Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[sfrench/cifs-2.6.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/pci.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <linux/acpi.h>
41 #include <linux/acpi_io.h>
42 #include <linux/efi.h>
43 #include <linux/ioport.h>
44 #include <linux/list.h>
45 #include <linux/jiffies.h>
46 #include <linux/semaphore.h>
47
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50
51 #include <acpi/acpi.h>
52 #include <acpi/acpi_bus.h>
53 #include <acpi/processor.h>
54
55 #define _COMPONENT              ACPI_OS_SERVICES
56 ACPI_MODULE_NAME("osl");
57 #define PREFIX          "ACPI: "
58 struct acpi_os_dpc {
59         acpi_osd_exec_callback function;
60         void *context;
61         struct work_struct work;
62         int wait;
63 };
64
65 #ifdef CONFIG_ACPI_CUSTOM_DSDT
66 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
67 #endif
68
69 #ifdef ENABLE_DEBUGGER
70 #include <linux/kdb.h>
71
72 /* stuff for debugger support */
73 int acpi_in_debugger;
74 EXPORT_SYMBOL(acpi_in_debugger);
75
76 extern char line_buf[80];
77 #endif                          /*ENABLE_DEBUGGER */
78
79 static unsigned int acpi_irq_irq;
80 static acpi_osd_handler acpi_irq_handler;
81 static void *acpi_irq_context;
82 static struct workqueue_struct *kacpid_wq;
83 static struct workqueue_struct *kacpi_notify_wq;
84 static struct workqueue_struct *kacpi_hotplug_wq;
85
86 struct acpi_res_list {
87         resource_size_t start;
88         resource_size_t end;
89         acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
90         char name[5];   /* only can have a length of 4 chars, make use of this
91                            one instead of res->name, no need to kalloc then */
92         struct list_head resource_list;
93         int count;
94 };
95
96 static LIST_HEAD(resource_list_head);
97 static DEFINE_SPINLOCK(acpi_res_lock);
98
99 /*
100  * This list of permanent mappings is for memory that may be accessed from
101  * interrupt context, where we can't do the ioremap().
102  */
103 struct acpi_ioremap {
104         struct list_head list;
105         void __iomem *virt;
106         acpi_physical_address phys;
107         acpi_size size;
108         struct kref ref;
109 };
110
111 static LIST_HEAD(acpi_ioremaps);
112 static DEFINE_SPINLOCK(acpi_ioremap_lock);
113
114 static void __init acpi_osi_setup_late(void);
115
116 /*
117  * The story of _OSI(Linux)
118  *
119  * From pre-history through Linux-2.6.22,
120  * Linux responded TRUE upon a BIOS OSI(Linux) query.
121  *
122  * Unfortunately, reference BIOS writers got wind of this
123  * and put OSI(Linux) in their example code, quickly exposing
124  * this string as ill-conceived and opening the door to
125  * an un-bounded number of BIOS incompatibilities.
126  *
127  * For example, OSI(Linux) was used on resume to re-POST a
128  * video card on one system, because Linux at that time
129  * could not do a speedy restore in its native driver.
130  * But then upon gaining quick native restore capability,
131  * Linux has no way to tell the BIOS to skip the time-consuming
132  * POST -- putting Linux at a permanent performance disadvantage.
133  * On another system, the BIOS writer used OSI(Linux)
134  * to infer native OS support for IPMI!  On other systems,
135  * OSI(Linux) simply got in the way of Linux claiming to
136  * be compatible with other operating systems, exposing
137  * BIOS issues such as skipped device initialization.
138  *
139  * So "Linux" turned out to be a really poor chose of
140  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
141  *
142  * BIOS writers should NOT query _OSI(Linux) on future systems.
143  * Linux will complain on the console when it sees it, and return FALSE.
144  * To get Linux to return TRUE for your system  will require
145  * a kernel source update to add a DMI entry,
146  * or boot with "acpi_osi=Linux"
147  */
148
149 static struct osi_linux {
150         unsigned int    enable:1;
151         unsigned int    dmi:1;
152         unsigned int    cmdline:1;
153 } osi_linux = {0, 0, 0};
154
155 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
156 {
157         if (!strcmp("Linux", interface)) {
158
159                 printk(KERN_NOTICE FW_BUG PREFIX
160                         "BIOS _OSI(Linux) query %s%s\n",
161                         osi_linux.enable ? "honored" : "ignored",
162                         osi_linux.cmdline ? " via cmdline" :
163                         osi_linux.dmi ? " via DMI" : "");
164         }
165
166         return supported;
167 }
168
169 static void __init acpi_request_region (struct acpi_generic_address *addr,
170         unsigned int length, char *desc)
171 {
172         if (!addr->address || !length)
173                 return;
174
175         /* Resources are never freed */
176         if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
177                 request_region(addr->address, length, desc);
178         else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
179                 request_mem_region(addr->address, length, desc);
180 }
181
182 static int __init acpi_reserve_resources(void)
183 {
184         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
185                 "ACPI PM1a_EVT_BLK");
186
187         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
188                 "ACPI PM1b_EVT_BLK");
189
190         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
191                 "ACPI PM1a_CNT_BLK");
192
193         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
194                 "ACPI PM1b_CNT_BLK");
195
196         if (acpi_gbl_FADT.pm_timer_length == 4)
197                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
198
199         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
200                 "ACPI PM2_CNT_BLK");
201
202         /* Length of GPE blocks must be a non-negative multiple of 2 */
203
204         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
205                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
206                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
207
208         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
209                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
210                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
211
212         return 0;
213 }
214 device_initcall(acpi_reserve_resources);
215
216 void acpi_os_printf(const char *fmt, ...)
