Merge tag 'vfio-v4.16-rc1' of git://github.com/awilliam/linux-vfio
[sfrench/cifs-2.6.git] / drivers / acpi / cppc_acpi.c
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37
38 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
39
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
45
46 #include <acpi/cppc_acpi.h>
47
48 struct cppc_pcc_data {
49         struct mbox_chan *pcc_channel;
50         void __iomem *pcc_comm_addr;
51         bool pcc_channel_acquired;
52         ktime_t deadline;
53         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54
55         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
56         bool platform_owns_pcc;         /* Ownership of PCC subspace */
57         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
58
59         /*
60          * Lock to provide controlled access to the PCC channel.
61          *
62          * For performance critical usecases(currently cppc_set_perf)
63          *      We need to take read_lock and check if channel belongs to OSPM
64          * before reading or writing to PCC subspace
65          *      We need to take write_lock before transferring the channel
66          * ownership to the platform via a Doorbell
67          *      This allows us to batch a number of CPPC requests if they happen
68          * to originate in about the same time
69          *
70          * For non-performance critical usecases(init)
71          *      Take write_lock for all purposes which gives exclusive access
72          */
73         struct rw_semaphore pcc_lock;
74
75         /* Wait queue for CPUs whose requests were batched */
76         wait_queue_head_t pcc_write_wait_q;
77         ktime_t last_cmd_cmpl_time;
78         ktime_t last_mpar_reset;
79         int mpar_count;
80         int refcount;
81 };
82
83 /* Array  to represent the PCC channel per subspace id */
84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85 /* The cpu_pcc_subspace_idx containsper CPU subspace id */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87
88 /*
89  * The cpc_desc structure contains the ACPI register details
90  * as described in the per CPU _CPC tables. The details
91  * include the type of register (e.g. PCC, System IO, FFH etc.)
92  * and destination addresses which lets us READ/WRITE CPU performance
93  * information using the appropriate I/O methods.
94  */
95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99                                                 0x8 + (offs))
100
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
103                                 (cpc)->cpc_entry.reg.space_id ==        \
104                                 ACPI_ADR_SPACE_PLATFORM_COMM)
105
106 /* Evalutes to True if reg is a NULL register descriptor */
107 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
108                                 (reg)->address == 0 &&                  \
109                                 (reg)->bit_width == 0 &&                \
110                                 (reg)->bit_offset == 0 &&               \
111                                 (reg)->access_width == 0)
112
113 /* Evalutes to True if an optional cpc field is supported */
114 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
115                                 !!(cpc)->cpc_entry.int_value :          \
116                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
117 /*
118  * Arbitrary Retries in case the remote processor is slow to respond
119  * to PCC commands. Keeping it high enough to cover emulators where
120  * the processors run painfully slow.
121  */
122 #define NUM_RETRIES 500
123
124 struct cppc_attr {
125         struct attribute attr;
126         ssize_t (*show)(struct kobject *kobj,
127                         struct attribute *attr, char *buf);
128         ssize_t (*store)(struct kobject *kobj,
129                         struct attribute *attr, const char *c, ssize_t count);
130 };
131
132 #define define_one_cppc_ro(_name)               \
133 static struct cppc_attr _name =                 \
134 __ATTR(_name, 0444, show_##_name, NULL)
135
136 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
137
138 #define show_cppc_data(access_fn, struct_name, member_name)             \
139         static ssize_t show_##member_name(struct kobject *kobj,         \
140                                         struct attribute *attr, char *buf) \
141         {                                                               \
142                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
143                 struct struct_name st_name = {0};                       \
144                 int ret;                                                \
145                                                                         \
146                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
147                 if (ret)                                                \
148                         return ret;                                     \
149                                                                         \
150                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
151                                 (u64)st_name.member_name);              \
152         }                                                               \
153         define_one_cppc_ro(member_name)
154
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
159 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
161
162 static ssize_t show_feedback_ctrs(struct kobject *kobj,
163                 struct attribute *attr, char *buf)
164 {
165         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
166         struct cppc_perf_fb_ctrs fb_ctrs = {0};
167         int ret;
168
169         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
170         if (ret)
171                 return ret;
172
173         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
174                         fb_ctrs.reference, fb_ctrs.delivered);
175 }
176 define_one_cppc_ro(feedback_ctrs);
177
178 static struct attribute *cppc_attrs[] = {
179         &feedback_ctrs.attr,
180         &reference_perf.attr,
181         &wraparound_time.attr,
182         &highest_perf.attr,
183         &lowest_perf.attr,
184         &lowest_nonlinear_perf.attr,
185         &nominal_perf.attr,
186         NULL
187 };
188
189 static struct kobj_type cppc_ktype = {
190         .sysfs_ops = &kobj_sysfs_ops,
191         .default_attrs = cppc_attrs,
192 };
193
194 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
195 {
196         int ret = -EIO, status = 0;
197         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
198         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
199                 pcc_ss_data->pcc_comm_addr;
200         ktime_t next_deadline = ktime_add(ktime_get(),
201                                           pcc_ss_data->deadline);
202
203         if (!pcc_ss_data->platform_owns_pcc)
204                 return 0;
205
206         /* Retry in case the remote processor was too slow to catch up. */
207         while (!ktime_after(ktime_get(), next_deadline)) {
208                 /*
209                  * Per spec, prior to boot the PCC space wil be initialized by
210                  * platform and should have set the command completion bit when
211                  * PCC can be used by OSPM
212                  */
213                 status = readw_relaxed(&generic_comm_base->status);
214                 if (status & PCC_CMD_COMPLETE_MASK) {
215                         ret = 0;
216                         if (chk_err_bit && (status & PCC_ERROR_MASK))
217                                 ret = -EIO;
218                         break;
219                 }
220                 /*
221                  * Reducing the bus traffic in case this loop takes longer than
222                  * a few retries.
