi_info, msg);
2777 }
2778
2779 /*
2780  * dell_poweredge_bt_xaction_handler
2781  * @info - smi_info.device_id must be populated
2782  *
2783  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2784  * not respond to a Get SDR command if the length of the data
2785  * requested is exactly 0x3A, which leads to command timeouts and no
2786  * data returned.  This intercepts such commands, and causes userspace
2787  * callers to try again with a different-sized buffer, which succeeds.
2788  */
2789
2790 #define STORAGE_NETFN 0x0A
2791 #define STORAGE_CMD_GET_SDR 0x23
2792 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2793                                              unsigned long unused,
2794                                              void *in)
2795 {
2796         struct smi_info *smi_info = in;
2797         unsigned char *data = smi_info->curr_msg->data;
2798         unsigned int size   = smi_info->curr_msg->data_size;
2799         if (size >= 8 &&
2800             (data[0]>>2) == STORAGE_NETFN &&
2801             data[1] == STORAGE_CMD_GET_SDR &&
2802             data[7] == 0x3A) {
2803                 return_hosed_msg_badsize(smi_info);
2804                 return NOTIFY_STOP;
2805         }
2806         return NOTIFY_DONE;
2807 }
2808
2809 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2810         .notifier_call  = dell_poweredge_bt_xaction_handler,
2811 };
2812
2813 /*
2814  * setup_dell_poweredge_bt_xaction_handler
2815  * @info - smi_info.device_id must be filled in already
2816  *
2817  * Fills in smi_info.device_id.start_transaction_pre_hook
2818  * when we know what function to use there.
2819  */
2820 static void
2821 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2822 {
2823         struct ipmi_device_id *id = &smi_info->device_id;
2824         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2825             smi_info->si_type == SI_BT)
2826                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2827 }
2828
2829 /*
2830  * setup_oem_data_handler
2831  * @info - smi_info.device_id must be filled in already
2832  *
2833  * Fills in smi_info.device_id.oem_data_available_handler
2834  * when we know what function to use there.
2835  */
2836
2837 static void setup_oem_data_handler(struct smi_info *smi_info)
2838 {
2839         setup_dell_poweredge_oem_data_handler(smi_info);
2840 }
2841
2842 static void setup_xaction_handlers(struct smi_info *smi_info)
2843 {
2844         setup_dell_poweredge_bt_xaction_handler(smi_info);
2845 }
2846
2847 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2848 {
2849         if (smi_info->intf) {
2850                 /*
2851                  * The timer and thread are only running if the
2852                  * interface has been started up and registered.
2853                  */
2854                 if (smi_info->thread != NULL)
2855                         kthread_stop(smi_info->thread);
2856                 del_timer_sync(&smi_info->si_timer);
2857         }
2858 }
2859
2860 static __devinitdata struct ipmi_default_vals
2861 {
2862         int type;
2863         int port;
2864 } ipmi_defaults[] =
2865 {
2866         { .type = SI_KCS, .port = 0xca2 },
2867         { .type = SI_SMIC, .port = 0xca9 },
2868         { .type = SI_BT, .port = 0xe4 },
2869         { .port = 0 }
2870 };
2871
2872 static __devinit void default_find_bmc(void)
2873 {
2874         struct smi_info *info;
2875         int             i;
2876
2877         for (i = 0; ; i++) {
2878                 if (!ipmi_defaults[i].port)
2879                         break;
2880 #ifdef CONFIG_PPC
2881                 if (check_legacy_ioport(ipmi_defaults[i].port))
2882                         continue;
2883 #endif
2884                 info = kzalloc(sizeof(*info), GFP_KERNEL);
2885                 if (!info)
2886                         return;
2887
2888                 info->addr_source = NULL;
2889
2890                 info->si_type = ipmi_defaults[i].type;
2891                 info->io_setup = port_setup;
2892                 info->io.addr_data = ipmi_defaults[i].port;
2893                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2894
2895                 info->io.addr = NULL;
2896                 info->io.regspacing = DEFAULT_REGSPACING;
2897                 info->io.regsize = DEFAULT_REGSPACING;
2898                 info->io.regshift = 0;
2899
2900                 if (try_smi_init(info) == 0) {
2901                         /* Found one... */
2902                         printk(KERN_INFO "ipmi_si: Found default %s state"
2903                                " machine at %s address 0x%lx\n",
2904                                si_to_str[info->si_type],
2905                                addr_space_to_str[info->io.addr_type],
2906                                info->io.addr_data);
2907                         return;
2908                 }
2909         }
2910 }
2911
2912 static int is_new_interface(struct smi_info *info)
2913 {
2914         struct smi_info *e;
2915
