Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51
52 #define _COMPONENT              ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54
55 struct acpi_os_dpc {
56         acpi_osd_exec_callback function;
57         void *context;
58         struct work_struct work;
59 };
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif                          /*ENABLE_DEBUGGER */
68
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70                                       u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72                                       u32 val_b);
73
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82
83 /*
84  * This list of permanent mappings is for memory that may be accessed from
85  * interrupt context, where we can't do the ioremap().
86  */
87 struct acpi_ioremap {
88         struct list_head list;
89         void __iomem *virt;
90         acpi_physical_address phys;
91         acpi_size size;
92         unsigned long refcount;
93 };
94
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97
98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99         unsigned int length, char *desc)
100 {
101         u64 addr;
102
103         /* Handle possible alignment issues */
104         memcpy(&addr, &gas->address, sizeof(addr));
105         if (!addr || !length)
106                 return;
107
108         /* Resources are never freed */
109         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110                 request_region(addr, length, desc);
111         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112                 request_mem_region(addr, length, desc);
113 }
114
115 static int __init acpi_reserve_resources(void)
116 {
117         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118                 "ACPI PM1a_EVT_BLK");
119
120         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121                 "ACPI PM1b_EVT_BLK");
122
123         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124                 "ACPI PM1a_CNT_BLK");
125
126         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127                 "ACPI PM1b_CNT_BLK");
128
129         if (acpi_gbl_FADT.pm_timer_length == 4)
130                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131
132         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133                 "ACPI PM2_CNT_BLK");
134
135         /* Length of GPE blocks must be a non-negative multiple of 2 */
136
137         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140
141         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144
145         return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148
149 void acpi_os_printf(const char *fmt, ...)
150 {
151         va_list args;
152         va_start(args, fmt);
153         acpi_os_vprintf(fmt, args);
154         va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157
158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160         static char buffer[512];
161
162         vsprintf(buffer, fmt, args);
163
164 #ifdef ENABLE_DEBUGGER
165         if (acpi_in_debugger) {
166                 kdb_printf("%s", buffer);
167         } else {
168                 if (printk_get_level(buffer))
169                         printk("%s", buffer);
170                 else
171                         printk(KERN_CONT "%s", buffer);
172         }
173 #else
174         if (acpi_debugger_write_log(buffer) < 0) {
175                 if (printk_get_level(buffer))
176                         printk("%s", buffer);
177                 else
178                         printk(KERN_CONT "%s", buffer);
179         }
180 #endif
181 }
182
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
185 static int __init setup_acpi_rsdp(char *arg)
186 {
187         return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191
192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194         acpi_physical_address pa;
195
196 #ifdef CONFIG_KEXEC
197         if (acpi_rsdp)
198                 return acpi_rsdp;
199 #endif
200         pa = acpi_arch_get_root_pointer();
201         if (pa)
202                 return pa;
203
204         if (efi_enabled(EFI_CONFIG_TABLES)) {
205                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206                         return efi.acpi20;
207                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208                         return efi.acpi;
209                 pr_err(PREFIX "System description tables not found\n");
210         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211                 acpi_find_root_pointer(&pa);
212         }
213
214         return pa;
215 }
216
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221         struct acpi_ioremap *map;
222
223         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
224                 if (map->phys <= phys &&
225                     phys + size <= map->phys + map->size)
226                         return map;
227
228         return NULL;
229 }
230
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235         struct acpi_ioremap *map;
236
237         map = acpi_map_lookup(phys, size);
238         if (map)
239                 return map->virt + (phys - map->phys);
240
241         return NULL;
242 }
243
244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246         struct acpi_ioremap *map;
247         void __iomem *virt = NULL;
248
249         mutex_lock(&acpi_ioremap_lock);
250         map = acpi_map_lookup(phys, size);
251         if (map) {
252                 virt = map->virt + (phys - map->phys);
253                 map->refcount++;
254         }
255         mutex_unlock(&acpi_ioremap_lock);
256         return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264         struct acpi_ioremap *map;
265
266         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267                 if (map->virt <= virt &&
268                     virt + size <= map->virt + map->size)
269                         return map;
270
271         return NULL;
272 }
273
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn)   0
277 #else
278 #define should_use_kmap(pfn)   page_is_ram(pfn)
279 #endif
280
281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283         unsigned long pfn;
284
285         pfn = pg_off >> PAGE_SHIFT;
286         if (should_use_kmap(pfn)) {
287                 if (pg_sz > PAGE_SIZE)
288                         return NULL;
289                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290         } else
291                 return acpi_os_ioremap(pg_off, pg_sz);
292 }
293
294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296         unsigned long pfn;
297
298         pfn = pg_off >> PAGE_SHIFT;
299         if (should_use_kmap(pfn))
300                 kunmap(pfn_to_page(pfn));
301         else
302                 iounmap(vaddr);
303 }
304
305 /**
306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307  * @phys: Start of the physical address range to map.
308  * @size: Size of the physical address range to map.
309  *
310  * Look up the given physical address range in the list of existing ACPI memory
311  * mappings.  If found, get a reference to it and return a pointer to it (its
312  * virtual address).  If not found, map it, add it to that list and return a
313  * pointer to it.
314  *
315  * During early init (when acpi_permanent_mmap has not been set yet) this
316  * routine simply calls __acpi_map_table() to get the job done.
