Merge tag 'edac_for_4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[sfrench/cifs-2.6.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26
27 #include "internal.h"
28
29 /*
30  * Sometimes for failures during very early init the trace
31  * infrastructure isn't available early enough to be used.  For this
32  * sort of problem defining LOG_DEVICE will add printks for basic
33  * register I/O on a specific device.
34  */
35 #undef LOG_DEVICE
36
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38                                unsigned int mask, unsigned int val,
39                                bool *change, bool force_write);
40
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42                                 unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44                             unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46                                        unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48                                  unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50                                  unsigned int val);
51
52 bool regmap_reg_in_ranges(unsigned int reg,
53                           const struct regmap_range *ranges,
54                           unsigned int nranges)
55 {
56         const struct regmap_range *r;
57         int i;
58
59         for (i = 0, r = ranges; i < nranges; i++, r++)
60                 if (regmap_reg_in_range(reg, r))
61                         return true;
62         return false;
63 }
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67                               const struct regmap_access_table *table)
68 {
69         /* Check "no ranges" first */
70         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71                 return false;
72
73         /* In case zero "yes ranges" are supplied, any reg is OK */
74         if (!table->n_yes_ranges)
75                 return true;
76
77         return regmap_reg_in_ranges(reg, table->yes_ranges,
78                                     table->n_yes_ranges);
79 }
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
81
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
83 {
84         if (map->max_register && reg > map->max_register)
85                 return false;
86
87         if (map->writeable_reg)
88                 return map->writeable_reg(map->dev, reg);
89
90         if (map->wr_table)
91                 return regmap_check_range_table(map, reg, map->wr_table);
92
93         return true;
94 }
95
96 bool regmap_readable(struct regmap *map, unsigned int reg)
97 {
98         if (!map->reg_read)
99                 return false;
100
101         if (map->max_register && reg > map->max_register)
102                 return false;
103
104         if (map->format.format_write)
105                 return false;
106
107         if (map->readable_reg)
108                 return map->readable_reg(map->dev, reg);
109
110         if (map->rd_table)
111                 return regmap_check_range_table(map, reg, map->rd_table);
112
113         return true;
114 }
115
116 bool regmap_volatile(struct regmap *map, unsigned int reg)
117 {
118         if (!map->format.format_write && !regmap_readable(map, reg))
119                 return false;
120
121         if (map->volatile_reg)
122                 return map->volatile_reg(map->dev, reg);
123
124         if (map->volatile_table)
125                 return regmap_check_range_table(map, reg, map->volatile_table);
126
127         if (map->cache_ops)
128                 return false;
129         else
130                 return true;
131 }
132
133 bool regmap_precious(struct regmap *map, unsigned int reg)
134 {
135         if (!regmap_readable(map, reg))
136                 return false;
137
138         if (map->precious_reg)
139                 return map->precious_reg(map->dev, reg);
140
141         if (map->precious_table)
142                 return regmap_check_range_table(map, reg, map->precious_table);
143
144         return false;
145 }
146
147 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
148         size_t num)
149 {
150         unsigned int i;
151
152         for (i = 0; i < num; i++)
153                 if (!regmap_volatile(map, reg + i))
154                         return false;
155
156         return true;
157 }
158
159 static void regmap_format_2_6_write(struct regmap *map,
160                                      unsigned int reg, unsigned int val)
161 {
162         u8 *out = map->work_buf;
163
164         *out = (reg << 6) | val;
165 }
166
167 static void regmap_format_4_12_write(struct regmap *map,
168                                      unsigned int reg, unsigned int val)
169 {
170         __be16 *out = map->work_buf;
171         *out = cpu_to_be16((reg << 12) | val);
172 }
173
174 static void regmap_format_7_9_write(struct regmap *map,
175                                     unsigned int reg, unsigned int val)
176 {
177         __be16 *out = map->work_buf;
178         *out = cpu_to_be16((reg << 9) | val);
179 }
180
181 static void regmap_format_10_14_write(struct regmap *map,
182                                     unsigned int reg, unsigned int val)
183 {
184         u8 *out = map->work_buf;
185
186         out[2] = val;
187         out[1] = (val >> 8) | (reg << 6);
188         out[0] = reg >> 2;
189 }
190
191 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
192 {
193         u8 *b = buf;
194
195         b[0] = val << shift;
196 }
197
198 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
199 {
200         __be16 *b = buf;
201
202         b[0] = cpu_to_be16(val << shift);
203 }
204
205 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
206 {
207         __le16 *b = buf;
208
209         b[0] = cpu_to_le16(val << shift);
210 }
211
212 static void regmap_format_16_native(void *buf, unsigned int val,
213                                     unsigned int shift)
214 {
215         *(u16 *)buf = val << shift;
216 }
217
218 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
219 {
220         u8 *b = buf;
221
222         val <<= shift;
223
224         b[0] = val >> 16;
225         b[1] = val >> 8;
226         b[2] = val;
227 }
228
229 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
230 {
231         __be32 *b = buf;
232
233         b[0] = cpu_to_be32(val << shift);
234 }
235
236 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
237 {
238         __le32 *b = buf;
239
240         b[0] = cpu_to_le32(val << shift);
241 }
242
243 static void regmap_format_32_native(void *buf, unsigned int val,
244                                     unsigned int shift)
245 {
246         *(u32 *)buf = val << shift;
247 }
248
249 #ifdef CONFIG_64BIT
250 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
251 {
252         __be64 *b = buf;
253
254         b[0] = cpu_to_be64((u64)val << shift);
255 }
256
257 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
258 {
259         __le64 *b = buf;
260
261         b[0] = cpu_to_le64((u64)val << shift);
262 }
263
264 static void regmap_format_64_native(void *buf, unsigned int val,
265                                     unsigned int shift)
266 {
267         *(u64 *)buf = (u64)val << shift;
268 }
269 #endif
270
271 static void regmap_parse_inplace_noop(void *buf)
272 {
273 }
274
275 static unsigned int regmap_parse_8(const void *buf)
276 {
277         const u8 *b = buf;
278
279         return b[0];
280 }
281
282 static unsigned int regmap_parse_16_be(const void *buf)
283 {
284         const __be16 *b = buf;
285
286         return be16_to_cpu(b[0]);
287 }
288
289 static unsigned int regmap_parse_16_le(const void *buf)
290 {
291         const __le16 *b = buf;
292
293         return le16_to_cpu(b[0]);
294 }
295
296 static void regmap_parse_16_be_inplace(void *buf)
297 {
298         __be16 *b = buf;
299
300         b[0] = be16_to_cpu(b[0]);
301 }
302
303 static void regmap_parse_16_le_inplace(void *buf)
304 {
305         __le16 *b = buf;
306
307         b[0] = le16_to_cpu(b[0]);
308 }
309
310 static unsigned int regmap_parse_16_native(const void *buf)
311 {
312         return *(u16 *)buf;
313 }
314
315 static unsigned int regmap_parse_24(const void *buf)
316 {
317         const u8 *b = buf;
318         unsigned int ret = b[2];
319         ret |= ((unsigned int)b[1]) << 8;
320         ret |= ((unsigned int)b[0]) << 16;
321
322         return ret;
323 }
324
325 static unsigned int regmap_parse_32_be(const void *buf)
326 {
327         const __be32 *b = buf;
328
329         return be32_to_cpu(b[0]);
330 }
331
332 static unsigned int regmap_parse_32_le(const void *buf)
333 {
334         const __le32 *b = buf;
335
336         return le32_to_cpu(b[0]);
337 }
338
339 static void regmap_parse_32_be_inplace(void *buf)
340 {
341         __be32 *b = buf;
342
343         b[0] = be32_to_cpu(b[0]);
344 }
345
346 static void regmap_parse_32_le_inplace(void *buf)
347 {
348         __le32 *b = buf;
349
350         b[0] = le32_to_cpu(b[0]);
351 }
352
353 static unsigned int regmap_parse_32_native(const void *buf)
354 {
355         return *(u32 *)buf;
356 }
357
358 #ifdef CONFIG_64BIT
359 static unsigned int regmap_parse_64_be(const void *buf)
360 {
361         const __be64 *b = buf;
362
363         return be64_to_cpu(b[0]);
364 }
365
366 static unsigned int regmap_parse_64_le(const void *buf)
367 {
368         const __le64 *b = buf;
369
370         return le64_to_cpu(b[0]);
371 }
372
373 static void regmap_parse_64_be_inplace(void *buf)
374 {
375         __be64 *b = buf;
376
377         b[0] = be64_to_cpu(b[0]);
378 }
379
380 static void regmap_parse_64_le_inplace(void *buf)
381 {
382         __le64 *b = buf;
383
384         b[0] = le64_to_cpu(b[0]);
385 }
386
387 static unsigned int regmap_parse_64_native(const void *buf)
388 {
389         return *(u64 *)buf;
390 }
391 #endif
392
393 static void regmap_lock_mutex(void *__map)
394 {
395         struct regmap *map = __map;
396         mutex_lock(&map->mutex);
397 }
398
399 static void regmap_unlock_mutex(void *__map)
400 {
401         struct regmap *map = __map;
402         mutex_unlock(&map->mutex);
403 }
404
405 static void regmap_lock_spinlock(void *__map)
406 __acquires(&map->spinlock)
407 {
408         struct regmap *map = __map;
409         unsigned long flags;
410
411         spin_lock_irqsave(&map->spinlock, flags);
412         map->spinlock_flags = flags;
413 }
414
415 static void regmap_unlock_spinlock(void *__map)
416 __releases(&map->spinlock)
417 {
418         struct regmap *map = __map;
419         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
420 }
421
422 static void dev_get_regmap_release(struct device *dev, void *res)
423 {
424         /*
425          * We don't actually have anything to do here; the goal here
426          * is not to manage the regmap but to provide a simple way to
427          * get the regmap back given a struct device.