2916         list_for_each_entry(e, &smi_infos, link) {
2917                 if (e->io.addr_type != info->io.addr_type)
2918                         continue;
2919                 if (e->io.addr_data == info->io.addr_data)
2920                         return 0;
2921         }
2922
2923         return 1;
2924 }
2925
2926 static int try_smi_init(struct smi_info *new_smi)
2927 {
2928         int rv;
2929         int i;
2930
2931         if (new_smi->addr_source) {
2932                 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2933                        " machine at %s address 0x%lx, slave address 0x%x,"
2934                        " irq %d\n",
2935                        new_smi->addr_source,
2936                        si_to_str[new_smi->si_type],
2937                        addr_space_to_str[new_smi->io.addr_type],
2938                        new_smi->io.addr_data,
2939                        new_smi->slave_addr, new_smi->irq);
2940         }
2941
2942         mutex_lock(&smi_infos_lock);
2943         if (!is_new_interface(new_smi)) {
2944                 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2945                 rv = -EBUSY;
2946                 goto out_err;
2947         }
2948
2949         /* So we know not to free it unless we have allocated one. */
2950         new_smi->intf = NULL;
2951         new_smi->si_sm = NULL;
2952         new_smi->handlers = NULL;
2953
2954         switch (new_smi->si_type) {
2955         case SI_KCS:
2956                 new_smi->handlers = &kcs_smi_handlers;
2957                 break;
2958
2959         case SI_SMIC:
2960                 new_smi->handlers = &smic_smi_handlers;
2961                 break;
2962
2963         case SI_BT:
2964                 new_smi->handlers = &bt_smi_handlers;
2965                 break;
2966
2967         default:
2968                 /* No support for anything else yet. */
2969                 rv = -EIO;
2970                 goto out_err;
2971         }
2972
2973         /* Allocate the state machine's data and initialize it. */
2974         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2975         if (!new_smi->si_sm) {
2976                 printk(KERN_ERR "Could not allocate state machine memory\n");
2977                 rv = -ENOMEM;
2978                 goto out_err;
2979         }
2980         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2981                                                         &new_smi->io);
2982
2983         /* Now that we know the I/O size, we can set up the I/O. */
2984         rv = new_smi->io_setup(new_smi);
2985         if (rv) {
2986                 printk(KERN_ERR "Could not set up I/O space\n");
2987                 goto out_err;
2988         }
2989
2990         spin_lock_init(&(new_smi->si_lock));
2991         spin_lock_init(&(new_smi->msg_lock));
2992
2993         /* Do low-level detection first. */
2994         if (new_smi->handlers->detect(new_smi->si_sm)) {
2995                 if (new_smi->addr_source)
2996                         printk(KERN_INFO "ipmi_si: Interface detection"
2997                                " failed\n");
2998                 rv = -ENODEV;
2999                 goto out_err;
3000         }
3001
3002         /*
3003          * Attempt a get device id command.  If it fails, we probably
3004          * don't have a BMC here.
3005          */
3006         rv = try_get_dev_id(new_smi);
3007         if (rv) {
3008                 if (new_smi->addr_source)
3009                         printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3010                                " at this location\n");
3011                 goto out_err;
3012         }
3013
3014         setup_oem_data_handler(new_smi);
3015         setup_xaction_handlers(new_smi);
3016
3017         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3018         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3019         new_smi->curr_msg = NULL;
3020         atomic_set(&new_smi->req_events, 0);
3021         new_smi->run_to_completion = 0;
3022         for (i = 0; i < SI_NUM_STATS; i++)
3023                 atomic_set(&new_smi->stats[i], 0);
3024
3025         new_smi->interrupt_disabled = 0;
3026         atomic_set(&new_smi->stop_operation, 0);
3027         new_smi->intf_num = smi_num;
3028         smi_num++;
3029
3030         rv = try_enable_event_buffer(new_smi);
3031         if (rv == 0)
3032                 new_smi->has_event_buffer = 1;
3033
3034         /*
3035          * Start clearing the flags before we enable interrupts or the
3036          * timer to avoid racing with the timer.
3037          */
3038         start_clear_flags(new_smi);
3039         /* IRQ is defined to be set when non-zero. */
3040         if (new_smi->irq)
3041                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3042
3043         if (!new_smi->dev) {
3044                 /*
3045                  * If we don't already have a device from something
3046                  * else (like PCI), then register a new one.