217 {
218         va_list args;
219         va_start(args, fmt);
220         acpi_os_vprintf(fmt, args);
221         va_end(args);
222 }
223
224 void acpi_os_vprintf(const char *fmt, va_list args)
225 {
226         static char buffer[512];
227
228         vsprintf(buffer, fmt, args);
229
230 #ifdef ENABLE_DEBUGGER
231         if (acpi_in_debugger) {
232                 kdb_printf("%s", buffer);
233         } else {
234                 printk(KERN_CONT "%s", buffer);
235         }
236 #else
237         printk(KERN_CONT "%s", buffer);
238 #endif
239 }
240
241 acpi_physical_address __init acpi_os_get_root_pointer(void)
242 {
243         if (efi_enabled) {
244                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
245                         return efi.acpi20;
246                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
247                         return efi.acpi;
248                 else {
249                         printk(KERN_ERR PREFIX
250                                "System description tables not found\n");
251                         return 0;
252                 }
253         } else {
254                 acpi_physical_address pa = 0;
255
256                 acpi_find_root_pointer(&pa);
257                 return pa;
258         }
259 }
260
261 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
262 static struct acpi_ioremap *
263 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
264 {
265         struct acpi_ioremap *map;
266
267         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
268                 if (map->phys <= phys &&
269                     phys + size <= map->phys + map->size)
270                         return map;
271
272         return NULL;
273 }
274
275 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
276 static void __iomem *
277 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
278 {
279         struct acpi_ioremap *map;
280
281         map = acpi_map_lookup(phys, size);
282         if (map)
283                 return map->virt + (phys - map->phys);
284
285         return NULL;
286 }
287
288 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
289 static struct acpi_ioremap *
290 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
291 {
292         struct acpi_ioremap *map;
293
294         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
295                 if (map->virt <= virt &&
296                     virt + size <= map->virt + map->size)
297                         return map;
298
299         return NULL;
300 }
301
302 void __iomem *__init_refok
303 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
304 {
305         struct acpi_ioremap *map, *tmp_map;
306         unsigned long flags;
307         void __iomem *virt;
308         acpi_physical_address pg_off;
309         acpi_size pg_sz;
310
311         if (phys > ULONG_MAX) {
312                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
313                 return NULL;
314         }
315
316         if (!acpi_gbl_permanent_mmap)
317                 return __acpi_map_table((unsigned long)phys, size);
318
319         map = kzalloc(sizeof(*map), GFP_KERNEL);
320         if (!map)
321                 return NULL;
322
323         pg_off = round_down(phys, PAGE_SIZE);
324         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
325         virt = acpi_os_ioremap(pg_off, pg_sz);
326         if (!virt) {
327                 kfree(map);
328                 return NULL;
329         }
330
331         INIT_LIST_HEAD(&map->list);
332         map->virt = virt;
333         map->phys = pg_off;
334         map->size = pg_sz;
335         kref_init(&map->ref);
336
337         spin_lock_irqsave(&acpi_ioremap_lock, flags);
338         /* Check if page has already been mapped. */
339         tmp_map = acpi_map_lookup(phys, size);
340         if (tmp_map) {
341                 kref_get(&tmp_map->ref);
342                 spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
343                 iounmap(map->virt);
344                 kfree(map);
345                 return tmp_map->virt + (phys - tmp_map->phys);
346         }
347         list_add_tail_rcu(&map->list, &acpi_ioremaps);
348         spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
349
350         return map->virt + (phys - map->phys);
351 }
352 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
353
354 static void acpi_kref_del_iomap(struct kref *ref)
355 {
356         struct acpi_ioremap *map;
357
358         map = container_of(ref, struct acpi_ioremap, ref);
359         list_del_rcu(&map->list);
360 }
361
362 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
363 {
364         struct acpi_ioremap *map;
365         unsigned long flags;
366         int del;
367
368         if (!acpi_gbl_permanent_mmap) {
369                 __acpi_unmap_table(virt, size);
370                 return;
371         }
372
373         spin_lock_irqsave(&acpi_ioremap_lock, flags);
374         map = acpi_map_lookup_virt(virt, size);
375         if (!map) {
376                 spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
377                 printk(KERN_ERR PREFIX "%s: bad address %p\n", __func__, virt);
378                 dump_stack();
379                 return;
380         }
381
382         del = kref_put(&map->ref, acpi_kref_del_iomap);
383         spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
384
385         if (!del)
386                 return;
387
388         synchronize_rcu();
389         iounmap(map->virt);
390         kfree(map);
391 }
392 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
393
394 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
395 {
396         if (!acpi_gbl_permanent_mmap)
397                 __acpi_unmap_table(virt, size);
398 }
399
400 int acpi_os_map_generic_address(struct acpi_generic_address *addr)
401 {
402         void __iomem *virt;
403
404         if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
405                 return 0;
406
407         if (!addr->address || !addr->bit_width)
408                 return -EINVAL;
409
410         virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
411         if (!virt)
412                 return -EIO;
413
414         return 0;
415 }
416 EXPORT_SYMBOL_GPL(acpi_os_map_generic_address);
417
418 void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
419 {
420         void __iomem *virt;
421         unsigned long flags;
422         acpi_size size = addr->bit_width / 8;
423
424         if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
425                 return;
426
427         if (!addr->address || !addr->bit_width)
428                 return;
429
430         spin_lock_irqsave(&acpi_ioremap_lock, flags);
431         virt = acpi_map_vaddr_lookup(addr->address, size);