223                  */
224                 udelay(3);
225         }
226
227         if (likely(!ret))
228                 pcc_ss_data->platform_owns_pcc = false;
229         else
230                 pr_err("PCC check channel failed. Status=%x\n", status);
231
232         return ret;
233 }
234
235 /*
236  * This function transfers the ownership of the PCC to the platform
237  * So it must be called while holding write_lock(pcc_lock)
238  */
239 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
240 {
241         int ret = -EIO, i;
242         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
243         struct acpi_pcct_shared_memory *generic_comm_base =
244                 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
245         unsigned int time_delta;
246
247         /*
248          * For CMD_WRITE we know for a fact the caller should have checked
249          * the channel before writing to PCC space
250          */
251         if (cmd == CMD_READ) {
252                 /*
253                  * If there are pending cpc_writes, then we stole the channel
254                  * before write completion, so first send a WRITE command to
255                  * platform
256                  */
257                 if (pcc_ss_data->pending_pcc_write_cmd)
258                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
259
260                 ret = check_pcc_chan(pcc_ss_id, false);
261                 if (ret)
262                         goto end;
263         } else /* CMD_WRITE */
264                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
265
266         /*
267          * Handle the Minimum Request Turnaround Time(MRTT)
268          * "The minimum amount of time that OSPM must wait after the completion
269          * of a command before issuing the next command, in microseconds"
270          */
271         if (pcc_ss_data->pcc_mrtt) {
272                 time_delta = ktime_us_delta(ktime_get(),
273                                             pcc_ss_data->last_cmd_cmpl_time);
274                 if (pcc_ss_data->pcc_mrtt > time_delta)
275                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
276         }
277
278         /*
279          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
280          * "The maximum number of periodic requests that the subspace channel can
281          * support, reported in commands per minute. 0 indicates no limitation."
282          *
283          * This parameter should be ideally zero or large enough so that it can
284          * handle maximum number of requests that all the cores in the system can
285          * collectively generate. If it is not, we will follow the spec and just
286          * not send the request to the platform after hitting the MPAR limit in
287          * any 60s window
288          */
289         if (pcc_ss_data->pcc_mpar) {
290                 if (pcc_ss_data->mpar_count == 0) {
291                         time_delta = ktime_ms_delta(ktime_get(),
292                                                     pcc_ss_data->last_mpar_reset);
293                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
294                                 pr_debug("PCC cmd not sent due to MPAR limit");
295                                 ret = -EIO;
296                                 goto end;
297                         }
298                         pcc_ss_data->last_mpar_reset = ktime_get();
299                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
300                 }
301                 pcc_ss_data->mpar_count--;
302         }
303
304         /* Write to the shared comm region. */
305         writew_relaxed(cmd, &generic_comm_base->command);
306
307         /* Flip CMD COMPLETE bit */
308         writew_relaxed(0, &generic_comm_base->status);
309
310         pcc_ss_data->platform_owns_pcc = true;
311
312         /* Ring doorbell */
313         ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
314         if (ret < 0) {
315                 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
316                                 cmd, ret);
317                 goto end;
318         }
319
320         /* wait for completion and check for PCC errro bit */
321         ret = check_pcc_chan(pcc_ss_id, true);
322
323         if (pcc_ss_data->pcc_mrtt)
324                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
325
326         if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
327                 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
328         else
329                 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
330
331 end:
332         if (cmd == CMD_WRITE) {
333                 if (unlikely(ret)) {
334                         for_each_possible_cpu(i) {
335                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
336                                 if (!desc)
337                                         continue;
338
339                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
340                                         desc->write_cmd_status = ret;
341                         }
342                 }
343                 pcc_ss_data->pcc_write_cnt++;
344                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
345         }
346
347         return ret;
348 }
349
350 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
351 {
352         if (ret < 0)
353                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
354                                 *(u16 *)msg, ret);
355         else
356                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
357                                 *(u16 *)msg, ret);
358 }
359
360 struct mbox_client cppc_mbox_cl = {
361         .tx_done = cppc_chan_tx_done,
362         .knows_txdone = true,
363 };
364
365 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
366 {
367         int result = -EFAULT;
368         acpi_status status = AE_OK;
369         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
370         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
371         struct acpi_buffer state = {0, NULL};