317  */
318 void __iomem *__ref
319 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321         struct acpi_ioremap *map;
322         void __iomem *virt;
323         acpi_physical_address pg_off;
324         acpi_size pg_sz;
325
326         if (phys > ULONG_MAX) {
327                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328                 return NULL;
329         }
330
331         if (!acpi_permanent_mmap)
332                 return __acpi_map_table((unsigned long)phys, size);
333
334         mutex_lock(&acpi_ioremap_lock);
335         /* Check if there's a suitable mapping already. */
336         map = acpi_map_lookup(phys, size);
337         if (map) {
338                 map->refcount++;
339                 goto out;
340         }
341
342         map = kzalloc(sizeof(*map), GFP_KERNEL);
343         if (!map) {
344                 mutex_unlock(&acpi_ioremap_lock);
345                 return NULL;
346         }
347
348         pg_off = round_down(phys, PAGE_SIZE);
349         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350         virt = acpi_map(pg_off, pg_sz);
351         if (!virt) {
352                 mutex_unlock(&acpi_ioremap_lock);
353                 kfree(map);
354                 return NULL;
355         }
356
357         INIT_LIST_HEAD(&map->list);
358         map->virt = virt;
359         map->phys = pg_off;
360         map->size = pg_sz;
361         map->refcount = 1;
362
363         list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365 out:
366         mutex_unlock(&acpi_ioremap_lock);
367         return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373         return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
377 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378 {
379         if (!--map->refcount)
380                 list_del_rcu(&map->list);
381 }
382
383 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384 {
385         if (!map->refcount) {
386                 synchronize_rcu_expedited();
387                 acpi_unmap(map->phys, map->virt);
388                 kfree(map);
389         }
390 }
391
392 /**
393  * acpi_os_unmap_iomem - Drop a memory mapping reference.
394  * @virt: Start of the address range to drop a reference to.
395  * @size: Size of the address range to drop a reference to.
396  *
397  * Look up the given virtual address range in the list of existing ACPI memory
398  * mappings, drop a reference to it and unmap it if there are no more active
399  * references to it.
400  *
401  * During early init (when acpi_permanent_mmap has not been set yet) this
402  * routine simply calls __acpi_unmap_table() to get the job done.  Since
403  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404  * here.
405  */
406 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407 {
408         struct acpi_ioremap *map;
409
410         if (!acpi_permanent_mmap) {
411                 __acpi_unmap_table(virt, size);
412                 return;
413         }
414
415         mutex_lock(&acpi_ioremap_lock);
416         map = acpi_map_lookup_virt(virt, size);
417         if (!map) {
418                 mutex_unlock(&acpi_ioremap_lock);
419                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420                 return;
421         }
422         acpi_os_drop_map_ref(map);
423         mutex_unlock(&acpi_ioremap_lock);
424
425         acpi_os_map_cleanup(map);
426 }
427 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428
429 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430 {
431         return acpi_os_unmap_iomem((void __iomem *)virt, size);
432 }
433 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434
435 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436 {
437         u64 addr;
438         void __iomem *virt;
439
440         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441                 return 0;
442
443         /* Handle possible alignment issues */
444         memcpy(&addr, &gas->address, sizeof(addr));
445         if (!addr || !gas->bit_width)
446                 return -EINVAL;
447
448         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449         if (!virt)
450                 return -EIO;
451
452         return 0;
453 }
454 EXPORT_SYMBOL(acpi_os_map_generic_address);
455
456 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457 {
458         u64 addr;
459         struct acpi_ioremap *map;
460
461         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462                 return;
463
464         /* Handle possible alignment issues */
465         memcpy(&addr, &gas->address, sizeof(addr));
466         if (!addr || !gas->bit_width)
467                 return;
468
469         mutex_lock(&acpi_ioremap_lock);
470         map = acpi_map_lookup(addr, gas->bit_width / 8);
471         if (!map) {
472                 mutex_unlock(&acpi_ioremap_lock);
473                 return;
474         }
475         acpi_os_drop_map_ref(map);
476         mutex_unlock(&acpi_ioremap_lock);
477
478         acpi_os_map_cleanup(map);
479 }
480 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481
482 #ifdef ACPI_FUTURE_USAGE
483 acpi_status
484 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485 {
486         if (!phys || !virt)
487                 return AE_BAD_PARAMETER;
488
489         *phys = virt_to_phys(virt);
490
491         return AE_OK;
492 }
493 #endif
494
495 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496 static bool acpi_rev_override;
497
498 int __init acpi_rev_override_setup(char *str)
499 {
500         acpi_rev_override = true;
501         return 1;
502 }
503 __setup("acpi_rev_override", acpi_rev_override_setup);
504 #else
505 #define acpi_rev_override       false
506 #endif
507
508 #define ACPI_MAX_OVERRIDE_LEN 100
509
510 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511
512 acpi_status
513 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514                             acpi_string *new_val)
515 {
516         if (!init_val || !new_val)
517                 return AE_BAD_PARAMETER;
518
519         *new_val = NULL;
520         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522                        acpi_os_name);
523                 *new_val = acpi_os_name;
524         }
525
526         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528                 *new_val = (char *)5;
529         }
530
531         return AE_OK;
532 }
533
534 static irqreturn_t acpi_irq(int irq, void *dev_id)
535 {
536         u32 handled;
537
538         handled = (*acpi_irq_handler) (acpi_irq_context);
539
540         if (handled) {
541                 acpi_irq_handled++;
542                 return IRQ_HANDLED;
543         } else {
544                 acpi_irq_not_handled++;
545                 return IRQ_NONE;
546         }
547 }
548
549 acpi_status
550 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551                                   void *context)
552 {
553         unsigned int irq;
554
555         acpi_irq_stats_init();
556
557         /*
558          * ACPI interrupts different from the SCI in our copy of the FADT are
559          * not supported.