432         spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
433
434         acpi_os_unmap_memory(virt, size);
435 }
436 EXPORT_SYMBOL_GPL(acpi_os_unmap_generic_address);
437
438 #ifdef ACPI_FUTURE_USAGE
439 acpi_status
440 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
441 {
442         if (!phys || !virt)
443                 return AE_BAD_PARAMETER;
444
445         *phys = virt_to_phys(virt);
446
447         return AE_OK;
448 }
449 #endif
450
451 #define ACPI_MAX_OVERRIDE_LEN 100
452
453 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
454
455 acpi_status
456 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
457                             acpi_string * new_val)
458 {
459         if (!init_val || !new_val)
460                 return AE_BAD_PARAMETER;
461
462         *new_val = NULL;
463         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
464                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
465                        acpi_os_name);
466                 *new_val = acpi_os_name;
467         }
468
469         return AE_OK;
470 }
471
472 acpi_status
473 acpi_os_table_override(struct acpi_table_header * existing_table,
474                        struct acpi_table_header ** new_table)
475 {
476         if (!existing_table || !new_table)
477                 return AE_BAD_PARAMETER;
478
479         *new_table = NULL;
480
481 #ifdef CONFIG_ACPI_CUSTOM_DSDT
482         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
483                 *new_table = (struct acpi_table_header *)AmlCode;
484 #endif
485         if (*new_table != NULL) {
486                 printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
487                            "this is unsafe: tainting kernel\n",
488                        existing_table->signature,
489                        existing_table->oem_table_id);
490                 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
491         }
492         return AE_OK;
493 }
494
495 static irqreturn_t acpi_irq(int irq, void *dev_id)
496 {
497         u32 handled;
498
499         handled = (*acpi_irq_handler) (acpi_irq_context);
500
501         if (handled) {
502                 acpi_irq_handled++;
503                 return IRQ_HANDLED;
504         } else {
505                 acpi_irq_not_handled++;
506                 return IRQ_NONE;
507         }
508 }
509
510 acpi_status
511 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
512                                   void *context)
513 {
514         unsigned int irq;
515
516         acpi_irq_stats_init();
517
518         /*
519          * Ignore the GSI from the core, and use the value in our copy of the
520          * FADT. It may not be the same if an interrupt source override exists
521          * for the SCI.
522          */
523         gsi = acpi_gbl_FADT.sci_interrupt;
524         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
525                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
526                        gsi);
527                 return AE_OK;
528         }
529
530         acpi_irq_handler = handler;
531         acpi_irq_context = context;
532         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
533                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
534                 return AE_NOT_ACQUIRED;
535         }
536         acpi_irq_irq = irq;
537
538         return AE_OK;
539 }
540
541 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
542 {
543         if (irq) {
544                 free_irq(irq, acpi_irq);
545                 acpi_irq_handler = NULL;
546                 acpi_irq_irq = 0;
547         }
548
549         return AE_OK;
550 }
551
552 /*
553  * Running in interpreter thread context, safe to sleep
554  */
555
556 void acpi_os_sleep(u64 ms)
557 {
558         schedule_timeout_interruptible(msecs_to_jiffies(ms));
559 }
560
561 void acpi_os_stall(u32 us)
562 {
563         while (us) {
564                 u32 delay = 1000;
565
566                 if (delay > us)
567                         delay = us;
568                 udelay(delay);
569                 touch_nmi_watchdog();
570                 us -= delay;
571         }
572 }
573
574 /*
575  * Support ACPI 3.0 AML Timer operand
576  * Returns 64-bit free-running, monotonically increasing timer
577  * with 100ns granularity
578  */
579 u64 acpi_os_get_timer(void)
580 {
581         static u64 t;
582
583 #ifdef  CONFIG_HPET
584         /* TBD: use HPET if available */
585 #endif
586
587 #ifdef  CONFIG_X86_PM_TIMER
588         /* TBD: default to PM timer if HPET was not available */
589 #endif
590         if (!t)
591                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
592
593         return ++t;
594 }
595
596 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
597 {
598         u32 dummy;
599
600         if (!value)
601                 value = &dummy;
602
603         *value = 0;
604         if (width <= 8) {
605                 *(u8 *) value = inb(port);
606         } else if (width <= 16) {
607                 *(u16 *) value = inw(port);
608         } else if (width <= 32) {
609                 *(u32 *) value = inl(port);
610         } else {
611                 BUG();
612         }
613
614         return AE_OK;
615 }
616
617 EXPORT_SYMBOL(acpi_os_read_port);
618
619 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
620 {
621         if (width <= 8) {
622                 outb(value, port);
623         } else if (width <= 16) {
624                 outw(value, port);
625         } else if (width <= 32) {
626                 outl(value, port);
627         } else {
628                 BUG();
629         }
630
631         return AE_OK;
632 }
633
634 EXPORT_SYMBOL(acpi_os_write_port);
635
636 acpi_status
637 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
638 {
639         u32 dummy;
640         void __iomem *virt_addr;
641         int size = width / 8, unmap = 0;
642
643         rcu_read_lock();
644         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
645         rcu_read_unlock();
646         if (!virt_addr) {
647                 virt_addr = acpi_os_ioremap(phys_addr, size);
648                 unmap = 1;
649         }
650         if (!value)
651                 value = &dummy;
652
653         switch (width) {
654         case 8:
655                 *(u8 *) value = readb(virt_addr);
656                 break;
657         case 16:
658                 *(u16 *) value = readw(virt_addr);
659                 break;
660         case 32:
661                 *(u32 *) value = readl(virt_addr);
662                 break;
663         default:
664                 BUG();
665         }
666
667         if (unmap)
668                 iounmap(virt_addr);
669
670         return AE_OK;
671 }
672
673 acpi_status