3047                  */
3048                 new_smi->pdev = platform_device_alloc("ipmi_si",
3049                                                       new_smi->intf_num);
3050                 if (!new_smi->pdev) {
3051                         printk(KERN_ERR
3052                                "ipmi_si_intf:"
3053                                " Unable to allocate platform device\n");
3054                         goto out_err;
3055                 }
3056                 new_smi->dev = &new_smi->pdev->dev;
3057                 new_smi->dev->driver = &ipmi_driver.driver;
3058
3059                 rv = platform_device_add(new_smi->pdev);
3060                 if (rv) {
3061                         printk(KERN_ERR
3062                                "ipmi_si_intf:"
3063                                " Unable to register system interface device:"
3064                                " %d\n",
3065                                rv);
3066                         goto out_err;
3067                 }
3068                 new_smi->dev_registered = 1;
3069         }
3070
3071         rv = ipmi_register_smi(&handlers,
3072                                new_smi,
3073                                &new_smi->device_id,
3074                                new_smi->dev,
3075                                "bmc",
3076                                new_smi->slave_addr);
3077         if (rv) {
3078                 printk(KERN_ERR
3079                        "ipmi_si: Unable to register device: error %d\n",
3080                        rv);
3081                 goto out_err_stop_timer;
3082         }
3083
3084         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3085                                      type_file_read_proc,
3086                                      new_smi);
3087         if (rv) {
3088                 printk(KERN_ERR
3089                        "ipmi_si: Unable to create proc entry: %d\n",
3090                        rv);
3091                 goto out_err_stop_timer;
3092         }
3093
3094         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3095                                      stat_file_read_proc,
3096                                      new_smi);
3097         if (rv) {
3098                 printk(KERN_ERR
3099                        "ipmi_si: Unable to create proc entry: %d\n",
3100                        rv);
3101                 goto out_err_stop_timer;
3102         }
3103
3104         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3105                                      param_read_proc,
3106                                      new_smi);
3107         if (rv) {
3108                 printk(KERN_ERR
3109                        "ipmi_si: Unable to create proc entry: %d\n",
3110                        rv);
3111                 goto out_err_stop_timer;
3112         }
3113
3114         list_add_tail(&new_smi->link, &smi_infos);
3115
3116         mutex_unlock(&smi_infos_lock);
3117
3118         printk(KERN_INFO "IPMI %s interface initialized\n",
3119                si_to_str[new_smi->si_type]);
3120
3121         return 0;
3122
3123  out_err_stop_timer:
3124         atomic_inc(&new_smi->stop_operation);
3125         wait_for_timer_and_thread(new_smi);
3126
3127  out_err:
3128         if (new_smi->intf)
3129                 ipmi_unregister_smi(new_smi->intf);
3130
3131         if (new_smi->irq_cleanup)
3132                 new_smi->irq_cleanup(new_smi);
3133
3134         /*
3135          * Wait until we know that we are out of any interrupt
3136          * handlers might have been running before we freed the
3137          * interrupt.
3138          */
3139         synchronize_sched();
3140
3141         if (new_smi->si_sm) {
3142                 if (new_smi->handlers)
3143                         new_smi->handlers->cleanup(new_smi->si_sm);
3144                 kfree(new_smi->si_sm);
3145         }
3146         if (new_smi->addr_source_cleanup)
3147                 new_smi->addr_source_cleanup(new_smi);
3148         if (new_smi->io_cleanup)
3149                 new_smi->io_cleanup(new_smi);
3150
3151         if (new_smi->dev_registered)
3152                 platform_device_unregister(new_smi->pdev);
3153
3154         kfree(new_smi);
3155
3156         mutex_unlock(&smi_infos_lock);
3157
3158         return rv;
3159 }
3160
3161 static __devinit int init_ipmi_si(void)
3162 {
3163         int  i;
3164         char *str;
3165         int  rv;
3166
3167         if (initialized)
3168                 return 0;
3169         initialized = 1;
3170
3171         /* Register the device drivers. */
3172         rv = driver_register(&ipmi_driver.driver);
3173         if (rv) {
3174                 printk(KERN_ERR
3175                        "init_ipmi_si: Unable to register driver: %d\n",
3176                        rv);
3177                 return rv;
3178         }
3179
3180
3181         /* Parse out the si_type string into its components. */
3182         str = si_type_str;
3183         if (*str != '\0') {
3184                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3185                         si_type[i] = str;
3186                         str = strchr(str, ',');
3187                         if (str) {
3188                                 *str = '\0';
3189                                 str++;
3190                         } else {
3191                                 break;
3192                         }
