Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[sfrench/cifs-2.6.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful,
16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *  GNU General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License
21  *  along with this program; if not, write to the Free Software
22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  *
26  */
27
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/pci.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <acpi/acpi.h>
41 #include <asm/io.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
44 #include <asm/uaccess.h>
45
46 #include <linux/efi.h>
47
48 #define _COMPONENT              ACPI_OS_SERVICES
49 ACPI_MODULE_NAME("osl")
50 #define PREFIX          "ACPI: "
51 struct acpi_os_dpc {
52         acpi_osd_exec_callback function;
53         void *context;
54 };
55
56 #ifdef CONFIG_ACPI_CUSTOM_DSDT
57 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
58 #endif
59
60 #ifdef ENABLE_DEBUGGER
61 #include <linux/kdb.h>
62
63 /* stuff for debugger support */
64 int acpi_in_debugger;
65 EXPORT_SYMBOL(acpi_in_debugger);
66
67 extern char line_buf[80];
68 #endif                          /*ENABLE_DEBUGGER */
69
70 int acpi_specific_hotkey_enabled = TRUE;
71 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
72
73 static unsigned int acpi_irq_irq;
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77
78 acpi_status acpi_os_initialize(void)
79 {
80         return AE_OK;
81 }
82
83 acpi_status acpi_os_initialize1(void)
84 {
85         /*
86          * Initialize PCI configuration space access, as we'll need to access
87          * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
88          */
89         if (!raw_pci_ops) {
90                 printk(KERN_ERR PREFIX
91                        "Access to PCI configuration space unavailable\n");
92                 return AE_NULL_ENTRY;
93         }
94         kacpid_wq = create_singlethread_workqueue("kacpid");
95         BUG_ON(!kacpid_wq);
96
97         return AE_OK;
98 }
99
100 acpi_status acpi_os_terminate(void)
101 {
102         if (acpi_irq_handler) {
103                 acpi_os_remove_interrupt_handler(acpi_irq_irq,
104                                                  acpi_irq_handler);
105         }
106
107         destroy_workqueue(kacpid_wq);
108
109         return AE_OK;
110 }
111
112 void acpi_os_printf(const char *fmt, ...)
113 {
114         va_list args;
115         va_start(args, fmt);
116         acpi_os_vprintf(fmt, args);
117         va_end(args);
118 }
119
120 EXPORT_SYMBOL(acpi_os_printf);
121
122 void acpi_os_vprintf(const char *fmt, va_list args)
123 {
124         static char buffer[512];
125
126         vsprintf(buffer, fmt, args);
127
128 #ifdef ENABLE_DEBUGGER
129         if (acpi_in_debugger) {
130                 kdb_printf("%s", buffer);
131         } else {
132                 printk("%s", buffer);
133         }
134 #else
135         printk("%s", buffer);
136 #endif
137 }
138
139 extern int acpi_in_resume;
140 void *acpi_os_allocate(acpi_size size)
141 {
142         if (acpi_in_resume)
143                 return kmalloc(size, GFP_ATOMIC);
144         else
145                 return kmalloc(size, GFP_KERNEL);
146 }
147
148 void acpi_os_free(void *ptr)
149 {
150         kfree(ptr);
151 }
152
153 EXPORT_SYMBOL(acpi_os_free);
154
155 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
156 {
157         if (efi_enabled) {
158                 addr->pointer_type = ACPI_PHYSICAL_POINTER;
159                 if (efi.acpi20)
160                         addr->pointer.physical =
161                             (acpi_physical_address) virt_to_phys(efi.acpi20);
162                 else if (efi.acpi)
163                         addr->pointer.physical =
164                             (acpi_physical_address) virt_to_phys(efi.acpi);
165                 else {
166                         printk(KERN_ERR PREFIX
167                                "System description tables not found\n");
168                         return AE_NOT_FOUND;
169                 }
170         } else {
171                 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
172                         printk(KERN_ERR PREFIX
173                                "System description tables not found\n");
174                         return AE_NOT_FOUND;
175                 }
176         }
177
178         return AE_OK;
179 }
180
181 acpi_status
182 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
183                    void __iomem ** virt)
184 {
185         if (efi_enabled) {
186                 if (EFI_MEMORY_WB & efi_mem_attributes(phys)) {
187                         *virt = (void __iomem *)phys_to_virt(phys);
188                 } else {
189                         *virt = ioremap(phys, size);
190                 }
191         } else {
192                 if (phys > ULONG_MAX) {
193                         printk(KERN_ERR PREFIX "Cannot map memory that high\n");
194                         return AE_BAD_PARAMETER;
195                 }
196                 /*
197                  * ioremap checks to ensure this is in reserved space
198                  */
199                 *virt = ioremap((unsigned long)phys, size);
200         }
201
202         if (!*virt)
203                 return AE_NO_MEMORY;
204
205         return AE_OK;