560          */
561         if (gsi != acpi_gbl_FADT.sci_interrupt)
562                 return AE_BAD_PARAMETER;
563
564         if (acpi_irq_handler)
565                 return AE_ALREADY_ACQUIRED;
566
567         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569                        gsi);
570                 return AE_OK;
571         }
572
573         acpi_irq_handler = handler;
574         acpi_irq_context = context;
575         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577                 acpi_irq_handler = NULL;
578                 return AE_NOT_ACQUIRED;
579         }
580         acpi_sci_irq = irq;
581
582         return AE_OK;
583 }
584
585 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586 {
587         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588                 return AE_BAD_PARAMETER;
589
590         free_irq(acpi_sci_irq, acpi_irq);
591         acpi_irq_handler = NULL;
592         acpi_sci_irq = INVALID_ACPI_IRQ;
593
594         return AE_OK;
595 }
596
597 /*
598  * Running in interpreter thread context, safe to sleep
599  */
600
601 void acpi_os_sleep(u64 ms)
602 {
603         msleep(ms);
604 }
605
606 void acpi_os_stall(u32 us)
607 {
608         while (us) {
609                 u32 delay = 1000;
610
611                 if (delay > us)
612                         delay = us;
613                 udelay(delay);
614                 touch_nmi_watchdog();
615                 us -= delay;
616         }
617 }
618
619 /*
620  * Support ACPI 3.0 AML Timer operand
621  * Returns 64-bit free-running, monotonically increasing timer
622  * with 100ns granularity
623  */
624 u64 acpi_os_get_timer(void)
625 {
626         u64 time_ns = ktime_to_ns(ktime_get());
627         do_div(time_ns, 100);
628         return time_ns;
629 }
630
631 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
632 {
633         u32 dummy;
634
635         if (!value)
636                 value = &dummy;
637
638         *value = 0;
639         if (width <= 8) {
640                 *(u8 *) value = inb(port);
641         } else if (width <= 16) {
642                 *(u16 *) value = inw(port);
643         } else if (width <= 32) {
644                 *(u32 *) value = inl(port);
645         } else {
646                 BUG();
647         }
648
649         return AE_OK;
650 }
651
652 EXPORT_SYMBOL(acpi_os_read_port);
653
654 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
655 {
656         if (width <= 8) {
657                 outb(value, port);
658         } else if (width <= 16) {
659                 outw(value, port);
660         } else if (width <= 32) {
661                 outl(value, port);
662         } else {
663                 BUG();
664         }
665
666         return AE_OK;
667 }
668
669 EXPORT_SYMBOL(acpi_os_write_port);
670
671 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
672 {
673
674         switch (width) {
675         case 8:
676                 *(u8 *) value = readb(virt_addr);
677                 break;
678         case 16:
679                 *(u16 *) value = readw(virt_addr);
680                 break;
681         case 32:
682                 *(u32 *) value = readl(virt_addr);
683                 break;
684         case 64:
685                 *(u64 *) value = readq(virt_addr);
686                 break;
687         default:
688                 return -EINVAL;
689         }
690
691         return 0;
692 }
693
694 acpi_status
695 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
696 {
697         void __iomem *virt_addr;
698         unsigned int size = width / 8;
699         bool unmap = false;
700         u64 dummy;
701         int error;
702
703         rcu_read_lock();
704         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
705         if (!virt_addr) {
706                 rcu_read_unlock();
707                 virt_addr = acpi_os_ioremap(phys_addr, size);
708                 if (!virt_addr)
709                         return AE_BAD_ADDRESS;
710                 unmap = true;
711         }
712
713         if (!value)
714                 value = &dummy;
715
716         error = acpi_os_read_iomem(virt_addr, value, width);
717         BUG_ON(error);
718
719         if (unmap)
720                 iounmap(virt_addr);
721         else
722                 rcu_read_unlock();
723
724         return AE_OK;
725 }
726
727 acpi_status
728 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
729 {
730         void __iomem *virt_addr;
731         unsigned int size = width / 8;
732         bool unmap = false;
733
734         rcu_read_lock();
735         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
736         if (!virt_addr) {
737                 rcu_read_unlock();
738                 virt_addr = acpi_os_ioremap(phys_addr, size);
739                 if (!virt_addr)
740                         return AE_BAD_ADDRESS;
741                 unmap = true;
742         }
743
744         switch (width) {
745         case 8:
746                 writeb(value, virt_addr);
747                 break;
748         case 16:
749                 writew(value, virt_addr);
750                 break;
751         case 32:
752                 writel(value, virt_addr);
753                 break;
754         case 64:
755                 writeq(value, virt_addr);
756                 break;
757         default:
758                 BUG();
759         }
760
761         if (unmap)
762                 iounmap(virt_addr);
763         else
764                 rcu_read_unlock();
765
766         return AE_OK;
767 }
768
769 acpi_status
770 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
771                                u64 *value, u32 width)
772 {
773         int result, size;
774         u32 value32;
775
776         if (!value)
777                 return AE_BAD_PARAMETER;
778
779         switch (width) {
780         case 8:
781                 size = 1;
782                 break;
783         case 16:
784                 size = 2;
785                 break;
786         case 32:
787                 size = 4;
788                 break;
789         default:
790                 return AE_ERROR;
791         }
792
793         result = raw_pci_read(pci_id->segment, pci_id->bus,
794                                 PCI_DEVFN(pci_id->device, pci_id->function),
795                                 reg, size, &value32);
796         *value = value32;
797
798         return (result ? AE_ERROR : AE_OK);
799 }
800
801 acpi_status
802 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
803                                 u64 value, u32 width)
804 {
805         int result, size;
806
807         switch (width) {
808         case 8:
809                 size = 1;
810                 break;
811         case 16:
812                 size = 2;
813                 break;
814         case 32:
815                 size = 4;
816                 break;
817         default:
818                 return AE_ERROR;
819         }
820
821         result = raw_pci_write(pci_id->segment, pci_id->bus,
822                                 PCI_DEVFN(pci_id->device, pci_id->function),
823                                 reg, size, value);
824
825         return (result ? AE_ERROR : AE_OK);
826 }
827
828 static void acpi_os_execute_deferred(struct work_struct *work)
829 {
830         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
831
832         dpc->function(dpc->context);
833         kfree(dpc);
834 }
835
836 #ifdef CONFIG_ACPI_DEBUGGER
837 static struct acpi_debugger acpi_debugger;
838 static bool acpi_debugger_initialized;
839
840 int acpi_register_debugger(struct module *owner,
841                            const struct acpi_debugger_ops *ops)
842 {
843         int ret = 0;
844
845         mutex_lock(&acpi_debugger.lock);
846         if (acpi_debugger.ops) {
847                 ret = -EBUSY;
848                 goto err_lock;
849         }
850
851         acpi_debugger.owner = owner;
852         acpi_debugger.ops = ops;
853
854 err_lock:
855         mutex_unlock(&acpi_debugger.lock);
856         return ret;
857 }
858 EXPORT_SYMBOL(acpi_register_debugger);
859
860 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
861 {
862         mutex_lock(&acpi_debugger.lock);
863         if (ops == acpi_debugger.ops) {
864                 acpi_debugger.ops = NULL;
865                 acpi_debugger.owner = NULL;
866         }
867         mutex_unlock(&acpi_debugger.lock);
868 }
869 EXPORT_SYMBOL(acpi_unregister_debugger);
870
871 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
872 {
873         int ret;
874         int (*func)(acpi_osd_exec_callback, void *);
875         struct module *owner;
876
877         if (!acpi_debugger_initialized)
878                 return -ENODEV;
879         mutex_lock(&acpi_debugger.lock);
880         if (!acpi_debugger.ops) {
881                 ret = -ENODEV;
882                 goto err_lock;
883         }
884         if (!try_module_get(acpi_debugger.owner)) {
885                 ret = -ENODEV;
886                 goto err_lock;
887         }
888         func = acpi_debugger.ops->create_thread;
889         owner = acpi_debugger.owner;
890         mutex_unlock(&acpi_debugger.lock);
891
892         ret = func(function, context);
893
894         mutex_lock(&acpi_debugger.lock);
895         module_put(owner);
896 err_lock:
897         mutex_unlock(&acpi_debugger.lock);
898         return ret;
899 }
900
901 ssize_t acpi_debugger_write_log(const char *msg)
902 {
903         ssize_t ret;
904         ssize_t (*func)(const char *);
905         struct module *owner;
906
907         if (!acpi_debugger_initialized)
908                 return -ENODEV;
909         mutex_lock(&acpi_debugger.lock);
910         if (!acpi_debugger.ops) {
911                 ret = -ENODEV;
912                 goto err_lock;
913         }
914         if (!try_module_get(acpi_debugger.owner)) {
915                 ret = -ENODEV;
916                 goto err_lock;
917         }
918         func = acpi_debugger.ops->write_log;
919         owner = acpi_debugger.owner;
920         mutex_unlock(&acpi_debugger.lock);
921
922         ret = func(msg);
923
924         mutex_lock(&acpi_debugger.lock);
925         module_put(owner);
926 err_lock:
927         mutex_unlock(&acpi_debugger.lock);
928         return ret;
929 }
930
931 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
932 {
933         ssize_t ret;
934         ssize_t (*func)(char *, size_t);
935         struct module *owner;
936
937         if (!acpi_debugger_initialized)
938                 return -ENODEV;
939         mutex_lock(&acpi_debugger.lock);
940         if (!acpi_debugger.ops) {
941                 ret = -ENODEV;
942                 goto err_lock;
943         }
944         if (!try_module_get(acpi_debugger.owner)) {
945                 ret = -ENODEV;
946                 goto err_lock;
947         }
948         func = acpi_debugger.ops->read_cmd;
949         owner = acpi_debugger.owner;
950         mutex_unlock(&acpi_debugger.lock);
951
952         ret = func(buffer, buffer_length);
953
954         mutex_lock(&acpi_debugger.lock);
955         module_put(owner);
956 err_lock:
957         mutex_unlock(&acpi_debugger.lock);
958         return ret;
959 }
960
961 int acpi_debugger_wait_command_ready(void)
962 {
963         int ret;
964         int (*func)(bool, char *, size_t);
965         struct module *owner;
966
967         if (!acpi_debugger_initialized)
968                 return -ENODEV;
969         mutex_lock(&acpi_debugger.lock);
970         if (!acpi_debugger.ops) {
971                 ret = -ENODEV;
972                 goto err_lock;
973         }
974         if (!try_module_get(acpi_debugger.owner)) {
975                 ret = -ENODEV;
976                 goto err_lock;
977         }
978         func = acpi_debugger.ops->wait_command_ready;
979         owner = acpi_debugger.owner;
980         mutex_unlock(&acpi_debugger.lock);
981
982         ret = func(acpi_gbl_method_executing,
983                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
984
985         mutex_lock(&acpi_debugger.lock);
986         module_put(owner);
987 err_lock:
988         mutex_unlock(&acpi_debugger.lock);
989         return ret;
990 }
991
992 int acpi_debugger_notify_command_complete(void)
993 {
994         int ret;
995         int (*func)(void);
996         struct module *owner;
997
998         if (!acpi_debugger_initialized)
999                 return -ENODEV;
1000         mutex_lock(&acpi_debugger.lock);
1001         if (!acpi_debugger.ops) {
1002                 ret = -ENODEV;
1003                 goto err_lock;
1004         }
1005         if (!try_module_get(acpi_debugger.owner)) {
1006                 ret = -ENODEV;
1007                 goto err_lock;
1008         }
1009         func = acpi_debugger.ops->notify_command_complete;
1010         owner = acpi_debugger.owner;
1011         mutex_unlock(&acpi_debugger.lock);
1012
1013         ret = func();
1014
1015         mutex_lock(&acpi_debugger.lock);
1016         module_put(owner);
1017 err_lock:
1018         mutex_unlock(&acpi_debugger.lock);
1019         return ret;
1020 }
1021
1022 int __init acpi_debugger_init(void)
1023 {
1024         mutex_init(&acpi_debugger.lock);
1025         acpi_debugger_initialized = true;
1026         return 0;
1027 }
1028 #endif
1029
1030 /*******************************************************************************
1031  *
1032  * FUNCTION:    acpi_os_execute
1033  *
1034  * PARAMETERS:  Type               - Type of the callback
1035  *              Function           - Function to be executed
1036  *              Context            - Function parameters
1037  *
1038  * RETURN:      Status
1039  *
1040  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1041  *              immediately executes function on a separate thread.