674 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
675 {
676         void __iomem *virt_addr;
677         int size = width / 8, unmap = 0;
678
679         rcu_read_lock();
680         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
681         rcu_read_unlock();
682         if (!virt_addr) {
683                 virt_addr = acpi_os_ioremap(phys_addr, size);
684                 unmap = 1;
685         }
686
687         switch (width) {
688         case 8:
689                 writeb(value, virt_addr);
690                 break;
691         case 16:
692                 writew(value, virt_addr);
693                 break;
694         case 32:
695                 writel(value, virt_addr);
696                 break;
697         default:
698                 BUG();
699         }
700
701         if (unmap)
702                 iounmap(virt_addr);
703
704         return AE_OK;
705 }
706
707 acpi_status
708 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
709                                u64 *value, u32 width)
710 {
711         int result, size;
712         u32 value32;
713
714         if (!value)
715                 return AE_BAD_PARAMETER;
716
717         switch (width) {
718         case 8:
719                 size = 1;
720                 break;
721         case 16:
722                 size = 2;
723                 break;
724         case 32:
725                 size = 4;
726                 break;
727         default:
728                 return AE_ERROR;
729         }
730
731         result = raw_pci_read(pci_id->segment, pci_id->bus,
732                                 PCI_DEVFN(pci_id->device, pci_id->function),
733                                 reg, size, &value32);
734         *value = value32;
735
736         return (result ? AE_ERROR : AE_OK);
737 }
738
739 acpi_status
740 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
741                                 u64 value, u32 width)
742 {
743         int result, size;
744
745         switch (width) {
746         case 8:
747                 size = 1;
748                 break;
749         case 16:
750                 size = 2;
751                 break;
752         case 32:
753                 size = 4;
754                 break;
755         default:
756                 return AE_ERROR;
757         }
758
759         result = raw_pci_write(pci_id->segment, pci_id->bus,
760                                 PCI_DEVFN(pci_id->device, pci_id->function),
761                                 reg, size, value);
762
763         return (result ? AE_ERROR : AE_OK);
764 }
765
766 static void acpi_os_execute_deferred(struct work_struct *work)
767 {
768         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
769
770         if (dpc->wait)
771                 acpi_os_wait_events_complete(NULL);
772
773         dpc->function(dpc->context);
774         kfree(dpc);
775 }
776
777 /*******************************************************************************
778  *
779  * FUNCTION:    acpi_os_execute
780  *
781  * PARAMETERS:  Type               - Type of the callback
782  *              Function           - Function to be executed
783  *              Context            - Function parameters
784  *
785  * RETURN:      Status
786  *
787  * DESCRIPTION: Depending on type, either queues function for deferred execution or
788  *              immediately executes function on a separate thread.
789  *
790  ******************************************************************************/
791
792 static acpi_status __acpi_os_execute(acpi_execute_type type,
793         acpi_osd_exec_callback function, void *context, int hp)
794 {
795         acpi_status status = AE_OK;
796         struct acpi_os_dpc *dpc;
797         struct workqueue_struct *queue;
798         int ret;
799         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
800                           "Scheduling function [%p(%p)] for deferred execution.\n",
801                           function, context));
802
803         /*
804          * Allocate/initialize DPC structure.  Note that this memory will be
805          * freed by the callee.  The kernel handles the work_struct list  in a
806          * way that allows us to also free its memory inside the callee.
807          * Because we may want to schedule several tasks with different
808          * parameters we can't use the approach some kernel code uses of
809          * having a static work_struct.
810          */
811
812         dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
813         if (!dpc)
814                 return AE_NO_MEMORY;
815
816         dpc->function = function;
817         dpc->context = context;
818
819         /*
820          * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
821          * because the hotplug code may call driver .remove() functions,
822          * which invoke flush_scheduled_work/acpi_os_wait_events_complete
823          * to flush these workqueues.
824          */
825         queue = hp ? kacpi_hotplug_wq :
826                 (type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
827         dpc->wait = hp ? 1 : 0;
828
829         if (queue == kacpi_hotplug_wq)
830                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
831         else if (queue == kacpi_notify_wq)
832                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
833         else
834                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
835
836         /*
837          * On some machines, a software-initiated SMI causes corruption unless
838          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
839          * typically it's done in GPE-related methods that are run via
840          * workqueues, so we can avoid the known corruption cases by always
841          * queueing on CPU 0.
842          */
843         ret = queue_work_on(0, queue, &dpc->work);
844
845         if (!ret) {
846                 printk(KERN_ERR PREFIX
847                           "Call to queue_work() failed.\n");
848                 status = AE_ERROR;
849                 kfree(dpc);
850         }
851         return status;
852 }
853
854 acpi_status acpi_os_execute(acpi_execute_type type,
855                             acpi_osd_exec_callback function, void *context)
856 {
857         return __acpi_os_execute(type, function, context, 0);
858 }
859 EXPORT_SYMBOL(acpi_os_execute);
860
861 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
862         void *context)
863 {
864         return __acpi_os_execute(0, function, context, 1);
865 }
866
867 void acpi_os_wait_events_complete(void *context)
868 {
869         flush_workqueue(kacpid_wq);
870         flush_workqueue(kacpi_notify_wq);
871 }
872
873 EXPORT_SYMBOL(acpi_os_wait_events_complete);
874
875 /*
876  * Deallocate the memory for a spinlock.
