Merge tag 'for-linus-5.0' of git://github.com/cminyard/linux-ipmi
[sfrench/cifs-2.6.git] / drivers / base / regmap / regmap-irq.c
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21
22 #include "internal.h"
23
24 struct regmap_irq_chip_data {
25         struct mutex lock;
26         struct irq_chip irq_chip;
27
28         struct regmap *map;
29         const struct regmap_irq_chip *chip;
30
31         int irq_base;
32         struct irq_domain *domain;
33
34         int irq;
35         int wake_count;
36
37         void *status_reg_buf;
38         unsigned int *status_buf;
39         unsigned int *mask_buf;
40         unsigned int *mask_buf_def;
41         unsigned int *wake_buf;
42         unsigned int *type_buf;
43         unsigned int *type_buf_def;
44
45         unsigned int irq_reg_stride;
46         unsigned int type_reg_stride;
47
48         bool clear_status:1;
49 };
50
51 static inline const
52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53                                      int irq)
54 {
55         return &data->chip->irqs[irq];
56 }
57
58 static void regmap_irq_lock(struct irq_data *data)
59 {
60         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
61
62         mutex_lock(&d->lock);
63 }
64
65 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
66                                   unsigned int reg, unsigned int mask,
67                                   unsigned int val)
68 {
69         if (d->chip->mask_writeonly)
70                 return regmap_write_bits(d->map, reg, mask, val);
71         else
72                 return regmap_update_bits(d->map, reg, mask, val);
73 }
74
75 static void regmap_irq_sync_unlock(struct irq_data *data)
76 {
77         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
78         struct regmap *map = d->map;
79         int i, ret;
80         u32 reg;
81         u32 unmask_offset;
82         u32 val;
83
84         if (d->chip->runtime_pm) {
85                 ret = pm_runtime_get_sync(map->dev);
86                 if (ret < 0)
87                         dev_err(map->dev, "IRQ sync failed to resume: %d\n",
88                                 ret);
89         }
90
91         if (d->clear_status) {
92                 for (i = 0; i < d->chip->num_regs; i++) {
93                         reg = d->chip->status_base +
94                                 (i * map->reg_stride * d->irq_reg_stride);
95
96                         ret = regmap_read(map, reg, &val);
97                         if (ret)
98                                 dev_err(d->map->dev,
99                                         "Failed to clear the interrupt status bits\n");
100                 }
101
102                 d->clear_status = false;
103         }
104
105         /*
106          * If there's been a change in the mask write it back to the
107          * hardware.  We rely on the use of the regmap core cache to
108          * suppress pointless writes.
109          */
110         for (i = 0; i < d->chip->num_regs; i++) {
111                 if (!d->chip->mask_base)
112                         continue;
113
114                 reg = d->chip->mask_base +
115                         (i * map->reg_stride * d->irq_reg_stride);
116                 if (d->chip->mask_invert) {
117                         ret = regmap_irq_update_bits(d, reg,
118                                          d->mask_buf_def[i], ~d->mask_buf[i]);
119                 } else if (d->chip->unmask_base) {
120                         /* set mask with mask_base register */
121                         ret = regmap_irq_update_bits(d, reg,
122                                         d->mask_buf_def[i], ~d->mask_buf[i]);
123                         if (ret < 0)
124                                 dev_err(d->map->dev,
125                                         "Failed to sync unmasks in %x\n",
126                                         reg);
127                         unmask_offset = d->chip->unmask_base -
128                                                         d->chip->mask_base;
129                         /* clear mask with unmask_base register */
130                         ret = regmap_irq_update_bits(d,
131                                         reg + unmask_offset,
132                                         d->mask_buf_def[i],
133                                         d->mask_buf[i]);
134                 } else {
135                         ret = regmap_irq_update_bits(d, reg,
136                                          d->mask_buf_def[i], d->mask_buf[i]);
137                 }
138                 if (ret != 0)
139                         dev_err(d->map->dev, "Failed to sync masks in %x\n",