206 }
207
208 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
209 {
210         iounmap(virt);
211 }
212
213 #ifdef ACPI_FUTURE_USAGE
214 acpi_status
215 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
216 {
217         if (!phys || !virt)
218                 return AE_BAD_PARAMETER;
219
220         *phys = virt_to_phys(virt);
221
222         return AE_OK;
223 }
224 #endif
225
226 #define ACPI_MAX_OVERRIDE_LEN 100
227
228 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
229
230 acpi_status
231 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
232                             acpi_string * new_val)
233 {
234         if (!init_val || !new_val)
235                 return AE_BAD_PARAMETER;
236
237         *new_val = NULL;
238         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
239                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
240                        acpi_os_name);
241                 *new_val = acpi_os_name;
242         }
243
244         return AE_OK;
245 }
246
247 acpi_status
248 acpi_os_table_override(struct acpi_table_header * existing_table,
249                        struct acpi_table_header ** new_table)
250 {
251         if (!existing_table || !new_table)
252                 return AE_BAD_PARAMETER;
253
254 #ifdef CONFIG_ACPI_CUSTOM_DSDT
255         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
256                 *new_table = (struct acpi_table_header *)AmlCode;
257         else
258                 *new_table = NULL;
259 #else
260         *new_table = NULL;
261 #endif
262         return AE_OK;
263 }
264
265 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
266 {
267         return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
268 }
269
270 acpi_status
271 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
272                                   void *context)
273 {
274         unsigned int irq;
275
276         /*
277          * Ignore the GSI from the core, and use the value in our copy of the
278          * FADT. It may not be the same if an interrupt source override exists
279          * for the SCI.
280          */
281         gsi = acpi_fadt.sci_int;
282         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
283                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
284                        gsi);
285                 return AE_OK;
286         }
287
288         acpi_irq_handler = handler;
289         acpi_irq_context = context;
290         if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
291                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
292                 return AE_NOT_ACQUIRED;
293         }
294         acpi_irq_irq = irq;
295
296         return AE_OK;
297 }
298
299 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
300 {
301         if (irq) {
302                 free_irq(irq, acpi_irq);
303                 acpi_irq_handler = NULL;
304                 acpi_irq_irq = 0;
305         }
306
307         return AE_OK;
308 }
309
310 /*
311  * Running in interpreter thread context, safe to sleep
312  */
313
314 void acpi_os_sleep(acpi_integer ms)
315 {
316         current->state = TASK_INTERRUPTIBLE;
317         schedule_timeout(((signed long)ms * HZ) / 1000);
318 }
319
320 EXPORT_SYMBOL(acpi_os_sleep);
321
322 void acpi_os_stall(u32 us)
323 {
324         while (us) {
325                 u32 delay = 1000;
326
327                 if (delay > us)
328                         delay = us;
329                 udelay(delay);
330                 touch_nmi_watchdog();
331                 us -= delay;
332         }
333 }
334
335 EXPORT_SYMBOL(acpi_os_stall);
336
337 /*
338  * Support ACPI 3.0 AML Timer operand
339  * Returns 64-bit free-running, monotonically increasing timer
340  * with 100ns granularity
341  */
342 u64 acpi_os_get_timer(void)
343 {
344         static u64 t;
345
346 #ifdef  CONFIG_HPET
347         /* TBD: use HPET if available */
348 #endif
349
350 #ifdef  CONFIG_X86_PM_TIMER
351         /* TBD: default to PM timer if HPET was not available */
352 #endif
353         if (!t)
354                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
355
356         return ++t;
357 }
358
359 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
360 {
361         u32 dummy;
362
363         if (!value)
364                 value = &dummy;
365
366         switch (width) {
367         case 8:
368                 *(u8 *) value = inb(port);
369                 break;
370         case 16:
371                 *(u16 *) value = inw(port);
372                 break;
373         case 32:
374                 *(u32 *) value = inl(port);
375                 break;
376         default:
377                 BUG();
378         }
379
380         return AE_OK;
381 }
382
383 EXPORT_SYMBOL(acpi_os_read_port);
384
385 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
386 {
387         switch (width) {
388         case 8:
389                 outb(value, port);
390                 break;
391         case 16:
392                 outw(value, port);
393                 break;
394         case 32:
395                 outl(value, port);
396                 break;
397         default:
398                 BUG();
399         }
400
401         return AE_OK;
402 }
403
404 EXPORT_SYMBOL(acpi_os_write_port);
405
406 acpi_status
407 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