372         union acpi_object  *psd = NULL;
373         struct acpi_psd_package *pdomain;
374
375         status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
376                         ACPI_TYPE_PACKAGE);
377         if (ACPI_FAILURE(status))
378                 return -ENODEV;
379
380         psd = buffer.pointer;
381         if (!psd || psd->package.count != 1) {
382                 pr_debug("Invalid _PSD data\n");
383                 goto end;
384         }
385
386         pdomain = &(cpc_ptr->domain_info);
387
388         state.length = sizeof(struct acpi_psd_package);
389         state.pointer = pdomain;
390
391         status = acpi_extract_package(&(psd->package.elements[0]),
392                 &format, &state);
393         if (ACPI_FAILURE(status)) {
394                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
395                 goto end;
396         }
397
398         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
399                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
400                 goto end;
401         }
402
403         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
404                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
405                 goto end;
406         }
407
408         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
409             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
410             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
411                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
412                 goto end;
413         }
414
415         result = 0;
416 end:
417         kfree(buffer.pointer);
418         return result;
419 }
420
421 /**
422  * acpi_get_psd_map - Map the CPUs in a common freq domain.
423  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
424  *
425  *      Return: 0 for success or negative value for err.
426  */
427 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
428 {
429         int count_target;
430         int retval = 0;
431         unsigned int i, j;
432         cpumask_var_t covered_cpus;
433         struct cppc_cpudata *pr, *match_pr;
434         struct acpi_psd_package *pdomain;
435         struct acpi_psd_package *match_pdomain;
436         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
437
438         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
439                 return -ENOMEM;
440
441         /*
442          * Now that we have _PSD data from all CPUs, lets setup P-state
443          * domain info.
444          */
445         for_each_possible_cpu(i) {
446                 pr = all_cpu_data[i];
447                 if (!pr)
448                         continue;
449
450                 if (cpumask_test_cpu(i, covered_cpus))
451                         continue;
452
453                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
454                 if (!cpc_ptr) {
455                         retval = -EFAULT;
456                         goto err_ret;
457                 }
458
459                 pdomain = &(cpc_ptr->domain_info);
460                 cpumask_set_cpu(i, pr->shared_cpu_map);
461                 cpumask_set_cpu(i, covered_cpus);
462                 if (pdomain->num_processors <= 1)
463                         continue;
464
465                 /* Validate the Domain info */
466                 count_target = pdomain->num_processors;
467                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
468                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
469                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
470                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
471                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
472                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
473
474                 for_each_possible_cpu(j) {
475                         if (i == j)
476                                 continue;
477
478                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
479                         if (!match_cpc_ptr) {
480                                 retval = -EFAULT;
481                                 goto err_ret;
482                         }
483
484                         match_pdomain = &(match_cpc_ptr->domain_info);
485                         if (match_pdomain->domain != pdomain->domain)
486                                 continue;
487
488                         /* Here i and j are in the same domain */
489                         if (match_pdomain->num_processors != count_target) {
490                                 retval = -EFAULT;
491                                 goto err_ret;
492                         }
493
494                         if (pdomain->coord_type != match_pdomain->coord_type) {
495                                 retval = -EFAULT;
496                                 goto err_ret;
497                         }
498
499                         cpumask_set_cpu(j, covered_cpus);
500                         cpumask_set_cpu(j, pr->shared_cpu_map);
501                 }
502
503                 for_each_possible_cpu(j) {
504                         if (i == j)
505                                 continue;
506
507                         match_pr = all_cpu_data[j];
508                         if (!match_pr)
509                                 continue;
510
511                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
512                         if (!match_cpc_ptr) {
513                                 retval = -EFAULT;
514                                 goto err_ret;
515                         }
516
517                         match_pdomain = &(match_cpc_ptr->domain_info);
518                         if (match_pdomain->domain != pdomain->domain)
519                                 continue;
520
521                         match_pr->shared_type = pr->shared_type;
522                         cpumask_copy(match_pr->shared_cpu_map,
523                                      pr->shared_cpu_map);
524                 }
525         }
526
527 err_ret:
528         for_each_possible_cpu(i) {