140                                 reg);
141
142                 reg = d->chip->wake_base +
143                         (i * map->reg_stride * d->irq_reg_stride);
144                 if (d->wake_buf) {
145                         if (d->chip->wake_invert)
146                                 ret = regmap_irq_update_bits(d, reg,
147                                                          d->mask_buf_def[i],
148                                                          ~d->wake_buf[i]);
149                         else
150                                 ret = regmap_irq_update_bits(d, reg,
151                                                          d->mask_buf_def[i],
152                                                          d->wake_buf[i]);
153                         if (ret != 0)
154                                 dev_err(d->map->dev,
155                                         "Failed to sync wakes in %x: %d\n",
156                                         reg, ret);
157                 }
158
159                 if (!d->chip->init_ack_masked)
160                         continue;
161                 /*
162                  * Ack all the masked interrupts unconditionally,
163                  * OR if there is masked interrupt which hasn't been Acked,
164                  * it'll be ignored in irq handler, then may introduce irq storm
165                  */
166                 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
167                         reg = d->chip->ack_base +
168                                 (i * map->reg_stride * d->irq_reg_stride);
169                         /* some chips ack by write 0 */
170                         if (d->chip->ack_invert)
171                                 ret = regmap_write(map, reg, ~d->mask_buf[i]);
172                         else
173                                 ret = regmap_write(map, reg, d->mask_buf[i]);
174                         if (ret != 0)
175                                 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
176                                         reg, ret);
177                 }
178         }
179
180         /* Don't update the type bits if we're using mask bits for irq type. */
181         if (!d->chip->type_in_mask) {
182                 for (i = 0; i < d->chip->num_type_reg; i++) {
183                         if (!d->type_buf_def[i])
184                                 continue;
185                         reg = d->chip->type_base +
186                                 (i * map->reg_stride * d->type_reg_stride);
187                         if (d->chip->type_invert)
188                                 ret = regmap_irq_update_bits(d, reg,
189                                         d->type_buf_def[i], ~d->type_buf[i]);
190                         else
191                                 ret = regmap_irq_update_bits(d, reg,
192                                         d->type_buf_def[i], d->type_buf[i]);
193                         if (ret != 0)
194                                 dev_err(d->map->dev, "Failed to sync type in %x\n",
195                                         reg);
196                 }
197         }
198
199         if (d->chip->runtime_pm)
200                 pm_runtime_put(map->dev);
201
202         /* If we've changed our wakeup count propagate it to the parent */
203         if (d->wake_count < 0)
204                 for (i = d->wake_count; i < 0; i++)
205                         irq_set_irq_wake(d->irq, 0);
206         else if (d->wake_count > 0)
207                 for (i = 0; i < d->wake_count; i++)
208                         irq_set_irq_wake(d->irq, 1);
209
210         d->wake_count = 0;
211
212         mutex_unlock(&d->lock);
213 }
214
215 static void regmap_irq_enable(struct irq_data *data)
216 {
217         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
218         struct regmap *map = d->map;
219         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
220         unsigned int mask, type;
221
222         type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
223
224         /*
225          * The type_in_mask flag means that the underlying hardware uses
226          * separate mask bits for rising and falling edge interrupts, but
227          * we want to make them into a single virtual interrupt with
228          * configurable edge.
229          *
230          * If the interrupt we're enabling defines the falling or rising
231          * masks then instead of using the regular mask bits for this
232          * interrupt, use the value previously written to the type buffer
233          * at the corresponding offset in regmap_irq_set_type().