408 {
409         u32 dummy;
410         void __iomem *virt_addr;
411         int iomem = 0;
412
413         if (efi_enabled) {
414                 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
415                         /* HACK ALERT! We can use readb/w/l on real memory too.. */
416                         virt_addr = (void __iomem *)phys_to_virt(phys_addr);
417                 } else {
418                         iomem = 1;
419                         virt_addr = ioremap(phys_addr, width);
420                 }
421         } else
422                 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
423         if (!value)
424                 value = &dummy;
425
426         switch (width) {
427         case 8:
428                 *(u8 *) value = readb(virt_addr);
429                 break;
430         case 16:
431                 *(u16 *) value = readw(virt_addr);
432                 break;
433         case 32:
434                 *(u32 *) value = readl(virt_addr);
435                 break;
436         default:
437                 BUG();
438         }
439
440         if (efi_enabled) {
441                 if (iomem)
442                         iounmap(virt_addr);
443         }
444
445         return AE_OK;
446 }
447
448 acpi_status
449 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
450 {
451         void __iomem *virt_addr;
452         int iomem = 0;
453
454         if (efi_enabled) {
455                 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
456                         /* HACK ALERT! We can use writeb/w/l on real memory too */
457                         virt_addr = (void __iomem *)phys_to_virt(phys_addr);
458                 } else {
459                         iomem = 1;
460                         virt_addr = ioremap(phys_addr, width);
461                 }
462         } else
463                 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
464
465         switch (width) {
466         case 8:
467                 writeb(value, virt_addr);
468                 break;
469         case 16:
470                 writew(value, virt_addr);
471                 break;
472         case 32:
473                 writel(value, virt_addr);
474                 break;
475         default:
476                 BUG();
477         }
478
479         if (iomem)
480                 iounmap(virt_addr);
481
482         return AE_OK;
483 }
484
485 acpi_status
486 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
487                                void *value, u32 width)
488 {
489         int result, size;
490
491         if (!value)
492                 return AE_BAD_PARAMETER;
493
494         switch (width) {
495         case 8:
496                 size = 1;
497                 break;
498         case 16:
499                 size = 2;
500                 break;
501         case 32:
502                 size = 4;
503                 break;
504         default:
505                 return AE_ERROR;
506         }
507
508         BUG_ON(!raw_pci_ops);
509
510         result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
511                                    PCI_DEVFN(pci_id->device, pci_id->function),
512                                    reg, size, value);
513
514         return (result ? AE_ERROR : AE_OK);
515 }
516
517 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
518
519 acpi_status
520 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
521                                 acpi_integer value, u32 width)
522 {
523         int result, size;
524
525         switch (width) {
526         case 8:
527                 size = 1;
528                 break;
529         case 16:
530                 size = 2;
531                 break;
532         case 32:
533                 size = 4;
534                 break;
535         default:
536                 return AE_ERROR;
537         }
538
539         BUG_ON(!raw_pci_ops);
540
541         result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
542                                     PCI_DEVFN(pci_id->device, pci_id->function),
543                                     reg, size, value);
544
545         return (result ? AE_ERROR : AE_OK);
546 }
547
548 /* TODO: Change code to take advantage of driver model more */
549 static void acpi_os_derive_pci_id_2(acpi_handle rhandle,        /* upper bound  */
550                                     acpi_handle chandle,        /* current node */
551                                     struct acpi_pci_id **id,
552                                     int *is_bridge, u8 * bus_number)
553 {
554         acpi_handle handle;
555         struct acpi_pci_id *pci_id = *id;
556         acpi_status status;
557         unsigned long temp;
558         acpi_object_type type;
559         u8 tu8;
560
561         acpi_get_parent(chandle, &handle);
562         if (handle != rhandle) {
563                 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
564                                         bus_number);
565
566                 status = acpi_get_type(handle, &type);
567                 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
568                         return;
569
570                 status =
571                     acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
572                                           &temp);