877  */
878 void acpi_os_delete_lock(acpi_spinlock handle)
879 {
880         return;
881 }
882
883 acpi_status
884 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
885 {
886         struct semaphore *sem = NULL;
887
888         sem = acpi_os_allocate(sizeof(struct semaphore));
889         if (!sem)
890                 return AE_NO_MEMORY;
891         memset(sem, 0, sizeof(struct semaphore));
892
893         sema_init(sem, initial_units);
894
895         *handle = (acpi_handle *) sem;
896
897         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
898                           *handle, initial_units));
899
900         return AE_OK;
901 }
902
903 /*
904  * TODO: A better way to delete semaphores?  Linux doesn't have a
905  * 'delete_semaphore()' function -- may result in an invalid
906  * pointer dereference for non-synchronized consumers.  Should
907  * we at least check for blocked threads and signal/cancel them?
908  */
909
910 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
911 {
912         struct semaphore *sem = (struct semaphore *)handle;
913
914         if (!sem)
915                 return AE_BAD_PARAMETER;
916
917         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
918
919         BUG_ON(!list_empty(&sem->wait_list));
920         kfree(sem);
921         sem = NULL;
922
923         return AE_OK;
924 }
925
926 /*
927  * TODO: Support for units > 1?
928  */
929 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
930 {
931         acpi_status status = AE_OK;
932         struct semaphore *sem = (struct semaphore *)handle;
933         long jiffies;
934         int ret = 0;
935
936         if (!sem || (units < 1))
937                 return AE_BAD_PARAMETER;
938
939         if (units > 1)
940                 return AE_SUPPORT;
941
942         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
943                           handle, units, timeout));
944
945         if (timeout == ACPI_WAIT_FOREVER)
946                 jiffies = MAX_SCHEDULE_TIMEOUT;
947         else
948                 jiffies = msecs_to_jiffies(timeout);
949         
950         ret = down_timeout(sem, jiffies);
951         if (ret)
952                 status = AE_TIME;
953
954         if (ACPI_FAILURE(status)) {
955                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
956                                   "Failed to acquire semaphore[%p|%d|%d], %s",
957                                   handle, units, timeout,
958                                   acpi_format_exception(status)));
959         } else {
960                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
961                                   "Acquired semaphore[%p|%d|%d]", handle,
962                                   units, timeout));
963         }
964
965         return status;
966 }
967
968 /*
969  * TODO: Support for units > 1?
970  */
971 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
972 {
973         struct semaphore *sem = (struct semaphore *)handle;
974
975         if (!sem || (units < 1))
976                 return AE_BAD_PARAMETER;
977
978         if (units > 1)
979                 return AE_SUPPORT;
980
981         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
982                           units));
983
984         up(sem);
985
986         return AE_OK;
987 }
988
989 #ifdef ACPI_FUTURE_USAGE
990 u32 acpi_os_get_line(char *buffer)
991 {
992
993 #ifdef ENABLE_DEBUGGER
994         if (acpi_in_debugger) {
995                 u32 chars;
996
997                 kdb_read(buffer, sizeof(line_buf));
998
999                 /* remove the CR kdb includes */
1000                 chars = strlen(buffer) - 1;
1001                 buffer[chars] = '\0';
1002         }
1003 #endif
1004
1005         return 0;
1006 }
1007 #endif                          /*  ACPI_FUTURE_USAGE  */
1008
1009 acpi_status acpi_os_signal(u32 function, void *info)
1010 {
1011         switch (function) {
1012         case ACPI_SIGNAL_FATAL:
1013                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1014                 break;
1015         case ACPI_SIGNAL_BREAKPOINT:
1016                 /*
1017                  * AML Breakpoint
1018                  * ACPI spec. says to treat it as a NOP unless
1019                  * you are debugging.  So if/when we integrate
1020                  * AML debugger into the kernel debugger its
1021                  * hook will go here.  But until then it is
1022                  * not useful to print anything on breakpoints.