234          */
235         if (d->chip->type_in_mask && type)
236                 mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
237         else
238                 mask = irq_data->mask;
239
240         if (d->chip->clear_on_unmask)
241                 d->clear_status = true;
242
243         d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
244 }
245
246 static void regmap_irq_disable(struct irq_data *data)
247 {
248         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
249         struct regmap *map = d->map;
250         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
251
252         d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
253 }
254
255 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
256 {
257         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
258         struct regmap *map = d->map;
259         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
260         int reg;
261         const struct regmap_irq_type *t = &irq_data->type;
262
263         if ((t->types_supported & type) != type)
264                 return 0;
265
266         reg = t->type_reg_offset / map->reg_stride;
267
268         if (t->type_reg_mask)
269                 d->type_buf[reg] &= ~t->type_reg_mask;
270         else
271                 d->type_buf[reg] &= ~(t->type_falling_val |
272                                       t->type_rising_val |
273                                       t->type_level_low_val |
274                                       t->type_level_high_val);
275         switch (type) {
276         case IRQ_TYPE_EDGE_FALLING:
277                 d->type_buf[reg] |= t->type_falling_val;
278                 break;
279
280         case IRQ_TYPE_EDGE_RISING:
281                 d->type_buf[reg] |= t->type_rising_val;
282                 break;
283
284         case IRQ_TYPE_EDGE_BOTH:
285                 d->type_buf[reg] |= (t->type_falling_val |
286                                         t->type_rising_val);
287                 break;
288
289         case IRQ_TYPE_LEVEL_HIGH:
290                 d->type_buf[reg] |= t->type_level_high_val;
291                 break;
292
293         case IRQ_TYPE_LEVEL_LOW:
294                 d->type_buf[reg] |= t->type_level_low_val;
295                 break;
296         default:
297                 return -EINVAL;
298         }
299         return 0;
300 }
301
302 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
303 {
304         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
305         struct regmap *map = d->map;
306         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
307
308         if (on) {
309                 if (d->wake_buf)
310                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
311                                 &= ~irq_data->mask;
312                 d->wake_count++;
313         } else {
314                 if (d->wake_buf)
315                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
316                                 |= irq_data->mask;
317                 d->wake_count--;
318         }
319
320         return 0;
321 }
322
323 static const struct irq_chip regmap_irq_chip = {
324         .irq_bus_lock           = regmap_irq_lock,
325         .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
326         .irq_disable            = regmap_irq_disable,
327         .irq_enable             = regmap_irq_enable,
328         .irq_set_type           = regmap_irq_set_type,
329         .irq_set_wake           = regmap_irq_set_wake,
330 };
331
332 static irqreturn_t regmap_irq_thread(int irq, void *d)
333 {
334         struct regmap_irq_chip_data *data = d;
335         const struct regmap_irq_chip *chip = data->chip;
336         struct regmap *map = data->map;
337         int ret, i;
338         bool handled = false;
339         u32 reg;
340
341         if (chip->handle_pre_irq)
342                 chip->handle_pre_irq(chip->irq_drv_data);
343
344         if (chip->runtime_pm) {
345                 ret = pm_runtime_get_sync(map->dev);
346                 if (ret < 0) {
347                         dev_err(map->dev, "IRQ thread failed to resume: %d\n",
348                                 ret);
349                         pm_runtime_put(map->dev);
350                         goto exit;
351                 }
352         }
353
354         /*
355          * Read in the statuses, using a single bulk read if possible
356          * in order to reduce the I/O overheads.
