Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
36
37 /*
38  * Include the apic definitions for x86 to have the APIC timer related defines
39  * available also for UP (on SMP it gets magically included via linux/smp.h).
40  * asm/acpi.h is not an option, as it would require more include magic. Also
41  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42  */
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
46
47 #define ACPI_PROCESSOR_CLASS            "processor"
48 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
50
51 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
52
53 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
54 module_param(max_cstate, uint, 0000);
55 static unsigned int nocst __read_mostly;
56 module_param(nocst, uint, 0000);
57 static int bm_check_disable __read_mostly;
58 module_param(bm_check_disable, uint, 0000);
59
60 static unsigned int latency_factor __read_mostly = 2;
61 module_param(latency_factor, uint, 0644);
62
63 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
64
65 struct cpuidle_driver acpi_idle_driver = {
66         .name =         "acpi_idle",
67         .owner =        THIS_MODULE,
68 };
69
70 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
71 static
72 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
73
74 static int disabled_by_idle_boot_param(void)
75 {
76         return boot_option_idle_override == IDLE_POLL ||
77                 boot_option_idle_override == IDLE_HALT;
78 }
79
80 /*
81  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
82  * For now disable this. Probably a bug somewhere else.
83  *
84  * To skip this limit, boot/load with a large max_cstate limit.
85  */
86 static int set_max_cstate(const struct dmi_system_id *id)
87 {
88         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
89                 return 0;
90
91         pr_notice("%s detected - limiting to C%ld max_cstate."
92                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
93                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
94
95         max_cstate = (long)id->driver_data;
96
97         return 0;
98 }
99
100 static const struct dmi_system_id processor_power_dmi_table[] = {
101         { set_max_cstate, "Clevo 5600D", {
102           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
103           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
104          (void *)2},
105         { set_max_cstate, "Pavilion zv5000", {
106           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
107           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
108          (void *)1},
109         { set_max_cstate, "Asus L8400B", {
110           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
111           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
112          (void *)1},
113         {},
114 };
115
116
117 /*
118  * Callers should disable interrupts before the call and enable
119  * interrupts after return.
120  */
121 static void __cpuidle acpi_safe_halt(void)
122 {
123         if (!tif_need_resched()) {
124                 safe_halt();
125                 local_irq_disable();
126         }
127 }
128
129 #ifdef ARCH_APICTIMER_STOPS_ON_C3
130
131 /*
132  * Some BIOS implementations switch to C3 in the published C2 state.
133  * This seems to be a common problem on AMD boxen, but other vendors
134  * are affected too. We pick the most conservative approach: we assume
135  * that the local APIC stops in both C2 and C3.
136  */
137 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
138                                    struct acpi_processor_cx *cx)
139 {
140         struct acpi_processor_power *pwr = &pr->power;
141         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
142
143         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
144                 return;
145
146         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
147                 type = ACPI_STATE_C1;
148
149         /*
150          * Check, if one of the previous states already marked the lapic
151          * unstable
152          */
153         if (pwr->timer_broadcast_on_state < state)
154                 return;
155
156         if (cx->type >= type)
157                 pr->power.timer_broadcast_on_state = state;
158 }
159
160 static void __lapic_timer_propagate_broadcast(void *arg)
161 {
162         struct acpi_processor *pr = (struct acpi_processor *) arg;
163
164         if (pr->power.timer_broadcast_on_state < INT_MAX)
165                 tick_broadcast_enable();
166         else
167                 tick_broadcast_disable();
168 }
169
170 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
171 {
172         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
173                                  (void *)pr, 1);
174 }
175
176 /* Power(C) State timer broadcast control */
177 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
178                                        struct acpi_processor_cx *cx,
179                                        int broadcast)
180 {
181         int state = cx - pr->power.states;
182
183         if (state >= pr->power.timer_broadcast_on_state) {
184                 if (broadcast)
185                         tick_broadcast_enter();
186                 else
187                         tick_broadcast_exit();
188         }
189 }
190
191 #else
192
193 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
194                                    struct acpi_processor_cx *cstate) { }
195 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197                                        struct acpi_processor_cx *cx,
198                                        int broadcast)
199 {
200 }
201
202 #endif
203
204 #if defined(CONFIG_X86)
205 static void tsc_check_state(int state)
206 {
207         switch (boot_cpu_data.x86_vendor) {
208         case X86_VENDOR_AMD:
209         case X86_VENDOR_INTEL:
210         case X86_VENDOR_CENTAUR:
211                 /*
212                  * AMD Fam10h TSC will tick in all
213                  * C/P/S0/S1 states when this bit is set.
214                  */
215                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
216                         return;
217
218                 /*FALL THROUGH*/
219         default:
220                 /* TSC could halt in idle, so notify users */
221                 if (state > ACPI_STATE_C1)
222                         mark_tsc_unstable("TSC halts in idle");
223         }
224 }
225 #else
226 static void tsc_check_state(int state) { return; }
227 #endif
228
229 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
230 {
231
232         if (!pr->pblk)
233                 return -ENODEV;
234
235         /* if info is obtained from pblk/fadt, type equals state */
236         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
237         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
238
239 #ifndef CONFIG_HOTPLUG_CPU
240         /*
241          * Check for P_LVL2_UP flag before entering C2 and above on
242          * an SMP system.
