ASoC: pcm512x: Scrub my work address from the driver
[sfrench/cifs-2.6.git] / drivers / block / skd_main.c
1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <linux/slab_def.h>
36 #include <scsi/scsi.h>
37 #include <scsi/sg.h>
38 #include <linux/io.h>
39 #include <linux/uaccess.h>
40 #include <asm/unaligned.h>
41
42 #include "skd_s1120.h"
43
44 static int skd_dbg_level;
45 static int skd_isr_comp_limit = 4;
46
47 #define SKD_ASSERT(expr) \
48         do { \
49                 if (unlikely(!(expr))) { \
50                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
51                                # expr, __FILE__, __func__, __LINE__); \
52                 } \
53         } while (0)
54
55 #define DRV_NAME "skd"
56 #define PFX DRV_NAME ": "
57
58 MODULE_LICENSE("GPL");
59
60 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
61
62 #define PCI_VENDOR_ID_STEC      0x1B39
63 #define PCI_DEVICE_ID_S1120     0x0001
64
65 #define SKD_FUA_NV              (1 << 1)
66 #define SKD_MINORS_PER_DEVICE   16
67
68 #define SKD_MAX_QUEUE_DEPTH     200u
69
70 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
71
72 #define SKD_N_FITMSG_BYTES      (512u)
73 #define SKD_MAX_REQ_PER_MSG     14
74
75 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
76
77 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
78  * 128KB limit.  That allows 4096*4K = 16M xfer size
79  */
80 #define SKD_N_SG_PER_REQ_DEFAULT 256u
81
82 #define SKD_N_COMPLETION_ENTRY  256u
83 #define SKD_N_READ_CAP_BYTES    (8u)
84
85 #define SKD_N_INTERNAL_BYTES    (512u)
86
87 #define SKD_SKCOMP_SIZE                                                 \
88         ((sizeof(struct fit_completion_entry_v1) +                      \
89           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
90
91 /* 5 bits of uniqifier, 0xF800 */
92 #define SKD_ID_TABLE_MASK       (3u << 8u)
93 #define  SKD_ID_RW_REQUEST      (0u << 8u)
94 #define  SKD_ID_INTERNAL        (1u << 8u)
95 #define  SKD_ID_FIT_MSG         (3u << 8u)
96 #define SKD_ID_SLOT_MASK        0x00FFu
97 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
98
99 #define SKD_N_MAX_SECTORS 2048u
100
101 #define SKD_MAX_RETRIES 2u
102
103 #define SKD_TIMER_SECONDS(seconds) (seconds)
104 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
105
106 #define INQ_STD_NBYTES 36
107
108 enum skd_drvr_state {
109         SKD_DRVR_STATE_LOAD,
110         SKD_DRVR_STATE_IDLE,
111         SKD_DRVR_STATE_BUSY,
112         SKD_DRVR_STATE_STARTING,
113         SKD_DRVR_STATE_ONLINE,
114         SKD_DRVR_STATE_PAUSING,
115         SKD_DRVR_STATE_PAUSED,
116         SKD_DRVR_STATE_RESTARTING,
117         SKD_DRVR_STATE_RESUMING,
118         SKD_DRVR_STATE_STOPPING,
119         SKD_DRVR_STATE_FAULT,
120         SKD_DRVR_STATE_DISAPPEARED,
121         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
122         SKD_DRVR_STATE_BUSY_ERASE,
123         SKD_DRVR_STATE_BUSY_SANITIZE,
124         SKD_DRVR_STATE_BUSY_IMMINENT,
125         SKD_DRVR_STATE_WAIT_BOOT,
126         SKD_DRVR_STATE_SYNCING,
127 };
128
129 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
130 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
131 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
132 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
133 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
134 #define SKD_START_WAIT_SECONDS  90u
135
136 enum skd_req_state {
137         SKD_REQ_STATE_IDLE,
138         SKD_REQ_STATE_SETUP,
139         SKD_REQ_STATE_BUSY,
140         SKD_REQ_STATE_COMPLETED,
141         SKD_REQ_STATE_TIMEOUT,
142 };
143
144 enum skd_check_status_action {
145         SKD_CHECK_STATUS_REPORT_GOOD,
146         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
147         SKD_CHECK_STATUS_REQUEUE_REQUEST,
148         SKD_CHECK_STATUS_REPORT_ERROR,
149         SKD_CHECK_STATUS_BUSY_IMMINENT,
150 };
151
152 struct skd_msg_buf {
153         struct fit_msg_hdr      fmh;
154         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
155 };
156
157 struct skd_fitmsg_context {
158         u32 id;
159
160         u32 length;
161
162         struct skd_msg_buf *msg_buf;
163         dma_addr_t mb_dma_address;
164 };
165
166 struct skd_request_context {
167         enum skd_req_state state;
168
169         u16 id;
170         u32 fitmsg_id;
171
172         u8 flush_cmd;
173
174         enum dma_data_direction data_dir;
175         struct scatterlist *sg;
176         u32 n_sg;
177         u32 sg_byte_count;
178
179         struct fit_sg_descriptor *sksg_list;
180         dma_addr_t sksg_dma_address;
181
182         struct fit_completion_entry_v1 completion;
183
184         struct fit_comp_error_info err_info;
185
186         blk_status_t status;
187 };
188
189 struct skd_special_context {
190         struct skd_request_context req;
191
192         void *data_buf;
193         dma_addr_t db_dma_address;
194
195         struct skd_msg_buf *msg_buf;
196         dma_addr_t mb_dma_address;
197 };
198
199 typedef enum skd_irq_type {
200         SKD_IRQ_LEGACY,
201         SKD_IRQ_MSI,
202         SKD_IRQ_MSIX
203 } skd_irq_type_t;
204
205 #define SKD_MAX_BARS                    2
206
207 struct skd_device {
208         void __iomem *mem_map[SKD_MAX_BARS];
209         resource_size_t mem_phys[SKD_MAX_BARS];
210         u32 mem_size[SKD_MAX_BARS];
211
212         struct skd_msix_entry *msix_entries;
213
214         struct pci_dev *pdev;
215         int pcie_error_reporting_is_enabled;
216
217         spinlock_t lock;
218         struct gendisk *disk;
219         struct blk_mq_tag_set tag_set;
220         struct request_queue *queue;
221         struct skd_fitmsg_context *skmsg;
222         struct device *class_dev;
223         int gendisk_on;
224         int sync_done;
225
226         u32 devno;
227         u32 major;
228         char isr_name[30];
229
230         enum skd_drvr_state state;
231         u32 drive_state;
232
233         u32 cur_max_queue_depth;
234         u32 queue_low_water_mark;
235         u32 dev_max_queue_depth;
236
237         u32 num_fitmsg_context;
238         u32 num_req_context;
239
240         struct skd_fitmsg_context *skmsg_table;
241
242         struct skd_special_context internal_skspcl;
243         u32 read_cap_blocksize;
244         u32 read_cap_last_lba;
245         int read_cap_is_valid;
246         int inquiry_is_valid;
247         u8 inq_serial_num[13];  /*12 chars plus null term */
248
249         u8 skcomp_cycle;
250         u32 skcomp_ix;
251         struct kmem_cache *msgbuf_cache;
252         struct kmem_cache *sglist_cache;
253         struct kmem_cache *databuf_cache;
254         struct fit_completion_entry_v1 *skcomp_table;
255         struct fit_comp_error_info *skerr_table;
256         dma_addr_t cq_dma_address;
257
258         wait_queue_head_t waitq;
259
260         struct timer_list timer;
261         u32 timer_countdown;
262         u32 timer_substate;
263
264         int sgs_per_request;
265         u32 last_mtd;
266
267         u32 proto_ver;
268
269         int dbg_level;
270         u32 connect_time_stamp;
271         int connect_retries;
272 #define SKD_MAX_CONNECT_RETRIES 16
273         u32 drive_jiffies;
274
275         u32 timo_slot;
276
277         struct work_struct start_queue;
278         struct work_struct completion_worker;
279 };
280
281 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
282 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
283 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
284
285 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
286 {
287         u32 val = readl(skdev->mem_map[1] + offset);
288
289         if (unlikely(skdev->dbg_level >= 2))
290                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
291         return val;
292 }
293
294 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
295                                    u32 offset)
296 {
297         writel(val, skdev->mem_map[1] + offset);
298         if (unlikely(skdev->dbg_level >= 2))
299                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
300 }
301
302 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
303                                    u32 offset)
304 {
305         writeq(val, skdev->mem_map[1] + offset);
306         if (unlikely(skdev->dbg_level >= 2))
307                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
308                         val);
309 }
310
311
312 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
313 static int skd_isr_type = SKD_IRQ_DEFAULT;
314
315 module_param(skd_isr_type, int, 0444);
316 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
317                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
318
319 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
320 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
321
322 module_param(skd_max_req_per_msg, int, 0444);
323 MODULE_PARM_DESC(skd_max_req_per_msg,
324                  "Maximum SCSI requests packed in a single message."
325                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
326
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
328 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
329 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
330
331 module_param(skd_max_queue_depth, int, 0444);
332 MODULE_PARM_DESC(skd_max_queue_depth,
333                  "Maximum SCSI requests issued to s1120."
334                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
335
336 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
337 module_param(skd_sgs_per_request, int, 0444);
338 MODULE_PARM_DESC(skd_sgs_per_request,
339                  "Maximum SG elements per block request."
340                  " (1-4096, default==256)");
341
342 static int skd_max_pass_thru = 1;
343 module_param(skd_max_pass_thru, int, 0444);
344 MODULE_PARM_DESC(skd_max_pass_thru,
345                  "Maximum SCSI pass-thru at a time. IGNORED");
346
347 module_param(skd_dbg_level, int, 0444);
348 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
349
350 module_param(skd_isr_comp_limit, int, 0444);
351 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
352
353 /* Major device number dynamically assigned. */
354 static u32 skd_major;
355
356 static void skd_destruct(struct skd_device *skdev);
357 static const struct block_device_operations skd_blockdev_ops;
358 static void skd_send_fitmsg(struct skd_device *skdev,
359                             struct skd_fitmsg_context *skmsg);
360 static void skd_send_special_fitmsg(struct skd_device *skdev,
361                                     struct skd_special_context *skspcl);
362 static bool skd_preop_sg_list(struct skd_device *skdev,
363                              struct skd_request_context *skreq);
364 static void skd_postop_sg_list(struct skd_device *skdev,
365                                struct skd_request_context *skreq);
366
367 static void skd_restart_device(struct skd_device *skdev);
368 static int skd_quiesce_dev(struct skd_device *skdev);
369 static int skd_unquiesce_dev(struct skd_device *skdev);
370 static void skd_disable_interrupts(struct skd_device *skdev);
371 static void skd_isr_fwstate(struct skd_device *skdev);
372 static void skd_recover_requests(struct skd_device *skdev);
373 static void skd_soft_reset(struct skd_device *skdev);
374
375 const char *skd_drive_state_to_str(int state);
376 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
377 static void skd_log_skdev(struct skd_device *skdev, const char *event);
378 static void skd_log_skreq(struct skd_device *skdev,
379                           struct skd_request_context *skreq, const char *event);
380
381 /*
382  *****************************************************************************
383  * READ/WRITE REQUESTS
384  *****************************************************************************
385  */
386 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
387 {
388         int *count = data;
389
390         count++;
391 }
392
393 static int skd_in_flight(struct skd_device *skdev)
394 {
395         int count = 0;
396
397         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
398
399         return count;
400 }
401
402 static void
403 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
404                 int data_dir, unsigned lba,
405                 unsigned count)
406 {
407         if (data_dir == READ)
408                 scsi_req->cdb[0] = READ_10;
409         else
410                 scsi_req->cdb[0] = WRITE_10;
411
412         scsi_req->cdb[1] = 0;
413         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
414         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
415         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
416         scsi_req->cdb[5] = (lba & 0xff);
417         scsi_req->cdb[6] = 0;
418         scsi_req->cdb[7] = (count & 0xff00) >> 8;
419         scsi_req->cdb[8] = count & 0xff;
420         scsi_req->cdb[9] = 0;
421 }
422
423 static void
424 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
425                             struct skd_request_context *skreq)
426 {
427         skreq->flush_cmd = 1;
428
429         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
430         scsi_req->cdb[1] = 0;
431         scsi_req->cdb[2] = 0;
432         scsi_req->cdb[3] = 0;
433         scsi_req->cdb[4] = 0;
434         scsi_req->cdb[5] = 0;
435         scsi_req->cdb[6] = 0;
436         scsi_req->cdb[7] = 0;
437         scsi_req->cdb[8] = 0;
438         scsi_req->cdb[9] = 0;
439 }
440
441 /*
442  * Return true if and only if all pending requests should be failed.
443  */
444 static bool skd_fail_all(struct request_queue *q)
445 {
446         struct skd_device *skdev = q->queuedata;
447
448         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
449
450         skd_log_skdev(skdev, "req_not_online");
451         switch (skdev->state) {
452         case SKD_DRVR_STATE_PAUSING:
453         case SKD_DRVR_STATE_PAUSED:
454         case SKD_DRVR_STATE_STARTING:
455         case SKD_DRVR_STATE_RESTARTING:
456         case SKD_DRVR_STATE_WAIT_BOOT:
457         /* In case of starting, we haven't started the queue,
458          * so we can't get here... but requests are
459          * possibly hanging out waiting for us because we
460          * reported the dev/skd0 already.  They'll wait
461          * forever if connect doesn't complete.
462          * What to do??? delay dev/skd0 ??