1042  *
1043  ******************************************************************************/
1044
1045 acpi_status acpi_os_execute(acpi_execute_type type,
1046                             acpi_osd_exec_callback function, void *context)
1047 {
1048         acpi_status status = AE_OK;
1049         struct acpi_os_dpc *dpc;
1050         struct workqueue_struct *queue;
1051         int ret;
1052         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1053                           "Scheduling function [%p(%p)] for deferred execution.\n",
1054                           function, context));
1055
1056         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1057                 ret = acpi_debugger_create_thread(function, context);
1058                 if (ret) {
1059                         pr_err("Call to kthread_create() failed.\n");
1060                         status = AE_ERROR;
1061                 }
1062                 goto out_thread;
1063         }
1064
1065         /*
1066          * Allocate/initialize DPC structure.  Note that this memory will be
1067          * freed by the callee.  The kernel handles the work_struct list  in a
1068          * way that allows us to also free its memory inside the callee.
1069          * Because we may want to schedule several tasks with different
1070          * parameters we can't use the approach some kernel code uses of
1071          * having a static work_struct.
1072          */
1073
1074         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1075         if (!dpc)
1076                 return AE_NO_MEMORY;
1077
1078         dpc->function = function;
1079         dpc->context = context;
1080
1081         /*
1082          * To prevent lockdep from complaining unnecessarily, make sure that
1083          * there is a different static lockdep key for each workqueue by using
1084          * INIT_WORK() for each of them separately.
1085          */
1086         if (type == OSL_NOTIFY_HANDLER) {
1087                 queue = kacpi_notify_wq;
1088                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1089         } else if (type == OSL_GPE_HANDLER) {
1090                 queue = kacpid_wq;
1091                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1092         } else {
1093                 pr_err("Unsupported os_execute type %d.\n", type);
1094                 status = AE_ERROR;
1095         }
1096
1097         if (ACPI_FAILURE(status))
1098                 goto err_workqueue;
1099
1100         /*
1101          * On some machines, a software-initiated SMI causes corruption unless
1102          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1103          * typically it's done in GPE-related methods that are run via
1104          * workqueues, so we can avoid the known corruption cases by always
1105          * queueing on CPU 0.
1106          */
1107         ret = queue_work_on(0, queue, &dpc->work);
1108         if (!ret) {
1109                 printk(KERN_ERR PREFIX
1110                           "Call to queue_work() failed.\n");
1111                 status = AE_ERROR;
1112         }
1113 err_workqueue:
1114         if (ACPI_FAILURE(status))
1115                 kfree(dpc);
1116 out_thread:
1117         return status;
1118 }
1119 EXPORT_SYMBOL(acpi_os_execute);
1120
1121 void acpi_os_wait_events_complete(void)
1122 {
1123         /*
1124          * Make sure the GPE handler or the fixed event handler is not used
1125          * on another CPU after removal.
1126          */
1127         if (acpi_sci_irq_valid())
1128                 synchronize_hardirq(acpi_sci_irq);
1129         flush_workqueue(kacpid_wq);
1130         flush_workqueue(kacpi_notify_wq);
1131 }
1132
1133 struct acpi_hp_work {
1134         struct work_struct work;
1135         struct acpi_device *adev;
1136         u32 src;
1137 };
1138
1139 static void acpi_hotplug_work_fn(struct work_struct *work)
1140 {
1141         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1142
1143         acpi_os_wait_events_complete();
1144         acpi_device_hotplug(hpw->adev, hpw->src);
1145         kfree(hpw);
1146 }
1147
1148 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1149 {
1150         struct acpi_hp_work *hpw;
1151
1152         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1153                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1154                   adev, src));
1155
1156         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1157         if (!hpw)
1158                 return AE_NO_MEMORY;
1159
1160         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1161         hpw->adev = adev;
1162         hpw->src = src;
1163         /*
1164          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1165          * the hotplug code may call driver .remove() functions, which may
1166          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1167          * these workqueues.
1168          */
1169         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1170                 kfree(hpw);
1171                 return AE_ERROR;
1172         }
1173         return AE_OK;
1174 }
1175
1176 bool acpi_queue_hotplug_work(struct work_struct *work)
1177 {
1178         return queue_work(kacpi_hotplug_wq, work);
1179 }
1180
1181 acpi_status
1182 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1183 {
1184         struct semaphore *sem = NULL;
1185
1186         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1187         if (!sem)
1188                 return AE_NO_MEMORY;
1189
1190         sema_init(sem, initial_units);
1191
1192         *handle = (acpi_handle *) sem;
1193
1194         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1195                           *handle, initial_units));
1196
1197         return AE_OK;
1198 }
1199
1200 /*
1201  * TODO: A better way to delete semaphores?  Linux doesn't have a
1202  * 'delete_semaphore()' function -- may result in an invalid
1203  * pointer dereference for non-synchronized consumers.  Should
1204  * we at least check for blocked threads and signal/cancel them?