428          */
429 }
430
431 static bool _regmap_range_add(struct regmap *map,
432                               struct regmap_range_node *data)
433 {
434         struct rb_root *root = &map->range_tree;
435         struct rb_node **new = &(root->rb_node), *parent = NULL;
436
437         while (*new) {
438                 struct regmap_range_node *this =
439                         container_of(*new, struct regmap_range_node, node);
440
441                 parent = *new;
442                 if (data->range_max < this->range_min)
443                         new = &((*new)->rb_left);
444                 else if (data->range_min > this->range_max)
445                         new = &((*new)->rb_right);
446                 else
447                         return false;
448         }
449
450         rb_link_node(&data->node, parent, new);
451         rb_insert_color(&data->node, root);
452
453         return true;
454 }
455
456 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
457                                                       unsigned int reg)
458 {
459         struct rb_node *node = map->range_tree.rb_node;
460
461         while (node) {
462                 struct regmap_range_node *this =
463                         container_of(node, struct regmap_range_node, node);
464
465                 if (reg < this->range_min)
466                         node = node->rb_left;
467                 else if (reg > this->range_max)
468                         node = node->rb_right;
469                 else
470                         return this;
471         }
472
473         return NULL;
474 }
475
476 static void regmap_range_exit(struct regmap *map)
477 {
478         struct rb_node *next;
479         struct regmap_range_node *range_node;
480
481         next = rb_first(&map->range_tree);
482         while (next) {
483                 range_node = rb_entry(next, struct regmap_range_node, node);
484                 next = rb_next(&range_node->node);
485                 rb_erase(&range_node->node, &map->range_tree);
486                 kfree(range_node);
487         }
488
489         kfree(map->selector_work_buf);
490 }
491
492 int regmap_attach_dev(struct device *dev, struct regmap *map,
493                       const struct regmap_config *config)
494 {
495         struct regmap **m;
496
497         map->dev = dev;
498
499         regmap_debugfs_init(map, config->name);
500
501         /* Add a devres resource for dev_get_regmap() */
502         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
503         if (!m) {
504                 regmap_debugfs_exit(map);
505                 return -ENOMEM;
506         }
507         *m = map;
508         devres_add(dev, m);
509
510         return 0;
511 }
512 EXPORT_SYMBOL_GPL(regmap_attach_dev);
513
514 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
515                                         const struct regmap_config *config)
516 {
517         enum regmap_endian endian;
518
519         /* Retrieve the endianness specification from the regmap config */
520         endian = config->reg_format_endian;
521
522         /* If the regmap config specified a non-default value, use that */
523         if (endian != REGMAP_ENDIAN_DEFAULT)
524                 return endian;
525
526         /* Retrieve the endianness specification from the bus config */
527         if (bus && bus->reg_format_endian_default)
528                 endian = bus->reg_format_endian_default;
529
530         /* If the bus specified a non-default value, use that */
531         if (endian != REGMAP_ENDIAN_DEFAULT)
532                 return endian;
533
534         /* Use this if no other value was found */
535         return REGMAP_ENDIAN_BIG;
536 }
537
538 enum regmap_endian regmap_get_val_endian(struct device *dev,
539                                          const struct regmap_bus *bus,
540                                          const struct regmap_config *config)
541 {
542         struct device_node *np;
543         enum regmap_endian endian;
544
545         /* Retrieve the endianness specification from the regmap config */
546         endian = config->val_format_endian;
547
548         /* If the regmap config specified a non-default value, use that */
549         if (endian != REGMAP_ENDIAN_DEFAULT)
550                 return endian;
551
552         /* If the dev and dev->of_node exist try to get endianness from DT */
553         if (dev && dev->of_node) {
554                 np = dev->of_node;
555
556                 /* Parse the device's DT node for an endianness specification */
557                 if (of_property_read_bool(np, "big-endian"))
558                         endian = REGMAP_ENDIAN_BIG;
559                 else if (of_property_read_bool(np, "little-endian"))
560                         endian = REGMAP_ENDIAN_LITTLE;
561                 else if (of_property_read_bool(np, "native-endian"))
562                         endian = REGMAP_ENDIAN_NATIVE;
563
564                 /* If the endianness was specified in DT, use that */
565                 if (endian != REGMAP_ENDIAN_DEFAULT)
566                         return endian;
567         }
568
569         /* Retrieve the endianness specification from the bus config */
570         if (bus && bus->val_format_endian_default)
571                 endian = bus->val_format_endian_default;
572
573         /* If the bus specified a non-default value, use that */
574         if (endian != REGMAP_ENDIAN_DEFAULT)
575                 return endian;
576
577         /* Use this if no other value was found */
578         return REGMAP_ENDIAN_BIG;
579 }
580 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
581
582 struct regmap *__regmap_init(struct device *dev,
583                              const struct regmap_bus *bus,
584                              void *bus_context,
585                              const struct regmap_config *config,
586                              struct lock_class_key *lock_key,
587                              const char *lock_name)
588 {
589         struct regmap *map;
590         int ret = -EINVAL;
591         enum regmap_endian reg_endian, val_endian;
592         int i, j;
593
594         if (!config)
595                 goto err;
596
597         map = kzalloc(sizeof(*map), GFP_KERNEL);
598         if (map == NULL) {
599                 ret = -ENOMEM;
600                 goto err;
601         }
602
603         if (config->lock && config->unlock) {
604                 map->lock = config->lock;
605                 map->unlock = config->unlock;
606                 map->lock_arg = config->lock_arg;
607         } else {
608                 if ((bus && bus->fast_io) ||
609                     config->fast_io) {
610                         spin_lock_init(&map->spinlock);
611                         map->lock = regmap_lock_spinlock;
612                         map->unlock = regmap_unlock_spinlock;
613                         lockdep_set_class_and_name(&map->spinlock,
614                                                    lock_key, lock_name);
615                 } else {
616                         mutex_init(&map->mutex);
617                         map->lock = regmap_lock_mutex;
618                         map->unlock = regmap_unlock_mutex;
619                         lockdep_set_class_and_name(&map->mutex,
620                                                    lock_key, lock_name);
621                 }
622                 map->lock_arg = map;
623         }
624
625         /*
626          * When we write in fast-paths with regmap_bulk_write() don't allocate
627          * scratch buffers with sleeping allocations.
628          */
629         if ((bus && bus->fast_io) || config->fast_io)
630                 map->alloc_flags = GFP_ATOMIC;
631         else
632                 map->alloc_flags = GFP_KERNEL;
633
634         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
635         map->format.pad_bytes = config->pad_bits / 8;
636         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
637         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
638                         config->val_bits + config->pad_bits, 8);
639         map->reg_shift = config->pad_bits % 8;
640         if (config->reg_stride)
641                 map->reg_stride = config->reg_stride;
642         else
643                 map->reg_stride = 1;
644         if (is_power_of_2(map->reg_stride))
645                 map->reg_stride_order = ilog2(map->reg_stride);
646         else
647                 map->reg_stride_order = -1;
648         map->use_single_read = config->use_single_rw || !bus || !bus->read;
649         map->use_single_write = config->use_single_rw || !bus || !bus->write;
650         map->can_multi_write = config->can_multi_write && bus && bus->write;
651         if (bus) {
652                 map->max_raw_read = bus->max_raw_read;
653                 map->max_raw_write = bus->max_raw_write;
654         }
655         map->dev = dev;
656         map->bus = bus;
657         map->bus_context = bus_context;
658         map->max_register = config->max_register;
659         map->wr_table = config->wr_table;
660         map->rd_table = config->rd_table;
661         map->volatile_table = config->volatile_table;
662         map->precious_table = config->precious_table;
663         map->writeable_reg = config->writeable_reg;
664         map->readable_reg = config->readable_reg;
665         map->volatile_reg = config->volatile_reg;
666         map->precious_reg = config->precious_reg;
667         map->cache_type = config->cache_type;
668         map->name = config->name;
669
670         spin_lock_init(&map->async_lock);
671         INIT_LIST_HEAD(&map->async_list);
672         INIT_LIST_HEAD(&map->async_free);
673         init_waitqueue_head(&map->async_waitq);
674
675         if (config->read_flag_mask || config->write_flag_mask) {
676                 map->read_flag_mask = config->read_flag_mask;
677                 map->write_flag_mask = config->write_flag_mask;
678         } else if (bus) {
679                 map->read_flag_mask = bus->read_flag_mask;
680         }
681
682         if (!bus) {
683                 map->reg_read  = config->reg_read;
684                 map->reg_write = config->reg_write;
685
686                 map->defer_caching = false;
687                 goto skip_format_initialization;
688         } else if (!bus->read || !bus->write) {
689                 map->reg_read = _regmap_bus_reg_read;
690                 map->reg_write = _regmap_bus_reg_write;
691
692                 map->defer_caching = false;
693                 goto skip_format_initialization;
694         } else {
695                 map->reg_read  = _regmap_bus_read;
696                 map->reg_update_bits = bus->reg_update_bits;
697         }
698
699         reg_endian = regmap_get_reg_endian(bus, config);
700         val_endian = regmap_get_val_endian(dev, bus, config);
701
702         switch (config->reg_bits + map->reg_shift) {
703         case 2:
704                 switch (config->val_bits) {
705                 case 6:
706                         map->format.format_write = regmap_format_2_6_write;
707                         break;
708                 default:
709                         goto err_map;
710                 }
711                 break;
712
713         case 4:
714                 switch (config->val_bits) {
715                 case 12:
716                         map->format.format_write = regmap_format_4_12_write;
717                         break;
718                 default:
719                         goto err_map;
720                 }
721                 break;
722
723         case 7:
724                 switch (config->val_bits) {
725                 case 9:
726                         map->format.format_write = regmap_format_7_9_write;
727                         break;
728                 default:
729                         goto err_map;
730                 }
731                 break;
732
733         case 10:
734                 switch (config->val_bits) {
735                 case 14:
736                         map->format.format_write = regmap_format_10_14_write;
737                         break;
738                 default:
739                         goto err_map;
740                 }
741                 break;
742
743         case 8:
744                 map->format.format_reg = regmap_format_8;
745                 break;
746
747         case 16:
748                 switch (reg_endian) {
749                 case REGMAP_ENDIAN_BIG:
750                         map->format.format_reg = regmap_format_16_be;
751                         break;
752                 case REGMAP_ENDIAN_NATIVE:
753                         map->format.format_reg = regmap_format_16_native;
754                         break;
755                 default:
756                         goto err_map;
757                 }
758                 break;
759
760         case 24:
761                 if (reg_endian != REGMAP_ENDIAN_BIG)
762                         goto err_map;
763                 map->format.format_reg = regmap_format_24;
764                 break;
765
766         case 32:
767                 switch (reg_endian) {
768                 case REGMAP_ENDIAN_BIG:
769                         map->format.format_reg = regmap_format_32_be;
770                         break;
771                 case REGMAP_ENDIAN_NATIVE:
772                         map->format.format_reg = regmap_format_32_native;
773                         break;
774                 default:
775                         goto err_map;
776                 }
777                 break;
778
779 #ifdef CONFIG_64BIT
780         case 64:
781                 switch (reg_endian) {
782                 case REGMAP_ENDIAN_BIG:
783                         map->format.format_reg = regmap_format_64_be;
784                         break;
785                 case REGMAP_ENDIAN_NATIVE:
786                         map->format.format_reg = regmap_format_64_native;
787                         break;
788                 default:
789                         goto err_map;
790                 }
791                 break;
792 #endif
793
794         default:
795                 goto err_map;
796         }
797
798         if (val_endian == REGMAP_ENDIAN_NATIVE)
799                 map->format.parse_inplace = regmap_parse_inplace_noop;
800
801         switch (config->val_bits) {
802         case 8:
803                 map->format.format_val = regmap_format_8;
804                 map->format.parse_val = regmap_parse_8;
805                 map->format.parse_inplace = regmap_parse_inplace_noop;
806                 break;
807         case 16:
808                 switch (val_endian) {
809                 case REGMAP_ENDIAN_BIG:
810                         map->format.format_val = regmap_format_16_be;
811                         map->format.parse_val = regmap_parse_16_be;
812                         map->format.parse_inplace = regmap_parse_16_be_inplace;
813                         break;
814                 case REGMAP_ENDIAN_LITTLE:
815                         map->format.format_val = regmap_format_16_le;
816                         map->format.parse_val = regmap_parse_16_le;
817                         map->format.parse_inplace = regmap_parse_16_le_inplace;
818                         break;
819                 case REGMAP_ENDIAN_NATIVE:
820                         map->format.format_val = regmap_format_16_native;
821                         map->format.parse_val = regmap_parse_16_native;
822                         break;
823                 default:
824                         goto err_map;
825                 }
826                 break;
827         case 24:
828                 if (val_endian != REGMAP_ENDIAN_BIG)
829                         goto err_map;
830                 map->format.format_val = regmap_format_24;
831                 map->format.parse_val = regmap_parse_24;
832                 break;
833         case 32:
834                 switch (val_endian) {
835                 case REGMAP_ENDIAN_BIG:
836                         map->format.format_val = regmap_format_32_be;
837                         map->format.parse_val = regmap_parse_32_be;
838                         map->format.parse_inplace = regmap_parse_32_be_inplace;
839                         break;
840                 case REGMAP_ENDIAN_LITTLE:
841                         map->format.format_val = regmap_format_32_le;
842                         map->format.parse_val = regmap_parse_32_le;
843                         map->format.parse_inplace = regmap_parse_32_le_inplace;
844                         break;
845                 case REGMAP_ENDIAN_NATIVE:
846                         map->format.format_val = regmap_format_32_native;
847                         map->format.parse_val = regmap_parse_32_native;
848                         break;
849                 default:
850                         goto err_map;
851                 }
852                 break;
853 #ifdef CONFIG_64BIT
854         case 64:
855                 switch (val_endian) {
856                 case REGMAP_ENDIAN_BIG:
857                         map->format.format_val = regmap_format_64_be;
858                         map->format.parse_val = regmap_parse_64_be;
859                         map->format.parse_inplace = regmap_parse_64_be_inplace;
860                         break;
861                 case REGMAP_ENDIAN_LITTLE:
862                         map->format.format_val = regmap_format_64_le;
863                         map->format.parse_val = regmap_parse_64_le;
864                         map->format.parse_inplace = regmap_parse_64_le_inplace;
865                         break;
866                 case REGMAP_ENDIAN_NATIVE:
867                         map->format.format_val = regmap_format_64_native;
868                         map->format.parse_val = regmap_parse_64_native;
869                         break;
870                 default:
871                         goto err_map;
872                 }
873                 break;
874 #endif
875         }
876
877         if (map->format.format_write) {
878                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
879                     (val_endian != REGMAP_ENDIAN_BIG))
880                         goto err_map;
881                 map->use_single_write = true;
882         }
883
884         if (!map->format.format_write &&
885             !(map->format.format_reg && map->format.format_val))
886                 goto err_map;
887
888         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
889         if (map->work_buf == NULL) {
890                 ret = -ENOMEM;
891                 goto err_map;
892         }
893
894         if (map->format.format_write) {
895                 map->defer_caching = false;
896                 map->reg_write = _regmap_bus_formatted_write;
897         } else if (map->format.format_val) {
898                 map->defer_caching = true;
899                 map->reg_write = _regmap_bus_raw_write;
900         }
901
902 skip_format_initialization:
903
904         map->range_tree = RB_ROOT;
905         for (i = 0; i < config->num_ranges; i++) {
906                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
907                 struct regmap_range_node *new;
908
909                 /* Sanity check */
910                 if (range_cfg->range_max < range_cfg->range_min) {
911                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
912                                 range_cfg->range_max, range_cfg->range_min);
913                         goto err_range;
914                 }
915
916                 if (range_cfg->range_max > map->max_register) {
917                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
918                                 range_cfg->range_max, map->max_register);
919                         goto err_range;
920                 }
921
922                 if (range_cfg->selector_reg > map->max_register) {
923                         dev_err(map->dev,
924                                 "Invalid range %d: selector out of map\n", i);
925                         goto err_range;
926                 }
927
928                 if (range_cfg->window_len == 0) {
929                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
930                                 i);
931                         goto err_range;
932                 }
933
934                 /* Make sure, that this register range has no selector
935                    or data window within its boundary */
936                 for (j = 0; j < config->num_ranges; j++) {
937                         unsigned sel_reg = config->ranges[j].selector_reg;
938                         unsigned win_min = config->ranges[j].window_start;
939                         unsigned win_max = win_min +
940                                            config->ranges[j].window_len - 1;
941
942                         /* Allow data window inside its own virtual range */
943                         if (j == i)
944                                 continue;
945
946                         if (range_cfg->range_min <= sel_reg &&
947                             sel_reg <= range_cfg->range_max) {
948                                 dev_err(map->dev,
949                                         "Range %d: selector for %d in window\n",
950                                         i, j);
951                                 goto err_range;
952                         }
953
954                         if (!(win_max < range_cfg->range_min ||
955                               win_min > range_cfg->range_max)) {
956                                 dev_err(map->dev,
957                                         "Range %d: window for %d in window\n",
958                                         i, j);
959                                 goto err_range;
960                         }
961                 }
962
963                 new = kzalloc(sizeof(*new), GFP_KERNEL);
964                 if (new == NULL) {
965                         ret = -ENOMEM;
966                         goto err_range;
967                 }
968
969                 new->map = map;
970                 new->name = range_cfg->name;
971                 new->range_min = range_cfg->range_min;
972                 new->range_max = range_cfg->range_max;
973                 new->selector_reg = range_cfg->selector_reg;
974                 new->selector_mask = range_cfg->selector_mask;
975                 new->selector_shift = range_cfg->selector_shift;
976                 new->window_start = range_cfg->window_start;
977                 new->window_len = range_cfg->window_len;
978
979                 if (!_regmap_range_add(map, new)) {
980                         dev_err(map->dev, "Failed to add range %d\n", i);
981                         kfree(new);
982                         goto err_range;
983                 }
984
985                 if (map->selector_work_buf == NULL) {
986                         map->selector_work_buf =
987                                 kzalloc(map->format.buf_size, GFP_KERNEL);
988                         if (map->selector_work_buf == NULL) {
989                                 ret = -ENOMEM;
990                                 goto err_range;
991                         }
992                 }
993         }
994
995         ret = regcache_init(map, config);
996         if (ret != 0)
997                 goto err_range;
998
999         if (dev) {
1000                 ret = regmap_attach_dev(dev, map, config);
1001                 if (ret != 0)
1002                         goto err_regcache;
1003         }
1004
1005         return map;
1006
1007 err_regcache:
1008         regcache_exit(map);
1009 err_range:
1010         regmap_range_exit(map);
1011         kfree(map->work_buf);
1012 err_map:
1013         kfree(map);
1014 err:
1015         return ERR_PTR(ret);
1016 }
1017 EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019 static void devm_regmap_release(struct device *dev, void *res)
1020 {
1021         regmap_exit(*(struct regmap **)res);
1022 }
1023
1024 struct regmap *__devm_regmap_init(struct device *dev,
1025                                   const struct regmap_bus *bus,
1026                                   void *bus_context,
1027                                   const struct regmap_config *config,
1028                                   struct lock_class_key *lock_key,
1029                                   const char *lock_name)
1030 {
1031         struct regmap **ptr, *regmap;
1032
1033         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034         if (!ptr)
1035                 return ERR_PTR(-ENOMEM);
1036
1037         regmap = __regmap_init(dev, bus, bus_context, config,
1038                                lock_key, lock_name);
1039         if (!IS_ERR(regmap)) {
1040                 *ptr = regmap;
1041                 devres_add(dev, ptr);
1042         } else {
1043                 devres_free(ptr);
1044         }
1045
1046         return regmap;
1047 }
1048 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050 static void regmap_field_init(struct regmap_field *rm_field,
1051         struct regmap *regmap, struct reg_field reg_field)
1052 {
1053         rm_field->regmap = regmap;
1054         rm_field->reg = reg_field.reg;
1055         rm_field->shift = reg_field.lsb;
1056         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057         rm_field->id_size = reg_field.id_size;
1058         rm_field->id_offset = reg_field.id_offset;
1059 }
1060
1061 /**
1062  * devm_regmap_field_alloc(): Allocate and initialise a register field
1063  * in a register map.
1064  *
1065  * @dev: Device that will be interacted with
1066  * @regmap: regmap bank in which this register field is located.
1067  * @reg_field: Register field with in the bank.
1068  *
1069  * The return value will be an ERR_PTR() on error or a valid pointer
1070  * to a struct regmap_field. The regmap_field will be automatically freed
1071  * by the device management code.
1072  */
1073 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074                 struct regmap *regmap, struct reg_field reg_field)
1075 {
1076         struct regmap_field *rm_field = devm_kzalloc(dev,
1077                                         sizeof(*rm_field), GFP_KERNEL);
1078         if (!rm_field)
1079                 return ERR_PTR(-ENOMEM);
1080
1081         regmap_field_init(rm_field, regmap, reg_field);
1082
1083         return rm_field;
1084
1085 }
1086 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
1088 /**
1089  * devm_regmap_field_free(): Free register field allocated using
1090  * devm_regmap_field_alloc. Usally drivers need not call this function,
1091  * as the memory allocated via devm will be freed as per device-driver
1092  * life-cyle.
1093  *
1094  * @dev: Device that will be interacted with
1095  * @field: regmap field which should be freed.
1096  */
1097 void devm_regmap_field_free(struct device *dev,
1098         struct regmap_field *field)
1099 {
1100         devm_kfree(dev, field);
1101 }
1102 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104 /**
1105  * regmap_field_alloc(): Allocate and initialise a register field
1106  * in a register map.
1107  *
1108  * @regmap: regmap bank in which this register field is located.