463          */
464         case SKD_DRVR_STATE_BUSY:
465         case SKD_DRVR_STATE_BUSY_IMMINENT:
466         case SKD_DRVR_STATE_BUSY_ERASE:
467                 return false;
468
469         case SKD_DRVR_STATE_BUSY_SANITIZE:
470         case SKD_DRVR_STATE_STOPPING:
471         case SKD_DRVR_STATE_SYNCING:
472         case SKD_DRVR_STATE_FAULT:
473         case SKD_DRVR_STATE_DISAPPEARED:
474         default:
475                 return true;
476         }
477 }
478
479 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
480                                     const struct blk_mq_queue_data *mqd)
481 {
482         struct request *const req = mqd->rq;
483         struct request_queue *const q = req->q;
484         struct skd_device *skdev = q->queuedata;
485         struct skd_fitmsg_context *skmsg;
486         struct fit_msg_hdr *fmh;
487         const u32 tag = blk_mq_unique_tag(req);
488         struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
489         struct skd_scsi_request *scsi_req;
490         unsigned long flags = 0;
491         const u32 lba = blk_rq_pos(req);
492         const u32 count = blk_rq_sectors(req);
493         const int data_dir = rq_data_dir(req);
494
495         if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
496                 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
497
498         blk_mq_start_request(req);
499
500         WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
501                   tag, skd_max_queue_depth, q->nr_requests);
502
503         SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
504
505         dev_dbg(&skdev->pdev->dev,
506                 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
507                 lba, count, count, data_dir);
508
509         skreq->id = tag + SKD_ID_RW_REQUEST;
510         skreq->flush_cmd = 0;
511         skreq->n_sg = 0;
512         skreq->sg_byte_count = 0;
513
514         skreq->fitmsg_id = 0;
515
516         skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
517
518         if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
519                 dev_dbg(&skdev->pdev->dev, "error Out\n");
520                 skreq->status = BLK_STS_RESOURCE;
521                 blk_mq_complete_request(req);
522                 return BLK_STS_OK;
523         }
524
525         dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
526                                    skreq->n_sg *
527                                    sizeof(struct fit_sg_descriptor),
528                                    DMA_TO_DEVICE);
529
530         /* Either a FIT msg is in progress or we have to start one. */
531         if (skd_max_req_per_msg == 1) {
532                 skmsg = NULL;
533         } else {
534                 spin_lock_irqsave(&skdev->lock, flags);
535                 skmsg = skdev->skmsg;
536         }
537         if (!skmsg) {
538                 skmsg = &skdev->skmsg_table[tag];
539                 skdev->skmsg = skmsg;
540
541                 /* Initialize the FIT msg header */
542                 fmh = &skmsg->msg_buf->fmh;
543                 memset(fmh, 0, sizeof(*fmh));
544                 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
545                 skmsg->length = sizeof(*fmh);
546         } else {
547                 fmh = &skmsg->msg_buf->fmh;
548         }
549
550         skreq->fitmsg_id = skmsg->id;
551
552         scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
553         memset(scsi_req, 0, sizeof(*scsi_req));
554
555         scsi_req->hdr.tag = skreq->id;
556         scsi_req->hdr.sg_list_dma_address =
557                 cpu_to_be64(skreq->sksg_dma_address);
558
559         if (req_op(req) == REQ_OP_FLUSH) {
560                 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
561                 SKD_ASSERT(skreq->flush_cmd == 1);
562         } else {
563                 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
564         }
565
566         if (req->cmd_flags & REQ_FUA)
567                 scsi_req->cdb[1] |= SKD_FUA_NV;
568
569         scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
570
571         /* Complete resource allocations. */
572         skreq->state = SKD_REQ_STATE_BUSY;
573
574         skmsg->length += sizeof(struct skd_scsi_request);
575         fmh->num_protocol_cmds_coalesced++;
576
577         dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
578                 skd_in_flight(skdev));
579
580         /*
581          * If the FIT msg buffer is full send it.
582          */
583         if (skd_max_req_per_msg == 1) {
584                 skd_send_fitmsg(skdev, skmsg);
585         } else {
586                 if (mqd->last ||
587                     fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
588                         skd_send_fitmsg(skdev, skmsg);
589                         skdev->skmsg = NULL;
590                 }
591                 spin_unlock_irqrestore(&skdev->lock, flags);
592         }
593
594         return BLK_STS_OK;
595 }
596
597 static enum blk_eh_timer_return skd_timed_out(struct request *req,
598                                               bool reserved)
599 {
600         struct skd_device *skdev = req->q->queuedata;
601
602         dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
603                 blk_mq_unique_tag(req));
604
605         return BLK_EH_RESET_TIMER;
606 }
607
608 static void skd_complete_rq(struct request *req)
609 {
610         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
611
612         blk_mq_end_request(req, skreq->status);
613 }
614
615 static bool skd_preop_sg_list(struct skd_device *skdev,
616                              struct skd_request_context *skreq)
617 {
618         struct request *req = blk_mq_rq_from_pdu(skreq);
619         struct scatterlist *sgl = &skreq->sg[0], *sg;
620         int n_sg;
621         int i;
622
623         skreq->sg_byte_count = 0;
624
625         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
626                      skreq->data_dir != DMA_FROM_DEVICE);
627
628         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
629         if (n_sg <= 0)
630                 return false;
631
632         /*
633          * Map scatterlist to PCI bus addresses.
634          * Note PCI might change the number of entries.
635          */
636         n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
637         if (n_sg <= 0)
638                 return false;
639
640         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
641
642         skreq->n_sg = n_sg;
643
644         for_each_sg(sgl, sg, n_sg, i) {
645                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
646                 u32 cnt = sg_dma_len(sg);
647                 uint64_t dma_addr = sg_dma_address(sg);
648
649                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
650                 sgd->byte_count = cnt;
651                 skreq->sg_byte_count += cnt;
652                 sgd->host_side_addr = dma_addr;
653                 sgd->dev_side_addr = 0;
654         }
655
656         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
657         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
658
659         if (unlikely(skdev->dbg_level > 1)) {
660                 dev_dbg(&skdev->pdev->dev,
661                         "skreq=%x sksg_list=%p sksg_dma=%llx\n",
662                         skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
663                 for (i = 0; i < n_sg; i++) {
664                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
665
666                         dev_dbg(&skdev->pdev->dev,
667                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
668                                 i, sgd->byte_count, sgd->control,
669                                 sgd->host_side_addr, sgd->next_desc_ptr);
670                 }
671         }
672
673         return true;
674 }
675
676 static void skd_postop_sg_list(struct skd_device *skdev,
677                                struct skd_request_context *skreq)
678 {
679         /*
680          * restore the next ptr for next IO request so we
681          * don't have to set it every time.
682          */
683         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
684                 skreq->sksg_dma_address +
685                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
686         pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
687 }
688
689 /*
690  *****************************************************************************
691  * TIMER
692  *****************************************************************************
693  */
694
695 static void skd_timer_tick_not_online(struct skd_device *skdev);
696
697 static void skd_start_queue(struct work_struct *work)
698 {
699         struct skd_device *skdev = container_of(work, typeof(*skdev),
700                                                 start_queue);
701
702         /*
703          * Although it is safe to call blk_start_queue() from interrupt
704          * context, blk_mq_start_hw_queues() must not be called from
705          * interrupt context.
706          */
707         blk_mq_start_hw_queues(skdev->queue);
708 }
709
710 static void skd_timer_tick(ulong arg)
711 {
712         struct skd_device *skdev = (struct skd_device *)arg;
713         unsigned long reqflags;
714         u32 state;
715
716         if (skdev->state == SKD_DRVR_STATE_FAULT)
717                 /* The driver has declared fault, and we want it to
718                  * stay that way until driver is reloaded.
719                  */
720                 return;
721
722         spin_lock_irqsave(&skdev->lock, reqflags);
723
724         state = SKD_READL(skdev, FIT_STATUS);
725         state &= FIT_SR_DRIVE_STATE_MASK;
726         if (state != skdev->drive_state)
727                 skd_isr_fwstate(skdev);
728
729         if (skdev->state != SKD_DRVR_STATE_ONLINE)
730                 skd_timer_tick_not_online(skdev);
731
732         mod_timer(&skdev->timer, (jiffies + HZ));
733
734         spin_unlock_irqrestore(&skdev->lock, reqflags);
735 }
736
737 static void skd_timer_tick_not_online(struct skd_device *skdev)
738 {
739         switch (skdev->state) {
740         case SKD_DRVR_STATE_IDLE:
741         case SKD_DRVR_STATE_LOAD:
742                 break;
743         case SKD_DRVR_STATE_BUSY_SANITIZE:
744                 dev_dbg(&skdev->pdev->dev,
745                         "drive busy sanitize[%x], driver[%x]\n",
746                         skdev->drive_state, skdev->state);
747                 /* If we've been in sanitize for 3 seconds, we figure we're not
748                  * going to get anymore completions, so recover requests now
749                  */
750                 if (skdev->timer_countdown > 0) {
751                         skdev->timer_countdown--;
752                         return;
753                 }
754                 skd_recover_requests(skdev);
755                 break;
756
757         case SKD_DRVR_STATE_BUSY:
758         case SKD_DRVR_STATE_BUSY_IMMINENT:
759         case SKD_DRVR_STATE_BUSY_ERASE:
760                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
761                         skdev->state, skdev->timer_countdown);
762                 if (skdev->timer_countdown > 0) {
763                         skdev->timer_countdown--;
764                         return;
765                 }
766                 dev_dbg(&skdev->pdev->dev,
767                         "busy[%x], timedout=%d, restarting device.",
768                         skdev->state, skdev->timer_countdown);
769                 skd_restart_device(skdev);
770                 break;
771
772         case SKD_DRVR_STATE_WAIT_BOOT:
773         case SKD_DRVR_STATE_STARTING:
774                 if (skdev->timer_countdown > 0) {
775                         skdev->timer_countdown--;
776                         return;
777                 }
778                 /* For now, we fault the drive.  Could attempt resets to
779                  * revcover at some point. */
780                 skdev->state = SKD_DRVR_STATE_FAULT;
781
782                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
783                         skdev->drive_state);
784
785                 /*start the queue so we can respond with error to requests */
786                 /* wakeup anyone waiting for startup complete */
787                 schedule_work(&skdev->start_queue);
788                 skdev->gendisk_on = -1;
789                 wake_up_interruptible(&skdev->waitq);
790                 break;
791
792         case SKD_DRVR_STATE_ONLINE:
793                 /* shouldn't get here. */
794                 break;
795
796         case SKD_DRVR_STATE_PAUSING:
797         case SKD_DRVR_STATE_PAUSED:
798                 break;
799
800         case SKD_DRVR_STATE_RESTARTING:
801                 if (skdev->timer_countdown > 0) {
802                         skdev->timer_countdown--;
803                         return;
804                 }
805                 /* For now, we fault the drive. Could attempt resets to
806                  * revcover at some point. */
807                 skdev->state = SKD_DRVR_STATE_FAULT;
808                 dev_err(&skdev->pdev->dev,
809                         "DriveFault Reconnect Timeout (%x)\n",
810                         skdev->drive_state);
811
812                 /*
813                  * Recovering does two things:
814                  * 1. completes IO with error
815                  * 2. reclaims dma resources
816                  * When is it safe to recover requests?
817                  * - if the drive state is faulted
818                  * - if the state is still soft reset after out timeout
819                  * - if the drive registers are dead (state = FF)
820                  * If it is "unsafe", we still need to recover, so we will
821                  * disable pci bus mastering and disable our interrupts.
822                  */
823
824                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
825                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
826                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
827                         /* It never came out of soft reset. Try to
828                          * recover the requests and then let them
829                          * fail. This is to mitigate hung processes. */
830                         skd_recover_requests(skdev);
831                 else {
832                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
833                                 skdev->drive_state);
834                         pci_disable_device(skdev->pdev);
835                         skd_disable_interrupts(skdev);
836                         skd_recover_requests(skdev);
837                 }
838
839                 /*start the queue so we can respond with error to requests */
840                 /* wakeup anyone waiting for startup complete */
841                 schedule_work(&skdev->start_queue);
842                 skdev->gendisk_on = -1;
843                 wake_up_interruptible(&skdev->waitq);
844                 break;
845
846         case SKD_DRVR_STATE_RESUMING:
847         case SKD_DRVR_STATE_STOPPING:
848         case SKD_DRVR_STATE_SYNCING:
849         case SKD_DRVR_STATE_FAULT:
850         case SKD_DRVR_STATE_DISAPPEARED:
851         default:
852                 break;
853         }
854 }
855
856 static int skd_start_timer(struct skd_device *skdev)
857 {
858         int rc;
859
860         setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
861
862         rc = mod_timer(&skdev->timer, (jiffies + HZ));
863         if (rc)
864                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
865         return rc;
866 }
867
868 static void skd_kill_timer(struct skd_device *skdev)
869 {
870         del_timer_sync(&skdev->timer);
871 }
872
873 /*
874  *****************************************************************************
875  * INTERNAL REQUESTS -- generated by driver itself
876  *****************************************************************************
877  */
878
879 static int skd_format_internal_skspcl(struct skd_device *skdev)
880 {
881         struct skd_special_context *skspcl = &skdev->internal_skspcl;
882         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
883         struct fit_msg_hdr *fmh;
884         uint64_t dma_address;
885         struct skd_scsi_request *scsi;
886
887         fmh = &skspcl->msg_buf->fmh;
888         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
889         fmh->num_protocol_cmds_coalesced = 1;
890
891         scsi = &skspcl->msg_buf->scsi[0];
892         memset(scsi, 0, sizeof(*scsi));
893         dma_address = skspcl->req.sksg_dma_address;
894         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
895         skspcl->req.n_sg = 1;
896         sgd->control = FIT_SGD_CONTROL_LAST;
897         sgd->byte_count = 0;
898         sgd->host_side_addr = skspcl->db_dma_address;
899         sgd->dev_side_addr = 0;
900         sgd->next_desc_ptr = 0LL;
901
902         return 1;
903 }
904
905 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
906
907 static void skd_send_internal_skspcl(struct skd_device *skdev,
908                                      struct skd_special_context *skspcl,
909                                      u8 opcode)
910 {
911         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
912         struct skd_scsi_request *scsi;
913         unsigned char *buf = skspcl->data_buf;
914         int i;
915
916         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
917                 /*
918                  * A refresh is already in progress.