529                 pr = all_cpu_data[i];
530                 if (!pr)
531                         continue;
532
533                 /* Assume no coordination on any error parsing domain info */
534                 if (retval) {
535                         cpumask_clear(pr->shared_cpu_map);
536                         cpumask_set_cpu(i, pr->shared_cpu_map);
537                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
538                 }
539         }
540
541         free_cpumask_var(covered_cpus);
542         return retval;
543 }
544 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
545
546 static int register_pcc_channel(int pcc_ss_idx)
547 {
548         struct acpi_pcct_hw_reduced *cppc_ss;
549         u64 usecs_lat;
550
551         if (pcc_ss_idx >= 0) {
552                 pcc_data[pcc_ss_idx]->pcc_channel =
553                         pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
554
555                 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
556                         pr_err("Failed to find PCC communication channel\n");
557                         return -ENODEV;
558                 }
559
560                 /*
561                  * The PCC mailbox controller driver should
562                  * have parsed the PCCT (global table of all
563                  * PCC channels) and stored pointers to the
564                  * subspace communication region in con_priv.
565                  */
566                 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
567
568                 if (!cppc_ss) {
569                         pr_err("No PCC subspace found for CPPC\n");
570                         return -ENODEV;
571                 }
572
573                 /*
574                  * cppc_ss->latency is just a Nominal value. In reality
575                  * the remote processor could be much slower to reply.
576                  * So add an arbitrary amount of wait on top of Nominal.
577                  */
578                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
579                 pcc_data[pcc_ss_idx]->deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
580                 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
581                 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
582                 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
583
584                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
585                         acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
586                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
587                         pr_err("Failed to ioremap PCC comm region mem\n");
588                         return -ENOMEM;
589                 }
590
591                 /* Set flag so that we dont come here for each CPU. */
592                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
593         }
594
595         return 0;
596 }
597
598 /**
599  * cpc_ffh_supported() - check if FFH reading supported
600  *
601  * Check if the architecture has support for functional fixed hardware
602  * read/write capability.
603  *
604  * Return: true for supported, false for not supported
605  */
606 bool __weak cpc_ffh_supported(void)
607 {
608         return false;
609 }
610
611
612 /**
613  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
614  *
615  * Check and allocate the cppc_pcc_data memory.
616  * In some processor configurations it is possible that same subspace
617  * is shared between multiple CPU's. This is seen especially in CPU's
618  * with hardware multi-threading support.
619  *
620  * Return: 0 for success, errno for failure
621  */
622 int pcc_data_alloc(int pcc_ss_id)
623 {
624         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
625                 return -EINVAL;
626
627         if (pcc_data[pcc_ss_id]) {
628                 pcc_data[pcc_ss_id]->refcount++;
629         } else {
630                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
631                                               GFP_KERNEL);
632                 if (!pcc_data[pcc_ss_id])
633                         return -ENOMEM;
634                 pcc_data[pcc_ss_id]->refcount++;
635         }
636
637         return 0;
638 }
639 /*
640  * An example CPC table looks like the following.
641  *
642  *      Name(_CPC, Package()
643  *                      {
644  *                      17,
645  *                      NumEntries
646  *                      1,
647  *                      // Revision
648  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
649  *                      // Highest Performance
650  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
651  *                      // Nominal Performance
652  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
653  *                      // Lowest Nonlinear Performance
654  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
655  *                      // Lowest Performance
656  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
657  *                      // Guaranteed Performance Register
658  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
659  *                      // Desired Performance Register
660  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
661  *                      ..
662  *                      ..
663  *                      ..
664  *
665  *              }
666  * Each Register() encodes how to access that specific register.
667  * e.g. a sample PCC entry has the following encoding:
668  *
669  *      Register (
670  *              PCC,
671  *              AddressSpaceKeyword
672  *              8,
673  *              //RegisterBitWidth
674  *              8,
675  *              //RegisterBitOffset
676  *              0x30,
677  *              //RegisterAddress
678  *              9
679  *              //AccessSize (subspace ID)
680  *              0
681  *              )
682  *      }
683  */
684
685 /**
686  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
687  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
688  *
689  *      Return: 0 for success or negative value for err.