243          */
244         if ((num_online_cpus() > 1) &&
245             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
246                 return -ENODEV;
247 #endif
248
249         /* determine C2 and C3 address from pblk */
250         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
251         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
252
253         /* determine latencies from FADT */
254         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
255         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
256
257         /*
258          * FADT specified C2 latency must be less than or equal to
259          * 100 microseconds.
260          */
261         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
262                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
263                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
264                 /* invalidate C2 */
265                 pr->power.states[ACPI_STATE_C2].address = 0;
266         }
267
268         /*
269          * FADT supplied C3 latency must be less than or equal to
270          * 1000 microseconds.
271          */
272         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
273                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
274                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
275                 /* invalidate C3 */
276                 pr->power.states[ACPI_STATE_C3].address = 0;
277         }
278
279         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
280                           "lvl2[0x%08x] lvl3[0x%08x]\n",
281                           pr->power.states[ACPI_STATE_C2].address,
282                           pr->power.states[ACPI_STATE_C3].address));
283
284         return 0;
285 }
286
287 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
288 {
289         if (!pr->power.states[ACPI_STATE_C1].valid) {
290                 /* set the first C-State to C1 */
291                 /* all processors need to support C1 */
292                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
293                 pr->power.states[ACPI_STATE_C1].valid = 1;
294                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
295
296                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
297                          ACPI_CX_DESC_LEN, "ACPI HLT");
298         }
299         /* the C0 state only exists as a filler in our array */
300         pr->power.states[ACPI_STATE_C0].valid = 1;
301         return 0;
302 }
303
304 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
305 {
306         acpi_status status;
307         u64 count;
308         int current_count;
309         int i, ret = 0;
310         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
311         union acpi_object *cst;
312
313         if (nocst)
314                 return -ENODEV;
315
316         current_count = 0;
317
318         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
319         if (ACPI_FAILURE(status)) {
320                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
321                 return -ENODEV;
322         }
323
324         cst = buffer.pointer;
325
326         /* There must be at least 2 elements */
327         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
328                 pr_err("not enough elements in _CST\n");
329                 ret = -EFAULT;
330                 goto end;
331         }
332
333         count = cst->package.elements[0].integer.value;
334
335         /* Validate number of power states. */
336         if (count < 1 || count != cst->package.count - 1) {
337                 pr_err("count given by _CST is not valid\n");
338                 ret = -EFAULT;
339                 goto end;
340         }
341
342         /* Tell driver that at least _CST is supported. */
343         pr->flags.has_cst = 1;
344
345         for (i = 1; i <= count; i++) {
346                 union acpi_object *element;
347                 union acpi_object *obj;
348                 struct acpi_power_register *reg;
349                 struct acpi_processor_cx cx;
350
351                 memset(&cx, 0, sizeof(cx));
352
353                 element = &(cst->package.elements[i]);
354                 if (element->type != ACPI_TYPE_PACKAGE)
355                         continue;
356
357                 if (element->package.count != 4)
358                         continue;
359
360                 obj = &(element->package.elements[0]);
361
362                 if (obj->type != ACPI_TYPE_BUFFER)
363                         continue;
364
365                 reg = (struct acpi_power_register *)obj->buffer.pointer;
366
367                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
368                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
369                         continue;
370
371                 /* There should be an easy way to extract an integer... */
372                 obj = &(element->package.elements[1]);
373                 if (obj->type != ACPI_TYPE_INTEGER)
374                         continue;
375
376                 cx.type = obj->integer.value;
377                 /*
378                  * Some buggy BIOSes won't list C1 in _CST -
379                  * Let acpi_processor_get_power_info_default() handle them later
380                  */
381                 if (i == 1 && cx.type != ACPI_STATE_C1)
382                         current_count++;
383
384                 cx.address = reg->address;
385                 cx.index = current_count + 1;
386
387                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
388                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
389                         if (acpi_processor_ffh_cstate_probe
390                                         (pr->id, &cx, reg) == 0) {
391                                 cx.entry_method = ACPI_CSTATE_FFH;
392                         } else if (cx.type == ACPI_STATE_C1) {
393                                 /*
394                                  * C1 is a special case where FIXED_HARDWARE
395                                  * can be handled in non-MWAIT way as well.
396                                  * In that case, save this _CST entry info.
397                                  * Otherwise, ignore this info and continue.
398                                  */
399                                 cx.entry_method = ACPI_CSTATE_HALT;
400                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
401                         } else {
402                                 continue;
403                         }
404                         if (cx.type == ACPI_STATE_C1 &&
405                             (boot_option_idle_override == IDLE_NOMWAIT)) {
406                                 /*
407                                  * In most cases the C1 space_id obtained from
408                                  * _CST object is FIXED_HARDWARE access mode.
409                                  * But when the option of idle=halt is added,
410                                  * the entry_method type should be changed from
411                                  * CSTATE_FFH to CSTATE_HALT.
412                                  * When the option of idle=nomwait is added,
413                                  * the C1 entry_method type should be
414                                  * CSTATE_HALT.