1205  */
1206
1207 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1208 {
1209         struct semaphore *sem = (struct semaphore *)handle;
1210
1211         if (!sem)
1212                 return AE_BAD_PARAMETER;
1213
1214         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1215
1216         BUG_ON(!list_empty(&sem->wait_list));
1217         kfree(sem);
1218         sem = NULL;
1219
1220         return AE_OK;
1221 }
1222
1223 /*
1224  * TODO: Support for units > 1?
1225  */
1226 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1227 {
1228         acpi_status status = AE_OK;
1229         struct semaphore *sem = (struct semaphore *)handle;
1230         long jiffies;
1231         int ret = 0;
1232
1233         if (!acpi_os_initialized)
1234                 return AE_OK;
1235
1236         if (!sem || (units < 1))
1237                 return AE_BAD_PARAMETER;
1238
1239         if (units > 1)
1240                 return AE_SUPPORT;
1241
1242         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1243                           handle, units, timeout));
1244
1245         if (timeout == ACPI_WAIT_FOREVER)
1246                 jiffies = MAX_SCHEDULE_TIMEOUT;
1247         else
1248                 jiffies = msecs_to_jiffies(timeout);
1249
1250         ret = down_timeout(sem, jiffies);
1251         if (ret)
1252                 status = AE_TIME;
1253
1254         if (ACPI_FAILURE(status)) {
1255                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1256                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1257                                   handle, units, timeout,
1258                                   acpi_format_exception(status)));
1259         } else {
1260                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1261                                   "Acquired semaphore[%p|%d|%d]", handle,
1262                                   units, timeout));
1263         }
1264
1265         return status;
1266 }
1267
1268 /*
1269  * TODO: Support for units > 1?
1270  */
1271 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1272 {
1273         struct semaphore *sem = (struct semaphore *)handle;
1274
1275         if (!acpi_os_initialized)
1276                 return AE_OK;
1277
1278         if (!sem || (units < 1))
1279                 return AE_BAD_PARAMETER;
1280
1281         if (units > 1)
1282                 return AE_SUPPORT;
1283
1284         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1285                           units));
1286
1287         up(sem);
1288
1289         return AE_OK;
1290 }
1291
1292 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1293 {
1294 #ifdef ENABLE_DEBUGGER
1295         if (acpi_in_debugger) {
1296                 u32 chars;
1297
1298                 kdb_read(buffer, buffer_length);
1299
1300                 /* remove the CR kdb includes */
1301                 chars = strlen(buffer) - 1;
1302                 buffer[chars] = '\0';
1303         }
1304 #else
1305         int ret;
1306
1307         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1308         if (ret < 0)
1309                 return AE_ERROR;
1310         if (bytes_read)
1311                 *bytes_read = ret;
1312 #endif
1313
1314         return AE_OK;
1315 }
1316 EXPORT_SYMBOL(acpi_os_get_line);
1317
1318 acpi_status acpi_os_wait_command_ready(void)
1319 {
1320         int ret;
1321
1322         ret = acpi_debugger_wait_command_ready();
1323         if (ret < 0)
1324                 return AE_ERROR;
1325         return AE_OK;
1326 }
1327
1328 acpi_status acpi_os_notify_command_complete(void)
1329 {
1330         int ret;
1331
1332         ret = acpi_debugger_notify_command_complete();
1333         if (ret < 0)
1334                 return AE_ERROR;
1335         return AE_OK;
1336 }
1337
1338 acpi_status acpi_os_signal(u32 function, void *info)
1339 {
1340         switch (function) {
1341         case ACPI_SIGNAL_FATAL:
1342                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1343                 break;
1344         case ACPI_SIGNAL_BREAKPOINT:
1345                 /*
1346                  * AML Breakpoint
1347                  * ACPI spec. says to treat it as a NOP unless
1348                  * you are debugging.  So if/when we integrate
1349                  * AML debugger into the kernel debugger its
1350                  * hook will go here.  But until then it is
1351                  * not useful to print anything on breakpoints.
1352                  */
1353                 break;
1354         default:
1355                 break;
1356         }
1357
1358         return AE_OK;
1359 }
1360
1361 static int __init acpi_os_name_setup(char *str)
1362 {
1363         char *p = acpi_os_name;
1364         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1365
1366         if (!str || !*str)
1367                 return 0;
1368
1369         for (; count-- && *str; str++) {
1370                 if (isalnum(*str) || *str == ' ' || *str == ':')
1371                         *p++ = *str;
1372                 else if (*str == '\'' || *str == '"')
1373                         continue;
1374                 else
1375                         break;
1376         }
1377         *p = 0;
1378
1379         return 1;
1380
1381 }
1382
1383 __setup("acpi_os_name=", acpi_os_name_setup);
1384
1385 /*
1386  * Disable the auto-serialization of named objects creation methods.
1387  *
1388  * This feature is enabled by default.  It marks the AML control methods
1389  * that contain the opcodes to create named objects as "Serialized".
1390  */
1391 static int __init acpi_no_auto_serialize_setup(char *str)
1392 {
1393         acpi_gbl_auto_serialize_methods = FALSE;
1394         pr_info("ACPI: auto-serialization disabled\n");
1395
1396         return 1;
1397 }
1398
1399 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1400
1401 /* Check of resource interference between native drivers and ACPI
1402  * OperationRegions (SystemIO and System Memory only).
1403  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1404  * in arbitrary AML code and can interfere with legacy drivers.
1405  * acpi_enforce_resources= can be set to:
1406  *
1407  *   - strict (default) (2)
1408  *     -> further driver trying to access the resources will not load
1409  *   - lax              (1)
1410  *     -> further driver trying to access the resources will load, but you
1411  *     get a system message that something might go wrong...