919                  * Just wait for it to finish.
920                  */
921                 return;
922
923         skspcl->req.state = SKD_REQ_STATE_BUSY;
924
925         scsi = &skspcl->msg_buf->scsi[0];
926         scsi->hdr.tag = skspcl->req.id;
927
928         memset(scsi->cdb, 0, sizeof(scsi->cdb));
929
930         switch (opcode) {
931         case TEST_UNIT_READY:
932                 scsi->cdb[0] = TEST_UNIT_READY;
933                 sgd->byte_count = 0;
934                 scsi->hdr.sg_list_len_bytes = 0;
935                 break;
936
937         case READ_CAPACITY:
938                 scsi->cdb[0] = READ_CAPACITY;
939                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
940                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
941                 break;
942
943         case INQUIRY:
944                 scsi->cdb[0] = INQUIRY;
945                 scsi->cdb[1] = 0x01;    /* evpd */
946                 scsi->cdb[2] = 0x80;    /* serial number page */
947                 scsi->cdb[4] = 0x10;
948                 sgd->byte_count = 16;
949                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
950                 break;
951
952         case SYNCHRONIZE_CACHE:
953                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
954                 sgd->byte_count = 0;
955                 scsi->hdr.sg_list_len_bytes = 0;
956                 break;
957
958         case WRITE_BUFFER:
959                 scsi->cdb[0] = WRITE_BUFFER;
960                 scsi->cdb[1] = 0x02;
961                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
962                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
963                 sgd->byte_count = WR_BUF_SIZE;
964                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
965                 /* fill incrementing byte pattern */
966                 for (i = 0; i < sgd->byte_count; i++)
967                         buf[i] = i & 0xFF;
968                 break;
969
970         case READ_BUFFER:
971                 scsi->cdb[0] = READ_BUFFER;
972                 scsi->cdb[1] = 0x02;
973                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
974                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
975                 sgd->byte_count = WR_BUF_SIZE;
976                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
977                 memset(skspcl->data_buf, 0, sgd->byte_count);
978                 break;
979
980         default:
981                 SKD_ASSERT("Don't know what to send");
982                 return;
983
984         }
985         skd_send_special_fitmsg(skdev, skspcl);
986 }
987
988 static void skd_refresh_device_data(struct skd_device *skdev)
989 {
990         struct skd_special_context *skspcl = &skdev->internal_skspcl;
991
992         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
993 }
994
995 static int skd_chk_read_buf(struct skd_device *skdev,
996                             struct skd_special_context *skspcl)
997 {
998         unsigned char *buf = skspcl->data_buf;
999         int i;
1000
1001         /* check for incrementing byte pattern */
1002         for (i = 0; i < WR_BUF_SIZE; i++)
1003                 if (buf[i] != (i & 0xFF))
1004                         return 1;
1005
1006         return 0;
1007 }
1008
1009 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1010                                  u8 code, u8 qual, u8 fruc)
1011 {
1012         /* If the check condition is of special interest, log a message */
1013         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1014             && (code == 0x04) && (qual == 0x06)) {
1015                 dev_err(&skdev->pdev->dev,
1016                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1017                         key, code, qual, fruc);
1018         }
1019 }
1020
1021 static void skd_complete_internal(struct skd_device *skdev,
1022                                   struct fit_completion_entry_v1 *skcomp,
1023                                   struct fit_comp_error_info *skerr,
1024                                   struct skd_special_context *skspcl)
1025 {
1026         u8 *buf = skspcl->data_buf;
1027         u8 status;
1028         int i;
1029         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1030
1031         lockdep_assert_held(&skdev->lock);
1032
1033         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1034
1035         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1036
1037         dma_sync_single_for_cpu(&skdev->pdev->dev,
1038                                 skspcl->db_dma_address,
1039                                 skspcl->req.sksg_list[0].byte_count,
1040                                 DMA_BIDIRECTIONAL);
1041
1042         skspcl->req.completion = *skcomp;
1043         skspcl->req.state = SKD_REQ_STATE_IDLE;
1044
1045         status = skspcl->req.completion.status;
1046
1047         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1048                              skerr->qual, skerr->fruc);
1049
1050         switch (scsi->cdb[0]) {
1051         case TEST_UNIT_READY:
1052                 if (status == SAM_STAT_GOOD)
1053                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1054                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1055                          (skerr->key == MEDIUM_ERROR))
1056                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1057                 else {
1058                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1059                                 dev_dbg(&skdev->pdev->dev,
1060                                         "TUR failed, don't send anymore state 0x%x\n",
1061                                         skdev->state);
1062                                 return;
1063                         }
1064                         dev_dbg(&skdev->pdev->dev,
1065                                 "**** TUR failed, retry skerr\n");
1066                         skd_send_internal_skspcl(skdev, skspcl,
1067                                                  TEST_UNIT_READY);
1068                 }
1069                 break;
1070
1071         case WRITE_BUFFER:
1072                 if (status == SAM_STAT_GOOD)
1073                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1074                 else {
1075                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1076                                 dev_dbg(&skdev->pdev->dev,
1077                                         "write buffer failed, don't send anymore state 0x%x\n",
1078                                         skdev->state);
1079                                 return;
1080                         }
1081                         dev_dbg(&skdev->pdev->dev,
1082                                 "**** write buffer failed, retry skerr\n");
1083                         skd_send_internal_skspcl(skdev, skspcl,
1084                                                  TEST_UNIT_READY);
1085                 }
1086                 break;
1087
1088         case READ_BUFFER:
1089                 if (status == SAM_STAT_GOOD) {
1090                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1091                                 skd_send_internal_skspcl(skdev, skspcl,
1092                                                          READ_CAPACITY);
1093                         else {
1094                                 dev_err(&skdev->pdev->dev,
1095                                         "*** W/R Buffer mismatch %d ***\n",
1096                                         skdev->connect_retries);
1097                                 if (skdev->connect_retries <
1098                                     SKD_MAX_CONNECT_RETRIES) {
1099                                         skdev->connect_retries++;
1100                                         skd_soft_reset(skdev);
1101                                 } else {
1102                                         dev_err(&skdev->pdev->dev,
1103                                                 "W/R Buffer Connect Error\n");
1104                                         return;
1105                                 }
1106                         }
1107
1108                 } else {
1109                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1110                                 dev_dbg(&skdev->pdev->dev,
1111                                         "read buffer failed, don't send anymore state 0x%x\n",
1112                                         skdev->state);
1113                                 return;
1114                         }
1115                         dev_dbg(&skdev->pdev->dev,
1116                                 "**** read buffer failed, retry skerr\n");
1117                         skd_send_internal_skspcl(skdev, skspcl,
1118                                                  TEST_UNIT_READY);
1119                 }
1120                 break;
1121
1122         case READ_CAPACITY:
1123                 skdev->read_cap_is_valid = 0;
1124                 if (status == SAM_STAT_GOOD) {
1125                         skdev->read_cap_last_lba =
1126                                 (buf[0] << 24) | (buf[1] << 16) |
1127                                 (buf[2] << 8) | buf[3];
1128                         skdev->read_cap_blocksize =
1129                                 (buf[4] << 24) | (buf[5] << 16) |
1130                                 (buf[6] << 8) | buf[7];
1131
1132                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1133                                 skdev->read_cap_last_lba,
1134                                 skdev->read_cap_blocksize);
1135
1136                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1137
1138                         skdev->read_cap_is_valid = 1;
1139
1140                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1141                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1142                            (skerr->key == MEDIUM_ERROR)) {
1143                         skdev->read_cap_last_lba = ~0;
1144                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1145                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1146                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1147                 } else {
1148                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1149                         skd_send_internal_skspcl(skdev, skspcl,
1150                                                  TEST_UNIT_READY);
1151                 }
1152                 break;
1153
1154         case INQUIRY:
1155                 skdev->inquiry_is_valid = 0;
1156                 if (status == SAM_STAT_GOOD) {
1157                         skdev->inquiry_is_valid = 1;
1158
1159                         for (i = 0; i < 12; i++)
1160                                 skdev->inq_serial_num[i] = buf[i + 4];
1161                         skdev->inq_serial_num[12] = 0;
1162                 }
1163
1164                 if (skd_unquiesce_dev(skdev) < 0)
1165                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1166                  /* connection is complete */
1167                 skdev->connect_retries = 0;
1168                 break;
1169
1170         case SYNCHRONIZE_CACHE:
1171                 if (status == SAM_STAT_GOOD)
1172                         skdev->sync_done = 1;
1173                 else
1174                         skdev->sync_done = -1;
1175                 wake_up_interruptible(&skdev->waitq);
1176                 break;
1177
1178         default:
1179                 SKD_ASSERT("we didn't send this");
1180         }
1181 }
1182
1183 /*
1184  *****************************************************************************
1185  * FIT MESSAGES
1186  *****************************************************************************
1187  */
1188
1189 static void skd_send_fitmsg(struct skd_device *skdev,
1190                             struct skd_fitmsg_context *skmsg)
1191 {
1192         u64 qcmd;
1193
1194         dev_dbg(&skdev->pdev->dev, "dma address 0x%llx, busy=%d\n",
1195                 skmsg->mb_dma_address, skd_in_flight(skdev));
1196         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1197
1198         qcmd = skmsg->mb_dma_address;
1199         qcmd |= FIT_QCMD_QID_NORMAL;
1200
1201         if (unlikely(skdev->dbg_level > 1)) {
1202                 u8 *bp = (u8 *)skmsg->msg_buf;
1203                 int i;
1204                 for (i = 0; i < skmsg->length; i += 8) {
1205                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1206                                 &bp[i]);
1207                         if (i == 0)
1208                                 i = 64 - 8;
1209                 }
1210         }
1211
1212         if (skmsg->length > 256)
1213                 qcmd |= FIT_QCMD_MSGSIZE_512;
1214         else if (skmsg->length > 128)
1215                 qcmd |= FIT_QCMD_MSGSIZE_256;
1216         else if (skmsg->length > 64)
1217                 qcmd |= FIT_QCMD_MSGSIZE_128;
1218         else
1219                 /*
1220                  * This makes no sense because the FIT msg header is
1221                  * 64 bytes. If the msg is only 64 bytes long it has
1222                  * no payload.
1223                  */
1224                 qcmd |= FIT_QCMD_MSGSIZE_64;
1225
1226         dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1227                                    skmsg->length, DMA_TO_DEVICE);
1228
1229         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1230         smp_wmb();
1231
1232         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1233 }
1234
1235 static void skd_send_special_fitmsg(struct skd_device *skdev,
1236                                     struct skd_special_context *skspcl)
1237 {
1238         u64 qcmd;
1239
1240         WARN_ON_ONCE(skspcl->req.n_sg != 1);
1241
1242         if (unlikely(skdev->dbg_level > 1)) {
1243                 u8 *bp = (u8 *)skspcl->msg_buf;
1244                 int i;
1245
1246                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1247                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1248                                 &bp[i]);
1249                         if (i == 0)
1250                                 i = 64 - 8;
1251                 }
1252
1253                 dev_dbg(&skdev->pdev->dev,
1254                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
1255                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1256                         skspcl->req.sksg_dma_address);
1257                 for (i = 0; i < skspcl->req.n_sg; i++) {
1258                         struct fit_sg_descriptor *sgd =
1259                                 &skspcl->req.sksg_list[i];
1260
1261                         dev_dbg(&skdev->pdev->dev,
1262                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1263                                 i, sgd->byte_count, sgd->control,
1264                                 sgd->host_side_addr, sgd->next_desc_ptr);
1265                 }
1266         }
1267
1268         /*
1269          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1270          * and one 64-byte SSDI command.
1271          */
1272         qcmd = skspcl->mb_dma_address;
1273         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1274
1275         dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1276                                    SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1277         dma_sync_single_for_device(&skdev->pdev->dev,
1278                                    skspcl->req.sksg_dma_address,
1279                                    1 * sizeof(struct fit_sg_descriptor),
1280                                    DMA_TO_DEVICE);
1281         dma_sync_single_for_device(&skdev->pdev->dev,
1282                                    skspcl->db_dma_address,
1283                                    skspcl->req.sksg_list[0].byte_count,
1284                                    DMA_BIDIRECTIONAL);
1285
1286         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1287         smp_wmb();
1288
1289         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1290 }
1291
1292 /*
1293  *****************************************************************************
1294  * COMPLETION QUEUE
1295  *****************************************************************************
1296  */
1297
1298 static void skd_complete_other(struct skd_device *skdev,
1299                                struct fit_completion_entry_v1 *skcomp,
1300                                struct fit_comp_error_info *skerr);
1301
1302 struct sns_info {
1303         u8 type;
1304         u8 stat;
1305         u8 key;
1306         u8 asc;
1307         u8 ascq;
1308         u8 mask;
1309         enum skd_check_status_action action;
1310 };
1311
1312 static struct sns_info skd_chkstat_table[] = {
1313         /* Good */
1314         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1315           SKD_CHECK_STATUS_REPORT_GOOD },
1316
1317         /* Smart alerts */
1318         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1319           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1320         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1321           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1322         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1323           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1324
1325         /* Retry (with limits) */
1326         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1327           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1328         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1329           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1330         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1331           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1332         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1333           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1334
1335         /* Busy (or about to be) */
1336         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1337           SKD_CHECK_STATUS_BUSY_IMMINENT },
1338 };
1339
1340 /*
1341  * Look up status and sense data to decide how to handle the error
1342  * from the device.