573                 if (ACPI_SUCCESS(status)) {
574                         pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
575                         pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
576
577                         if (*is_bridge)
578                                 pci_id->bus = *bus_number;
579
580                         /* any nicer way to get bus number of bridge ? */
581                         status =
582                             acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
583                                                            8);
584                         if (ACPI_SUCCESS(status)
585                             && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
586                                 status =
587                                     acpi_os_read_pci_configuration(pci_id, 0x18,
588                                                                    &tu8, 8);
589                                 if (!ACPI_SUCCESS(status)) {
590                                         /* Certainly broken...  FIX ME */
591                                         return;
592                                 }
593                                 *is_bridge = 1;
594                                 pci_id->bus = tu8;
595                                 status =
596                                     acpi_os_read_pci_configuration(pci_id, 0x19,
597                                                                    &tu8, 8);
598                                 if (ACPI_SUCCESS(status)) {
599                                         *bus_number = tu8;
600                                 }
601                         } else
602                                 *is_bridge = 0;
603                 }
604         }
605 }
606
607 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound  */
608                            acpi_handle chandle, /* current node */
609                            struct acpi_pci_id **id)
610 {
611         int is_bridge = 1;
612         u8 bus_number = (*id)->bus;
613
614         acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
615 }
616
617 static void acpi_os_execute_deferred(void *context)
618 {
619         struct acpi_os_dpc *dpc = NULL;
620
621         ACPI_FUNCTION_TRACE("os_execute_deferred");
622
623         dpc = (struct acpi_os_dpc *)context;
624         if (!dpc) {
625                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
626                 return_VOID;
627         }
628
629         dpc->function(dpc->context);
630
631         kfree(dpc);
632
633         return_VOID;
634 }
635
636 acpi_status
637 acpi_os_queue_for_execution(u32 priority,
638                             acpi_osd_exec_callback function, void *context)
639 {
640         acpi_status status = AE_OK;
641         struct acpi_os_dpc *dpc;
642         struct work_struct *task;
643
644         ACPI_FUNCTION_TRACE("os_queue_for_execution");
645
646         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
647                           "Scheduling function [%p(%p)] for deferred execution.\n",
648                           function, context));
649
650         if (!function)
651                 return_ACPI_STATUS(AE_BAD_PARAMETER);
652
653         /*
654          * Allocate/initialize DPC structure.  Note that this memory will be
655          * freed by the callee.  The kernel handles the tq_struct list  in a
656          * way that allows us to also free its memory inside the callee.
657          * Because we may want to schedule several tasks with different
658          * parameters we can't use the approach some kernel code uses of
659          * having a static tq_struct.
660          * We can save time and code by allocating the DPC and tq_structs
661          * from the same memory.
662          */
663
664         dpc =
665             kmalloc(sizeof(struct acpi_os_dpc) + sizeof(struct work_struct),
666                     GFP_ATOMIC);
667         if (!dpc)
668                 return_ACPI_STATUS(AE_NO_MEMORY);
669
670         dpc->function = function;
671         dpc->context = context;
672
673         task = (void *)(dpc + 1);
674         INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
675
676         if (!queue_work(kacpid_wq, task)) {
677                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
678                                   "Call to queue_work() failed.\n"));
679                 kfree(dpc);
680                 status = AE_ERROR;
681         }
682
683         return_ACPI_STATUS(status);
684 }
685
686 EXPORT_SYMBOL(acpi_os_queue_for_execution);
687
688 void acpi_os_wait_events_complete(void *context)
689 {
690         flush_workqueue(kacpid_wq);
691 }
692
693 EXPORT_SYMBOL(acpi_os_wait_events_complete);
694
695 /*
696  * Allocate the memory for a spinlock and initialize it.
697  */
698 acpi_status acpi_os_create_lock(acpi_handle * out_handle)
699 {
700         spinlock_t *lock_ptr;
701
702         ACPI_FUNCTION_TRACE("os_create_lock");
703
704         lock_ptr = acpi_os_allocate(sizeof(spinlock_t));
705
706         spin_lock_init(lock_ptr);
707
708         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr));
709
710         *out_handle = lock_ptr;
711
712         return_ACPI_STATUS(AE_OK);
713 }
714
715 /*
716  * Deallocate the memory for a spinlock.