1023                  */
1024                 break;
1025         default:
1026                 break;
1027         }
1028
1029         return AE_OK;
1030 }
1031
1032 static int __init acpi_os_name_setup(char *str)
1033 {
1034         char *p = acpi_os_name;
1035         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1036
1037         if (!str || !*str)
1038                 return 0;
1039
1040         for (; count-- && str && *str; str++) {
1041                 if (isalnum(*str) || *str == ' ' || *str == ':')
1042                         *p++ = *str;
1043                 else if (*str == '\'' || *str == '"')
1044                         continue;
1045                 else
1046                         break;
1047         }
1048         *p = 0;
1049
1050         return 1;
1051
1052 }
1053
1054 __setup("acpi_os_name=", acpi_os_name_setup);
1055
1056 #define OSI_STRING_LENGTH_MAX 64        /* arbitrary */
1057 #define OSI_STRING_ENTRIES_MAX 16       /* arbitrary */
1058
1059 struct osi_setup_entry {
1060         char string[OSI_STRING_LENGTH_MAX];
1061         bool enable;
1062 };
1063
1064 static struct osi_setup_entry __initdata osi_setup_entries[OSI_STRING_ENTRIES_MAX];
1065
1066 void __init acpi_osi_setup(char *str)
1067 {
1068         struct osi_setup_entry *osi;
1069         bool enable = true;
1070         int i;
1071
1072         if (!acpi_gbl_create_osi_method)
1073                 return;
1074
1075         if (str == NULL || *str == '\0') {
1076                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1077                 acpi_gbl_create_osi_method = FALSE;
1078                 return;
1079         }
1080
1081         if (*str == '!') {
1082                 str++;
1083                 enable = false;
1084         }
1085
1086         for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1087                 osi = &osi_setup_entries[i];
1088                 if (!strcmp(osi->string, str)) {
1089                         osi->enable = enable;
1090                         break;
1091                 } else if (osi->string[0] == '\0') {
1092                         osi->enable = enable;
1093                         strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1094                         break;
1095                 }
1096         }
1097 }
1098
1099 static void __init set_osi_linux(unsigned int enable)
1100 {
1101         if (osi_linux.enable != enable)
1102                 osi_linux.enable = enable;
1103
1104         if (osi_linux.enable)
1105                 acpi_osi_setup("Linux");
1106         else
1107                 acpi_osi_setup("!Linux");
1108
1109         return;
1110 }
1111
1112 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1113 {
1114         osi_linux.cmdline = 1;  /* cmdline set the default and override DMI */
1115         osi_linux.dmi = 0;
1116         set_osi_linux(enable);
1117
1118         return;
1119 }
1120
1121 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1122 {
1123         printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1124
1125         if (enable == -1)
1126                 return;
1127
1128         osi_linux.dmi = 1;      /* DMI knows that this box asks OSI(Linux) */
1129         set_osi_linux(enable);
1130
1131         return;
1132 }
1133
1134 /*
1135  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1136  *
1137  * empty string disables _OSI
1138  * string starting with '!' disables that string
1139  * otherwise string is added to list, augmenting built-in strings
1140  */
1141 static void __init acpi_osi_setup_late(void)
1142 {
1143         struct osi_setup_entry *osi;
1144         char *str;
1145         int i;
1146         acpi_status status;
1147
1148         for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1149                 osi = &osi_setup_entries[i];
1150                 str = osi->string;
1151
1152                 if (*str == '\0')
1153                         break;
1154                 if (osi->enable) {
1155                         status = acpi_install_interface(str);
1156
1157                         if (ACPI_SUCCESS(status))
1158                                 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1159                 } else {
1160                         status = acpi_remove_interface(str);
1161
1162                         if (ACPI_SUCCESS(status))
1163                                 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1164                 }
1165         }
1166 }
1167
1168 static int __init osi_setup(char *str)
1169 {
1170         if (str && !strcmp("Linux", str))
1171                 acpi_cmdline_osi_linux(1);
1172         else if (str && !strcmp("!Linux", str))
1173                 acpi_cmdline_osi_linux(0);
1174         else
1175                 acpi_osi_setup(str);
1176
1177         return 1;
1178 }
1179
1180 __setup("acpi_osi=", osi_setup);
1181
1182 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1183 static int __init acpi_serialize_setup(char *str)
1184 {
1185         printk(KERN_INFO PREFIX "serialize enabled\n");
1186
1187         acpi_gbl_all_methods_serialized = TRUE;
1188
1189         return 1;
1190 }
1191
1192 __setup("acpi_serialize", acpi_serialize_setup);
1193
1194 /* Check of resource interference between native drivers and ACPI
1195  * OperationRegions (SystemIO and System Memory only).
1196  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1197  * in arbitrary AML code and can interfere with legacy drivers.
1198  * acpi_enforce_resources= can be set to:
1199  *
1200  *   - strict (default) (2)
1201  *     -> further driver trying to access the resources will not load
1202  *   - lax              (1)
1203  *     -> further driver trying to access the resources will load, but you
1204  *     get a system message that something might go wrong...