415                                  */
416                                 cx.entry_method = ACPI_CSTATE_HALT;
417                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
418                         }
419                 } else {
420                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
421                                  cx.address);
422                 }
423
424                 if (cx.type == ACPI_STATE_C1) {
425                         cx.valid = 1;
426                 }
427
428                 obj = &(element->package.elements[2]);
429                 if (obj->type != ACPI_TYPE_INTEGER)
430                         continue;
431
432                 cx.latency = obj->integer.value;
433
434                 obj = &(element->package.elements[3]);
435                 if (obj->type != ACPI_TYPE_INTEGER)
436                         continue;
437
438                 current_count++;
439                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
440
441                 /*
442                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
443                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
444                  */
445                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
446                         pr_warn("Limiting number of power states to max (%d)\n",
447                                 ACPI_PROCESSOR_MAX_POWER);
448                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
449                         break;
450                 }
451         }
452
453         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
454                           current_count));
455
456         /* Validate number of power states discovered */
457         if (current_count < 2)
458                 ret = -EFAULT;
459
460       end:
461         kfree(buffer.pointer);
462
463         return ret;
464 }
465
466 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
467                                            struct acpi_processor_cx *cx)
468 {
469         static int bm_check_flag = -1;
470         static int bm_control_flag = -1;
471
472
473         if (!cx->address)
474                 return;
475
476         /*
477          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
478          * DMA transfers are used by any ISA device to avoid livelock.
479          * Note that we could disable Type-F DMA (as recommended by
480          * the erratum), but this is known to disrupt certain ISA
481          * devices thus we take the conservative approach.
482          */
483         else if (errata.piix4.fdma) {
484                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
485                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
486                 return;
487         }
488
489         /* All the logic here assumes flags.bm_check is same across all CPUs */
490         if (bm_check_flag == -1) {
491                 /* Determine whether bm_check is needed based on CPU  */
492                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
493                 bm_check_flag = pr->flags.bm_check;
494                 bm_control_flag = pr->flags.bm_control;
495         } else {
496                 pr->flags.bm_check = bm_check_flag;
497                 pr->flags.bm_control = bm_control_flag;
498         }
499
500         if (pr->flags.bm_check) {
501                 if (!pr->flags.bm_control) {
502                         if (pr->flags.has_cst != 1) {
503                                 /* bus mastering control is necessary */
504                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
505                                         "C3 support requires BM control\n"));
506                                 return;
507                         } else {
508                                 /* Here we enter C3 without bus mastering */
509                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
510                                         "C3 support without BM control\n"));
511                         }
512                 }
513         } else {
514                 /*
515                  * WBINVD should be set in fadt, for C3 state to be
516                  * supported on when bm_check is not required.
517                  */
518                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
519                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
520                                           "Cache invalidation should work properly"
521                                           " for C3 to be enabled on SMP systems\n"));
522                         return;
523                 }
524         }
525
526         /*
527          * Otherwise we've met all of our C3 requirements.
528          * Normalize the C3 latency to expidite policy.  Enable
529          * checking of bus mastering status (bm_check) so we can
530          * use this in our C3 policy
531          */
532         cx->valid = 1;
533
534         /*
535          * On older chipsets, BM_RLD needs to be set
536          * in order for Bus Master activity to wake the
537          * system from C3.  Newer chipsets handle DMA
538          * during C3 automatically and BM_RLD is a NOP.
539          * In either case, the proper way to
540          * handle BM_RLD is to set it and leave it set.
541          */
542         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
543
544         return;
545 }
546
547 static int acpi_processor_power_verify(struct acpi_processor *pr)
548 {
549         unsigned int i;
550         unsigned int working = 0;
551
552         pr->power.timer_broadcast_on_state = INT_MAX;
553
554         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
555                 struct acpi_processor_cx *cx = &pr->power.states[i];
556
557                 switch (cx->type) {
558                 case ACPI_STATE_C1:
559                         cx->valid = 1;
560                         break;
561
562                 case ACPI_STATE_C2:
563                         if (!cx->address)
564                                 break;
565                         cx->valid = 1;
566                         break;
567
568                 case ACPI_STATE_C3:
569                         acpi_processor_power_verify_c3(pr, cx);
570                         break;
571                 }
572                 if (!cx->valid)
573                         continue;
574
575                 lapic_timer_check_state(i, pr, cx);
576                 tsc_check_state(cx->type);
577                 working++;
578         }
579
580         lapic_timer_propagate_broadcast(pr);
581
582         return (working);
583 }
584
585 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
586 {
587         unsigned int i;
588         int result;
589
590
591         /* NOTE: the idle thread may not be running while calling
592          * this function */
593
594         /* Zero initialize all the C-states info. */
595         memset(pr->power.states, 0, sizeof(pr->power.states));
596
597         result = acpi_processor_get_power_info_cst(pr);
598         if (result == -ENODEV)
599                 result = acpi_processor_get_power_info_fadt(pr);
600
601         if (result)
602                 return result;
603
604         acpi_processor_get_power_info_default(pr);
605
606         pr->power.count = acpi_processor_power_verify(pr);
607
608         /*
609          * if one state of type C2 or C3 is available, mark this
610          * CPU as being "idle manageable"
611          */
612         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
613                 if (pr->power.states[i].valid) {
614                         pr->power.count = i;
615                         if (pr->power.states[i].type >= ACPI_STATE_C2)
616                                 pr->flags.power = 1;
617                 }
618         }
619
620         return 0;
621 }
622
623 /**
624  * acpi_idle_bm_check - checks if bus master activity was detected
625  */
626 static int acpi_idle_bm_check(void)
627 {
628         u32 bm_status = 0;
629
630         if (bm_check_disable)
631                 return 0;
632
633         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
634         if (bm_status)
635                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
636         /*
637          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
638          * the true state of bus mastering activity; forcing us to
639          * manually check the BMIDEA bit of each IDE channel.