717  */
718 void acpi_os_delete_lock(acpi_handle handle)
719 {
720         ACPI_FUNCTION_TRACE("os_create_lock");
721
722         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle));
723
724         acpi_os_free(handle);
725
726         return_VOID;
727 }
728
729 acpi_status
730 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
731 {
732         struct semaphore *sem = NULL;
733
734         ACPI_FUNCTION_TRACE("os_create_semaphore");
735
736         sem = acpi_os_allocate(sizeof(struct semaphore));
737         if (!sem)
738                 return_ACPI_STATUS(AE_NO_MEMORY);
739         memset(sem, 0, sizeof(struct semaphore));
740
741         sema_init(sem, initial_units);
742
743         *handle = (acpi_handle *) sem;
744
745         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
746                           *handle, initial_units));
747
748         return_ACPI_STATUS(AE_OK);
749 }
750
751 EXPORT_SYMBOL(acpi_os_create_semaphore);
752
753 /*
754  * TODO: A better way to delete semaphores?  Linux doesn't have a
755  * 'delete_semaphore()' function -- may result in an invalid
756  * pointer dereference for non-synchronized consumers.  Should
757  * we at least check for blocked threads and signal/cancel them?
758  */
759
760 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
761 {
762         struct semaphore *sem = (struct semaphore *)handle;
763
764         ACPI_FUNCTION_TRACE("os_delete_semaphore");
765
766         if (!sem)
767                 return_ACPI_STATUS(AE_BAD_PARAMETER);
768
769         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
770
771         acpi_os_free(sem);
772         sem = NULL;
773
774         return_ACPI_STATUS(AE_OK);
775 }
776
777 EXPORT_SYMBOL(acpi_os_delete_semaphore);
778
779 /*
780  * TODO: The kernel doesn't have a 'down_timeout' function -- had to
781  * improvise.  The process is to sleep for one scheduler quantum
782  * until the semaphore becomes available.  Downside is that this
783  * may result in starvation for timeout-based waits when there's
784  * lots of semaphore activity.
785  *
786  * TODO: Support for units > 1?
787  */
788 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
789 {
790         acpi_status status = AE_OK;
791         struct semaphore *sem = (struct semaphore *)handle;
792         int ret = 0;
793
794         ACPI_FUNCTION_TRACE("os_wait_semaphore");
795
796         if (!sem || (units < 1))
797                 return_ACPI_STATUS(AE_BAD_PARAMETER);
798
799         if (units > 1)
800                 return_ACPI_STATUS(AE_SUPPORT);
801
802         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
803                           handle, units, timeout));
804
805         if (in_atomic())
806                 timeout = 0;
807
808         switch (timeout) {
809                 /*
810                  * No Wait:
811                  * --------
812                  * A zero timeout value indicates that we shouldn't wait - just
813                  * acquire the semaphore if available otherwise return AE_TIME
814                  * (a.k.a. 'would block').
815                  */
816         case 0:
817                 if (down_trylock(sem))
818                         status = AE_TIME;
819                 break;
820
821                 /*
822                  * Wait Indefinitely:
823                  * ------------------
824                  */
825         case ACPI_WAIT_FOREVER:
826                 down(sem);
827                 break;
828
829                 /*
830                  * Wait w/ Timeout:
831                  * ----------------
832                  */
833         default:
834                 // TODO: A better timeout algorithm?
835                 {
836                         int i = 0;
837                         static const int quantum_ms = 1000 / HZ;
838
839                         ret = down_trylock(sem);
840                         for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) {
841                                 current->state = TASK_INTERRUPTIBLE;
842                                 schedule_timeout(1);
843                                 ret = down_trylock(sem);
844                         }
845
846                         if (ret != 0)
847                                 status = AE_TIME;
848                 }
849                 break;
850         }
851
852         if (ACPI_FAILURE(status)) {
853                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
854                                   "Failed to acquire semaphore[%p|%d|%d], %s\n",
855                                   handle, units, timeout,
856                                   acpi_format_exception(status)));
857         } else {
858                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
859                                   "Acquired semaphore[%p|%d|%d]\n", handle,
860                                   units, timeout));
861         }
862
863         return_ACPI_STATUS(status);
864 }
865
866 EXPORT_SYMBOL(acpi_os_wait_semaphore);
867
868 /*
869  * TODO: Support for units > 1?