1343  * mask says which fields must match e.g., mask=0x18 means check
1344  * type and stat, ignore key, asc, ascq.
1345  */
1346
1347 static enum skd_check_status_action
1348 skd_check_status(struct skd_device *skdev,
1349                  u8 cmp_status, struct fit_comp_error_info *skerr)
1350 {
1351         int i;
1352
1353         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1354                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1355
1356         dev_dbg(&skdev->pdev->dev,
1357                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1358                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1359                 skerr->fruc);
1360
1361         /* Does the info match an entry in the good category? */
1362         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1363                 struct sns_info *sns = &skd_chkstat_table[i];
1364
1365                 if (sns->mask & 0x10)
1366                         if (skerr->type != sns->type)
1367                                 continue;
1368
1369                 if (sns->mask & 0x08)
1370                         if (cmp_status != sns->stat)
1371                                 continue;
1372
1373                 if (sns->mask & 0x04)
1374                         if (skerr->key != sns->key)
1375                                 continue;
1376
1377                 if (sns->mask & 0x02)
1378                         if (skerr->code != sns->asc)
1379                                 continue;
1380
1381                 if (sns->mask & 0x01)
1382                         if (skerr->qual != sns->ascq)
1383                                 continue;
1384
1385                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1386                         dev_err(&skdev->pdev->dev,
1387                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1388                                 skerr->key, skerr->code, skerr->qual);
1389                 }
1390                 return sns->action;
1391         }
1392
1393         /* No other match, so nonzero status means error,
1394          * zero status means good
1395          */
1396         if (cmp_status) {
1397                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1398                 return SKD_CHECK_STATUS_REPORT_ERROR;
1399         }
1400
1401         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1402         return SKD_CHECK_STATUS_REPORT_GOOD;
1403 }
1404
1405 static void skd_resolve_req_exception(struct skd_device *skdev,
1406                                       struct skd_request_context *skreq,
1407                                       struct request *req)
1408 {
1409         u8 cmp_status = skreq->completion.status;
1410
1411         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1412         case SKD_CHECK_STATUS_REPORT_GOOD:
1413         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1414                 skreq->status = BLK_STS_OK;
1415                 blk_mq_complete_request(req);
1416                 break;
1417
1418         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1419                 skd_log_skreq(skdev, skreq, "retry(busy)");
1420                 blk_requeue_request(skdev->queue, req);
1421                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1422                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1423                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1424                 skd_quiesce_dev(skdev);
1425                 break;
1426
1427         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1428                 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1429                         skd_log_skreq(skdev, skreq, "retry");
1430                         blk_requeue_request(skdev->queue, req);
1431                         break;
1432                 }
1433                 /* fall through */
1434
1435         case SKD_CHECK_STATUS_REPORT_ERROR:
1436         default:
1437                 skreq->status = BLK_STS_IOERR;
1438                 blk_mq_complete_request(req);
1439                 break;
1440         }
1441 }
1442
1443 static void skd_release_skreq(struct skd_device *skdev,
1444                               struct skd_request_context *skreq)
1445 {
1446         /*
1447          * Reclaim the skd_request_context
1448          */
1449         skreq->state = SKD_REQ_STATE_IDLE;
1450 }
1451
1452 static int skd_isr_completion_posted(struct skd_device *skdev,
1453                                         int limit, int *enqueued)
1454 {
1455         struct fit_completion_entry_v1 *skcmp;
1456         struct fit_comp_error_info *skerr;
1457         u16 req_id;
1458         u32 tag;
1459         u16 hwq = 0;
1460         struct request *rq;
1461         struct skd_request_context *skreq;
1462         u16 cmp_cntxt;
1463         u8 cmp_status;
1464         u8 cmp_cycle;
1465         u32 cmp_bytes;
1466         int rc = 0;
1467         int processed = 0;
1468
1469         lockdep_assert_held(&skdev->lock);
1470
1471         for (;; ) {
1472                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1473
1474                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1475                 cmp_cycle = skcmp->cycle;
1476                 cmp_cntxt = skcmp->tag;
1477                 cmp_status = skcmp->status;
1478                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1479
1480                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1481
1482                 dev_dbg(&skdev->pdev->dev,
1483                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1484                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1485                         cmp_cntxt, cmp_status, skd_in_flight(skdev),
1486                         cmp_bytes, skdev->proto_ver);
1487
1488                 if (cmp_cycle != skdev->skcomp_cycle) {
1489                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1490                         break;
1491                 }
1492                 /*
1493                  * Update the completion queue head index and possibly
1494                  * the completion cycle count. 8-bit wrap-around.
1495                  */
1496                 skdev->skcomp_ix++;
1497                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1498                         skdev->skcomp_ix = 0;
1499                         skdev->skcomp_cycle++;
1500                 }
1501
1502                 /*
1503                  * The command context is a unique 32-bit ID. The low order
1504                  * bits help locate the request. The request is usually a
1505                  * r/w request (see skd_start() above) or a special request.
1506                  */
1507                 req_id = cmp_cntxt;
1508                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1509
1510                 /* Is this other than a r/w request? */
1511                 if (tag >= skdev->num_req_context) {
1512                         /*
1513                          * This is not a completion for a r/w request.
1514                          */
1515                         WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1516                                                       tag));
1517                         skd_complete_other(skdev, skcmp, skerr);
1518                         continue;
1519                 }
1520
1521                 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1522                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1523                          tag))
1524                         continue;
1525                 skreq = blk_mq_rq_to_pdu(rq);
1526
1527                 /*
1528                  * Make sure the request ID for the slot matches.
1529                  */
1530                 if (skreq->id != req_id) {
1531                         dev_err(&skdev->pdev->dev,
1532                                 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1533                                 req_id, skreq->id, cmp_cntxt);
1534
1535                         continue;
1536                 }
1537
1538                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1539
1540                 skreq->completion = *skcmp;
1541                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1542                         skreq->err_info = *skerr;
1543                         skd_log_check_status(skdev, cmp_status, skerr->key,
1544                                              skerr->code, skerr->qual,
1545                                              skerr->fruc);
1546                 }
1547                 /* Release DMA resources for the request. */
1548                 if (skreq->n_sg > 0)
1549                         skd_postop_sg_list(skdev, skreq);
1550
1551                 skd_release_skreq(skdev, skreq);
1552
1553                 /*
1554                  * Capture the outcome and post it back to the native request.
1555                  */
1556                 if (likely(cmp_status == SAM_STAT_GOOD)) {
1557                         skreq->status = BLK_STS_OK;
1558                         blk_mq_complete_request(rq);
1559                 } else {
1560                         skd_resolve_req_exception(skdev, skreq, rq);
1561                 }
1562
1563                 /* skd_isr_comp_limit equal zero means no limit */
1564                 if (limit) {
1565                         if (++processed >= limit) {
1566                                 rc = 1;
1567                                 break;
1568                         }
1569                 }
1570         }
1571
1572         if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1573             skd_in_flight(skdev) == 0) {
1574                 skdev->state = SKD_DRVR_STATE_PAUSED;
1575                 wake_up_interruptible(&skdev->waitq);
1576         }
1577
1578         return rc;
1579 }
1580
1581 static void skd_complete_other(struct skd_device *skdev,
1582                                struct fit_completion_entry_v1 *skcomp,
1583                                struct fit_comp_error_info *skerr)
1584 {
1585         u32 req_id = 0;
1586         u32 req_table;
1587         u32 req_slot;
1588         struct skd_special_context *skspcl;
1589
1590         lockdep_assert_held(&skdev->lock);
1591
1592         req_id = skcomp->tag;
1593         req_table = req_id & SKD_ID_TABLE_MASK;
1594         req_slot = req_id & SKD_ID_SLOT_MASK;
1595
1596         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1597                 req_id, req_slot);
1598
1599         /*
1600          * Based on the request id, determine how to dispatch this completion.
1601          * This swich/case is finding the good cases and forwarding the
1602          * completion entry. Errors are reported below the switch.
1603          */
1604         switch (req_table) {
1605         case SKD_ID_RW_REQUEST:
1606                 /*
1607                  * The caller, skd_isr_completion_posted() above,
1608                  * handles r/w requests. The only way we get here
1609                  * is if the req_slot is out of bounds.
1610                  */
1611                 break;
1612
1613         case SKD_ID_INTERNAL:
1614                 if (req_slot == 0) {
1615                         skspcl = &skdev->internal_skspcl;
1616                         if (skspcl->req.id == req_id &&
1617                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1618                                 skd_complete_internal(skdev,
1619                                                       skcomp, skerr, skspcl);
1620                                 return;
1621                         }
1622                 }
1623                 break;
1624
1625         case SKD_ID_FIT_MSG:
1626                 /*
1627                  * These id's should never appear in a completion record.
1628                  */
1629                 break;
1630
1631         default:
1632                 /*
1633                  * These id's should never appear anywhere;
1634                  */
1635                 break;
1636         }
1637
1638         /*
1639          * If we get here it is a bad or stale id.
1640          */
1641 }
1642
1643 static void skd_reset_skcomp(struct skd_device *skdev)
1644 {
1645         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1646
1647         skdev->skcomp_ix = 0;
1648         skdev->skcomp_cycle = 1;
1649 }
1650
1651 /*
1652  *****************************************************************************
1653  * INTERRUPTS
1654  *****************************************************************************
1655  */
1656 static void skd_completion_worker(struct work_struct *work)
1657 {
1658         struct skd_device *skdev =
1659                 container_of(work, struct skd_device, completion_worker);
1660         unsigned long flags;
1661         int flush_enqueued = 0;
1662
1663         spin_lock_irqsave(&skdev->lock, flags);
1664
1665         /*
1666          * pass in limit=0, which means no limit..
1667          * process everything in compq
1668          */
1669         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1670         schedule_work(&skdev->start_queue);
1671
1672         spin_unlock_irqrestore(&skdev->lock, flags);
1673 }
1674
1675 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1676
1677 static irqreturn_t
1678 skd_isr(int irq, void *ptr)
1679 {
1680         struct skd_device *skdev = ptr;
1681         u32 intstat;
1682         u32 ack;
1683         int rc = 0;
1684         int deferred = 0;
1685         int flush_enqueued = 0;
1686
1687         spin_lock(&skdev->lock);
1688
1689         for (;; ) {
1690                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1691
1692                 ack = FIT_INT_DEF_MASK;
1693                 ack &= intstat;
1694
1695                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1696                         ack);
1697
1698                 /* As long as there is an int pending on device, keep
1699                  * running loop.  When none, get out, but if we've never
1700                  * done any processing, call completion handler?
1701                  */
1702                 if (ack == 0) {
1703                         /* No interrupts on device, but run the completion
1704                          * processor anyway?
1705                          */
1706                         if (rc == 0)
1707                                 if (likely (skdev->state
1708                                         == SKD_DRVR_STATE_ONLINE))
1709                                         deferred = 1;
1710                         break;
1711                 }
1712
1713                 rc = IRQ_HANDLED;
1714
1715                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1716
1717                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1718                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1719                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1720                                 /*
1721                                  * If we have already deferred completion
1722                                  * processing, don't bother running it again
1723                                  */
1724                                 if (deferred == 0)
1725                                         deferred =
1726                                                 skd_isr_completion_posted(skdev,
1727                                                 skd_isr_comp_limit, &flush_enqueued);
1728                         }
1729
1730                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1731                                 skd_isr_fwstate(skdev);
1732                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1733                                     skdev->state ==
1734                                     SKD_DRVR_STATE_DISAPPEARED) {
1735                                         spin_unlock(&skdev->lock);
1736                                         return rc;
1737                                 }
1738                         }
1739
1740                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1741                                 skd_isr_msg_from_dev(skdev);
1742                 }
1743         }
1744
1745         if (unlikely(flush_enqueued))
1746                 schedule_work(&skdev->start_queue);
1747
1748         if (deferred)
1749                 schedule_work(&skdev->completion_worker);
1750         else if (!flush_enqueued)
1751                 schedule_work(&skdev->start_queue);
1752
1753         spin_unlock(&skdev->lock);
1754
1755         return rc;
1756 }
1757
1758 static void skd_drive_fault(struct skd_device *skdev)
1759 {
1760         skdev->state = SKD_DRVR_STATE_FAULT;
1761         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1762 }
1763
1764 static void skd_drive_disappeared(struct skd_device *skdev)
1765 {
1766         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1767         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1768 }
1769
1770 static void skd_isr_fwstate(struct skd_device *skdev)
1771 {
1772         u32 sense;
1773         u32 state;
1774         u32 mtd;
1775         int prev_driver_state = skdev->state;
1776
1777         sense = SKD_READL(skdev, FIT_STATUS);
1778         state = sense & FIT_SR_DRIVE_STATE_MASK;
1779
1780         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1781                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1782                 skd_drive_state_to_str(state), state);
1783
1784         skdev->drive_state = state;
1785
1786         switch (skdev->drive_state) {
1787         case FIT_SR_DRIVE_INIT:
1788                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1789                         skd_disable_interrupts(skdev);
1790                         break;
1791                 }
1792                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1793                         skd_recover_requests(skdev);
1794                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1795                         skdev->timer_countdown = SKD_STARTING_TIMO;
1796                         skdev->state = SKD_DRVR_STATE_STARTING;
1797                         skd_soft_reset(skdev);
1798                         break;
1799                 }
1800                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1801                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1802                 skdev->last_mtd = mtd;
1803                 break;
1804
1805         case FIT_SR_DRIVE_ONLINE:
1806                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1807                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1808                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1809
1810                 skdev->queue_low_water_mark =
1811                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1812                 if (skdev->queue_low_water_mark < 1)
1813                         skdev->queue_low_water_mark = 1;
1814                 dev_info(&skdev->pdev->dev,
1815                          "Queue depth limit=%d dev=%d lowat=%d\n",
1816                          skdev->cur_max_queue_depth,
1817                          skdev->dev_max_queue_depth,
1818                          skdev->queue_low_water_mark);
1819
1820                 skd_refresh_device_data(skdev);
1821                 break;
1822
1823         case FIT_SR_DRIVE_BUSY:
1824                 skdev->state = SKD_DRVR_STATE_BUSY;
1825                 skdev->timer_countdown = SKD_BUSY_TIMO;
1826                 skd_quiesce_dev(skdev);
1827                 break;
1828         case FIT_SR_DRIVE_BUSY_SANITIZE:
1829                 /* set timer for 3 seconds, we'll abort any unfinished
1830                  * commands after that expires
1831                  */
1832                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1833                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1834                 schedule_work(&skdev->start_queue);
1835                 break;
1836         case FIT_SR_DRIVE_BUSY_ERASE:
1837                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1838                 skdev->timer_countdown = SKD_BUSY_TIMO;
1839                 break;
1840         case FIT_SR_DRIVE_OFFLINE:
1841                 skdev->state = SKD_DRVR_STATE_IDLE;
1842                 break;
1843         case FIT_SR_DRIVE_SOFT_RESET:
1844                 switch (skdev->state) {
1845                 case SKD_DRVR_STATE_STARTING:
1846                 case SKD_DRVR_STATE_RESTARTING:
1847                         /* Expected by a caller of skd_soft_reset() */
1848                         break;
1849                 default:
1850                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1851                         break;
1852                 }
1853                 break;
1854         case FIT_SR_DRIVE_FW_BOOTING:
1855                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1856                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1857                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1858                 break;
1859
1860         case FIT_SR_DRIVE_DEGRADED:
1861         case FIT_SR_PCIE_LINK_DOWN:
1862         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1863                 break;
1864
1865         case FIT_SR_DRIVE_FAULT:
1866                 skd_drive_fault(skdev);
1867                 skd_recover_requests(skdev);
1868                 schedule_work(&skdev->start_queue);
1869                 break;
1870
1871         /* PCIe bus returned all Fs? */
1872         case 0xFF:
1873                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1874                          sense);
1875                 skd_drive_disappeared(skdev);
1876                 skd_recover_requests(skdev);
1877                 schedule_work(&skdev->start_queue);
1878                 break;
1879         default:
1880                 /*
1881                  * Uknown FW State. Wait for a state we recognize.