1412  *
1413  *   - no               (0)
1414  *     -> ACPI Operation Region resources will not be registered
1415  *
1416  */
1417 #define ENFORCE_RESOURCES_STRICT 2
1418 #define ENFORCE_RESOURCES_LAX    1
1419 #define ENFORCE_RESOURCES_NO     0
1420
1421 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1422
1423 static int __init acpi_enforce_resources_setup(char *str)
1424 {
1425         if (str == NULL || *str == '\0')
1426                 return 0;
1427
1428         if (!strcmp("strict", str))
1429                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1430         else if (!strcmp("lax", str))
1431                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1432         else if (!strcmp("no", str))
1433                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1434
1435         return 1;
1436 }
1437
1438 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1439
1440 /* Check for resource conflicts between ACPI OperationRegions and native
1441  * drivers */
1442 int acpi_check_resource_conflict(const struct resource *res)
1443 {
1444         acpi_adr_space_type space_id;
1445         acpi_size length;
1446         u8 warn = 0;
1447         int clash = 0;
1448
1449         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1450                 return 0;
1451         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1452                 return 0;
1453
1454         if (res->flags & IORESOURCE_IO)
1455                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1456         else
1457                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1458
1459         length = resource_size(res);
1460         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1461                 warn = 1;
1462         clash = acpi_check_address_range(space_id, res->start, length, warn);
1463
1464         if (clash) {
1465                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1466                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1467                                 printk(KERN_NOTICE "ACPI: This conflict may"
1468                                        " cause random problems and system"
1469                                        " instability\n");
1470                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1471                                " for this device, you should use it instead of"
1472                                " the native driver\n");
1473                 }
1474                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1475                         return -EBUSY;
1476         }
1477         return 0;
1478 }
1479 EXPORT_SYMBOL(acpi_check_resource_conflict);
1480
1481 int acpi_check_region(resource_size_t start, resource_size_t n,
1482                       const char *name)
1483 {
1484         struct resource res = {
1485                 .start = start,
1486                 .end   = start + n - 1,
1487                 .name  = name,
1488                 .flags = IORESOURCE_IO,
1489         };
1490
1491         return acpi_check_resource_conflict(&res);
1492 }
1493 EXPORT_SYMBOL(acpi_check_region);
1494
1495 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1496                                               void *_res, void **return_value)
1497 {
1498         struct acpi_mem_space_context **mem_ctx;
1499         union acpi_operand_object *handler_obj;
1500         union acpi_operand_object *region_obj2;
1501         union acpi_operand_object *region_obj;
1502         struct resource *res = _res;
1503         acpi_status status;
1504
1505         region_obj = acpi_ns_get_attached_object(handle);
1506         if (!region_obj)
1507                 return AE_OK;
1508
1509         handler_obj = region_obj->region.handler;
1510         if (!handler_obj)
1511                 return AE_OK;
1512
1513         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1514                 return AE_OK;
1515
1516         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1517                 return AE_OK;
1518
1519         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1520         if (!region_obj2)
1521                 return AE_OK;
1522
1523         mem_ctx = (void *)&region_obj2->extra.region_context;
1524
1525         if (!(mem_ctx[0]->address >= res->start &&
1526               mem_ctx[0]->address < res->end))
1527                 return AE_OK;
1528
1529         status = handler_obj->address_space.setup(region_obj,
1530                                                   ACPI_REGION_DEACTIVATE,
1531                                                   NULL, (void **)mem_ctx);
1532         if (ACPI_SUCCESS(status))
1533                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1534
1535         return status;
1536 }
1537
1538 /**
1539  * acpi_release_memory - Release any mappings done to a memory region
1540  * @handle: Handle to namespace node
1541  * @res: Memory resource
1542  * @level: A level that terminates the search
1543  *
1544  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1545  * overlap with @res and that have already been activated (mapped).
1546  *
1547  * This is a helper that allows drivers to place special requirements on memory
1548  * region that may overlap with operation regions, primarily allowing them to
1549  * safely map the region as non-cached memory.
1550  *
1551  * The unmapped Operation Regions will be automatically remapped next time they
1552  * are called, so the drivers do not need to do anything else.
1553  */
1554 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1555                                 u32 level)
1556 {
1557         if (!(res->flags & IORESOURCE_MEM))
1558                 return AE_TYPE;
1559
1560         return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1561                                    acpi_deactivate_mem_region, NULL, res, NULL);
1562 }
1563 EXPORT_SYMBOL_GPL(acpi_release_memory);
1564
1565 /*
1566  * Let drivers know whether the resource checks are effective
1567  */
1568 int acpi_resources_are_enforced(void)
1569 {
1570         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1571 }
1572 EXPORT_SYMBOL(acpi_resources_are_enforced);
1573
1574 /*
1575  * Deallocate the memory for a spinlock.
1576  */
1577 void acpi_os_delete_lock(acpi_spinlock handle)
1578 {
1579         ACPI_FREE(handle);
1580 }
1581
1582 /*
1583  * Acquire a spinlock.
1584  *
1585  * handle is a pointer to the spinlock_t.
1586  */
1587
1588 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1589 {
1590         acpi_cpu_flags flags;
1591         spin_lock_irqsave(lockp, flags);
1592         return flags;
1593 }
1594
1595 /*
1596  * Release a spinlock. See above.