1205  *
1206  *   - no               (0)
1207  *     -> ACPI Operation Region resources will not be registered
1208  *
1209  */
1210 #define ENFORCE_RESOURCES_STRICT 2
1211 #define ENFORCE_RESOURCES_LAX    1
1212 #define ENFORCE_RESOURCES_NO     0
1213
1214 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1215
1216 static int __init acpi_enforce_resources_setup(char *str)
1217 {
1218         if (str == NULL || *str == '\0')
1219                 return 0;
1220
1221         if (!strcmp("strict", str))
1222                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1223         else if (!strcmp("lax", str))
1224                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1225         else if (!strcmp("no", str))
1226                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1227
1228         return 1;
1229 }
1230
1231 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1232
1233 /* Check for resource conflicts between ACPI OperationRegions and native
1234  * drivers */
1235 int acpi_check_resource_conflict(const struct resource *res)
1236 {
1237         struct acpi_res_list *res_list_elem;
1238         int ioport = 0, clash = 0;
1239
1240         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1241                 return 0;
1242         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1243                 return 0;
1244
1245         ioport = res->flags & IORESOURCE_IO;
1246
1247         spin_lock(&acpi_res_lock);
1248         list_for_each_entry(res_list_elem, &resource_list_head,
1249                             resource_list) {
1250                 if (ioport && (res_list_elem->resource_type
1251                                != ACPI_ADR_SPACE_SYSTEM_IO))
1252                         continue;
1253                 if (!ioport && (res_list_elem->resource_type
1254                                 != ACPI_ADR_SPACE_SYSTEM_MEMORY))
1255                         continue;
1256
1257                 if (res->end < res_list_elem->start
1258                     || res_list_elem->end < res->start)
1259                         continue;
1260                 clash = 1;
1261                 break;
1262         }
1263         spin_unlock(&acpi_res_lock);
1264
1265         if (clash) {
1266                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1267                         printk(KERN_WARNING "ACPI: resource %s %pR"
1268                                " conflicts with ACPI region %s "
1269                                "[%s 0x%zx-0x%zx]\n",
1270                                res->name, res, res_list_elem->name,
1271                                (res_list_elem->resource_type ==
1272                                 ACPI_ADR_SPACE_SYSTEM_IO) ? "io" : "mem",
1273                                (size_t) res_list_elem->start,
1274                                (size_t) res_list_elem->end);
1275                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1276                                 printk(KERN_NOTICE "ACPI: This conflict may"
1277                                        " cause random problems and system"
1278                                        " instability\n");
1279                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1280                                " for this device, you should use it instead of"
1281                                " the native driver\n");
1282                 }
1283                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1284                         return -EBUSY;
1285         }
1286         return 0;
1287 }
1288 EXPORT_SYMBOL(acpi_check_resource_conflict);
1289
1290 int acpi_check_region(resource_size_t start, resource_size_t n,
1291                       const char *name)
1292 {
1293         struct resource res = {
1294                 .start = start,
1295                 .end   = start + n - 1,
1296                 .name  = name,
1297                 .flags = IORESOURCE_IO,
1298         };
1299
1300         return acpi_check_resource_conflict(&res);
1301 }
1302 EXPORT_SYMBOL(acpi_check_region);
1303
1304 /*
1305  * Let drivers know whether the resource checks are effective
1306  */
1307 int acpi_resources_are_enforced(void)
1308 {
1309         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1310 }
1311 EXPORT_SYMBOL(acpi_resources_are_enforced);
1312
1313 /*
1314  * Acquire a spinlock.
1315  *
1316  * handle is a pointer to the spinlock_t.
1317  */
1318
1319 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1320 {
1321         acpi_cpu_flags flags;
1322         spin_lock_irqsave(lockp, flags);
1323         return flags;
1324 }
1325
1326 /*
1327  * Release a spinlock. See above.
1328  */
1329
1330 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1331 {
1332         spin_unlock_irqrestore(lockp, flags);
1333 }
1334
1335 #ifndef ACPI_USE_LOCAL_CACHE
1336
1337 /*******************************************************************************
1338  *
1339  * FUNCTION:    acpi_os_create_cache
1340  *
1341  * PARAMETERS:  name      - Ascii name for the cache
1342  *              size      - Size of each cached object
1343  *              depth     - Maximum depth of the cache (in objects) <ignored>
1344  *              cache     - Where the new cache object is returned
1345  *
1346  * RETURN:      status
1347  *
1348  * DESCRIPTION: Create a cache object
1349  *
1350  ******************************************************************************/
1351
1352 acpi_status
1353 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1354 {
1355         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1356         if (*cache == NULL)
1357                 return AE_ERROR;
1358         else
1359                 return AE_OK;
1360 }
1361
1362 /*******************************************************************************
1363  *
1364  * FUNCTION:    acpi_os_purge_cache
1365  *
1366  * PARAMETERS:  Cache           - Handle to cache object
1367  *
1368  * RETURN:      Status
1369  *
1370  * DESCRIPTION: Free all objects within the requested cache.
1371  *
1372  ******************************************************************************/
1373
1374 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1375 {
1376         kmem_cache_shrink(cache);
1377         return (AE_OK);
1378 }
1379
1380 /*******************************************************************************
1381  *
1382  * FUNCTION:    acpi_os_delete_cache
1383  *
1384  * PARAMETERS:  Cache           - Handle to cache object
1385  *
1386  * RETURN:      Status
1387  *
1388  * DESCRIPTION: Free all objects within the requested cache and delete the
1389  *              cache object.
1390  *
1391  ******************************************************************************/
1392
1393 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1394 {
1395         kmem_cache_destroy(cache);
1396         return (AE_OK);
1397 }
1398
1399 /*******************************************************************************
1400  *
1401  * FUNCTION:    acpi_os_release_object
1402  *
1403  * PARAMETERS:  Cache       - Handle to cache object
1404  *              Object      - The object to be released
1405  *
1406  * RETURN:      None
1407  *
1408  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1409  *              the object is deleted.