1109  * @reg_field: Register field with in the bank.
1110  *
1111  * The return value will be an ERR_PTR() on error or a valid pointer
1112  * to a struct regmap_field. The regmap_field should be freed by the
1113  * user once its finished working with it using regmap_field_free().
1114  */
1115 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116                 struct reg_field reg_field)
1117 {
1118         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120         if (!rm_field)
1121                 return ERR_PTR(-ENOMEM);
1122
1123         regmap_field_init(rm_field, regmap, reg_field);
1124
1125         return rm_field;
1126 }
1127 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129 /**
1130  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1131  *
1132  * @field: regmap field which should be freed.
1133  */
1134 void regmap_field_free(struct regmap_field *field)
1135 {
1136         kfree(field);
1137 }
1138 EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140 /**
1141  * regmap_reinit_cache(): Reinitialise the current register cache
1142  *
1143  * @map: Register map to operate on.
1144  * @config: New configuration.  Only the cache data will be used.
1145  *
1146  * Discard any existing register cache for the map and initialize a
1147  * new cache.  This can be used to restore the cache to defaults or to
1148  * update the cache configuration to reflect runtime discovery of the
1149  * hardware.
1150  *
1151  * No explicit locking is done here, the user needs to ensure that
1152  * this function will not race with other calls to regmap.
1153  */
1154 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155 {
1156         regcache_exit(map);
1157         regmap_debugfs_exit(map);
1158
1159         map->max_register = config->max_register;
1160         map->writeable_reg = config->writeable_reg;
1161         map->readable_reg = config->readable_reg;
1162         map->volatile_reg = config->volatile_reg;
1163         map->precious_reg = config->precious_reg;
1164         map->cache_type = config->cache_type;
1165
1166         regmap_debugfs_init(map, config->name);
1167
1168         map->cache_bypass = false;
1169         map->cache_only = false;
1170
1171         return regcache_init(map, config);
1172 }
1173 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175 /**
1176  * regmap_exit(): Free a previously allocated register map
1177  */
1178 void regmap_exit(struct regmap *map)
1179 {
1180         struct regmap_async *async;
1181
1182         regcache_exit(map);
1183         regmap_debugfs_exit(map);
1184         regmap_range_exit(map);
1185         if (map->bus && map->bus->free_context)
1186                 map->bus->free_context(map->bus_context);
1187         kfree(map->work_buf);
1188         while (!list_empty(&map->async_free)) {
1189                 async = list_first_entry_or_null(&map->async_free,
1190                                                  struct regmap_async,
1191                                                  list);
1192                 list_del(&async->list);
1193                 kfree(async->work_buf);
1194                 kfree(async);
1195         }
1196         kfree(map);
1197 }
1198 EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201 {
1202         struct regmap **r = res;
1203         if (!r || !*r) {
1204                 WARN_ON(!r || !*r);
1205                 return 0;
1206         }
1207
1208         /* If the user didn't specify a name match any */
1209         if (data)
1210                 return (*r)->name == data;
1211         else
1212                 return 1;
1213 }
1214
1215 /**
1216  * dev_get_regmap(): Obtain the regmap (if any) for a device
1217  *
1218  * @dev: Device to retrieve the map for
1219  * @name: Optional name for the register map, usually NULL.
1220  *
1221  * Returns the regmap for the device if one is present, or NULL.  If
1222  * name is specified then it must match the name specified when
1223  * registering the device, if it is NULL then the first regmap found
1224  * will be used.  Devices with multiple register maps are very rare,
1225  * generic code should normally not need to specify a name.
1226  */
1227 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228 {
1229         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230                                         dev_get_regmap_match, (void *)name);
1231
1232         if (!r)
1233                 return NULL;
1234         return *r;
1235 }
1236 EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238 /**
1239  * regmap_get_device(): Obtain the device from a regmap
1240  *
1241  * @map: Register map to operate on.
1242  *
1243  * Returns the underlying device that the regmap has been created for.
1244  */
1245 struct device *regmap_get_device(struct regmap *map)
1246 {
1247         return map->dev;
1248 }
1249 EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252                                struct regmap_range_node *range,
1253                                unsigned int val_num)
1254 {
1255         void *orig_work_buf;
1256         unsigned int win_offset;
1257         unsigned int win_page;
1258         bool page_chg;
1259         int ret;
1260
1261         win_offset = (*reg - range->range_min) % range->window_len;
1262         win_page = (*reg - range->range_min) / range->window_len;
1263
1264         if (val_num > 1) {
1265                 /* Bulk write shouldn't cross range boundary */
1266                 if (*reg + val_num - 1 > range->range_max)
1267                         return -EINVAL;
1268
1269                 /* ... or single page boundary */
1270                 if (val_num > range->window_len - win_offset)
1271                         return -EINVAL;
1272         }
1273
1274         /* It is possible to have selector register inside data window.
1275            In that case, selector register is located on every page and
1276            it needs no page switching, when accessed alone. */
1277         if (val_num > 1 ||
1278             range->window_start + win_offset != range->selector_reg) {
1279                 /* Use separate work_buf during page switching */
1280                 orig_work_buf = map->work_buf;
1281                 map->work_buf = map->selector_work_buf;
1282
1283                 ret = _regmap_update_bits(map, range->selector_reg,
1284                                           range->selector_mask,
1285                                           win_page << range->selector_shift,
1286                                           &page_chg, false);
1287
1288                 map->work_buf = orig_work_buf;
1289
1290                 if (ret != 0)
1291                         return ret;
1292         }
1293
1294         *reg = range->window_start + win_offset;
1295
1296         return 0;
1297 }
1298
1299 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300                       const void *val, size_t val_len)
1301 {
1302         struct regmap_range_node *range;
1303         unsigned long flags;
1304         u8 *u8 = map->work_buf;
1305         void *work_val = map->work_buf + map->format.reg_bytes +
1306                 map->format.pad_bytes;
1307         void *buf;
1308         int ret = -ENOTSUPP;
1309         size_t len;
1310         int i;
1311
1312         WARN_ON(!map->bus);
1313
1314         /* Check for unwritable registers before we start */
1315         if (map->writeable_reg)
1316                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1317                         if (!map->writeable_reg(map->dev,
1318                                                reg + regmap_get_offset(map, i)))
1319                                 return -EINVAL;
1320
1321         if (!map->cache_bypass && map->format.parse_val) {
1322                 unsigned int ival;
1323                 int val_bytes = map->format.val_bytes;
1324                 for (i = 0; i < val_len / val_bytes; i++) {
1325                         ival = map->format.parse_val(val + (i * val_bytes));
1326                         ret = regcache_write(map,
1327                                              reg + regmap_get_offset(map, i),
1328                                              ival);
1329                         if (ret) {
1330                                 dev_err(map->dev,
1331                                         "Error in caching of register: %x ret: %d\n",
1332                                         reg + i, ret);
1333                                 return ret;
1334                         }
1335                 }
1336                 if (map->cache_only) {
1337                         map->cache_dirty = true;
1338                         return 0;
1339                 }
1340         }
1341
1342         range = _regmap_range_lookup(map, reg);
1343         if (range) {
1344                 int val_num = val_len / map->format.val_bytes;
1345                 int win_offset = (reg - range->range_min) % range->window_len;
1346                 int win_residue = range->window_len - win_offset;
1347
1348                 /* If the write goes beyond the end of the window split it */
1349                 while (val_num > win_residue) {
1350                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1351                                 win_residue, val_len / map->format.val_bytes);
1352                         ret = _regmap_raw_write(map, reg, val, win_residue *
1353                                                 map->format.val_bytes);
1354                         if (ret != 0)
1355                                 return ret;
1356
1357                         reg += win_residue;
1358                         val_num -= win_residue;
1359                         val += win_residue * map->format.val_bytes;
1360                         val_len -= win_residue * map->format.val_bytes;
1361
1362                         win_offset = (reg - range->range_min) %
1363                                 range->window_len;
1364                         win_residue = range->window_len - win_offset;
1365                 }
1366
1367                 ret = _regmap_select_page(map, &reg, range, val_num);
1368                 if (ret != 0)
1369                         return ret;
1370         }
1371
1372         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374         u8[0] |= map->write_flag_mask;
1375
1376         /*
1377          * Essentially all I/O mechanisms will be faster with a single
1378          * buffer to write.  Since register syncs often generate raw
1379          * writes of single registers optimise that case.
1380          */
1381         if (val != work_val && val_len == map->format.val_bytes) {
1382                 memcpy(work_val, val, map->format.val_bytes);
1383                 val = work_val;
1384         }
1385
1386         if (map->async && map->bus->async_write) {
1387                 struct regmap_async *async;
1388
1389                 trace_regmap_async_write_start(map, reg, val_len);
1390
1391                 spin_lock_irqsave(&map->async_lock, flags);
1392                 async = list_first_entry_or_null(&map->async_free,
1393                                                  struct regmap_async,
1394                                                  list);
1395                 if (async)
1396                         list_del(&async->list);
1397                 spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399                 if (!async) {
1400                         async = map->bus->async_alloc();
1401                         if (!async)
1402                                 return -ENOMEM;
1403
1404                         async->work_buf = kzalloc(map->format.buf_size,
1405                                                   GFP_KERNEL | GFP_DMA);
1406                         if (!async->work_buf) {
1407                                 kfree(async);
1408                                 return -ENOMEM;
1409                         }
1410                 }
1411
1412                 async->map = map;
1413
1414                 /* If the caller supplied the value we can use it safely. */
1415                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416                        map->format.reg_bytes + map->format.val_bytes);
1417
1418                 spin_lock_irqsave(&map->async_lock, flags);
1419                 list_add_tail(&async->list, &map->async_list);
1420                 spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422                 if (val != work_val)
1423                         ret = map->bus->async_write(map->bus_context,
1424                                                     async->work_buf,
1425                                                     map->format.reg_bytes +
1426                                                     map->format.pad_bytes,
1427                                                     val, val_len, async);
1428                 else
1429                         ret = map->bus->async_write(map->bus_context,
1430                                                     async->work_buf,
1431                                                     map->format.reg_bytes +
1432                                                     map->format.pad_bytes +
1433                                                     val_len, NULL, 0, async);
1434
1435                 if (ret != 0) {
1436                         dev_err(map->dev, "Failed to schedule write: %d\n",
1437                                 ret);
1438
1439                         spin_lock_irqsave(&map->async_lock, flags);
1440                         list_move(&async->list, &map->async_free);
1441                         spin_unlock_irqrestore(&map->async_lock, flags);
1442                 }
1443
1444                 return ret;
1445         }
1446
1447         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448
1449         /* If we're doing a single register write we can probably just
1450          * send the work_buf directly, otherwise try to do a gather
1451          * write.