357          */
358         if (!map->use_single_read && map->reg_stride == 1 &&
359             data->irq_reg_stride == 1) {
360                 u8 *buf8 = data->status_reg_buf;
361                 u16 *buf16 = data->status_reg_buf;
362                 u32 *buf32 = data->status_reg_buf;
363
364                 BUG_ON(!data->status_reg_buf);
365
366                 ret = regmap_bulk_read(map, chip->status_base,
367                                        data->status_reg_buf,
368                                        chip->num_regs);
369                 if (ret != 0) {
370                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
371                                 ret);
372                         goto exit;
373                 }
374
375                 for (i = 0; i < data->chip->num_regs; i++) {
376                         switch (map->format.val_bytes) {
377                         case 1:
378                                 data->status_buf[i] = buf8[i];
379                                 break;
380                         case 2:
381                                 data->status_buf[i] = buf16[i];
382                                 break;
383                         case 4:
384                                 data->status_buf[i] = buf32[i];
385                                 break;
386                         default:
387                                 BUG();
388                                 goto exit;
389                         }
390                 }
391
392         } else {
393                 for (i = 0; i < data->chip->num_regs; i++) {
394                         ret = regmap_read(map, chip->status_base +
395                                           (i * map->reg_stride
396                                            * data->irq_reg_stride),
397                                           &data->status_buf[i]);
398
399                         if (ret != 0) {
400                                 dev_err(map->dev,
401                                         "Failed to read IRQ status: %d\n",
402                                         ret);
403                                 if (chip->runtime_pm)
404                                         pm_runtime_put(map->dev);
405                                 goto exit;
406                         }
407                 }
408         }
409
410         /*
411          * Ignore masked IRQs and ack if we need to; we ack early so
412          * there is no race between handling and acknowleding the
413          * interrupt.  We assume that typically few of the interrupts
414          * will fire simultaneously so don't worry about overhead from
415          * doing a write per register.
416          */
417         for (i = 0; i < data->chip->num_regs; i++) {
418                 data->status_buf[i] &= ~data->mask_buf[i];
419
420                 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
421                         reg = chip->ack_base +
422                                 (i * map->reg_stride * data->irq_reg_stride);
423                         ret = regmap_write(map, reg, data->status_buf[i]);
424                         if (ret != 0)
425                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
426                                         reg, ret);
427                 }
428         }
429
430         for (i = 0; i < chip->num_irqs; i++) {
431                 if (data->status_buf[chip->irqs[i].reg_offset /
432                                      map->reg_stride] & chip->irqs[i].mask) {
433                         handle_nested_irq(irq_find_mapping(data->domain, i));
434                         handled = true;
435                 }
436         }
437
438         if (chip->runtime_pm)
439                 pm_runtime_put(map->dev);
440
441 exit:
442         if (chip->handle_post_irq)
443                 chip->handle_post_irq(chip->irq_drv_data);
444
445         if (handled)
446                 return IRQ_HANDLED;
447         else
448                 return IRQ_NONE;
449 }
450
451 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
452                           irq_hw_number_t hw)
453 {
454         struct regmap_irq_chip_data *data = h->host_data;
455
456         irq_set_chip_data(virq, data);
457         irq_set_chip(virq, &data->irq_chip);
458         irq_set_nested_thread(virq, 1);
459         irq_set_parent(virq, data->irq);
460         irq_set_noprobe(virq);
461
462         return 0;
463 }
464
465 static const struct irq_domain_ops regmap_domain_ops = {
466         .map    = regmap_irq_map,
467         .xlate  = irq_domain_xlate_onetwocell,
468 };
469
470 /**
471  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
472  *
473  * @map: The regmap for the device.
474  * @irq: The IRQ the device uses to signal interrupts.
475  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
476  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
477  * @chip: Configuration for the interrupt controller.
478  * @data: Runtime data structure for the controller, allocated on success.
479  *
480  * Returns 0 on success or an errno on failure.
481  *
482  * In order for this to be efficient the chip really should use a
483  * register cache.  The chip driver is responsible for restoring the
484  * register values used by the IRQ controller over suspend and resume.