640          */
641         else if (errata.piix4.bmisx) {
642                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
643                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
644                         bm_status = 1;
645         }
646         return bm_status;
647 }
648
649 /**
650  * acpi_idle_do_entry - enter idle state using the appropriate method
651  * @cx: cstate data
652  *
653  * Caller disables interrupt before call and enables interrupt after return.
654  */
655 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
656 {
657         if (cx->entry_method == ACPI_CSTATE_FFH) {
658                 /* Call into architectural FFH based C-state */
659                 acpi_processor_ffh_cstate_enter(cx);
660         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
661                 acpi_safe_halt();
662         } else {
663                 /* IO port based C-state */
664                 inb(cx->address);
665                 /* Dummy wait op - must do something useless after P_LVL2 read
666                    because chipsets cannot guarantee that STPCLK# signal
667                    gets asserted in time to freeze execution properly. */
668                 inl(acpi_gbl_FADT.xpm_timer_block.address);
669         }
670 }
671
672 /**
673  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
674  * @dev: the target CPU
675  * @index: the index of suggested state
676  */
677 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
678 {
679         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
680
681         ACPI_FLUSH_CPU_CACHE();
682
683         while (1) {
684
685                 if (cx->entry_method == ACPI_CSTATE_HALT)
686                         safe_halt();
687                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
688                         inb(cx->address);
689                         /* See comment in acpi_idle_do_entry() */
690                         inl(acpi_gbl_FADT.xpm_timer_block.address);
691                 } else
692                         return -ENODEV;
693         }
694
695         /* Never reached */
696         return 0;
697 }
698
699 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
700 {
701         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
702                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
703 }
704
705 static int c3_cpu_count;
706 static DEFINE_RAW_SPINLOCK(c3_lock);
707
708 /**
709  * acpi_idle_enter_bm - enters C3 with proper BM handling
710  * @pr: Target processor
711  * @cx: Target state context
712  * @timer_bc: Whether or not to change timer mode to broadcast
713  */
714 static void acpi_idle_enter_bm(struct acpi_processor *pr,
715                                struct acpi_processor_cx *cx, bool timer_bc)
716 {
717         acpi_unlazy_tlb(smp_processor_id());
718
719         /*
720          * Must be done before busmaster disable as we might need to
721          * access HPET !
722          */
723         if (timer_bc)
724                 lapic_timer_state_broadcast(pr, cx, 1);
725
726         /*
727          * disable bus master
728          * bm_check implies we need ARB_DIS
729          * bm_control implies whether we can do ARB_DIS
730          *
731          * That leaves a case where bm_check is set and bm_control is
732          * not set. In that case we cannot do much, we enter C3
733          * without doing anything.
734          */
735         if (pr->flags.bm_control) {
736                 raw_spin_lock(&c3_lock);
737                 c3_cpu_count++;
738                 /* Disable bus master arbitration when all CPUs are in C3 */
739                 if (c3_cpu_count == num_online_cpus())
740                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
741                 raw_spin_unlock(&c3_lock);
742         }
743
744         acpi_idle_do_entry(cx);
745
746         /* Re-enable bus master arbitration */
747         if (pr->flags.bm_control) {
748                 raw_spin_lock(&c3_lock);
749                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
750                 c3_cpu_count--;
751                 raw_spin_unlock(&c3_lock);
752         }
753
754         if (timer_bc)
755                 lapic_timer_state_broadcast(pr, cx, 0);
756 }
757
758 static int acpi_idle_enter(struct cpuidle_device *dev,
759                            struct cpuidle_driver *drv, int index)
760 {
761         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
762         struct acpi_processor *pr;
763
764         pr = __this_cpu_read(processors);
765         if (unlikely(!pr))
766                 return -EINVAL;
767
768         if (cx->type != ACPI_STATE_C1) {
769                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
770                         index = ACPI_IDLE_STATE_START;
771                         cx = per_cpu(acpi_cstate[index], dev->cpu);
772                 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
773                         if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
774                                 acpi_idle_enter_bm(pr, cx, true);
775                                 return index;
776                         } else if (drv->safe_state_index >= 0) {
777                                 index = drv->safe_state_index;
778                                 cx = per_cpu(acpi_cstate[index], dev->cpu);
779                         } else {
780                                 acpi_safe_halt();
781                                 return -EBUSY;
782                         }
783                 }
784         }
785
786         lapic_timer_state_broadcast(pr, cx, 1);
787
788         if (cx->type == ACPI_STATE_C3)
789                 ACPI_FLUSH_CPU_CACHE();
790
791         acpi_idle_do_entry(cx);
792
793         lapic_timer_state_broadcast(pr, cx, 0);
794
795         return index;
796 }
797
798 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
799                                    struct cpuidle_driver *drv, int index)
800 {
801         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
802
803         if (cx->type == ACPI_STATE_C3) {
804                 struct acpi_processor *pr = __this_cpu_read(processors);
805
806                 if (unlikely(!pr))
807                         return;
808
809                 if (pr->flags.bm_check) {