1452          */
1453         if (val == work_val)
1454                 ret = map->bus->write(map->bus_context, map->work_buf,
1455                                       map->format.reg_bytes +
1456                                       map->format.pad_bytes +
1457                                       val_len);
1458         else if (map->bus->gather_write)
1459                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460                                              map->format.reg_bytes +
1461                                              map->format.pad_bytes,
1462                                              val, val_len);
1463
1464         /* If that didn't work fall back on linearising by hand. */
1465         if (ret == -ENOTSUPP) {
1466                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467                 buf = kzalloc(len, GFP_KERNEL);
1468                 if (!buf)
1469                         return -ENOMEM;
1470
1471                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1472                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473                        val, val_len);
1474                 ret = map->bus->write(map->bus_context, buf, len);
1475
1476                 kfree(buf);
1477         }
1478
1479         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1480
1481         return ret;
1482 }
1483
1484 /**
1485  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486  *
1487  * @map: Map to check.
1488  */
1489 bool regmap_can_raw_write(struct regmap *map)
1490 {
1491         return map->bus && map->bus->write && map->format.format_val &&
1492                 map->format.format_reg;
1493 }
1494 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495
1496 /**
1497  * regmap_get_raw_read_max - Get the maximum size we can read
1498  *
1499  * @map: Map to check.
1500  */
1501 size_t regmap_get_raw_read_max(struct regmap *map)
1502 {
1503         return map->max_raw_read;
1504 }
1505 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506
1507 /**
1508  * regmap_get_raw_write_max - Get the maximum size we can read
1509  *
1510  * @map: Map to check.
1511  */
1512 size_t regmap_get_raw_write_max(struct regmap *map)
1513 {
1514         return map->max_raw_write;
1515 }
1516 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517
1518 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519                                        unsigned int val)
1520 {
1521         int ret;
1522         struct regmap_range_node *range;
1523         struct regmap *map = context;
1524
1525         WARN_ON(!map->bus || !map->format.format_write);
1526
1527         range = _regmap_range_lookup(map, reg);
1528         if (range) {
1529                 ret = _regmap_select_page(map, &reg, range, 1);
1530                 if (ret != 0)
1531                         return ret;
1532         }
1533
1534         map->format.format_write(map, reg, val);
1535
1536         trace_regmap_hw_write_start(map, reg, 1);
1537
1538         ret = map->bus->write(map->bus_context, map->work_buf,
1539                               map->format.buf_size);
1540
1541         trace_regmap_hw_write_done(map, reg, 1);
1542
1543         return ret;
1544 }
1545
1546 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547                                  unsigned int val)
1548 {
1549         struct regmap *map = context;
1550
1551         return map->bus->reg_write(map->bus_context, reg, val);
1552 }
1553
1554 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555                                  unsigned int val)
1556 {
1557         struct regmap *map = context;
1558
1559         WARN_ON(!map->bus || !map->format.format_val);
1560
1561         map->format.format_val(map->work_buf + map->format.reg_bytes
1562                                + map->format.pad_bytes, val, 0);
1563         return _regmap_raw_write(map, reg,
1564                                  map->work_buf +
1565                                  map->format.reg_bytes +
1566                                  map->format.pad_bytes,
1567                                  map->format.val_bytes);
1568 }
1569
1570 static inline void *_regmap_map_get_context(struct regmap *map)
1571 {
1572         return (map->bus) ? map : map->bus_context;
1573 }
1574
1575 int _regmap_write(struct regmap *map, unsigned int reg,
1576                   unsigned int val)
1577 {
1578         int ret;
1579         void *context = _regmap_map_get_context(map);
1580
1581         if (!regmap_writeable(map, reg))
1582                 return -EIO;
1583
1584         if (!map->cache_bypass && !map->defer_caching) {
1585                 ret = regcache_write(map, reg, val);
1586                 if (ret != 0)
1587                         return ret;
1588                 if (map->cache_only) {
1589                         map->cache_dirty = true;
1590                         return 0;
1591                 }
1592         }
1593
1594 #ifdef LOG_DEVICE
1595         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596                 dev_info(map->dev, "%x <= %x\n", reg, val);
1597 #endif
1598
1599         trace_regmap_reg_write(map, reg, val);
1600
1601         return map->reg_write(context, reg, val);
1602 }
1603
1604 /**
1605  * regmap_write(): Write a value to a single register
1606  *
1607  * @map: Register map to write to
1608  * @reg: Register to write to
1609  * @val: Value to be written
1610  *
1611  * A value of zero will be returned on success, a negative errno will
1612  * be returned in error cases.
1613  */
1614 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615 {
1616         int ret;
1617
1618         if (!IS_ALIGNED(reg, map->reg_stride))
1619                 return -EINVAL;
1620
1621         map->lock(map->lock_arg);
1622
1623         ret = _regmap_write(map, reg, val);
1624
1625         map->unlock(map->lock_arg);
1626
1627         return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(regmap_write);
1630
1631 /**
1632  * regmap_write_async(): Write a value to a single register asynchronously
1633  *
1634  * @map: Register map to write to
1635  * @reg: Register to write to
1636  * @val: Value to be written
1637  *
1638  * A value of zero will be returned on success, a negative errno will
1639  * be returned in error cases.
1640  */
1641 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642 {
1643         int ret;
1644
1645         if (!IS_ALIGNED(reg, map->reg_stride))
1646                 return -EINVAL;
1647
1648         map->lock(map->lock_arg);
1649
1650         map->async = true;
1651
1652         ret = _regmap_write(map, reg, val);
1653
1654         map->async = false;
1655
1656         map->unlock(map->lock_arg);
1657
1658         return ret;
1659 }
1660 EXPORT_SYMBOL_GPL(regmap_write_async);
1661
1662 /**
1663  * regmap_raw_write(): Write raw values to one or more registers
1664  *
1665  * @map: Register map to write to
1666  * @reg: Initial register to write to
1667  * @val: Block of data to be written, laid out for direct transmission to the
1668  *       device
1669  * @val_len: Length of data pointed to by val.
1670  *
1671  * This function is intended to be used for things like firmware
1672  * download where a large block of data needs to be transferred to the
1673  * device.  No formatting will be done on the data provided.
1674  *
1675  * A value of zero will be returned on success, a negative errno will
1676  * be returned in error cases.
1677  */
1678 int regmap_raw_write(struct regmap *map, unsigned int reg,
1679                      const void *val, size_t val_len)
1680 {
1681         int ret;
1682
1683         if (!regmap_can_raw_write(map))
1684                 return -EINVAL;
1685         if (val_len % map->format.val_bytes)
1686                 return -EINVAL;
1687         if (map->max_raw_write && map->max_raw_write > val_len)
1688                 return -E2BIG;
1689
1690         map->lock(map->lock_arg);
1691
1692         ret = _regmap_raw_write(map, reg, val, val_len);
1693
1694         map->unlock(map->lock_arg);
1695
1696         return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regmap_raw_write);
1699
1700 /**
1701  * regmap_field_update_bits_base():
1702  *      Perform a read/modify/write cycle on the register field
1703  *      with change, async, force option
1704  *
1705  * @field: Register field to write to
1706  * @mask: Bitmask to change
1707  * @val: Value to be written
1708  * @change: Boolean indicating if a write was done
1709  * @async: Boolean indicating asynchronously
1710  * @force: Boolean indicating use force update
1711  *
1712  * A value of zero will be returned on success, a negative errno will
1713  * be returned in error cases.
1714  */
1715 int regmap_field_update_bits_base(struct regmap_field *field,
1716                                   unsigned int mask, unsigned int val,
1717                                   bool *change, bool async, bool force)
1718 {
1719         mask = (mask << field->shift) & field->mask;
1720
1721         return regmap_update_bits_base(field->regmap, field->reg,
1722                                        mask, val << field->shift,
1723                                        change, async, force);
1724 }
1725 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726
1727 /**
1728  * regmap_fields_update_bits_base():
1729  *      Perform a read/modify/write cycle on the register field
1730  *      with change, async, force option
1731  *
1732  * @field: Register field to write to
1733  * @id: port ID
1734  * @mask: Bitmask to change
1735  * @val: Value to be written
1736  * @change: Boolean indicating if a write was done
1737  * @async: Boolean indicating asynchronously
1738  * @force: Boolean indicating use force update
1739  *
1740  * A value of zero will be returned on success, a negative errno will
1741  * be returned in error cases.
1742  */
1743 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1744                                    unsigned int mask, unsigned int val,
1745                                    bool *change, bool async, bool force)
1746 {
1747         if (id >= field->id_size)
1748                 return -EINVAL;
1749
1750         mask = (mask << field->shift) & field->mask;
1751
1752         return regmap_update_bits_base(field->regmap,
1753                                        field->reg + (field->id_offset * id),
1754                                        mask, val << field->shift,
1755                                        change, async, force);
1756 }
1757 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758
1759 /*
1760  * regmap_bulk_write(): Write multiple registers to the device
1761  *
1762  * @map: Register map to write to
1763  * @reg: First register to be write from
1764  * @val: Block of data to be written, in native register size for device
1765  * @val_count: Number of registers to write
1766  *
1767  * This function is intended to be used for writing a large block of
1768  * data to the device either in single transfer or multiple transfer.
1769  *
1770  * A value of zero will be returned on success, a negative errno will
1771  * be returned in error cases.
1772  */
1773 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774                      size_t val_count)
1775 {
1776         int ret = 0, i;
1777         size_t val_bytes = map->format.val_bytes;
1778         size_t total_size = val_bytes * val_count;
1779
1780         if (!IS_ALIGNED(reg, map->reg_stride))
1781                 return -EINVAL;
1782
1783         /*
1784          * Some devices don't support bulk write, for
1785          * them we have a series of single write operations in the first two if
1786          * blocks.
1787          *
1788          * The first if block is used for memory mapped io. It does not allow
1789          * val_bytes of 3 for example.
1790          * The second one is for busses that do not provide raw I/O.
1791          * The third one is used for busses which do not have these limitations
1792          * and can write arbitrary value lengths.