485  */
486 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
487                         int irq_base, const struct regmap_irq_chip *chip,
488                         struct regmap_irq_chip_data **data)
489 {
490         struct regmap_irq_chip_data *d;
491         int i;
492         int ret = -ENOMEM;
493         int num_type_reg;
494         u32 reg;
495         u32 unmask_offset;
496
497         if (chip->num_regs <= 0)
498                 return -EINVAL;
499
500         if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
501                 return -EINVAL;
502
503         for (i = 0; i < chip->num_irqs; i++) {
504                 if (chip->irqs[i].reg_offset % map->reg_stride)
505                         return -EINVAL;
506                 if (chip->irqs[i].reg_offset / map->reg_stride >=
507                     chip->num_regs)
508                         return -EINVAL;
509         }
510
511         if (irq_base) {
512                 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
513                 if (irq_base < 0) {
514                         dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
515                                  irq_base);
516                         return irq_base;
517                 }
518         }
519
520         d = kzalloc(sizeof(*d), GFP_KERNEL);
521         if (!d)
522                 return -ENOMEM;
523
524         d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
525                                 GFP_KERNEL);
526         if (!d->status_buf)
527                 goto err_alloc;
528
529         d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
530                               GFP_KERNEL);
531         if (!d->mask_buf)
532                 goto err_alloc;
533
534         d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
535                                   GFP_KERNEL);
536         if (!d->mask_buf_def)
537                 goto err_alloc;
538
539         if (chip->wake_base) {
540                 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
541                                       GFP_KERNEL);
542                 if (!d->wake_buf)
543                         goto err_alloc;
544         }
545
546         num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
547         if (num_type_reg) {
548                 d->type_buf_def = kcalloc(num_type_reg,
549                                           sizeof(unsigned int), GFP_KERNEL);
550                 if (!d->type_buf_def)
551                         goto err_alloc;
552
553                 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
554                                       GFP_KERNEL);
555                 if (!d->type_buf)
556                         goto err_alloc;
557         }
558
559         d->irq_chip = regmap_irq_chip;
560         d->irq_chip.name = chip->name;
561         d->irq = irq;
562         d->map = map;
563         d->chip = chip;
564         d->irq_base = irq_base;
565
566         if (chip->irq_reg_stride)
567                 d->irq_reg_stride = chip->irq_reg_stride;
568         else
569                 d->irq_reg_stride = 1;
570
571         if (chip->type_reg_stride)
572                 d->type_reg_stride = chip->type_reg_stride;
573         else
574                 d->type_reg_stride = 1;
575
576         if (!map->use_single_read && map->reg_stride == 1 &&
577             d->irq_reg_stride == 1) {
578                 d->status_reg_buf = kmalloc_array(chip->num_regs,
579                                                   map->format.val_bytes,
580                                                   GFP_KERNEL);
581                 if (!d->status_reg_buf)
582                         goto err_alloc;
583         }
584
585         mutex_init(&d->lock);
586
587         for (i = 0; i < chip->num_irqs; i++)
588                 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
589                         |= chip->irqs[i].mask;
590
591         /* Mask all the interrupts by default */
592         for (i = 0; i < chip->num_regs; i++) {
593                 d->mask_buf[i] = d->mask_buf_def[i];
594                 if (!chip->mask_base)
595                         continue;
596
597                 reg = chip->mask_base +
598                         (i * map->reg_stride * d->irq_reg_stride);
599                 if (chip->mask_invert)
600                         ret = regmap_irq_update_bits(d, reg,
601                                          d->mask_buf[i], ~d->mask_buf[i]);
602                 else if (d->chip->unmask_base) {
603                         unmask_offset = d->chip->unmask_base -
604                                         d->chip->mask_base;
605                         ret = regmap_irq_update_bits(d,
606                                         reg + unmask_offset,
607                                         d->mask_buf[i],
608                                         d->mask_buf[i]);
609                 } else
610                         ret = regmap_irq_update_bits(d, reg,
611                                          d->mask_buf[i], d->mask_buf[i]);
612                 if (ret != 0) {
613                         dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
614                                 reg, ret);
615                         goto err_alloc;
616                 }