810                         acpi_idle_enter_bm(pr, cx, false);
811                         return;
812                 } else {
813                         ACPI_FLUSH_CPU_CACHE();
814                 }
815         }
816         acpi_idle_do_entry(cx);
817 }
818
819 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
820                                            struct cpuidle_device *dev)
821 {
822         int i, count = ACPI_IDLE_STATE_START;
823         struct acpi_processor_cx *cx;
824
825         if (max_cstate == 0)
826                 max_cstate = 1;
827
828         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
829                 cx = &pr->power.states[i];
830
831                 if (!cx->valid)
832                         continue;
833
834                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
835
836                 count++;
837                 if (count == CPUIDLE_STATE_MAX)
838                         break;
839         }
840
841         if (!count)
842                 return -EINVAL;
843
844         return 0;
845 }
846
847 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
848 {
849         int i, count;
850         struct acpi_processor_cx *cx;
851         struct cpuidle_state *state;
852         struct cpuidle_driver *drv = &acpi_idle_driver;
853
854         if (max_cstate == 0)
855                 max_cstate = 1;
856
857         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
858                 cpuidle_poll_state_init(drv);
859                 count = 1;
860         } else {
861                 count = 0;
862         }
863
864         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
865                 cx = &pr->power.states[i];
866
867                 if (!cx->valid)
868                         continue;
869
870                 state = &drv->states[count];
871                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
872                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
873                 state->exit_latency = cx->latency;
874                 state->target_residency = cx->latency * latency_factor;
875                 state->enter = acpi_idle_enter;
876
877                 state->flags = 0;
878                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
879                         state->enter_dead = acpi_idle_play_dead;
880                         drv->safe_state_index = count;
881                 }
882                 /*
883                  * Halt-induced C1 is not good for ->enter_s2idle, because it
884                  * re-enables interrupts on exit.  Moreover, C1 is generally not
885                  * particularly interesting from the suspend-to-idle angle, so
886                  * avoid C1 and the situations in which we may need to fall back
887                  * to it altogether.
888                  */
889                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
890                         state->enter_s2idle = acpi_idle_enter_s2idle;
891
892                 count++;
893                 if (count == CPUIDLE_STATE_MAX)
894                         break;
895         }
896
897         drv->state_count = count;
898
899         if (!count)
900                 return -EINVAL;
901
902         return 0;
903 }
904
905 static inline void acpi_processor_cstate_first_run_checks(void)
906 {
907         acpi_status status;
908         static int first_run;
909
910         if (first_run)
911                 return;
912         dmi_check_system(processor_power_dmi_table);
913         max_cstate = acpi_processor_cstate_check(max_cstate);
914         if (max_cstate < ACPI_C_STATES_MAX)
915                 pr_notice("ACPI: processor limited to max C-state %d\n",
916                           max_cstate);
917         first_run++;
918
919         if (acpi_gbl_FADT.cst_control && !nocst) {
920                 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
921                                             acpi_gbl_FADT.cst_control, 8);
922                 if (ACPI_FAILURE(status))
923                         ACPI_EXCEPTION((AE_INFO, status,
924                                         "Notifying BIOS of _CST ability failed"));
925         }
926 }
927 #else
928
929 static inline int disabled_by_idle_boot_param(void) { return 0; }
930 static inline void acpi_processor_cstate_first_run_checks(void) { }
931 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
932 {
933         return -ENODEV;
934 }
935
936 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
937                                            struct cpuidle_device *dev)
938 {
939         return -EINVAL;
940 }
941
942 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
943 {
944         return -EINVAL;
945 }
946
947 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
948
949 struct acpi_lpi_states_array {
950         unsigned int size;
951         unsigned int composite_states_size;
952         struct acpi_lpi_state *entries;
953         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
954 };
955
956 static int obj_get_integer(union acpi_object *obj, u32 *value)
957 {
958         if (obj->type != ACPI_TYPE_INTEGER)
959                 return -EINVAL;
960
961         *value = obj->integer.value;
962         return 0;
963 }
964
965 static int acpi_processor_evaluate_lpi(acpi_handle handle,
966                                        struct acpi_lpi_states_array *info)
967 {
968         acpi_status status;
969         int ret = 0;
970         int pkg_count, state_idx = 1, loop;
971         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
972         union acpi_object *lpi_data;
973         struct acpi_lpi_state *lpi_state;
974
975         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
976         if (ACPI_FAILURE(status)) {
977                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
978                 return -ENODEV;
979         }
980
981         lpi_data = buffer.pointer;
982
983         /* There must be at least 4 elements = 3 elements + 1 package */
984         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
985             lpi_data->package.count < 4) {
986                 pr_debug("not enough elements in _LPI\n");
987                 ret = -ENODATA;
988                 goto end;
989         }
990
991         pkg_count = lpi_data->package.elements[2].integer.value;