1793          */
1794         if (!map->bus) {
1795                 map->lock(map->lock_arg);
1796                 for (i = 0; i < val_count; i++) {
1797                         unsigned int ival;
1798
1799                         switch (val_bytes) {
1800                         case 1:
1801                                 ival = *(u8 *)(val + (i * val_bytes));
1802                                 break;
1803                         case 2:
1804                                 ival = *(u16 *)(val + (i * val_bytes));
1805                                 break;
1806                         case 4:
1807                                 ival = *(u32 *)(val + (i * val_bytes));
1808                                 break;
1809 #ifdef CONFIG_64BIT
1810                         case 8:
1811                                 ival = *(u64 *)(val + (i * val_bytes));
1812                                 break;
1813 #endif
1814                         default:
1815                                 ret = -EINVAL;
1816                                 goto out;
1817                         }
1818
1819                         ret = _regmap_write(map,
1820                                             reg + regmap_get_offset(map, i),
1821                                             ival);
1822                         if (ret != 0)
1823                                 goto out;
1824                 }
1825 out:
1826                 map->unlock(map->lock_arg);
1827         } else if (map->bus && !map->format.parse_inplace) {
1828                 const u8 *u8 = val;
1829                 const u16 *u16 = val;
1830                 const u32 *u32 = val;
1831                 unsigned int ival;
1832
1833                 for (i = 0; i < val_count; i++) {
1834                         switch (map->format.val_bytes) {
1835                         case 4:
1836                                 ival = u32[i];
1837                                 break;
1838                         case 2:
1839                                 ival = u16[i];
1840                                 break;
1841                         case 1:
1842                                 ival = u8[i];
1843                                 break;
1844                         default:
1845                                 return -EINVAL;
1846                         }
1847
1848                         ret = regmap_write(map, reg + (i * map->reg_stride),
1849                                            ival);
1850                         if (ret)
1851                                 return ret;
1852                 }
1853         } else if (map->use_single_write ||
1854                    (map->max_raw_write && map->max_raw_write < total_size)) {
1855                 int chunk_stride = map->reg_stride;
1856                 size_t chunk_size = val_bytes;
1857                 size_t chunk_count = val_count;
1858
1859                 if (!map->use_single_write) {
1860                         chunk_size = map->max_raw_write;
1861                         if (chunk_size % val_bytes)
1862                                 chunk_size -= chunk_size % val_bytes;
1863                         chunk_count = total_size / chunk_size;
1864                         chunk_stride *= chunk_size / val_bytes;
1865                 }
1866
1867                 map->lock(map->lock_arg);
1868                 /* Write as many bytes as possible with chunk_size */
1869                 for (i = 0; i < chunk_count; i++) {
1870                         ret = _regmap_raw_write(map,
1871                                                 reg + (i * chunk_stride),
1872                                                 val + (i * chunk_size),
1873                                                 chunk_size);
1874                         if (ret)
1875                                 break;
1876                 }
1877
1878                 /* Write remaining bytes */
1879                 if (!ret && chunk_size * i < total_size) {
1880                         ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1881                                                 val + (i * chunk_size),
1882                                                 total_size - i * chunk_size);
1883                 }
1884                 map->unlock(map->lock_arg);
1885         } else {
1886                 void *wval;
1887
1888                 if (!val_count)
1889                         return -EINVAL;
1890
1891                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1892                 if (!wval) {
1893                         dev_err(map->dev, "Error in memory allocation\n");
1894                         return -ENOMEM;
1895                 }
1896                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1897                         map->format.parse_inplace(wval + i);
1898
1899                 map->lock(map->lock_arg);
1900                 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1901                 map->unlock(map->lock_arg);
1902
1903                 kfree(wval);
1904         }
1905         return ret;
1906 }
1907 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1908
1909 /*
1910  * _regmap_raw_multi_reg_write()
1911  *
1912  * the (register,newvalue) pairs in regs have not been formatted, but
1913  * they are all in the same page and have been changed to being page
1914  * relative. The page register has been written if that was necessary.
1915  */
1916 static int _regmap_raw_multi_reg_write(struct regmap *map,
1917                                        const struct reg_sequence *regs,
1918                                        size_t num_regs)
1919 {
1920         int ret;
1921         void *buf;
1922         int i;
1923         u8 *u8;
1924         size_t val_bytes = map->format.val_bytes;
1925         size_t reg_bytes = map->format.reg_bytes;
1926         size_t pad_bytes = map->format.pad_bytes;
1927         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1928         size_t len = pair_size * num_regs;
1929
1930         if (!len)
1931                 return -EINVAL;
1932
1933         buf = kzalloc(len, GFP_KERNEL);
1934         if (!buf)
1935                 return -ENOMEM;
1936
1937         /* We have to linearise by hand. */
1938
1939         u8 = buf;
1940
1941         for (i = 0; i < num_regs; i++) {
1942                 unsigned int reg = regs[i].reg;
1943                 unsigned int val = regs[i].def;
1944                 trace_regmap_hw_write_start(map, reg, 1);
1945                 map->format.format_reg(u8, reg, map->reg_shift);
1946                 u8 += reg_bytes + pad_bytes;
1947                 map->format.format_val(u8, val, 0);
1948                 u8 += val_bytes;
1949         }
1950         u8 = buf;
1951         *u8 |= map->write_flag_mask;
1952
1953         ret = map->bus->write(map->bus_context, buf, len);
1954
1955         kfree(buf);
1956
1957         for (i = 0; i < num_regs; i++) {
1958                 int reg = regs[i].reg;
1959                 trace_regmap_hw_write_done(map, reg, 1);
1960         }
1961         return ret;
1962 }
1963
1964 static unsigned int _regmap_register_page(struct regmap *map,
1965                                           unsigned int reg,
1966                                           struct regmap_range_node *range)
1967 {
1968         unsigned int win_page = (reg - range->range_min) / range->window_len;
1969
1970         return win_page;
1971 }
1972
1973 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1974                                                struct reg_sequence *regs,
1975                                                size_t num_regs)
1976 {
1977         int ret;
1978         int i, n;
1979         struct reg_sequence *base;
1980         unsigned int this_page = 0;
1981         unsigned int page_change = 0;
1982         /*
1983          * the set of registers are not neccessarily in order, but
1984          * since the order of write must be preserved this algorithm
1985          * chops the set each time the page changes. This also applies
1986          * if there is a delay required at any point in the sequence.
1987          */
1988         base = regs;
1989         for (i = 0, n = 0; i < num_regs; i++, n++) {
1990                 unsigned int reg = regs[i].reg;
1991                 struct regmap_range_node *range;
1992
1993                 range = _regmap_range_lookup(map, reg);
1994                 if (range) {
1995                         unsigned int win_page = _regmap_register_page(map, reg,
1996                                                                       range);
1997
1998                         if (i == 0)
1999                                 this_page = win_page;
2000                         if (win_page != this_page) {
2001                                 this_page = win_page;
2002                                 page_change = 1;
2003                         }
2004                 }
2005
2006                 /* If we have both a page change and a delay make sure to
2007                  * write the regs and apply the delay before we change the
2008                  * page.
2009                  */
2010
2011                 if (page_change || regs[i].delay_us) {
2012
2013                                 /* For situations where the first write requires
2014                                  * a delay we need to make sure we don't call
2015                                  * raw_multi_reg_write with n=0
2016                                  * This can't occur with page breaks as we
2017                                  * never write on the first iteration
2018                                  */
2019                                 if (regs[i].delay_us && i == 0)
2020                                         n = 1;
2021
2022                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2023                                 if (ret != 0)
2024                                         return ret;
2025
2026                                 if (regs[i].delay_us)
2027                                         udelay(regs[i].delay_us);
2028
2029                                 base += n;
2030                                 n = 0;
2031
2032                                 if (page_change) {
2033                                         ret = _regmap_select_page(map,
2034                                                                   &base[n].reg,
2035                                                                   range, 1);
2036                                         if (ret != 0)
2037                                                 return ret;
2038
2039                                         page_change = 0;
2040                                 }
2041
2042                 }
2043
2044         }
2045         if (n > 0)
2046                 return _regmap_raw_multi_reg_write(map, base, n);
2047         return 0;
2048 }
2049
2050 static int _regmap_multi_reg_write(struct regmap *map,
2051                                    const struct reg_sequence *regs,
2052                                    size_t num_regs)
2053 {
2054         int i;
2055         int ret;
2056
2057         if (!map->can_multi_write) {
2058                 for (i = 0; i < num_regs; i++) {
2059                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2060                         if (ret != 0)
2061                                 return ret;
2062
2063                         if (regs[i].delay_us)
2064                                 udelay(regs[i].delay_us);
2065                 }
2066                 return 0;
2067         }
2068
2069         if (!map->format.parse_inplace)
2070                 return -EINVAL;
2071
2072         if (map->writeable_reg)
2073                 for (i = 0; i < num_regs; i++) {
2074                         int reg = regs[i].reg;
2075                         if (!map->writeable_reg(map->dev, reg))
2076                                 return -EINVAL;
2077                         if (!IS_ALIGNED(reg, map->reg_stride))
2078                                 return -EINVAL;
2079                 }
2080
2081         if (!map->cache_bypass) {
2082                 for (i = 0; i < num_regs; i++) {
2083                         unsigned int val = regs[i].def;
2084                         unsigned int reg = regs[i].reg;
2085                         ret = regcache_write(map, reg, val);
2086                         if (ret) {
2087                                 dev_err(map->dev,
2088                                 "Error in caching of register: %x ret: %d\n",
2089                                                                 reg, ret);
2090                                 return ret;
2091                         }
2092                 }
2093                 if (map->cache_only) {
2094                         map->cache_dirty = true;
2095                         return 0;
2096                 }
2097         }
2098
2099         WARN_ON(!map->bus);
2100
2101         for (i = 0; i < num_regs; i++) {
2102                 unsigned int reg = regs[i].reg;
2103                 struct regmap_range_node *range;
2104
2105                 /* Coalesce all the writes between a page break or a delay
2106                  * in a sequence
2107                  */
2108                 range = _regmap_range_lookup(map, reg);
2109                 if (range || regs[i].delay_us) {
2110                         size_t len = sizeof(struct reg_sequence)*num_regs;
2111                         struct reg_sequence *base = kmemdup(regs, len,
2112                                                            GFP_KERNEL);
2113                         if (!base)
2114                                 return -ENOMEM;
2115                         ret = _regmap_range_multi_paged_reg_write(map, base,
2116                                                                   num_regs);
2117                         kfree(base);
2118
2119                         return ret;
2120                 }
2121         }
2122         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2123 }
2124
2125 /*
2126  * regmap_multi_reg_write(): Write multiple registers to the device
2127  *
2128  * where the set of register,value pairs are supplied in any order,
2129  * possibly not all in a single range.
2130  *
2131  * @map: Register map to write to
2132  * @regs: Array of structures containing register,value to be written
2133  * @num_regs: Number of registers to write
2134  *
2135  * The 'normal' block write mode will send ultimately send data on the
2136  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2137  * addressed. However, this alternative block multi write mode will send
2138  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2139  * must of course support the mode.