1882                  */
1883                 break;
1884         }
1885         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1886                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1887                 skd_skdev_state_to_str(skdev->state), skdev->state);
1888 }
1889
1890 static void skd_recover_request(struct request *req, void *data, bool reserved)
1891 {
1892         struct skd_device *const skdev = data;
1893         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1894
1895         if (skreq->state != SKD_REQ_STATE_BUSY)
1896                 return;
1897
1898         skd_log_skreq(skdev, skreq, "recover");
1899
1900         /* Release DMA resources for the request. */
1901         if (skreq->n_sg > 0)
1902                 skd_postop_sg_list(skdev, skreq);
1903
1904         skreq->state = SKD_REQ_STATE_IDLE;
1905         skreq->status = BLK_STS_IOERR;
1906         blk_mq_complete_request(req);
1907 }
1908
1909 static void skd_recover_requests(struct skd_device *skdev)
1910 {
1911         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1912 }
1913
1914 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1915 {
1916         u32 mfd;
1917         u32 mtd;
1918         u32 data;
1919
1920         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1921
1922         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1923                 skdev->last_mtd);
1924
1925         /* ignore any mtd that is an ack for something we didn't send */
1926         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1927                 return;
1928
1929         switch (FIT_MXD_TYPE(mfd)) {
1930         case FIT_MTD_FITFW_INIT:
1931                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1932
1933                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1934                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1935                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1936                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1937                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1938                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1939                         skd_soft_reset(skdev);
1940                         break;
1941                 }
1942                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1943                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1944                 skdev->last_mtd = mtd;
1945                 break;
1946
1947         case FIT_MTD_GET_CMDQ_DEPTH:
1948                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1949                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1950                                    SKD_N_COMPLETION_ENTRY);
1951                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1952                 skdev->last_mtd = mtd;
1953                 break;
1954
1955         case FIT_MTD_SET_COMPQ_DEPTH:
1956                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1957                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1958                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1959                 skdev->last_mtd = mtd;
1960                 break;
1961
1962         case FIT_MTD_SET_COMPQ_ADDR:
1963                 skd_reset_skcomp(skdev);
1964                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1965                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1966                 skdev->last_mtd = mtd;
1967                 break;
1968
1969         case FIT_MTD_CMD_LOG_HOST_ID:
1970                 skdev->connect_time_stamp = get_seconds();
1971                 data = skdev->connect_time_stamp & 0xFFFF;
1972                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1973                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1974                 skdev->last_mtd = mtd;
1975                 break;
1976
1977         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1978                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1979                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1980                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1981                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1982                 skdev->last_mtd = mtd;
1983                 break;
1984
1985         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1986                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1987                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1988                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1989                 skdev->last_mtd = mtd;
1990
1991                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1992                         skdev->connect_time_stamp, skdev->drive_jiffies);
1993                 break;
1994
1995         case FIT_MTD_ARM_QUEUE:
1996                 skdev->last_mtd = 0;
1997                 /*
1998                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
1999                  */
2000                 break;
2001
2002         default:
2003                 break;
2004         }
2005 }
2006
2007 static void skd_disable_interrupts(struct skd_device *skdev)
2008 {
2009         u32 sense;
2010
2011         sense = SKD_READL(skdev, FIT_CONTROL);
2012         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2013         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2014         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2015
2016         /* Note that the 1s is written. A 1-bit means
2017          * disable, a 0 means enable.
2018          */
2019         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2020 }
2021
2022 static void skd_enable_interrupts(struct skd_device *skdev)
2023 {
2024         u32 val;
2025
2026         /* unmask interrupts first */
2027         val = FIT_ISH_FW_STATE_CHANGE +
2028               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2029
2030         /* Note that the compliment of mask is written. A 1-bit means
2031          * disable, a 0 means enable. */
2032         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2033         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2034
2035         val = SKD_READL(skdev, FIT_CONTROL);
2036         val |= FIT_CR_ENABLE_INTERRUPTS;
2037         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2038         SKD_WRITEL(skdev, val, FIT_CONTROL);
2039 }
2040
2041 /*
2042  *****************************************************************************
2043  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2044  *****************************************************************************
2045  */
2046
2047 static void skd_soft_reset(struct skd_device *skdev)
2048 {
2049         u32 val;
2050
2051         val = SKD_READL(skdev, FIT_CONTROL);
2052         val |= (FIT_CR_SOFT_RESET);
2053         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2054         SKD_WRITEL(skdev, val, FIT_CONTROL);
2055 }
2056
2057 static void skd_start_device(struct skd_device *skdev)
2058 {
2059         unsigned long flags;
2060         u32 sense;
2061         u32 state;
2062
2063         spin_lock_irqsave(&skdev->lock, flags);
2064
2065         /* ack all ghost interrupts */
2066         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2067
2068         sense = SKD_READL(skdev, FIT_STATUS);
2069
2070         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2071
2072         state = sense & FIT_SR_DRIVE_STATE_MASK;
2073         skdev->drive_state = state;
2074         skdev->last_mtd = 0;
2075
2076         skdev->state = SKD_DRVR_STATE_STARTING;
2077         skdev->timer_countdown = SKD_STARTING_TIMO;
2078
2079         skd_enable_interrupts(skdev);
2080
2081         switch (skdev->drive_state) {
2082         case FIT_SR_DRIVE_OFFLINE:
2083                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2084                 break;
2085
2086         case FIT_SR_DRIVE_FW_BOOTING:
2087                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2088                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2089                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2090                 break;
2091
2092         case FIT_SR_DRIVE_BUSY_SANITIZE:
2093                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2094                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2095                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2096                 break;
2097
2098         case FIT_SR_DRIVE_BUSY_ERASE:
2099                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2100                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2101                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2102                 break;
2103
2104         case FIT_SR_DRIVE_INIT:
2105         case FIT_SR_DRIVE_ONLINE:
2106                 skd_soft_reset(skdev);
2107                 break;
2108
2109         case FIT_SR_DRIVE_BUSY:
2110                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2111                 skdev->state = SKD_DRVR_STATE_BUSY;
2112                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2113                 break;
2114
2115         case FIT_SR_DRIVE_SOFT_RESET:
2116                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2117                 break;
2118
2119         case FIT_SR_DRIVE_FAULT:
2120                 /* Fault state is bad...soft reset won't do it...
2121                  * Hard reset, maybe, but does it work on device?
2122                  * For now, just fault so the system doesn't hang.
2123                  */
2124                 skd_drive_fault(skdev);
2125                 /*start the queue so we can respond with error to requests */
2126                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2127                 schedule_work(&skdev->start_queue);
2128                 skdev->gendisk_on = -1;
2129                 wake_up_interruptible(&skdev->waitq);
2130                 break;
2131
2132         case 0xFF:
2133                 /* Most likely the device isn't there or isn't responding
2134                  * to the BAR1 addresses. */
2135                 skd_drive_disappeared(skdev);
2136                 /*start the queue so we can respond with error to requests */
2137                 dev_dbg(&skdev->pdev->dev,
2138                         "starting queue to error-out reqs\n");
2139                 schedule_work(&skdev->start_queue);
2140                 skdev->gendisk_on = -1;
2141                 wake_up_interruptible(&skdev->waitq);
2142                 break;
2143
2144         default:
2145                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2146                         skdev->drive_state);
2147                 break;
2148         }
2149
2150         state = SKD_READL(skdev, FIT_CONTROL);
2151         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2152
2153         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2154         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2155
2156         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2157         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2158
2159         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2160         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2161
2162         state = SKD_READL(skdev, FIT_HW_VERSION);
2163         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2164
2165         spin_unlock_irqrestore(&skdev->lock, flags);
2166 }
2167
2168 static void skd_stop_device(struct skd_device *skdev)
2169 {
2170         unsigned long flags;
2171         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2172         u32 dev_state;
2173         int i;
2174
2175         spin_lock_irqsave(&skdev->lock, flags);
2176
2177         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2178                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2179                 goto stop_out;
2180         }
2181
2182         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2183                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2184                 goto stop_out;
2185         }
2186
2187         skdev->state = SKD_DRVR_STATE_SYNCING;
2188         skdev->sync_done = 0;
2189
2190         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2191
2192         spin_unlock_irqrestore(&skdev->lock, flags);
2193
2194         wait_event_interruptible_timeout(skdev->waitq,
2195                                          (skdev->sync_done), (10 * HZ));
2196
2197         spin_lock_irqsave(&skdev->lock, flags);
2198
2199         switch (skdev->sync_done) {
2200         case 0:
2201                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2202                 break;
2203         case 1:
2204                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2205                 break;
2206         default:
2207                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2208         }
2209
2210 stop_out:
2211         skdev->state = SKD_DRVR_STATE_STOPPING;
2212         spin_unlock_irqrestore(&skdev->lock, flags);
2213
2214         skd_kill_timer(skdev);
2215
2216         spin_lock_irqsave(&skdev->lock, flags);
2217         skd_disable_interrupts(skdev);
2218
2219         /* ensure all ints on device are cleared */
2220         /* soft reset the device to unload with a clean slate */
2221         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2222         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2223
2224         spin_unlock_irqrestore(&skdev->lock, flags);
2225
2226         /* poll every 100ms, 1 second timeout */
2227         for (i = 0; i < 10; i++) {
2228                 dev_state =
2229                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2230                 if (dev_state == FIT_SR_DRIVE_INIT)
2231                         break;
2232                 set_current_state(TASK_INTERRUPTIBLE);
2233                 schedule_timeout(msecs_to_jiffies(100));
2234         }
2235
2236         if (dev_state != FIT_SR_DRIVE_INIT)
2237                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2238                         dev_state);
2239 }
2240
2241 /* assume spinlock is held */
2242 static void skd_restart_device(struct skd_device *skdev)
2243 {
2244         u32 state;
2245
2246         /* ack all ghost interrupts */
2247         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2248
2249         state = SKD_READL(skdev, FIT_STATUS);
2250
2251         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2252
2253         state &= FIT_SR_DRIVE_STATE_MASK;
2254         skdev->drive_state = state;
2255         skdev->last_mtd = 0;
2256
2257         skdev->state = SKD_DRVR_STATE_RESTARTING;
2258         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2259
2260         skd_soft_reset(skdev);
2261 }
2262
2263 /* assume spinlock is held */
2264 static int skd_quiesce_dev(struct skd_device *skdev)
2265 {
2266         int rc = 0;
2267
2268         switch (skdev->state) {
2269         case SKD_DRVR_STATE_BUSY:
2270         case SKD_DRVR_STATE_BUSY_IMMINENT:
2271                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2272                 blk_mq_stop_hw_queues(skdev->queue);
2273                 break;
2274         case SKD_DRVR_STATE_ONLINE:
2275         case SKD_DRVR_STATE_STOPPING:
2276         case SKD_DRVR_STATE_SYNCING:
2277         case SKD_DRVR_STATE_PAUSING:
2278         case SKD_DRVR_STATE_PAUSED:
2279         case SKD_DRVR_STATE_STARTING:
2280         case SKD_DRVR_STATE_RESTARTING:
2281         case SKD_DRVR_STATE_RESUMING:
2282         default:
2283                 rc = -EINVAL;
2284                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2285                         skdev->state);
2286         }
2287         return rc;
2288 }
2289
2290 /* assume spinlock is held */
2291 static int skd_unquiesce_dev(struct skd_device *skdev)
2292 {
2293         int prev_driver_state = skdev->state;
2294
2295         skd_log_skdev(skdev, "unquiesce");
2296         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2297                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2298                 return 0;
2299         }
2300         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2301                 /*
2302                  * If there has been an state change to other than
2303                  * ONLINE, we will rely on controller state change
2304                  * to come back online and restart the queue.