617
618                 if (!chip->init_ack_masked)
619                         continue;
620
621                 /* Ack masked but set interrupts */
622                 reg = chip->status_base +
623                         (i * map->reg_stride * d->irq_reg_stride);
624                 ret = regmap_read(map, reg, &d->status_buf[i]);
625                 if (ret != 0) {
626                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
627                                 ret);
628                         goto err_alloc;
629                 }
630
631                 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
632                         reg = chip->ack_base +
633                                 (i * map->reg_stride * d->irq_reg_stride);
634                         if (chip->ack_invert)
635                                 ret = regmap_write(map, reg,
636                                         ~(d->status_buf[i] & d->mask_buf[i]));
637                         else
638                                 ret = regmap_write(map, reg,
639                                         d->status_buf[i] & d->mask_buf[i]);
640                         if (ret != 0) {
641                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
642                                         reg, ret);
643                                 goto err_alloc;
644                         }
645                 }
646         }
647
648         /* Wake is disabled by default */
649         if (d->wake_buf) {
650                 for (i = 0; i < chip->num_regs; i++) {
651                         d->wake_buf[i] = d->mask_buf_def[i];
652                         reg = chip->wake_base +
653                                 (i * map->reg_stride * d->irq_reg_stride);
654
655                         if (chip->wake_invert)
656                                 ret = regmap_irq_update_bits(d, reg,
657                                                          d->mask_buf_def[i],
658                                                          0);
659                         else
660                                 ret = regmap_irq_update_bits(d, reg,
661                                                          d->mask_buf_def[i],
662                                                          d->wake_buf[i]);
663                         if (ret != 0) {
664                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
665                                         reg, ret);
666                                 goto err_alloc;
667                         }
668                 }
669         }
670
671         if (chip->num_type_reg && !chip->type_in_mask) {
672                 for (i = 0; i < chip->num_type_reg; ++i) {
673                         if (!d->type_buf_def[i])
674                                 continue;
675
676                         reg = chip->type_base +
677                                 (i * map->reg_stride * d->type_reg_stride);
678
679                         ret = regmap_read(map, reg, &d->type_buf_def[i]);
680
681                         if (d->chip->type_invert)
682                                 d->type_buf_def[i] = ~d->type_buf_def[i];
683
684                         if (ret) {
685                                 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
686                                         reg, ret);
687                                 goto err_alloc;
688                         }
689                 }
690         }
691
692         if (irq_base)
693                 d->domain = irq_domain_add_legacy(map->dev->of_node,
694                                                   chip->num_irqs, irq_base, 0,
695                                                   &regmap_domain_ops, d);
696         else
697                 d->domain = irq_domain_add_linear(map->dev->of_node,
698                                                   chip->num_irqs,
699                                                   &regmap_domain_ops, d);
700         if (!d->domain) {
701                 dev_err(map->dev, "Failed to create IRQ domain\n");
702                 ret = -ENOMEM;
703                 goto err_alloc;
704         }
705
706         ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
707                                    irq_flags | IRQF_ONESHOT,
708                                    chip->name, d);
709         if (ret != 0) {
710                 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
711                         irq, chip->name, ret);
712                 goto err_domain;
713         }
714
715         *data = d;
716
717         return 0;
718
719 err_domain:
720         /* Should really dispose of the domain but... */
721 err_alloc:
722         kfree(d->type_buf);
723         kfree(d->type_buf_def);
724         kfree(d->wake_buf);
725         kfree(d->mask_buf_def);
726         kfree(d->mask_buf);
727         kfree(d->status_buf);
728         kfree(d->status_reg_buf);
729         kfree(d);
730         return ret;
731 }
732 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
733
734 /**
735  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
736  *
737  * @irq: Primary IRQ for the device
738  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
739  *
740  * This function also disposes of all mapped IRQs on the chip.