2140  *
2141  * A value of zero will be returned on success, a negative errno will be
2142  * returned in error cases.
2143  */
2144 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2145                            int num_regs)
2146 {
2147         int ret;
2148
2149         map->lock(map->lock_arg);
2150
2151         ret = _regmap_multi_reg_write(map, regs, num_regs);
2152
2153         map->unlock(map->lock_arg);
2154
2155         return ret;
2156 }
2157 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2158
2159 /*
2160  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2161  *                                    device but not the cache
2162  *
2163  * where the set of register are supplied in any order
2164  *
2165  * @map: Register map to write to
2166  * @regs: Array of structures containing register,value to be written
2167  * @num_regs: Number of registers to write
2168  *
2169  * This function is intended to be used for writing a large block of data
2170  * atomically to the device in single transfer for those I2C client devices
2171  * that implement this alternative block write mode.
2172  *
2173  * A value of zero will be returned on success, a negative errno will
2174  * be returned in error cases.
2175  */
2176 int regmap_multi_reg_write_bypassed(struct regmap *map,
2177                                     const struct reg_sequence *regs,
2178                                     int num_regs)
2179 {
2180         int ret;
2181         bool bypass;
2182
2183         map->lock(map->lock_arg);
2184
2185         bypass = map->cache_bypass;
2186         map->cache_bypass = true;
2187
2188         ret = _regmap_multi_reg_write(map, regs, num_regs);
2189
2190         map->cache_bypass = bypass;
2191
2192         map->unlock(map->lock_arg);
2193
2194         return ret;
2195 }
2196 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2197
2198 /**
2199  * regmap_raw_write_async(): Write raw values to one or more registers
2200  *                           asynchronously
2201  *
2202  * @map: Register map to write to
2203  * @reg: Initial register to write to
2204  * @val: Block of data to be written, laid out for direct transmission to the
2205  *       device.  Must be valid until regmap_async_complete() is called.
2206  * @val_len: Length of data pointed to by val.
2207  *
2208  * This function is intended to be used for things like firmware
2209  * download where a large block of data needs to be transferred to the
2210  * device.  No formatting will be done on the data provided.
2211  *
2212  * If supported by the underlying bus the write will be scheduled
2213  * asynchronously, helping maximise I/O speed on higher speed buses
2214  * like SPI.  regmap_async_complete() can be called to ensure that all
2215  * asynchrnous writes have been completed.
2216  *
2217  * A value of zero will be returned on success, a negative errno will
2218  * be returned in error cases.
2219  */
2220 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2221                            const void *val, size_t val_len)
2222 {
2223         int ret;
2224
2225         if (val_len % map->format.val_bytes)
2226                 return -EINVAL;
2227         if (!IS_ALIGNED(reg, map->reg_stride))
2228                 return -EINVAL;
2229
2230         map->lock(map->lock_arg);
2231
2232         map->async = true;
2233
2234         ret = _regmap_raw_write(map, reg, val, val_len);
2235
2236         map->async = false;
2237
2238         map->unlock(map->lock_arg);
2239
2240         return ret;
2241 }
2242 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2243
2244 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2245                             unsigned int val_len)
2246 {
2247         struct regmap_range_node *range;
2248         u8 *u8 = map->work_buf;
2249         int ret;
2250
2251         WARN_ON(!map->bus);
2252
2253         if (!map->bus || !map->bus->read)
2254                 return -EINVAL;
2255
2256         range = _regmap_range_lookup(map, reg);
2257         if (range) {
2258                 ret = _regmap_select_page(map, &reg, range,
2259                                           val_len / map->format.val_bytes);
2260                 if (ret != 0)
2261                         return ret;
2262         }
2263
2264         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2265
2266         /*
2267          * Some buses or devices flag reads by setting the high bits in the
2268          * register address; since it's always the high bits for all
2269          * current formats we can do this here rather than in
2270          * formatting.  This may break if we get interesting formats.
2271          */
2272         u8[0] |= map->read_flag_mask;
2273
2274         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2275
2276         ret = map->bus->read(map->bus_context, map->work_buf,
2277                              map->format.reg_bytes + map->format.pad_bytes,
2278                              val, val_len);
2279
2280         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2281
2282         return ret;
2283 }
2284
2285 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2286                                 unsigned int *val)
2287 {
2288         struct regmap *map = context;
2289
2290         return map->bus->reg_read(map->bus_context, reg, val);
2291 }
2292
2293 static int _regmap_bus_read(void *context, unsigned int reg,
2294                             unsigned int *val)
2295 {
2296         int ret;
2297         struct regmap *map = context;
2298
2299         if (!map->format.parse_val)
2300                 return -EINVAL;
2301
2302         ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2303         if (ret == 0)
2304                 *val = map->format.parse_val(map->work_buf);
2305
2306         return ret;
2307 }
2308
2309 static int _regmap_read(struct regmap *map, unsigned int reg,
2310                         unsigned int *val)
2311 {
2312         int ret;
2313         void *context = _regmap_map_get_context(map);
2314
2315         if (!map->cache_bypass) {
2316                 ret = regcache_read(map, reg, val);
2317                 if (ret == 0)
2318                         return 0;
2319         }
2320
2321         if (map->cache_only)
2322                 return -EBUSY;
2323
2324         if (!regmap_readable(map, reg))
2325                 return -EIO;
2326
2327         ret = map->reg_read(context, reg, val);
2328         if (ret == 0) {
2329 #ifdef LOG_DEVICE
2330                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2331                         dev_info(map->dev, "%x => %x\n", reg, *val);
2332 #endif
2333
2334                 trace_regmap_reg_read(map, reg, *val);
2335
2336                 if (!map->cache_bypass)
2337                         regcache_write(map, reg, *val);
2338         }
2339
2340         return ret;
2341 }
2342
2343 /**
2344  * regmap_read(): Read a value from a single register
2345  *
2346  * @map: Register map to read from
2347  * @reg: Register to be read from
2348  * @val: Pointer to store read value
2349  *
2350  * A value of zero will be returned on success, a negative errno will
2351  * be returned in error cases.
2352  */
2353 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2354 {
2355         int ret;
2356
2357         if (!IS_ALIGNED(reg, map->reg_stride))
2358                 return -EINVAL;
2359
2360         map->lock(map->lock_arg);
2361
2362         ret = _regmap_read(map, reg, val);
2363
2364         map->unlock(map->lock_arg);
2365
2366         return ret;
2367 }
2368 EXPORT_SYMBOL_GPL(regmap_read);
2369
2370 /**
2371  * regmap_raw_read(): Read raw data from the device
2372  *
2373  * @map: Register map to read from
2374  * @reg: First register to be read from
2375  * @val: Pointer to store read value
2376  * @val_len: Size of data to read
2377  *
2378  * A value of zero will be returned on success, a negative errno will
2379  * be returned in error cases.
2380  */
2381 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2382                     size_t val_len)
2383 {
2384         size_t val_bytes = map->format.val_bytes;
2385         size_t val_count = val_len / val_bytes;
2386         unsigned int v;
2387         int ret, i;
2388
2389         if (!map->bus)
2390                 return -EINVAL;
2391         if (val_len % map->format.val_bytes)
2392                 return -EINVAL;
2393         if (!IS_ALIGNED(reg, map->reg_stride))
2394                 return -EINVAL;
2395         if (val_count == 0)
2396                 return -EINVAL;
2397
2398         map->lock(map->lock_arg);
2399
2400         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2401             map->cache_type == REGCACHE_NONE) {
2402                 if (!map->bus->read) {
2403                         ret = -ENOTSUPP;
2404                         goto out;
2405                 }
2406                 if (map->max_raw_read && map->max_raw_read < val_len) {
2407                         ret = -E2BIG;
2408                         goto out;
2409                 }
2410
2411                 /* Physical block read if there's no cache involved */
2412                 ret = _regmap_raw_read(map, reg, val, val_len);
2413
2414         } else {
2415                 /* Otherwise go word by word for the cache; should be low
2416                  * cost as we expect to hit the cache.
2417                  */
2418                 for (i = 0; i < val_count; i++) {
2419                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2420                                            &v);
2421                         if (ret != 0)
2422                                 goto out;
2423
2424                         map->format.format_val(val + (i * val_bytes), v, 0);
2425                 }
2426         }
2427
2428  out:
2429         map->unlock(map->lock_arg);
2430
2431         return ret;
2432 }
2433 EXPORT_SYMBOL_GPL(regmap_raw_read);
2434
2435 /**
2436  * regmap_field_read(): Read a value to a single register field
2437  *
2438  * @field: Register field to read from
2439  * @val: Pointer to store read value
2440  *
2441  * A value of zero will be returned on success, a negative errno will
2442  * be returned in error cases.
2443  */
2444 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2445 {
2446         int ret;
2447         unsigned int reg_val;
2448         ret = regmap_read(field->regmap, field->reg, &reg_val);
2449         if (ret != 0)
2450                 return ret;
2451
2452         reg_val &= field->mask;
2453         reg_val >>= field->shift;
2454         *val = reg_val;
2455
2456         return ret;
2457 }
2458 EXPORT_SYMBOL_GPL(regmap_field_read);
2459
2460 /**
2461  * regmap_fields_read(): Read a value to a single register field with port ID
2462  *
2463  * @field: Register field to read from
2464  * @id: port ID
2465  * @val: Pointer to store read value
2466  *
2467  * A value of zero will be returned on success, a negative errno will
2468  * be returned in error cases.
2469  */
2470 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2471                        unsigned int *val)
2472 {
2473         int ret;
2474         unsigned int reg_val;
2475
2476         if (id >= field->id_size)
2477                 return -EINVAL;
2478
2479         ret = regmap_read(field->regmap,
2480                           field->reg + (field->id_offset * id),
2481                           &reg_val);
2482         if (ret != 0)
2483                 return ret;
2484
2485         reg_val &= field->mask;
2486         reg_val >>= field->shift;
2487         *val = reg_val;
2488
2489         return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(regmap_fields_read);
2492
2493 /**
2494  * regmap_bulk_read(): Read multiple registers from the device
2495  *
2496  * @map: Register map to read from
2497  * @reg: First register to be read from
2498  * @val: Pointer to store read value, in native register size for device
2499  * @val_count: Number of registers to read
2500  *
2501  * A value of zero will be returned on success, a negative errno will
2502  * be returned in error cases.