2305                  * The BUSY state means that driver is ready to
2306                  * continue normal processing but waiting for controller
2307                  * to become available.
2308                  */
2309                 skdev->state = SKD_DRVR_STATE_BUSY;
2310                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2311                 return 0;
2312         }
2313
2314         /*
2315          * Drive has just come online, driver is either in startup,
2316          * paused performing a task, or bust waiting for hardware.
2317          */
2318         switch (skdev->state) {
2319         case SKD_DRVR_STATE_PAUSED:
2320         case SKD_DRVR_STATE_BUSY:
2321         case SKD_DRVR_STATE_BUSY_IMMINENT:
2322         case SKD_DRVR_STATE_BUSY_ERASE:
2323         case SKD_DRVR_STATE_STARTING:
2324         case SKD_DRVR_STATE_RESTARTING:
2325         case SKD_DRVR_STATE_FAULT:
2326         case SKD_DRVR_STATE_IDLE:
2327         case SKD_DRVR_STATE_LOAD:
2328                 skdev->state = SKD_DRVR_STATE_ONLINE;
2329                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2330                         skd_skdev_state_to_str(prev_driver_state),
2331                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2332                         skdev->state);
2333                 dev_dbg(&skdev->pdev->dev,
2334                         "**** device ONLINE...starting block queue\n");
2335                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2336                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2337                 schedule_work(&skdev->start_queue);
2338                 skdev->gendisk_on = 1;
2339                 wake_up_interruptible(&skdev->waitq);
2340                 break;
2341
2342         case SKD_DRVR_STATE_DISAPPEARED:
2343         default:
2344                 dev_dbg(&skdev->pdev->dev,
2345                         "**** driver state %d, not implemented\n",
2346                         skdev->state);
2347                 return -EBUSY;
2348         }
2349         return 0;
2350 }
2351
2352 /*
2353  *****************************************************************************
2354  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2355  *****************************************************************************
2356  */
2357
2358 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2359 {
2360         struct skd_device *skdev = skd_host_data;
2361         unsigned long flags;
2362
2363         spin_lock_irqsave(&skdev->lock, flags);
2364         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2365                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2366         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2367                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2368         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2369         spin_unlock_irqrestore(&skdev->lock, flags);
2370         return IRQ_HANDLED;
2371 }
2372
2373 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2374 {
2375         struct skd_device *skdev = skd_host_data;
2376         unsigned long flags;
2377
2378         spin_lock_irqsave(&skdev->lock, flags);
2379         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2380                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2381         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2382         skd_isr_fwstate(skdev);
2383         spin_unlock_irqrestore(&skdev->lock, flags);
2384         return IRQ_HANDLED;
2385 }
2386
2387 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2388 {
2389         struct skd_device *skdev = skd_host_data;
2390         unsigned long flags;
2391         int flush_enqueued = 0;
2392         int deferred;
2393
2394         spin_lock_irqsave(&skdev->lock, flags);
2395         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2396                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2397         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2398         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2399                                                 &flush_enqueued);
2400         if (flush_enqueued)
2401                 schedule_work(&skdev->start_queue);
2402
2403         if (deferred)
2404                 schedule_work(&skdev->completion_worker);
2405         else if (!flush_enqueued)
2406                 schedule_work(&skdev->start_queue);
2407
2408         spin_unlock_irqrestore(&skdev->lock, flags);
2409
2410         return IRQ_HANDLED;
2411 }
2412
2413 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2414 {
2415         struct skd_device *skdev = skd_host_data;
2416         unsigned long flags;
2417
2418         spin_lock_irqsave(&skdev->lock, flags);
2419         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2420                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2421         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2422         skd_isr_msg_from_dev(skdev);
2423         spin_unlock_irqrestore(&skdev->lock, flags);
2424         return IRQ_HANDLED;
2425 }
2426
2427 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2428 {
2429         struct skd_device *skdev = skd_host_data;
2430         unsigned long flags;
2431
2432         spin_lock_irqsave(&skdev->lock, flags);
2433         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2434                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2435         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2436         spin_unlock_irqrestore(&skdev->lock, flags);
2437         return IRQ_HANDLED;
2438 }
2439
2440 /*
2441  *****************************************************************************
2442  * PCIe MSI/MSI-X SETUP
2443  *****************************************************************************
2444  */
2445
2446 struct skd_msix_entry {
2447         char isr_name[30];
2448 };
2449
2450 struct skd_init_msix_entry {
2451         const char *name;
2452         irq_handler_t handler;
2453 };
2454
2455 #define SKD_MAX_MSIX_COUNT              13
2456 #define SKD_MIN_MSIX_COUNT              7
2457 #define SKD_BASE_MSIX_IRQ               4
2458
2459 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2460         { "(DMA 0)",        skd_reserved_isr },
2461         { "(DMA 1)",        skd_reserved_isr },
2462         { "(DMA 2)",        skd_reserved_isr },
2463         { "(DMA 3)",        skd_reserved_isr },
2464         { "(State Change)", skd_statec_isr   },
2465         { "(COMPL_Q)",      skd_comp_q       },
2466         { "(MSG)",          skd_msg_isr      },
2467         { "(Reserved)",     skd_reserved_isr },
2468         { "(Reserved)",     skd_reserved_isr },
2469         { "(Queue Full 0)", skd_qfull_isr    },
2470         { "(Queue Full 1)", skd_qfull_isr    },
2471         { "(Queue Full 2)", skd_qfull_isr    },
2472         { "(Queue Full 3)", skd_qfull_isr    },
2473 };
2474
2475 static int skd_acquire_msix(struct skd_device *skdev)
2476 {
2477         int i, rc;
2478         struct pci_dev *pdev = skdev->pdev;
2479
2480         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2481                         PCI_IRQ_MSIX);
2482         if (rc < 0) {
2483                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2484                 goto out;
2485         }
2486
2487         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2488                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2489         if (!skdev->msix_entries) {
2490                 rc = -ENOMEM;
2491                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2492                 goto out;
2493         }
2494
2495         /* Enable MSI-X vectors for the base queue */
2496         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2497                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2498
2499                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2500                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2501                          msix_entries[i].name);
2502
2503                 rc = devm_request_irq(&skdev->pdev->dev,
2504                                 pci_irq_vector(skdev->pdev, i),
2505                                 msix_entries[i].handler, 0,
2506                                 qentry->isr_name, skdev);
2507                 if (rc) {
2508                         dev_err(&skdev->pdev->dev,
2509                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2510                                 rc, i, qentry->isr_name);
2511                         goto msix_out;
2512                 }
2513         }
2514
2515         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2516                 SKD_MAX_MSIX_COUNT);
2517         return 0;
2518
2519 msix_out:
2520         while (--i >= 0)
2521                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2522 out:
2523         kfree(skdev->msix_entries);
2524         skdev->msix_entries = NULL;
2525         return rc;
2526 }
2527
2528 static int skd_acquire_irq(struct skd_device *skdev)
2529 {
2530         struct pci_dev *pdev = skdev->pdev;
2531         unsigned int irq_flag = PCI_IRQ_LEGACY;
2532         int rc;
2533
2534         if (skd_isr_type == SKD_IRQ_MSIX) {
2535                 rc = skd_acquire_msix(skdev);
2536                 if (!rc)
2537                         return 0;
2538
2539                 dev_err(&skdev->pdev->dev,
2540                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2541         }
2542
2543         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2544                         skdev->devno);
2545
2546         if (skd_isr_type != SKD_IRQ_LEGACY)
2547                 irq_flag |= PCI_IRQ_MSI;
2548         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2549         if (rc < 0) {
2550                 dev_err(&skdev->pdev->dev,
2551                         "failed to allocate the MSI interrupt %d\n", rc);
2552                 return rc;
2553         }
2554
2555         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2556                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2557                         skdev->isr_name, skdev);
2558         if (rc) {
2559                 pci_free_irq_vectors(pdev);
2560                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2561                         rc);
2562                 return rc;
2563         }
2564
2565         return 0;
2566 }
2567
2568 static void skd_release_irq(struct skd_device *skdev)
2569 {
2570         struct pci_dev *pdev = skdev->pdev;
2571
2572         if (skdev->msix_entries) {
2573                 int i;
2574
2575                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2576                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2577                                         skdev);
2578                 }
2579
2580                 kfree(skdev->msix_entries);
2581                 skdev->msix_entries = NULL;
2582         } else {
2583                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2584         }
2585
2586         pci_free_irq_vectors(pdev);
2587 }
2588
2589 /*
2590  *****************************************************************************
2591  * CONSTRUCT
2592  *****************************************************************************
2593  */
2594
2595 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2596                            dma_addr_t *dma_handle, gfp_t gfp,
2597                            enum dma_data_direction dir)
2598 {
2599         struct device *dev = &skdev->pdev->dev;
2600         void *buf;
2601
2602         buf = kmem_cache_alloc(s, gfp);
2603         if (!buf)
2604                 return NULL;
2605         *dma_handle = dma_map_single(dev, buf, s->size, dir);
2606         if (dma_mapping_error(dev, *dma_handle)) {
2607                 kfree(buf);
2608                 buf = NULL;
2609         }
2610         return buf;
2611 }
2612
2613 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2614                          void *vaddr, dma_addr_t dma_handle,
2615                          enum dma_data_direction dir)
2616 {
2617         if (!vaddr)
2618                 return;
2619
2620         dma_unmap_single(&skdev->pdev->dev, dma_handle, s->size, dir);
2621         kmem_cache_free(s, vaddr);
2622 }
2623
2624 static int skd_cons_skcomp(struct skd_device *skdev)
2625 {
2626         int rc = 0;
2627         struct fit_completion_entry_v1 *skcomp;
2628
2629         dev_dbg(&skdev->pdev->dev,
2630                 "comp pci_alloc, total bytes %zd entries %d\n",
2631                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2632
2633         skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2634                                        &skdev->cq_dma_address);
2635
2636         if (skcomp == NULL) {
2637                 rc = -ENOMEM;
2638                 goto err_out;
2639         }
2640
2641         skdev->skcomp_table = skcomp;
2642         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2643                                                            sizeof(*skcomp) *
2644                                                            SKD_N_COMPLETION_ENTRY);
2645
2646 err_out:
2647         return rc;
2648 }
2649
2650 static int skd_cons_skmsg(struct skd_device *skdev)
2651 {
2652         int rc = 0;
2653         u32 i;
2654
2655         dev_dbg(&skdev->pdev->dev,
2656                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2657                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2658                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2659
2660         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2661                                      sizeof(struct skd_fitmsg_context),
2662                                      GFP_KERNEL);
2663         if (skdev->skmsg_table == NULL) {
2664                 rc = -ENOMEM;
2665                 goto err_out;
2666         }
2667
2668         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2669                 struct skd_fitmsg_context *skmsg;
2670
2671                 skmsg = &skdev->skmsg_table[i];
2672
2673                 skmsg->id = i + SKD_ID_FIT_MSG;
2674
2675                 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2676                                                       SKD_N_FITMSG_BYTES,
2677                                                       &skmsg->mb_dma_address);
2678
2679                 if (skmsg->msg_buf == NULL) {
2680                         rc = -ENOMEM;
2681                         goto err_out;
2682                 }
2683
2684                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2685                      (FIT_QCMD_ALIGN - 1),
2686                      "not aligned: msg_buf %p mb_dma_address %#llx\n",
2687                      skmsg->msg_buf, skmsg->mb_dma_address);
2688                 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2689         }
2690
2691 err_out:
2692         return rc;
2693 }
2694
2695 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2696                                                   u32 n_sg,
2697                                                   dma_addr_t *ret_dma_addr)
2698 {
2699         struct fit_sg_descriptor *sg_list;
2700
2701         sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2702                                 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2703
2704         if (sg_list != NULL) {
2705                 uint64_t dma_address = *ret_dma_addr;
2706                 u32 i;
2707
2708                 for (i = 0; i < n_sg - 1; i++) {
2709                         uint64_t ndp_off;
2710                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2711
2712                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2713                 }
2714                 sg_list[i].next_desc_ptr = 0LL;
2715         }
2716
2717         return sg_list;
2718 }
2719
2720 static void skd_free_sg_list(struct skd_device *skdev,
2721                              struct fit_sg_descriptor *sg_list,
2722                              dma_addr_t dma_addr)
2723 {
2724         if (WARN_ON_ONCE(!sg_list))
2725                 return;
2726
2727         skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2728                      DMA_TO_DEVICE);
2729 }
2730
2731 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2732                             unsigned int hctx_idx, unsigned int numa_node)
2733 {
2734         struct skd_device *skdev = set->driver_data;
2735         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2736
2737         skreq->state = SKD_REQ_STATE_IDLE;
2738         skreq->sg = (void *)(skreq + 1);
2739         sg_init_table(skreq->sg, skd_sgs_per_request);
2740         skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2741                                             &skreq->sksg_dma_address);