870  */
871 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
872 {
873         struct semaphore *sem = (struct semaphore *)handle;
874
875         ACPI_FUNCTION_TRACE("os_signal_semaphore");
876
877         if (!sem || (units < 1))
878                 return_ACPI_STATUS(AE_BAD_PARAMETER);
879
880         if (units > 1)
881                 return_ACPI_STATUS(AE_SUPPORT);
882
883         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
884                           units));
885
886         up(sem);
887
888         return_ACPI_STATUS(AE_OK);
889 }
890
891 EXPORT_SYMBOL(acpi_os_signal_semaphore);
892
893 #ifdef ACPI_FUTURE_USAGE
894 u32 acpi_os_get_line(char *buffer)
895 {
896
897 #ifdef ENABLE_DEBUGGER
898         if (acpi_in_debugger) {
899                 u32 chars;
900
901                 kdb_read(buffer, sizeof(line_buf));
902
903                 /* remove the CR kdb includes */
904                 chars = strlen(buffer) - 1;
905                 buffer[chars] = '\0';
906         }
907 #endif
908
909         return 0;
910 }
911 #endif                          /*  ACPI_FUTURE_USAGE  */
912
913 /* Assumes no unreadable holes inbetween */
914 u8 acpi_os_readable(void *ptr, acpi_size len)
915 {
916 #if defined(__i386__) || defined(__x86_64__)
917         char tmp;
918         return !__get_user(tmp, (char __user *)ptr)
919             && !__get_user(tmp, (char __user *)ptr + len - 1);
920 #endif
921         return 1;
922 }
923
924 #ifdef ACPI_FUTURE_USAGE
925 u8 acpi_os_writable(void *ptr, acpi_size len)
926 {
927         /* could do dummy write (racy) or a kernel page table lookup.
928            The later may be difficult at early boot when kmap doesn't work yet. */
929         return 1;
930 }
931 #endif
932
933 u32 acpi_os_get_thread_id(void)
934 {
935         if (!in_atomic())
936                 return current->pid;
937
938         return 0;
939 }
940
941 acpi_status acpi_os_signal(u32 function, void *info)
942 {
943         switch (function) {
944         case ACPI_SIGNAL_FATAL:
945                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
946                 break;
947         case ACPI_SIGNAL_BREAKPOINT:
948                 /*
949                  * AML Breakpoint
950                  * ACPI spec. says to treat it as a NOP unless
951                  * you are debugging.  So if/when we integrate
952                  * AML debugger into the kernel debugger its
953                  * hook will go here.  But until then it is
954                  * not useful to print anything on breakpoints.
955                  */
956                 break;
957         default:
958                 break;
959         }
960
961         return AE_OK;
962 }
963
964 EXPORT_SYMBOL(acpi_os_signal);
965
966 static int __init acpi_os_name_setup(char *str)
967 {
968         char *p = acpi_os_name;
969         int count = ACPI_MAX_OVERRIDE_LEN - 1;
970
971         if (!str || !*str)
972                 return 0;
973
974         for (; count-- && str && *str; str++) {
975                 if (isalnum(*str) || *str == ' ' || *str == ':')
976                         *p++ = *str;
977                 else if (*str == '\'' || *str == '"')
978                         continue;
979                 else
980                         break;
981         }
982         *p = 0;
983
984         return 1;
985
986 }
987
988 __setup("acpi_os_name=", acpi_os_name_setup);
989
990 /*
991  * _OSI control
992  * empty string disables _OSI
993  * TBD additional string adds to _OSI
994  */
995 static int __init acpi_osi_setup(char *str)
996 {
997         if (str == NULL || *str == '\0') {
998                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
999                 acpi_gbl_create_osi_method = FALSE;
1000         } else {
1001                 /* TBD */
1002                 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
1003                        str);
1004         }
1005
1006         return 1;
1007 }
1008
1009 __setup("acpi_osi=", acpi_osi_setup);
1010
1011 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1012 static int __init acpi_serialize_setup(char *str)
1013 {
1014         printk(KERN_INFO PREFIX "serialize enabled\n");
1015
1016         acpi_gbl_all_methods_serialized = TRUE;
1017
1018         return 1;
1019 }
1020
1021 __setup("acpi_serialize", acpi_serialize_setup);
1022
1023 /*
1024  * Wake and Run-Time GPES are expected to be separate.
1025  * We disable wake-GPEs at run-time to prevent spurious
1026  * interrupts.
1027  *
1028  * However, if a system exists that shares Wake and
1029  * Run-time events on the same GPE this flag is available
1030  * to tell Linux to keep the wake-time GPEs enabled at run-time.