3193                 }
3194         }
3195
3196         printk(KERN_INFO "IPMI System Interface driver.\n");
3197
3198         hardcode_find_bmc();
3199
3200 #ifdef CONFIG_DMI
3201         dmi_find_bmc();
3202 #endif
3203
3204 #ifdef CONFIG_ACPI
3205         spmi_find_bmc();
3206 #endif
3207 #ifdef CONFIG_PNP
3208         pnp_register_driver(&ipmi_pnp_driver);
3209 #endif
3210
3211 #ifdef CONFIG_PCI
3212         rv = pci_register_driver(&ipmi_pci_driver);
3213         if (rv)
3214                 printk(KERN_ERR
3215                        "init_ipmi_si: Unable to register PCI driver: %d\n",
3216                        rv);
3217 #endif
3218
3219 #ifdef CONFIG_PPC_OF
3220         of_register_platform_driver(&ipmi_of_platform_driver);
3221 #endif
3222
3223         if (si_trydefaults) {
3224                 mutex_lock(&smi_infos_lock);
3225                 if (list_empty(&smi_infos)) {
3226                         /* No BMC was found, try defaults. */
3227                         mutex_unlock(&smi_infos_lock);
3228                         default_find_bmc();
3229                 } else {
3230                         mutex_unlock(&smi_infos_lock);
3231                 }
3232         }
3233
3234         mutex_lock(&smi_infos_lock);
3235         if (unload_when_empty && list_empty(&smi_infos)) {
3236                 mutex_unlock(&smi_infos_lock);
3237 #ifdef CONFIG_PCI
3238                 pci_unregister_driver(&ipmi_pci_driver);
3239 #endif
3240
3241 #ifdef CONFIG_PPC_OF
3242                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3243 #endif
3244                 driver_unregister(&ipmi_driver.driver);
3245                 printk(KERN_WARNING
3246                        "ipmi_si: Unable to find any System Interface(s)\n");
3247                 return -ENODEV;
3248         } else {
3249                 mutex_unlock(&smi_infos_lock);
3250                 return 0;
3251         }
3252 }
3253 module_init(init_ipmi_si);
3254
3255 static void cleanup_one_si(struct smi_info *to_clean)
3256 {
3257         int           rv;
3258         unsigned long flags;
3259
3260         if (!to_clean)
3261                 return;
3262
3263         list_del(&to_clean->link);
3264
3265         /* Tell the driver that we are shutting down. */
3266         atomic_inc(&to_clean->stop_operation);
3267
3268         /*
3269          * Make sure the timer and thread are stopped and will not run
3270          * again.
3271          */
3272         wait_for_timer_and_thread(to_clean);
3273
3274         /*
3275          * Timeouts are stopped, now make sure the interrupts are off
3276          * for the device.  A little tricky with locks to make sure
3277          * there are no races.
3278          */
3279         spin_lock_irqsave(&to_clean->si_lock, flags);
3280         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3281                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3282                 poll(to_clean);
3283                 schedule_timeout_uninterruptible(1);
3284                 spin_lock_irqsave(&to_clean->si_lock, flags);
3285         }
3286         disable_si_irq(to_clean);
3287         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3288         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3289                 poll(to_clean);
3290                 schedule_timeout_uninterruptible(1);
3291         }
3292
3293         /* Clean up interrupts and make sure that everything is done. */
3294         if (to_clean->irq_cleanup)
3295                 to_clean->irq_cleanup(to_clean);
3296         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3297                 poll(to_clean);
3298                 schedule_timeout_uninterruptible(1);
3299         }
3300
3301         rv = ipmi_unregister_smi(to_clean->intf);
3302         if (rv) {
3303                 printk(KERN_ERR
3304                        "ipmi_si: Unable to unregister device: errno=%d\n",
3305                        rv);
3306         }
3307
3308         to_clean->handlers->cleanup(to_clean->si_sm);
3309
3310         kfree(to_clean->si_sm);
3311
3312         if (to_clean->addr_source_cleanup)
3313                 to_clean->addr_source_cleanup(to_clean);
3314         if (to_clean->io_cleanup)
3315                 to_clean->io_cleanup(to_clean);
3316
3317         if (to_clean->dev_registered)
3318                 platform_device_unregister(to_clean->pdev);
3319
3320         kfree(to_clean);
3321 }
3322
3323 static __exit void cleanup_ipmi_si(void)
3324 {
3325         struct smi_info *e, *tmp_e;
3326
3327         if (!initialized)
3328                 return;
3329
3330 #ifdef CONFIG_PCI
3331         pci_unregister_driver(&ipmi_pci_driver);
3332 #endif
3333 #ifdef CONFIG_PNP
3334         pnp_unregister_driver(&ipmi_pnp_driver);
3335 #endif
3336
3337 #ifdef CONFIG_PPC_OF
3338         of_unregister_platform_driver(&ipmi_of_platform_driver);
3339 #endif
3340
3341         mutex_lock(&smi_infos_lock);
3342         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3343                 cleanup_one_si(e);
3344         mutex_unlock(&smi_infos_lock);
3345
3346         driver_unregister(&ipmi_driver.driver);
3347 }
3348 module_exit(cleanup_ipmi_si);
3349
3350 MODULE_LICENSE("GPL");
3351 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3352 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3353                    " system interfaces.");