2742
2743         return skreq->sksg_list ? 0 : -ENOMEM;
2744 }
2745
2746 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2747                              unsigned int hctx_idx)
2748 {
2749         struct skd_device *skdev = set->driver_data;
2750         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2751
2752         skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2753 }
2754
2755 static int skd_cons_sksb(struct skd_device *skdev)
2756 {
2757         int rc = 0;
2758         struct skd_special_context *skspcl;
2759
2760         skspcl = &skdev->internal_skspcl;
2761
2762         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2763         skspcl->req.state = SKD_REQ_STATE_IDLE;
2764
2765         skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2766                                          &skspcl->db_dma_address,
2767                                          GFP_DMA | __GFP_ZERO,
2768                                          DMA_BIDIRECTIONAL);
2769         if (skspcl->data_buf == NULL) {
2770                 rc = -ENOMEM;
2771                 goto err_out;
2772         }
2773
2774         skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2775                                         &skspcl->mb_dma_address,
2776                                         GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2777         if (skspcl->msg_buf == NULL) {
2778                 rc = -ENOMEM;
2779                 goto err_out;
2780         }
2781
2782         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2783                                                  &skspcl->req.sksg_dma_address);
2784         if (skspcl->req.sksg_list == NULL) {
2785                 rc = -ENOMEM;
2786                 goto err_out;
2787         }
2788
2789         if (!skd_format_internal_skspcl(skdev)) {
2790                 rc = -EINVAL;
2791                 goto err_out;
2792         }
2793
2794 err_out:
2795         return rc;
2796 }
2797
2798 static const struct blk_mq_ops skd_mq_ops = {
2799         .queue_rq       = skd_mq_queue_rq,
2800         .complete       = skd_complete_rq,
2801         .timeout        = skd_timed_out,
2802         .init_request   = skd_init_request,
2803         .exit_request   = skd_exit_request,
2804 };
2805
2806 static int skd_cons_disk(struct skd_device *skdev)
2807 {
2808         int rc = 0;
2809         struct gendisk *disk;
2810         struct request_queue *q;
2811         unsigned long flags;
2812
2813         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2814         if (!disk) {
2815                 rc = -ENOMEM;
2816                 goto err_out;
2817         }
2818
2819         skdev->disk = disk;
2820         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2821
2822         disk->major = skdev->major;
2823         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2824         disk->fops = &skd_blockdev_ops;
2825         disk->private_data = skdev;
2826
2827         memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2828         skdev->tag_set.ops = &skd_mq_ops;
2829         skdev->tag_set.nr_hw_queues = 1;
2830         skdev->tag_set.queue_depth = skd_max_queue_depth;
2831         skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2832                 skdev->sgs_per_request * sizeof(struct scatterlist);
2833         skdev->tag_set.numa_node = NUMA_NO_NODE;
2834         skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2835                 BLK_MQ_F_SG_MERGE |
2836                 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2837         skdev->tag_set.driver_data = skdev;
2838         rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2839         if (rc)
2840                 goto err_out;
2841         q = blk_mq_init_queue(&skdev->tag_set);
2842         if (IS_ERR(q)) {
2843                 blk_mq_free_tag_set(&skdev->tag_set);
2844                 rc = PTR_ERR(q);
2845                 goto err_out;
2846         }
2847         q->queuedata = skdev;
2848
2849         skdev->queue = q;
2850         disk->queue = q;
2851
2852         blk_queue_write_cache(q, true, true);
2853         blk_queue_max_segments(q, skdev->sgs_per_request);
2854         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2855
2856         /* set optimal I/O size to 8KB */
2857         blk_queue_io_opt(q, 8192);
2858
2859         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2860         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2861
2862         blk_queue_rq_timeout(q, 8 * HZ);
2863
2864         spin_lock_irqsave(&skdev->lock, flags);
2865         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2866         blk_mq_stop_hw_queues(skdev->queue);
2867         spin_unlock_irqrestore(&skdev->lock, flags);
2868
2869 err_out:
2870         return rc;
2871 }
2872
2873 #define SKD_N_DEV_TABLE         16u
2874 static u32 skd_next_devno;
2875
2876 static struct skd_device *skd_construct(struct pci_dev *pdev)
2877 {
2878         struct skd_device *skdev;
2879         int blk_major = skd_major;
2880         size_t size;
2881         int rc;
2882
2883         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2884
2885         if (!skdev) {
2886                 dev_err(&pdev->dev, "memory alloc failure\n");
2887                 return NULL;
2888         }
2889
2890         skdev->state = SKD_DRVR_STATE_LOAD;
2891         skdev->pdev = pdev;
2892         skdev->devno = skd_next_devno++;
2893         skdev->major = blk_major;
2894         skdev->dev_max_queue_depth = 0;
2895
2896         skdev->num_req_context = skd_max_queue_depth;
2897         skdev->num_fitmsg_context = skd_max_queue_depth;
2898         skdev->cur_max_queue_depth = 1;
2899         skdev->queue_low_water_mark = 1;
2900         skdev->proto_ver = 99;
2901         skdev->sgs_per_request = skd_sgs_per_request;
2902         skdev->dbg_level = skd_dbg_level;
2903
2904         spin_lock_init(&skdev->lock);
2905
2906         INIT_WORK(&skdev->start_queue, skd_start_queue);
2907         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2908
2909         size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2910         skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2911                                                 SLAB_HWCACHE_ALIGN, NULL);
2912         if (!skdev->msgbuf_cache)
2913                 goto err_out;
2914         WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2915                   "skd-msgbuf: %d < %zd\n",
2916                   kmem_cache_size(skdev->msgbuf_cache), size);
2917         size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2918         skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2919                                                 SLAB_HWCACHE_ALIGN, NULL);
2920         if (!skdev->sglist_cache)
2921                 goto err_out;
2922         WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2923                   "skd-sglist: %d < %zd\n",
2924                   kmem_cache_size(skdev->sglist_cache), size);
2925         size = SKD_N_INTERNAL_BYTES;
2926         skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2927                                                  SLAB_HWCACHE_ALIGN, NULL);
2928         if (!skdev->databuf_cache)
2929                 goto err_out;
2930         WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2931                   "skd-databuf: %d < %zd\n",
2932                   kmem_cache_size(skdev->databuf_cache), size);
2933
2934         dev_dbg(&skdev->pdev->dev, "skcomp\n");
2935         rc = skd_cons_skcomp(skdev);
2936         if (rc < 0)
2937                 goto err_out;
2938
2939         dev_dbg(&skdev->pdev->dev, "skmsg\n");
2940         rc = skd_cons_skmsg(skdev);
2941         if (rc < 0)
2942                 goto err_out;
2943
2944         dev_dbg(&skdev->pdev->dev, "sksb\n");
2945         rc = skd_cons_sksb(skdev);
2946         if (rc < 0)
2947                 goto err_out;
2948
2949         dev_dbg(&skdev->pdev->dev, "disk\n");
2950         rc = skd_cons_disk(skdev);
2951         if (rc < 0)
2952                 goto err_out;
2953
2954         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2955         return skdev;
2956
2957 err_out:
2958         dev_dbg(&skdev->pdev->dev, "construct failed\n");
2959         skd_destruct(skdev);
2960         return NULL;
2961 }
2962
2963 /*
2964  *****************************************************************************
2965  * DESTRUCT (FREE)
2966  *****************************************************************************
2967  */
2968
2969 static void skd_free_skcomp(struct skd_device *skdev)
2970 {
2971         if (skdev->skcomp_table)
2972                 pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2973                                     skdev->skcomp_table, skdev->cq_dma_address);
2974
2975         skdev->skcomp_table = NULL;
2976         skdev->cq_dma_address = 0;
2977 }
2978
2979 static void skd_free_skmsg(struct skd_device *skdev)
2980 {
2981         u32 i;
2982
2983         if (skdev->skmsg_table == NULL)
2984                 return;
2985
2986         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2987                 struct skd_fitmsg_context *skmsg;
2988
2989                 skmsg = &skdev->skmsg_table[i];
2990
2991                 if (skmsg->msg_buf != NULL) {
2992                         pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
2993                                             skmsg->msg_buf,
2994                                             skmsg->mb_dma_address);
2995                 }
2996                 skmsg->msg_buf = NULL;
2997                 skmsg->mb_dma_address = 0;
2998         }
2999
3000         kfree(skdev->skmsg_table);
3001         skdev->skmsg_table = NULL;
3002 }
3003
3004 static void skd_free_sksb(struct skd_device *skdev)
3005 {
3006         struct skd_special_context *skspcl = &skdev->internal_skspcl;
3007
3008         skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3009                      skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3010
3011         skspcl->data_buf = NULL;
3012         skspcl->db_dma_address = 0;
3013
3014         skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3015                      skspcl->mb_dma_address, DMA_TO_DEVICE);
3016
3017         skspcl->msg_buf = NULL;
3018         skspcl->mb_dma_address = 0;
3019
3020         skd_free_sg_list(skdev, skspcl->req.sksg_list,
3021                          skspcl->req.sksg_dma_address);
3022
3023         skspcl->req.sksg_list = NULL;
3024         skspcl->req.sksg_dma_address = 0;
3025 }
3026
3027 static void skd_free_disk(struct skd_device *skdev)
3028 {
3029         struct gendisk *disk = skdev->disk;
3030
3031         if (disk && (disk->flags & GENHD_FL_UP))
3032                 del_gendisk(disk);
3033
3034         if (skdev->queue) {
3035                 blk_cleanup_queue(skdev->queue);
3036                 skdev->queue = NULL;
3037                 if (disk)
3038                         disk->queue = NULL;
3039         }
3040
3041         if (skdev->tag_set.tags)
3042                 blk_mq_free_tag_set(&skdev->tag_set);
3043
3044         put_disk(disk);
3045         skdev->disk = NULL;
3046 }
3047
3048 static void skd_destruct(struct skd_device *skdev)
3049 {
3050         if (skdev == NULL)
3051                 return;
3052
3053         cancel_work_sync(&skdev->start_queue);
3054
3055         dev_dbg(&skdev->pdev->dev, "disk\n");
3056         skd_free_disk(skdev);
3057
3058         dev_dbg(&skdev->pdev->dev, "sksb\n");
3059         skd_free_sksb(skdev);
3060
3061         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3062         skd_free_skmsg(skdev);
3063
3064         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3065         skd_free_skcomp(skdev);
3066
3067         kmem_cache_destroy(skdev->databuf_cache);
3068         kmem_cache_destroy(skdev->sglist_cache);
3069         kmem_cache_destroy(skdev->msgbuf_cache);
3070
3071         dev_dbg(&skdev->pdev->dev, "skdev\n");
3072         kfree(skdev);
3073 }
3074
3075 /*
3076  *****************************************************************************
3077  * BLOCK DEVICE (BDEV) GLUE
3078  *****************************************************************************
3079  */
3080
3081 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3082 {
3083         struct skd_device *skdev;
3084         u64 capacity;
3085
3086         skdev = bdev->bd_disk->private_data;
3087
3088         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3089                 bdev->bd_disk->disk_name, current->comm);
3090
3091         if (skdev->read_cap_is_valid) {
3092                 capacity = get_capacity(skdev->disk);
3093                 geo->heads = 64;
3094                 geo->sectors = 255;
3095                 geo->cylinders = (capacity) / (255 * 64);
3096
3097                 return 0;
3098         }
3099         return -EIO;
3100 }
3101
3102 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3103 {
3104         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3105         device_add_disk(parent, skdev->disk);
3106         return 0;
3107 }
3108
3109 static const struct block_device_operations skd_blockdev_ops = {
3110         .owner          = THIS_MODULE,
3111         .getgeo         = skd_bdev_getgeo,
3112 };
3113
3114 /*
3115  *****************************************************************************
3116  * PCIe DRIVER GLUE
3117  *****************************************************************************
3118  */
3119
3120 static const struct pci_device_id skd_pci_tbl[] = {
3121         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3122           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3123         { 0 }                     /* terminate list */
3124 };
3125
3126 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3127
3128 static char *skd_pci_info(struct skd_device *skdev, char *str)
3129 {
3130         int pcie_reg;
3131
3132         strcpy(str, "PCIe (");
3133         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3134
3135         if (pcie_reg) {
3136
3137                 char lwstr[6];
3138                 uint16_t pcie_lstat, lspeed, lwidth;
3139
3140                 pcie_reg += 0x12;
3141                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3142                 lspeed = pcie_lstat & (0xF);
3143                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3144
3145                 if (lspeed == 1)
3146                         strcat(str, "2.5GT/s ");
3147                 else if (lspeed == 2)
3148                         strcat(str, "5.0GT/s ");
3149                 else
3150                         strcat(str, "<unknown> ");
3151                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3152                 strcat(str, lwstr);
3153         }
3154         return str;
3155 }
3156
3157 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3158 {
3159         int i;
3160         int rc = 0;
3161         char pci_str[32];
3162         struct skd_device *skdev;
3163
3164         dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3165                 pdev->device);
3166
3167         rc = pci_enable_device(pdev);
3168         if (rc)
3169                 return rc;
3170         rc = pci_request_regions(pdev, DRV_NAME);
3171         if (rc)
3172                 goto err_out;
3173         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3174         if (!rc) {
3175                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3176                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3177                                 rc);
3178                 }
3179         } else {
3180                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3181                 if (rc) {
3182                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3183                         goto err_out_regions;
3184                 }
3185         }
3186
3187         if (!skd_major) {
3188                 rc = register_blkdev(0, DRV_NAME);
3189                 if (rc < 0)
3190                         goto err_out_regions;
3191                 BUG_ON(!rc);
3192                 skd_major = rc;
3193         }
3194
3195         skdev = skd_construct(pdev);
3196         if (skdev == NULL) {
3197                 rc = -ENOMEM;
3198                 goto err_out_regions;
3199         }
3200
3201         skd_pci_info(skdev, pci_str);
3202         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3203
3204         pci_set_master(pdev);
3205         rc = pci_enable_pcie_error_reporting(pdev);
3206         if (rc) {
3207                 dev_err(&pdev->dev,
3208                         "bad enable of PCIe error reporting rc=%d\n", rc);
3209                 skdev->pcie_error_reporting_is_enabled = 0;
3210         } else
3211                 skdev->pcie_error_reporting_is_enabled = 1;
3212
3213         pci_set_drvdata(pdev, skdev);