992
993         /* Validate number of power states. */
994         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
995                 pr_debug("count given by _LPI is not valid\n");
996                 ret = -ENODATA;
997                 goto end;
998         }
999
1000         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
1001         if (!lpi_state) {
1002                 ret = -ENOMEM;
1003                 goto end;
1004         }
1005
1006         info->size = pkg_count;
1007         info->entries = lpi_state;
1008
1009         /* LPI States start at index 3 */
1010         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1011                 union acpi_object *element, *pkg_elem, *obj;
1012
1013                 element = &lpi_data->package.elements[loop];
1014                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1015                         continue;
1016
1017                 pkg_elem = element->package.elements;
1018
1019                 obj = pkg_elem + 6;
1020                 if (obj->type == ACPI_TYPE_BUFFER) {
1021                         struct acpi_power_register *reg;
1022
1023                         reg = (struct acpi_power_register *)obj->buffer.pointer;
1024                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1025                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1026                                 continue;
1027
1028                         lpi_state->address = reg->address;
1029                         lpi_state->entry_method =
1030                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1031                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1032                 } else if (obj->type == ACPI_TYPE_INTEGER) {
1033                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1034                         lpi_state->address = obj->integer.value;
1035                 } else {
1036                         continue;
1037                 }
1038
1039                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1040
1041                 obj = pkg_elem + 9;
1042                 if (obj->type == ACPI_TYPE_STRING)
1043                         strlcpy(lpi_state->desc, obj->string.pointer,
1044                                 ACPI_CX_DESC_LEN);
1045
1046                 lpi_state->index = state_idx;
1047                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1048                         pr_debug("No min. residency found, assuming 10 us\n");
1049                         lpi_state->min_residency = 10;
1050                 }
1051
1052                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1053                         pr_debug("No wakeup residency found, assuming 10 us\n");
1054                         lpi_state->wake_latency = 10;
1055                 }
1056
1057                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1058                         lpi_state->flags = 0;
1059
1060                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1061                         lpi_state->arch_flags = 0;
1062
1063                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1064                         lpi_state->res_cnt_freq = 1;
1065
1066                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1067                         lpi_state->enable_parent_state = 0;
1068         }
1069
1070         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1071 end:
1072         kfree(buffer.pointer);
1073         return ret;
1074 }
1075
1076 /*
1077  * flat_state_cnt - the number of composite LPI states after the process of flattening
1078  */
1079 static int flat_state_cnt;
1080
1081 /**
1082  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1083  *
1084  * @local: local LPI state
1085  * @parent: parent LPI state
1086  * @result: composite LPI state
1087  */
1088 static bool combine_lpi_states(struct acpi_lpi_state *local,
1089                                struct acpi_lpi_state *parent,
1090                                struct acpi_lpi_state *result)
1091 {
1092         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1093                 if (!parent->address) /* 0 means autopromotable */
1094                         return false;
1095                 result->address = local->address + parent->address;
1096         } else {
1097                 result->address = parent->address;
1098         }
1099
1100         result->min_residency = max(local->min_residency, parent->min_residency);
1101         result->wake_latency = local->wake_latency + parent->wake_latency;
1102         result->enable_parent_state = parent->enable_parent_state;
1103         result->entry_method = local->entry_method;
1104
1105         result->flags = parent->flags;
1106         result->arch_flags = parent->arch_flags;
1107         result->index = parent->index;
1108
1109         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1110         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1111         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1112         return true;
1113 }
1114
1115 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1116
1117 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1118                                   struct acpi_lpi_state *t)
1119 {
1120         curr_level->composite_states[curr_level->composite_states_size++] = t;
1121 }
1122
1123 static int flatten_lpi_states(struct acpi_processor *pr,
1124                               struct acpi_lpi_states_array *curr_level,
1125                               struct acpi_lpi_states_array *prev_level)
1126 {
1127         int i, j, state_count = curr_level->size;
1128         struct acpi_lpi_state *p, *t = curr_level->entries;
1129
1130         curr_level->composite_states_size = 0;
1131         for (j = 0; j < state_count; j++, t++) {
1132                 struct acpi_lpi_state *flpi;
1133
1134                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1135                         continue;
1136
1137                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1138                         pr_warn("Limiting number of LPI states to max (%d)\n",
1139                                 ACPI_PROCESSOR_MAX_POWER);
1140                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1141                         break;