1597  */
1598
1599 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1600 {
1601         spin_unlock_irqrestore(lockp, flags);
1602 }
1603
1604 #ifndef ACPI_USE_LOCAL_CACHE
1605
1606 /*******************************************************************************
1607  *
1608  * FUNCTION:    acpi_os_create_cache
1609  *
1610  * PARAMETERS:  name      - Ascii name for the cache
1611  *              size      - Size of each cached object
1612  *              depth     - Maximum depth of the cache (in objects) <ignored>
1613  *              cache     - Where the new cache object is returned
1614  *
1615  * RETURN:      status
1616  *
1617  * DESCRIPTION: Create a cache object
1618  *
1619  ******************************************************************************/
1620
1621 acpi_status
1622 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1623 {
1624         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1625         if (*cache == NULL)
1626                 return AE_ERROR;
1627         else
1628                 return AE_OK;
1629 }
1630
1631 /*******************************************************************************
1632  *
1633  * FUNCTION:    acpi_os_purge_cache
1634  *
1635  * PARAMETERS:  Cache           - Handle to cache object
1636  *
1637  * RETURN:      Status
1638  *
1639  * DESCRIPTION: Free all objects within the requested cache.
1640  *
1641  ******************************************************************************/
1642
1643 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1644 {
1645         kmem_cache_shrink(cache);
1646         return (AE_OK);
1647 }
1648
1649 /*******************************************************************************
1650  *
1651  * FUNCTION:    acpi_os_delete_cache
1652  *
1653  * PARAMETERS:  Cache           - Handle to cache object
1654  *
1655  * RETURN:      Status
1656  *
1657  * DESCRIPTION: Free all objects within the requested cache and delete the
1658  *              cache object.
1659  *
1660  ******************************************************************************/
1661
1662 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1663 {
1664         kmem_cache_destroy(cache);
1665         return (AE_OK);
1666 }
1667
1668 /*******************************************************************************
1669  *
1670  * FUNCTION:    acpi_os_release_object
1671  *
1672  * PARAMETERS:  Cache       - Handle to cache object
1673  *              Object      - The object to be released
1674  *
1675  * RETURN:      None
1676  *
1677  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1678  *              the object is deleted.
1679  *
1680  ******************************************************************************/
1681
1682 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1683 {
1684         kmem_cache_free(cache, object);
1685         return (AE_OK);
1686 }
1687 #endif
1688
1689 static int __init acpi_no_static_ssdt_setup(char *s)
1690 {
1691         acpi_gbl_disable_ssdt_table_install = TRUE;
1692         pr_info("ACPI: static SSDT installation disabled\n");
1693
1694         return 0;
1695 }
1696
1697 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1698
1699 static int __init acpi_disable_return_repair(char *s)
1700 {
1701         printk(KERN_NOTICE PREFIX
1702                "ACPI: Predefined validation mechanism disabled\n");
1703         acpi_gbl_disable_auto_repair = TRUE;
1704
1705         return 1;
1706 }
1707
1708 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1709
1710 acpi_status __init acpi_os_initialize(void)
1711 {
1712         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1713         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1714         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1715         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1716         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1717                 /*
1718                  * Use acpi_os_map_generic_address to pre-map the reset
1719                  * register if it's in system memory.
1720                  */
1721                 int rv;
1722
1723                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1724                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1725         }
1726         acpi_os_initialized = true;
1727
1728         return AE_OK;
1729 }
1730
1731 acpi_status __init acpi_os_initialize1(void)
1732 {
1733         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1734         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1735         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1736         BUG_ON(!kacpid_wq);
1737         BUG_ON(!kacpi_notify_wq);
1738         BUG_ON(!kacpi_hotplug_wq);
1739         acpi_osi_init();
1740         return AE_OK;
1741 }
1742
1743 acpi_status acpi_os_terminate(void)
1744 {
1745         if (acpi_irq_handler) {
1746                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1747                                                  acpi_irq_handler);
1748         }
1749
1750         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1751         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1752         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1753         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1754         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1755                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1756
1757         destroy_workqueue(kacpid_wq);
1758         destroy_workqueue(kacpi_notify_wq);
1759         destroy_workqueue(kacpi_hotplug_wq);
1760
1761         return AE_OK;
1762 }
1763
1764 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1765                                   u32 pm1b_control)
1766 {
1767         int rc = 0;
1768         if (__acpi_os_prepare_sleep)
1769                 rc = __acpi_os_prepare_sleep(sleep_state,
1770                                              pm1a_control, pm1b_control);
1771         if (rc < 0)
1772                 return AE_ERROR;
1773         else if (rc > 0)
1774                 return AE_CTRL_TERMINATE;
1775
1776         return AE_OK;
1777 }
1778
1779 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1780                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1781 {
1782         __acpi_os_prepare_sleep = func;
1783 }
1784
1785 #if (ACPI_REDUCED_HARDWARE)
1786 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1787                                   u32 val_b)
1788 {
1789         int rc = 0;
1790         if (__acpi_os_prepare_extended_sleep)
1791                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1792                                              val_a, val_b);
1793         if (rc < 0)
1794                 return AE_ERROR;
1795         else if (rc > 0)
1796                 return AE_CTRL_TERMINATE;
1797
1798         return AE_OK;
1799 }
1800 #else
1801 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1802                                   u32 val_b)
1803 {
1804         return AE_OK;
1805 }
1806 #endif
1807
1808 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1809                                u32 val_a, u32 val_b))
1810 {
1811         __acpi_os_prepare_extended_sleep = func;
1812 }
1813
1814 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1815                                 u32 reg_a_value, u32 reg_b_value)
1816 {
1817         acpi_status status;
1818
1819         if (acpi_gbl_reduced_hardware)
1820                 status = acpi_os_prepare_extended_sleep(sleep_state,
1821                                                         reg_a_value,
1822                                                         reg_b_value);
1823         else
1824                 status = acpi_os_prepare_sleep(sleep_state,
1825                                                reg_a_value, reg_b_value);
1826         return status;
1827 }