1031  */
1032 static int __init acpi_wake_gpes_always_on_setup(char *str)
1033 {
1034         printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1035
1036         acpi_gbl_leave_wake_gpes_disabled = FALSE;
1037
1038         return 1;
1039 }
1040
1041 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1042
1043 static int __init acpi_hotkey_setup(char *str)
1044 {
1045         acpi_specific_hotkey_enabled = FALSE;
1046         return 1;
1047 }
1048
1049 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
1050
1051 /*
1052  * max_cstate is defined in the base kernel so modules can
1053  * change it w/o depending on the state of the processor module.
1054  */
1055 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1056
1057 EXPORT_SYMBOL(max_cstate);
1058
1059 /*
1060  * Acquire a spinlock.
1061  *
1062  * handle is a pointer to the spinlock_t.
1063  * flags is *not* the result of save_flags - it is an ACPI-specific flag variable
1064  *   that indicates whether we are at interrupt level.
1065  */
1066
1067 unsigned long acpi_os_acquire_lock(acpi_handle handle)
1068 {
1069         unsigned long flags;
1070         spin_lock_irqsave((spinlock_t *) handle, flags);
1071         return flags;
1072 }
1073
1074 /*
1075  * Release a spinlock. See above.
1076  */
1077
1078 void acpi_os_release_lock(acpi_handle handle, unsigned long flags)
1079 {
1080         spin_unlock_irqrestore((spinlock_t *) handle, flags);
1081 }
1082
1083 #ifndef ACPI_USE_LOCAL_CACHE
1084
1085 /*******************************************************************************
1086  *
1087  * FUNCTION:    acpi_os_create_cache
1088  *
1089  * PARAMETERS:  CacheName       - Ascii name for the cache
1090  *              ObjectSize      - Size of each cached object
1091  *              MaxDepth        - Maximum depth of the cache (in objects)
1092  *              ReturnCache     - Where the new cache object is returned
1093  *
1094  * RETURN:      Status
1095  *
1096  * DESCRIPTION: Create a cache object
1097  *
1098  ******************************************************************************/
1099
1100 acpi_status
1101 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1102 {
1103         *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1104         return AE_OK;
1105 }
1106
1107 /*******************************************************************************
1108  *
1109  * FUNCTION:    acpi_os_purge_cache
1110  *
1111  * PARAMETERS:  Cache           - Handle to cache object
1112  *
1113  * RETURN:      Status
1114  *
1115  * DESCRIPTION: Free all objects within the requested cache.
1116  *
1117  ******************************************************************************/
1118
1119 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1120 {
1121         (void)kmem_cache_shrink(cache);
1122         return (AE_OK);
1123 }
1124
1125 /*******************************************************************************
1126  *
1127  * FUNCTION:    acpi_os_delete_cache
1128  *
1129  * PARAMETERS:  Cache           - Handle to cache object
1130  *
1131  * RETURN:      Status
1132  *
1133  * DESCRIPTION: Free all objects within the requested cache and delete the
1134  *              cache object.
1135  *
1136  ******************************************************************************/
1137
1138 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1139 {
1140         (void)kmem_cache_destroy(cache);
1141         return (AE_OK);
1142 }
1143
1144 /*******************************************************************************
1145  *
1146  * FUNCTION:    acpi_os_release_object
1147  *
1148  * PARAMETERS:  Cache       - Handle to cache object
1149  *              Object      - The object to be released
1150  *
1151  * RETURN:      None
1152  *
1153  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1154  *              the object is deleted.
1155  *
1156  ******************************************************************************/
1157
1158 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1159 {
1160         kmem_cache_free(cache, object);
1161         return (AE_OK);
1162 }
1163
1164 /*******************************************************************************
1165  *
1166  * FUNCTION:    acpi_os_acquire_object
1167  *
1168  * PARAMETERS:  Cache           - Handle to cache object
1169  *              ReturnObject    - Where the object is returned
1170  *
1171  * RETURN:      Status
1172  *
1173  * DESCRIPTION: Get an object from the specified cache.  If cache is empty,
1174  *              the object is allocated.
1175  *
1176  ******************************************************************************/
1177
1178 void *acpi_os_acquire_object(acpi_cache_t * cache)
1179 {
1180         void *object = kmem_cache_alloc(cache, GFP_KERNEL);
1181         WARN_ON(!object);
1182         return object;
1183 }
1184
1185 #endif