1142                 }
1143
1144                 flpi = &pr->power.lpi_states[flat_state_cnt];
1145
1146                 if (!prev_level) { /* leaf/processor node */
1147                         memcpy(flpi, t, sizeof(*t));
1148                         stash_composite_state(curr_level, flpi);
1149                         flat_state_cnt++;
1150                         continue;
1151                 }
1152
1153                 for (i = 0; i < prev_level->composite_states_size; i++) {
1154                         p = prev_level->composite_states[i];
1155                         if (t->index <= p->enable_parent_state &&
1156                             combine_lpi_states(p, t, flpi)) {
1157                                 stash_composite_state(curr_level, flpi);
1158                                 flat_state_cnt++;
1159                                 flpi++;
1160                         }
1161                 }
1162         }
1163
1164         kfree(curr_level->entries);
1165         return 0;
1166 }
1167
1168 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1169 {
1170         int ret, i;
1171         acpi_status status;
1172         acpi_handle handle = pr->handle, pr_ahandle;
1173         struct acpi_device *d = NULL;
1174         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1175
1176         if (!osc_pc_lpi_support_confirmed)
1177                 return -EOPNOTSUPP;
1178
1179         if (!acpi_has_method(handle, "_LPI"))
1180                 return -EINVAL;
1181
1182         flat_state_cnt = 0;
1183         prev = &info[0];
1184         curr = &info[1];
1185         handle = pr->handle;
1186         ret = acpi_processor_evaluate_lpi(handle, prev);
1187         if (ret)
1188                 return ret;
1189         flatten_lpi_states(pr, prev, NULL);
1190
1191         status = acpi_get_parent(handle, &pr_ahandle);
1192         while (ACPI_SUCCESS(status)) {
1193                 acpi_bus_get_device(pr_ahandle, &d);
1194                 handle = pr_ahandle;
1195
1196                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1197                         break;
1198
1199                 /* can be optional ? */
1200                 if (!acpi_has_method(handle, "_LPI"))
1201                         break;
1202
1203                 ret = acpi_processor_evaluate_lpi(handle, curr);
1204                 if (ret)
1205                         break;
1206
1207                 /* flatten all the LPI states in this level of hierarchy */
1208                 flatten_lpi_states(pr, curr, prev);
1209
1210                 tmp = prev, prev = curr, curr = tmp;
1211
1212                 status = acpi_get_parent(handle, &pr_ahandle);
1213         }
1214
1215         pr->power.count = flat_state_cnt;
1216         /* reset the index after flattening */
1217         for (i = 0; i < pr->power.count; i++)
1218                 pr->power.lpi_states[i].index = i;
1219
1220         /* Tell driver that _LPI is supported. */
1221         pr->flags.has_lpi = 1;
1222         pr->flags.power = 1;
1223
1224         return 0;
1225 }
1226
1227 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1228 {
1229         return -ENODEV;
1230 }
1231
1232 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1233 {
1234         return -ENODEV;
1235 }
1236
1237 /**
1238  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1239  * @dev: the target CPU
1240  * @drv: cpuidle driver containing cpuidle state info
1241  * @index: index of target state
1242  *
1243  * Return: 0 for success or negative value for error
1244  */
1245 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1246                                struct cpuidle_driver *drv, int index)
1247 {
1248         struct acpi_processor *pr;
1249         struct acpi_lpi_state *lpi;
1250
1251         pr = __this_cpu_read(processors);
1252
1253         if (unlikely(!pr))
1254                 return -EINVAL;
1255
1256         lpi = &pr->power.lpi_states[index];
1257         if (lpi->entry_method == ACPI_CSTATE_FFH)
1258                 return acpi_processor_ffh_lpi_enter(lpi);
1259
1260         return -EINVAL;
1261 }
1262
1263 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1264 {
1265         int i;
1266         struct acpi_lpi_state *lpi;
1267         struct cpuidle_state *state;
1268         struct cpuidle_driver *drv = &acpi_idle_driver;
1269
1270         if (!pr->flags.has_lpi)
1271                 return -EOPNOTSUPP;
1272
1273         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1274                 lpi = &pr->power.lpi_states[i];
1275
1276                 state = &drv->states[i];
1277                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1278                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1279                 state->exit_latency = lpi->wake_latency;
1280                 state->target_residency = lpi->min_residency;
1281                 if (lpi->arch_flags)
1282                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1283                 state->enter = acpi_idle_lpi_enter;
1284                 drv->safe_state_index = i;
1285         }
1286
1287         drv->state_count = i;
1288
1289         return 0;
1290 }
1291
1292 /**
1293  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1294  * global state data i.e. idle routines
1295  *
1296  * @pr: the ACPI processor
1297  */
1298 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1299 {
1300         int i;
1301         struct cpuidle_driver *drv = &acpi_idle_driver;
1302
1303         if (!pr->flags.power_setup_done || !pr->flags.power)
1304                 return -EINVAL;
1305
1306         drv->safe_state_index = -1;
1307         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1308                 drv->states[i].name[0] = '\0';
1309                 drv->states[i].desc[0] = '\0';
1310         }
1311
1312         if (pr->flags.has_lpi)
1313                 return acpi_processor_setup_lpi_states(pr);
1314
1315         return acpi_processor_setup_cstates(pr);
1316 }
1317
1318 /**
1319  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1320  * device i.e. per-cpu data
1321  *
1322  * @pr: the ACPI processor
1323  * @dev : the cpuidle device
1324  */
1325 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1326                                             struct cpuidle_device *dev)