2503  */
2504 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2505                      size_t val_count)
2506 {
2507         int ret, i;
2508         size_t val_bytes = map->format.val_bytes;
2509         bool vol = regmap_volatile_range(map, reg, val_count);
2510
2511         if (!IS_ALIGNED(reg, map->reg_stride))
2512                 return -EINVAL;
2513
2514         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2515                 /*
2516                  * Some devices does not support bulk read, for
2517                  * them we have a series of single read operations.
2518                  */
2519                 size_t total_size = val_bytes * val_count;
2520
2521                 if (!map->use_single_read &&
2522                     (!map->max_raw_read || map->max_raw_read > total_size)) {
2523                         ret = regmap_raw_read(map, reg, val,
2524                                               val_bytes * val_count);
2525                         if (ret != 0)
2526                                 return ret;
2527                 } else {
2528                         /*
2529                          * Some devices do not support bulk read or do not
2530                          * support large bulk reads, for them we have a series
2531                          * of read operations.
2532                          */
2533                         int chunk_stride = map->reg_stride;
2534                         size_t chunk_size = val_bytes;
2535                         size_t chunk_count = val_count;
2536
2537                         if (!map->use_single_read) {
2538                                 chunk_size = map->max_raw_read;
2539                                 if (chunk_size % val_bytes)
2540                                         chunk_size -= chunk_size % val_bytes;
2541                                 chunk_count = total_size / chunk_size;
2542                                 chunk_stride *= chunk_size / val_bytes;
2543                         }
2544
2545                         /* Read bytes that fit into a multiple of chunk_size */
2546                         for (i = 0; i < chunk_count; i++) {
2547                                 ret = regmap_raw_read(map,
2548                                                       reg + (i * chunk_stride),
2549                                                       val + (i * chunk_size),
2550                                                       chunk_size);
2551                                 if (ret != 0)
2552                                         return ret;
2553                         }
2554
2555                         /* Read remaining bytes */
2556                         if (chunk_size * i < total_size) {
2557                                 ret = regmap_raw_read(map,
2558                                                       reg + (i * chunk_stride),
2559                                                       val + (i * chunk_size),
2560                                                       total_size - i * chunk_size);
2561                                 if (ret != 0)
2562                                         return ret;
2563                         }
2564                 }
2565
2566                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2567                         map->format.parse_inplace(val + i);
2568         } else {
2569                 for (i = 0; i < val_count; i++) {
2570                         unsigned int ival;
2571                         ret = regmap_read(map, reg + regmap_get_offset(map, i),
2572                                           &ival);
2573                         if (ret != 0)
2574                                 return ret;
2575
2576                         if (map->format.format_val) {
2577                                 map->format.format_val(val + (i * val_bytes), ival, 0);
2578                         } else {
2579                                 /* Devices providing read and write
2580                                  * operations can use the bulk I/O
2581                                  * functions if they define a val_bytes,
2582                                  * we assume that the values are native
2583                                  * endian.
2584                                  */
2585 #ifdef CONFIG_64BIT
2586                                 u64 *u64 = val;
2587 #endif
2588                                 u32 *u32 = val;
2589                                 u16 *u16 = val;
2590                                 u8 *u8 = val;
2591
2592                                 switch (map->format.val_bytes) {
2593 #ifdef CONFIG_64BIT
2594                                 case 8:
2595                                         u64[i] = ival;
2596                                         break;
2597 #endif
2598                                 case 4:
2599                                         u32[i] = ival;
2600                                         break;
2601                                 case 2:
2602                                         u16[i] = ival;
2603                                         break;
2604                                 case 1:
2605                                         u8[i] = ival;
2606                                         break;
2607                                 default:
2608                                         return -EINVAL;
2609                                 }
2610                         }
2611                 }
2612         }
2613
2614         return 0;
2615 }
2616 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2617
2618 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2619                                unsigned int mask, unsigned int val,
2620                                bool *change, bool force_write)
2621 {
2622         int ret;
2623         unsigned int tmp, orig;
2624
2625         if (change)
2626                 *change = false;
2627
2628         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2629                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2630                 if (ret == 0 && change)
2631                         *change = true;
2632         } else {
2633                 ret = _regmap_read(map, reg, &orig);
2634                 if (ret != 0)
2635                         return ret;
2636
2637                 tmp = orig & ~mask;
2638                 tmp |= val & mask;
2639
2640                 if (force_write || (tmp != orig)) {
2641                         ret = _regmap_write(map, reg, tmp);
2642                         if (ret == 0 && change)
2643                                 *change = true;
2644                 }
2645         }
2646
2647         return ret;
2648 }
2649
2650 /**
2651  * regmap_update_bits_base:
2652  *      Perform a read/modify/write cycle on the
2653  *      register map with change, async, force option
2654  *
2655  * @map: Register map to update
2656  * @reg: Register to update
2657  * @mask: Bitmask to change
2658  * @val: New value for bitmask
2659  * @change: Boolean indicating if a write was done
2660  * @async: Boolean indicating asynchronously
2661  * @force: Boolean indicating use force update
2662  *
2663  * if async was true,
2664  * With most buses the read must be done synchronously so this is most
2665  * useful for devices with a cache which do not need to interact with
2666  * the hardware to determine the current register value.
2667  *
2668  * Returns zero for success, a negative number on error.
2669  */
2670 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2671                             unsigned int mask, unsigned int val,
2672                             bool *change, bool async, bool force)
2673 {
2674         int ret;
2675
2676         map->lock(map->lock_arg);
2677
2678         map->async = async;
2679
2680         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2681
2682         map->async = false;
2683
2684         map->unlock(map->lock_arg);
2685
2686         return ret;
2687 }
2688 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2689
2690 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2691 {
2692         struct regmap *map = async->map;
2693         bool wake;
2694
2695         trace_regmap_async_io_complete(map);
2696
2697         spin_lock(&map->async_lock);
2698         list_move(&async->list, &map->async_free);
2699         wake = list_empty(&map->async_list);
2700
2701         if (ret != 0)
2702                 map->async_ret = ret;
2703
2704         spin_unlock(&map->async_lock);
2705
2706         if (wake)
2707                 wake_up(&map->async_waitq);
2708 }
2709 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2710
2711 static int regmap_async_is_done(struct regmap *map)
2712 {
2713         unsigned long flags;
2714         int ret;
2715
2716         spin_lock_irqsave(&map->async_lock, flags);
2717         ret = list_empty(&map->async_list);
2718         spin_unlock_irqrestore(&map->async_lock, flags);
2719
2720         return ret;
2721 }
2722
2723 /**
2724  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2725  *
2726  * @map: Map to operate on.
2727  *
2728  * Blocks until any pending asynchronous I/O has completed.  Returns
2729  * an error code for any failed I/O operations.
2730  */
2731 int regmap_async_complete(struct regmap *map)
2732 {
2733         unsigned long flags;
2734         int ret;
2735
2736         /* Nothing to do with no async support */
2737         if (!map->bus || !map->bus->async_write)
2738                 return 0;
2739
2740         trace_regmap_async_complete_start(map);
2741
2742         wait_event(map->async_waitq, regmap_async_is_done(map));
2743
2744         spin_lock_irqsave(&map->async_lock, flags);
2745         ret = map->async_ret;
2746         map->async_ret = 0;
2747         spin_unlock_irqrestore(&map->async_lock, flags);
2748
2749         trace_regmap_async_complete_done(map);
2750
2751         return ret;
2752 }
2753 EXPORT_SYMBOL_GPL(regmap_async_complete);
2754
2755 /**
2756  * regmap_register_patch: Register and apply register updates to be applied
2757  *                        on device initialistion
2758  *
2759  * @map: Register map to apply updates to.
2760  * @regs: Values to update.
2761  * @num_regs: Number of entries in regs.
2762  *
2763  * Register a set of register updates to be applied to the device
2764  * whenever the device registers are synchronised with the cache and
2765  * apply them immediately.  Typically this is used to apply
2766  * corrections to be applied to the device defaults on startup, such
2767  * as the updates some vendors provide to undocumented registers.
2768  *
2769  * The caller must ensure that this function cannot be called
2770  * concurrently with either itself or regcache_sync().
2771  */
2772 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2773                           int num_regs)
2774 {
2775         struct reg_sequence *p;
2776         int ret;
2777         bool bypass;
2778
2779         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2780             num_regs))
2781                 return 0;
2782
2783         p = krealloc(map->patch,
2784                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2785                      GFP_KERNEL);
2786         if (p) {
2787                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2788                 map->patch = p;
2789                 map->patch_regs += num_regs;
2790         } else {
2791                 return -ENOMEM;
2792         }
2793
2794         map->lock(map->lock_arg);
2795
2796         bypass = map->cache_bypass;
2797
2798         map->cache_bypass = true;
2799         map->async = true;
2800
2801         ret = _regmap_multi_reg_write(map, regs, num_regs);
2802
2803         map->async = false;
2804         map->cache_bypass = bypass;
2805
2806         map->unlock(map->lock_arg);
2807
2808         regmap_async_complete(map);
2809
2810         return ret;
2811 }
2812 EXPORT_SYMBOL_GPL(regmap_register_patch);
2813
2814 /*
2815  * regmap_get_val_bytes(): Report the size of a register value
2816  *
2817  * Report the size of a register value, mainly intended to for use by
2818  * generic infrastructure built on top of regmap.
2819  */
2820 int regmap_get_val_bytes(struct regmap *map)
2821 {
2822         if (map->format.format_write)
2823                 return -EINVAL;
2824
2825         return map->format.val_bytes;
2826 }
2827 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2828
2829 /**
2830  * regmap_get_max_register(): Report the max register value
2831  *
2832  * Report the max register value, mainly intended to for use by
2833  * generic infrastructure built on top of regmap.
2834  */
2835 int regmap_get_max_register(struct regmap *map)
2836 {
2837         return map->max_register ? map->max_register : -EINVAL;
2838 }
2839 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2840
2841 /**
2842  * regmap_get_reg_stride(): Report the register address stride
2843  *
2844  * Report the register address stride, mainly intended to for use by
2845  * generic infrastructure built on top of regmap.
2846  */
2847 int regmap_get_reg_stride(struct regmap *map)
2848 {
2849         return map->reg_stride;
2850 }
2851 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2852
2853 int regmap_parse_val(struct regmap *map, const void *buf,
2854                         unsigned int *val)
2855 {
2856         if (!map->format.parse_val)
2857                 return -EINVAL;
2858
2859         *val = map->format.parse_val(buf);
2860
2861         return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(regmap_parse_val);
2864
2865 static int __init regmap_initcall(void)
2866 {
2867         regmap_debugfs_initcall();
2868
2869         return 0;
2870 }
2871 postcore_initcall(regmap_initcall);