741  */
742 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
743 {
744         unsigned int virq;
745         int hwirq;
746
747         if (!d)
748                 return;
749
750         free_irq(irq, d);
751
752         /* Dispose all virtual irq from irq domain before removing it */
753         for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
754                 /* Ignore hwirq if holes in the IRQ list */
755                 if (!d->chip->irqs[hwirq].mask)
756                         continue;
757
758                 /*
759                  * Find the virtual irq of hwirq on chip and if it is
760                  * there then dispose it
761                  */
762                 virq = irq_find_mapping(d->domain, hwirq);
763                 if (virq)
764                         irq_dispose_mapping(virq);
765         }
766
767         irq_domain_remove(d->domain);
768         kfree(d->type_buf);
769         kfree(d->type_buf_def);
770         kfree(d->wake_buf);
771         kfree(d->mask_buf_def);
772         kfree(d->mask_buf);
773         kfree(d->status_reg_buf);
774         kfree(d->status_buf);
775         kfree(d);
776 }
777 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
778
779 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
780 {
781         struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
782
783         regmap_del_irq_chip(d->irq, d);
784 }
785
786 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
787
788 {
789         struct regmap_irq_chip_data **r = res;
790
791         if (!r || !*r) {
792                 WARN_ON(!r || !*r);
793                 return 0;
794         }
795         return *r == data;
796 }
797
798 /**
799  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
800  *
801  * @dev: The device pointer on which irq_chip belongs to.
802  * @map: The regmap for the device.
803  * @irq: The IRQ the device uses to signal interrupts
804  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
805  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
806  * @chip: Configuration for the interrupt controller.
807  * @data: Runtime data structure for the controller, allocated on success
808  *
809  * Returns 0 on success or an errno on failure.
810  *
811  * The &regmap_irq_chip_data will be automatically released when the device is
812  * unbound.
813  */
814 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
815                              int irq_flags, int irq_base,
816                              const struct regmap_irq_chip *chip,
817                              struct regmap_irq_chip_data **data)
818 {
819         struct regmap_irq_chip_data **ptr, *d;
820         int ret;
821
822         ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
823                            GFP_KERNEL);
824         if (!ptr)
825                 return -ENOMEM;
826
827         ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
828                                   chip, &d);
829         if (ret < 0) {
830                 devres_free(ptr);
831                 return ret;
832         }
833
834         *ptr = d;
835         devres_add(dev, ptr);
836         *data = d;
837         return 0;
838 }
839 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
840
841 /**
842  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
843  *
844  * @dev: Device for which which resource was allocated.
845  * @irq: Primary IRQ for the device.
846  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
847  *
848  * A resource managed version of regmap_del_irq_chip().
849  */
850 void devm_regmap_del_irq_chip(struct device *dev, int irq,
851                               struct regmap_irq_chip_data *data)
852 {
853         int rc;
854
855         WARN_ON(irq != data->irq);
856         rc = devres_release(dev, devm_regmap_irq_chip_release,
857                             devm_regmap_irq_chip_match, data);
858
859         if (rc != 0)
860                 WARN_ON(rc);
861 }
862 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
863
864 /**
865  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
866  *
867  * @data: regmap irq controller to operate on.
868  *
869  * Useful for drivers to request their own IRQs.
870  */
871 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
872 {
873         WARN_ON(!data->irq_base);
874         return data->irq_base;
875 }
876 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
877
878 /**
879  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
880  *
881  * @data: regmap irq controller to operate on.
882  * @irq: index of the interrupt requested in the chip IRQs.
883  *
884  * Useful for drivers to request their own IRQs.
885  */
886 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
887 {
888         /* Handle holes in the IRQ list */
889         if (!data->chip->irqs[irq].mask)
890                 return -EINVAL;
891
892         return irq_create_mapping(data->domain, irq);
893 }
894 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
895
896 /**
897  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
898  *
899  * @data: regmap_irq controller to operate on.
900  *
901  * Useful for drivers to request their own IRQs and for integration
902  * with subsystems.  For ease of integration NULL is accepted as a
903  * domain, allowing devices to just call this even if no domain is
904  * allocated.
905  */
906 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
907 {
908         if (data)
909                 return data->domain;
910         else
911                 return NULL;
912 }
913 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);