1327 {
1328         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1329                 return -EINVAL;
1330
1331         dev->cpu = pr->id;
1332         if (pr->flags.has_lpi)
1333                 return acpi_processor_ffh_lpi_probe(pr->id);
1334
1335         return acpi_processor_setup_cpuidle_cx(pr, dev);
1336 }
1337
1338 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1339 {
1340         int ret;
1341
1342         ret = acpi_processor_get_lpi_info(pr);
1343         if (ret)
1344                 ret = acpi_processor_get_cstate_info(pr);
1345
1346         return ret;
1347 }
1348
1349 int acpi_processor_hotplug(struct acpi_processor *pr)
1350 {
1351         int ret = 0;
1352         struct cpuidle_device *dev;
1353
1354         if (disabled_by_idle_boot_param())
1355                 return 0;
1356
1357         if (!pr->flags.power_setup_done)
1358                 return -ENODEV;
1359
1360         dev = per_cpu(acpi_cpuidle_device, pr->id);
1361         cpuidle_pause_and_lock();
1362         cpuidle_disable_device(dev);
1363         ret = acpi_processor_get_power_info(pr);
1364         if (!ret && pr->flags.power) {
1365                 acpi_processor_setup_cpuidle_dev(pr, dev);
1366                 ret = cpuidle_enable_device(dev);
1367         }
1368         cpuidle_resume_and_unlock();
1369
1370         return ret;
1371 }
1372
1373 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1374 {
1375         int cpu;
1376         struct acpi_processor *_pr;
1377         struct cpuidle_device *dev;
1378
1379         if (disabled_by_idle_boot_param())
1380                 return 0;
1381
1382         if (!pr->flags.power_setup_done)
1383                 return -ENODEV;
1384
1385         /*
1386          * FIXME:  Design the ACPI notification to make it once per
1387          * system instead of once per-cpu.  This condition is a hack
1388          * to make the code that updates C-States be called once.
1389          */
1390
1391         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1392
1393                 /* Protect against cpu-hotplug */
1394                 get_online_cpus();
1395                 cpuidle_pause_and_lock();
1396
1397                 /* Disable all cpuidle devices */
1398                 for_each_online_cpu(cpu) {
1399                         _pr = per_cpu(processors, cpu);
1400                         if (!_pr || !_pr->flags.power_setup_done)
1401                                 continue;
1402                         dev = per_cpu(acpi_cpuidle_device, cpu);
1403                         cpuidle_disable_device(dev);
1404                 }
1405
1406                 /* Populate Updated C-state information */
1407                 acpi_processor_get_power_info(pr);
1408                 acpi_processor_setup_cpuidle_states(pr);
1409
1410                 /* Enable all cpuidle devices */
1411                 for_each_online_cpu(cpu) {
1412                         _pr = per_cpu(processors, cpu);
1413                         if (!_pr || !_pr->flags.power_setup_done)
1414                                 continue;
1415                         acpi_processor_get_power_info(_pr);
1416                         if (_pr->flags.power) {
1417                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1418                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1419                                 cpuidle_enable_device(dev);
1420                         }
1421                 }
1422                 cpuidle_resume_and_unlock();
1423                 put_online_cpus();
1424         }
1425
1426         return 0;
1427 }
1428
1429 static int acpi_processor_registered;
1430
1431 int acpi_processor_power_init(struct acpi_processor *pr)
1432 {
1433         int retval;
1434         struct cpuidle_device *dev;
1435
1436         if (disabled_by_idle_boot_param())
1437                 return 0;
1438
1439         acpi_processor_cstate_first_run_checks();
1440
1441         if (!acpi_processor_get_power_info(pr))
1442                 pr->flags.power_setup_done = 1;
1443
1444         /*
1445          * Install the idle handler if processor power management is supported.
1446          * Note that we use previously set idle handler will be used on
1447          * platforms that only support C1.
1448          */
1449         if (pr->flags.power) {
1450                 /* Register acpi_idle_driver if not already registered */
1451                 if (!acpi_processor_registered) {
1452                         acpi_processor_setup_cpuidle_states(pr);
1453                         retval = cpuidle_register_driver(&acpi_idle_driver);
1454                         if (retval)
1455                                 return retval;
1456                         pr_debug("%s registered with cpuidle\n",
1457                                  acpi_idle_driver.name);
1458                 }
1459
1460                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1461                 if (!dev)
1462                         return -ENOMEM;
1463                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1464
1465                 acpi_processor_setup_cpuidle_dev(pr, dev);
1466
1467                 /* Register per-cpu cpuidle_device. Cpuidle driver
1468                  * must already be registered before registering device
1469                  */
1470                 retval = cpuidle_register_device(dev);
1471                 if (retval) {
1472                         if (acpi_processor_registered == 0)
1473                                 cpuidle_unregister_driver(&acpi_idle_driver);
1474                         return retval;
1475                 }
1476                 acpi_processor_registered++;
1477         }
1478         return 0;
1479 }
1480
1481 int acpi_processor_power_exit(struct acpi_processor *pr)
1482 {
1483         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1484
1485         if (disabled_by_idle_boot_param())
1486                 return 0;
1487
1488         if (pr->flags.power) {
1489                 cpuidle_unregister_device(dev);
1490                 acpi_processor_registered--;
1491                 if (acpi_processor_registered == 0)
1492                         cpuidle_unregister_driver(&acpi_idle_driver);
1493         }
1494
1495         pr->flags.power_setup_done = 0;
1496         return 0;
1497 }