3214
3215         for (i = 0; i < SKD_MAX_BARS; i++) {
3216                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3217                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3218                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3219                                             skdev->mem_size[i]);
3220                 if (!skdev->mem_map[i]) {
3221                         dev_err(&pdev->dev,
3222                                 "Unable to map adapter memory!\n");
3223                         rc = -ENODEV;
3224                         goto err_out_iounmap;
3225                 }
3226                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3227                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3228                         skdev->mem_size[i]);
3229         }
3230
3231         rc = skd_acquire_irq(skdev);
3232         if (rc) {
3233                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3234                 goto err_out_iounmap;
3235         }
3236
3237         rc = skd_start_timer(skdev);
3238         if (rc)
3239                 goto err_out_timer;
3240
3241         init_waitqueue_head(&skdev->waitq);
3242
3243         skd_start_device(skdev);
3244
3245         rc = wait_event_interruptible_timeout(skdev->waitq,
3246                                               (skdev->gendisk_on),
3247                                               (SKD_START_WAIT_SECONDS * HZ));
3248         if (skdev->gendisk_on > 0) {
3249                 /* device came on-line after reset */
3250                 skd_bdev_attach(&pdev->dev, skdev);
3251                 rc = 0;
3252         } else {
3253                 /* we timed out, something is wrong with the device,
3254                    don't add the disk structure */
3255                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3256                         rc);
3257                 /* in case of no error; we timeout with ENXIO */
3258                 if (!rc)
3259                         rc = -ENXIO;
3260                 goto err_out_timer;
3261         }
3262
3263         return rc;
3264
3265 err_out_timer:
3266         skd_stop_device(skdev);
3267         skd_release_irq(skdev);
3268
3269 err_out_iounmap:
3270         for (i = 0; i < SKD_MAX_BARS; i++)
3271                 if (skdev->mem_map[i])
3272                         iounmap(skdev->mem_map[i]);
3273
3274         if (skdev->pcie_error_reporting_is_enabled)
3275                 pci_disable_pcie_error_reporting(pdev);
3276
3277         skd_destruct(skdev);
3278
3279 err_out_regions:
3280         pci_release_regions(pdev);
3281
3282 err_out:
3283         pci_disable_device(pdev);
3284         pci_set_drvdata(pdev, NULL);
3285         return rc;
3286 }
3287
3288 static void skd_pci_remove(struct pci_dev *pdev)
3289 {
3290         int i;
3291         struct skd_device *skdev;
3292
3293         skdev = pci_get_drvdata(pdev);
3294         if (!skdev) {
3295                 dev_err(&pdev->dev, "no device data for PCI\n");
3296                 return;
3297         }
3298         skd_stop_device(skdev);
3299         skd_release_irq(skdev);
3300
3301         for (i = 0; i < SKD_MAX_BARS; i++)
3302                 if (skdev->mem_map[i])
3303                         iounmap(skdev->mem_map[i]);
3304
3305         if (skdev->pcie_error_reporting_is_enabled)
3306                 pci_disable_pcie_error_reporting(pdev);
3307
3308         skd_destruct(skdev);
3309
3310         pci_release_regions(pdev);
3311         pci_disable_device(pdev);
3312         pci_set_drvdata(pdev, NULL);
3313
3314         return;
3315 }
3316
3317 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3318 {
3319         int i;
3320         struct skd_device *skdev;
3321
3322         skdev = pci_get_drvdata(pdev);
3323         if (!skdev) {
3324                 dev_err(&pdev->dev, "no device data for PCI\n");
3325                 return -EIO;
3326         }
3327
3328         skd_stop_device(skdev);
3329
3330         skd_release_irq(skdev);
3331
3332         for (i = 0; i < SKD_MAX_BARS; i++)
3333                 if (skdev->mem_map[i])
3334                         iounmap(skdev->mem_map[i]);
3335
3336         if (skdev->pcie_error_reporting_is_enabled)
3337                 pci_disable_pcie_error_reporting(pdev);
3338
3339         pci_release_regions(pdev);
3340         pci_save_state(pdev);
3341         pci_disable_device(pdev);
3342         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3343         return 0;
3344 }
3345
3346 static int skd_pci_resume(struct pci_dev *pdev)
3347 {
3348         int i;
3349         int rc = 0;
3350         struct skd_device *skdev;
3351
3352         skdev = pci_get_drvdata(pdev);
3353         if (!skdev) {
3354                 dev_err(&pdev->dev, "no device data for PCI\n");
3355                 return -1;
3356         }
3357
3358         pci_set_power_state(pdev, PCI_D0);
3359         pci_enable_wake(pdev, PCI_D0, 0);
3360         pci_restore_state(pdev);
3361
3362         rc = pci_enable_device(pdev);
3363         if (rc)
3364                 return rc;
3365         rc = pci_request_regions(pdev, DRV_NAME);
3366         if (rc)
3367                 goto err_out;
3368         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3369         if (!rc) {
3370                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3371
3372                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3373                                 rc);
3374                 }
3375         } else {
3376                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3377                 if (rc) {
3378
3379                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3380                         goto err_out_regions;
3381                 }
3382         }
3383
3384         pci_set_master(pdev);
3385         rc = pci_enable_pcie_error_reporting(pdev);
3386         if (rc) {
3387                 dev_err(&pdev->dev,
3388                         "bad enable of PCIe error reporting rc=%d\n", rc);
3389                 skdev->pcie_error_reporting_is_enabled = 0;
3390         } else
3391                 skdev->pcie_error_reporting_is_enabled = 1;
3392
3393         for (i = 0; i < SKD_MAX_BARS; i++) {
3394
3395                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3396                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3397                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3398                                             skdev->mem_size[i]);
3399                 if (!skdev->mem_map[i]) {
3400                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3401                         rc = -ENODEV;
3402                         goto err_out_iounmap;
3403                 }
3404                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3405                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3406                         skdev->mem_size[i]);
3407         }
3408         rc = skd_acquire_irq(skdev);
3409         if (rc) {
3410                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3411                 goto err_out_iounmap;
3412         }
3413
3414         rc = skd_start_timer(skdev);
3415         if (rc)
3416                 goto err_out_timer;
3417
3418         init_waitqueue_head(&skdev->waitq);
3419
3420         skd_start_device(skdev);
3421
3422         return rc;
3423
3424 err_out_timer:
3425         skd_stop_device(skdev);
3426         skd_release_irq(skdev);
3427
3428 err_out_iounmap:
3429         for (i = 0; i < SKD_MAX_BARS; i++)
3430                 if (skdev->mem_map[i])
3431                         iounmap(skdev->mem_map[i]);
3432
3433         if (skdev->pcie_error_reporting_is_enabled)
3434                 pci_disable_pcie_error_reporting(pdev);
3435
3436 err_out_regions:
3437         pci_release_regions(pdev);
3438
3439 err_out:
3440         pci_disable_device(pdev);
3441         return rc;
3442 }
3443
3444 static void skd_pci_shutdown(struct pci_dev *pdev)
3445 {
3446         struct skd_device *skdev;
3447
3448         dev_err(&pdev->dev, "%s called\n", __func__);
3449
3450         skdev = pci_get_drvdata(pdev);
3451         if (!skdev) {
3452                 dev_err(&pdev->dev, "no device data for PCI\n");
3453                 return;
3454         }
3455
3456         dev_err(&pdev->dev, "calling stop\n");
3457         skd_stop_device(skdev);
3458 }
3459
3460 static struct pci_driver skd_driver = {
3461         .name           = DRV_NAME,
3462         .id_table       = skd_pci_tbl,
3463         .probe          = skd_pci_probe,
3464         .remove         = skd_pci_remove,
3465         .suspend        = skd_pci_suspend,
3466         .resume         = skd_pci_resume,
3467         .shutdown       = skd_pci_shutdown,
3468 };
3469
3470 /*
3471  *****************************************************************************
3472  * LOGGING SUPPORT
3473  *****************************************************************************
3474  */
3475
3476 const char *skd_drive_state_to_str(int state)
3477 {
3478         switch (state) {
3479         case FIT_SR_DRIVE_OFFLINE:
3480                 return "OFFLINE";
3481         case FIT_SR_DRIVE_INIT:
3482                 return "INIT";
3483         case FIT_SR_DRIVE_ONLINE:
3484                 return "ONLINE";
3485         case FIT_SR_DRIVE_BUSY:
3486                 return "BUSY";
3487         case FIT_SR_DRIVE_FAULT:
3488                 return "FAULT";
3489         case FIT_SR_DRIVE_DEGRADED:
3490                 return "DEGRADED";
3491         case FIT_SR_PCIE_LINK_DOWN:
3492                 return "INK_DOWN";
3493         case FIT_SR_DRIVE_SOFT_RESET:
3494                 return "SOFT_RESET";
3495         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3496                 return "NEED_FW";
3497         case FIT_SR_DRIVE_INIT_FAULT:
3498                 return "INIT_FAULT";
3499         case FIT_SR_DRIVE_BUSY_SANITIZE:
3500                 return "BUSY_SANITIZE";
3501         case FIT_SR_DRIVE_BUSY_ERASE:
3502                 return "BUSY_ERASE";
3503         case FIT_SR_DRIVE_FW_BOOTING:
3504                 return "FW_BOOTING";
3505         default:
3506                 return "???";
3507         }
3508 }
3509
3510 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3511 {
3512         switch (state) {
3513         case SKD_DRVR_STATE_LOAD:
3514                 return "LOAD";
3515         case SKD_DRVR_STATE_IDLE:
3516                 return "IDLE";
3517         case SKD_DRVR_STATE_BUSY:
3518                 return "BUSY";
3519         case SKD_DRVR_STATE_STARTING:
3520                 return "STARTING";
3521         case SKD_DRVR_STATE_ONLINE:
3522                 return "ONLINE";
3523         case SKD_DRVR_STATE_PAUSING:
3524                 return "PAUSING";
3525         case SKD_DRVR_STATE_PAUSED:
3526                 return "PAUSED";
3527         case SKD_DRVR_STATE_RESTARTING:
3528                 return "RESTARTING";
3529         case SKD_DRVR_STATE_RESUMING:
3530                 return "RESUMING";
3531         case SKD_DRVR_STATE_STOPPING:
3532                 return "STOPPING";
3533         case SKD_DRVR_STATE_SYNCING:
3534                 return "SYNCING";
3535         case SKD_DRVR_STATE_FAULT:
3536                 return "FAULT";
3537         case SKD_DRVR_STATE_DISAPPEARED:
3538                 return "DISAPPEARED";
3539         case SKD_DRVR_STATE_BUSY_ERASE:
3540                 return "BUSY_ERASE";
3541         case SKD_DRVR_STATE_BUSY_SANITIZE:
3542                 return "BUSY_SANITIZE";
3543         case SKD_DRVR_STATE_BUSY_IMMINENT:
3544                 return "BUSY_IMMINENT";
3545         case SKD_DRVR_STATE_WAIT_BOOT:
3546                 return "WAIT_BOOT";
3547
3548         default:
3549                 return "???";
3550         }
3551 }
3552
3553 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3554 {
3555         switch (state) {
3556         case SKD_REQ_STATE_IDLE:
3557                 return "IDLE";
3558         case SKD_REQ_STATE_SETUP:
3559                 return "SETUP";
3560         case SKD_REQ_STATE_BUSY:
3561                 return "BUSY";
3562         case SKD_REQ_STATE_COMPLETED:
3563                 return "COMPLETED";
3564         case SKD_REQ_STATE_TIMEOUT:
3565                 return "TIMEOUT";
3566         default:
3567                 return "???";
3568         }
3569 }
3570
3571 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3572 {
3573         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3574         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3575                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3576                 skd_skdev_state_to_str(skdev->state), skdev->state);
3577         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3578                 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3579                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3580         dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3581                 skdev->skcomp_cycle, skdev->skcomp_ix);
3582 }
3583
3584 static void skd_log_skreq(struct skd_device *skdev,
3585                           struct skd_request_context *skreq, const char *event)
3586 {
3587         struct request *req = blk_mq_rq_from_pdu(skreq);
3588         u32 lba = blk_rq_pos(req);
3589         u32 count = blk_rq_sectors(req);
3590
3591         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3592         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3593                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3594                 skreq->fitmsg_id);
3595         dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3596                 skreq->data_dir, skreq->n_sg);
3597
3598         dev_dbg(&skdev->pdev->dev,
3599                 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3600                 count, count, (int)rq_data_dir(req));
3601 }
3602
3603 /*
3604  *****************************************************************************
3605  * MODULE GLUE
3606  *****************************************************************************
3607  */
3608
3609 static int __init skd_init(void)
3610 {
3611         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3612         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3613         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3614         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3615         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3616         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3617         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3618         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3619
3620         switch (skd_isr_type) {
3621         case SKD_IRQ_LEGACY:
3622         case SKD_IRQ_MSI:
3623         case SKD_IRQ_MSIX:
3624                 break;
3625         default:
3626                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3627                        skd_isr_type, SKD_IRQ_DEFAULT);
3628                 skd_isr_type = SKD_IRQ_DEFAULT;
3629         }
3630
3631         if (skd_max_queue_depth < 1 ||
3632             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3633                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3634                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3635                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3636         }
3637
3638         if (skd_max_req_per_msg < 1 ||
3639             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3640                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3641                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3642                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3643         }
3644
3645         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3646                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3647                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3648                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3649         }
3650
3651         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3652                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3653                        skd_dbg_level, 0);
3654                 skd_dbg_level = 0;
3655         }
3656
3657         if (skd_isr_comp_limit < 0) {
3658                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3659                        skd_isr_comp_limit, 0);
3660                 skd_isr_comp_limit = 0;
3661         }
3662
3663         return pci_register_driver(&skd_driver);
3664 }
3665
3666 static void __exit skd_exit(void)
3667 {
3668         pci_unregister_driver(&skd_driver);
3669
3670         if (skd_major)
3671                 unregister_blkdev(skd_major, DRV_NAME);
3672 }
3673
3674 module_init(skd_init);
3675 module_exit(skd_exit);