1410  *
1411  ******************************************************************************/
1412
1413 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1414 {
1415         kmem_cache_free(cache, object);
1416         return (AE_OK);
1417 }
1418
1419 static inline int acpi_res_list_add(struct acpi_res_list *res)
1420 {
1421         struct acpi_res_list *res_list_elem;
1422
1423         list_for_each_entry(res_list_elem, &resource_list_head,
1424                             resource_list) {
1425
1426                 if (res->resource_type == res_list_elem->resource_type &&
1427                     res->start == res_list_elem->start &&
1428                     res->end == res_list_elem->end) {
1429
1430                         /*
1431                          * The Region(addr,len) already exist in the list,
1432                          * just increase the count
1433                          */
1434
1435                         res_list_elem->count++;
1436                         return 0;
1437                 }
1438         }
1439
1440         res->count = 1;
1441         list_add(&res->resource_list, &resource_list_head);
1442         return 1;
1443 }
1444
1445 static inline void acpi_res_list_del(struct acpi_res_list *res)
1446 {
1447         struct acpi_res_list *res_list_elem;
1448
1449         list_for_each_entry(res_list_elem, &resource_list_head,
1450                             resource_list) {
1451
1452                 if (res->resource_type == res_list_elem->resource_type &&
1453                     res->start == res_list_elem->start &&
1454                     res->end == res_list_elem->end) {
1455
1456                         /*
1457                          * If the res count is decreased to 0,
1458                          * remove and free it
1459                          */
1460
1461                         if (--res_list_elem->count == 0) {
1462                                 list_del(&res_list_elem->resource_list);
1463                                 kfree(res_list_elem);
1464                         }
1465                         return;
1466                 }
1467         }
1468 }
1469
1470 acpi_status
1471 acpi_os_invalidate_address(
1472     u8                   space_id,
1473     acpi_physical_address   address,
1474     acpi_size               length)
1475 {
1476         struct acpi_res_list res;
1477
1478         switch (space_id) {
1479         case ACPI_ADR_SPACE_SYSTEM_IO:
1480         case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1481                 /* Only interference checks against SystemIO and SystemMemory
1482                    are needed */
1483                 res.start = address;
1484                 res.end = address + length - 1;
1485                 res.resource_type = space_id;
1486                 spin_lock(&acpi_res_lock);
1487                 acpi_res_list_del(&res);
1488                 spin_unlock(&acpi_res_lock);
1489                 break;
1490         case ACPI_ADR_SPACE_PCI_CONFIG:
1491         case ACPI_ADR_SPACE_EC:
1492         case ACPI_ADR_SPACE_SMBUS:
1493         case ACPI_ADR_SPACE_CMOS:
1494         case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1495         case ACPI_ADR_SPACE_DATA_TABLE:
1496         case ACPI_ADR_SPACE_FIXED_HARDWARE:
1497                 break;
1498         }
1499         return AE_OK;
1500 }
1501
1502 /******************************************************************************
1503  *
1504  * FUNCTION:    acpi_os_validate_address
1505  *
1506  * PARAMETERS:  space_id             - ACPI space ID
1507  *              address             - Physical address
1508  *              length              - Address length
1509  *
1510  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1511  *              should return AE_AML_ILLEGAL_ADDRESS.
1512  *
1513  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1514  *              the addresses accessed by AML operation regions.
1515  *
1516  *****************************************************************************/
1517
1518 acpi_status
1519 acpi_os_validate_address (
1520     u8                   space_id,
1521     acpi_physical_address   address,
1522     acpi_size               length,
1523     char *name)
1524 {
1525         struct acpi_res_list *res;
1526         int added;
1527         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1528                 return AE_OK;
1529
1530         switch (space_id) {
1531         case ACPI_ADR_SPACE_SYSTEM_IO:
1532         case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1533                 /* Only interference checks against SystemIO and SystemMemory
1534                    are needed */
1535                 res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1536                 if (!res)
1537                         return AE_OK;
1538                 /* ACPI names are fixed to 4 bytes, still better use strlcpy */
1539                 strlcpy(res->name, name, 5);
1540                 res->start = address;
1541                 res->end = address + length - 1;
1542                 res->resource_type = space_id;
1543                 spin_lock(&acpi_res_lock);
1544                 added = acpi_res_list_add(res);
1545                 spin_unlock(&acpi_res_lock);
1546                 pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1547                          "name: %s\n", added ? "Added" : "Already exist",
1548                          (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1549                          ? "SystemIO" : "System Memory",
1550                          (unsigned long long)res->start,
1551                          (unsigned long long)res->end,
1552                          res->name);
1553                 if (!added)
1554                         kfree(res);
1555                 break;
1556         case ACPI_ADR_SPACE_PCI_CONFIG:
1557         case ACPI_ADR_SPACE_EC:
1558         case ACPI_ADR_SPACE_SMBUS:
1559         case ACPI_ADR_SPACE_CMOS:
1560         case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1561         case ACPI_ADR_SPACE_DATA_TABLE:
1562         case ACPI_ADR_SPACE_FIXED_HARDWARE:
1563                 break;
1564         }
1565         return AE_OK;
1566 }
1567 #endif
1568
1569 acpi_status __init acpi_os_initialize(void)
1570 {
1571         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1572         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1573         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1574         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1575
1576         return AE_OK;
1577 }
1578
1579 acpi_status __init acpi_os_initialize1(void)
1580 {
1581         kacpid_wq = create_workqueue("kacpid");
1582         kacpi_notify_wq = create_workqueue("kacpi_notify");
1583         kacpi_hotplug_wq = create_workqueue("kacpi_hotplug");
1584         BUG_ON(!kacpid_wq);
1585         BUG_ON(!kacpi_notify_wq);
1586         BUG_ON(!kacpi_hotplug_wq);
1587         acpi_install_interface_handler(acpi_osi_handler);
1588         acpi_osi_setup_late();
1589         return AE_OK;
1590 }
1591
1592 acpi_status acpi_os_terminate(void)
1593 {
1594         if (acpi_irq_handler) {
1595                 acpi_os_remove_interrupt_handler(acpi_irq_irq,
1596                                                  acpi_irq_handler);
1597         }
1598
1599         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1600         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1601         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1602         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1603
1604         destroy_workqueue(kacpid_wq);
1605         destroy_workqueue(kacpi_notify_wq);
1606         destroy_workqueue(kacpi_hotplug_wq);
1607
1608         return AE_OK;
1609 }