690  */
691 int acpi_cppc_processor_probe(struct acpi_processor *pr)
692 {
693         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
694         union acpi_object *out_obj, *cpc_obj;
695         struct cpc_desc *cpc_ptr;
696         struct cpc_reg *gas_t;
697         struct device *cpu_dev;
698         acpi_handle handle = pr->handle;
699         unsigned int num_ent, i, cpc_rev;
700         int pcc_subspace_id = -1;
701         acpi_status status;
702         int ret = -EFAULT;
703
704         /* Parse the ACPI _CPC table for this cpu. */
705         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
706                         ACPI_TYPE_PACKAGE);
707         if (ACPI_FAILURE(status)) {
708                 ret = -ENODEV;
709                 goto out_buf_free;
710         }
711
712         out_obj = (union acpi_object *) output.pointer;
713
714         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
715         if (!cpc_ptr) {
716                 ret = -ENOMEM;
717                 goto out_buf_free;
718         }
719
720         /* First entry is NumEntries. */
721         cpc_obj = &out_obj->package.elements[0];
722         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
723                 num_ent = cpc_obj->integer.value;
724         } else {
725                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
726                                 cpc_obj->type);
727                 goto out_free;
728         }
729
730         /* Only support CPPCv2. Bail otherwise. */
731         if (num_ent != CPPC_NUM_ENT) {
732                 pr_debug("Firmware exports %d entries. Expected: %d\n",
733                                 num_ent, CPPC_NUM_ENT);
734                 goto out_free;
735         }
736
737         cpc_ptr->num_entries = num_ent;
738
739         /* Second entry should be revision. */
740         cpc_obj = &out_obj->package.elements[1];
741         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
742                 cpc_rev = cpc_obj->integer.value;
743         } else {
744                 pr_debug("Unexpected entry type(%d) for Revision\n",
745                                 cpc_obj->type);
746                 goto out_free;
747         }
748
749         if (cpc_rev != CPPC_REV) {
750                 pr_debug("Firmware exports revision:%d. Expected:%d\n",
751                                 cpc_rev, CPPC_REV);
752                 goto out_free;
753         }
754
755         /* Iterate through remaining entries in _CPC */
756         for (i = 2; i < num_ent; i++) {
757                 cpc_obj = &out_obj->package.elements[i];
758
759                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
760                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
761                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
762                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
763                         gas_t = (struct cpc_reg *)
764                                 cpc_obj->buffer.pointer;
765
766                         /*
767                          * The PCC Subspace index is encoded inside
768                          * the CPC table entries. The same PCC index
769                          * will be used for all the PCC entries,
770                          * so extract it only once.
771                          */
772                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
773                                 if (pcc_subspace_id < 0) {
774                                         pcc_subspace_id = gas_t->access_width;
775                                         if (pcc_data_alloc(pcc_subspace_id))
776                                                 goto out_free;
777                                 } else if (pcc_subspace_id != gas_t->access_width) {
778                                         pr_debug("Mismatched PCC ids.\n");
779                                         goto out_free;
780                                 }
781                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
782                                 if (gas_t->address) {
783                                         void __iomem *addr;
784
785                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
786                                         if (!addr)
787                                                 goto out_free;
788                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
789                                 }
790                         } else {
791                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
792                                         /* Support only PCC ,SYS MEM and FFH type regs */
793                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
794                                         goto out_free;
795                                 }
796                         }
797
798                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
799                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
800                 } else {
801                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
802                         goto out_free;
803                 }
804         }
805         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
806         /* Store CPU Logical ID */
807         cpc_ptr->cpu_id = pr->id;
808
809         /* Parse PSD data for this CPU */
810         ret = acpi_get_psd(cpc_ptr, handle);
811         if (ret)
812                 goto out_free;
813
814         /* Register PCC channel once for all PCC subspace id. */
815         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
816                 ret = register_pcc_channel(pcc_subspace_id);
817                 if (ret)
818                         goto out_free;
819
820                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
821                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
822         }
823
824         /* Everything looks okay */
825         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
826
827         /* Add per logical CPU nodes for reading its feedback counters. */
828         cpu_dev = get_cpu_device(pr->id);
829         if (!cpu_dev) {
830                 ret = -EINVAL;
831                 goto out_free;
832         }
833
834         /* Plug PSD data into this CPUs CPC descriptor. */
835         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
836
837         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
838                         "acpi_cppc");
839         if (ret) {
840                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
841                 goto out_free;
842         }
843
844         kfree(output.pointer);
845         return 0;
846
847 out_free:
848         /* Free all the mapped sys mem areas for this CPU */
849         for (i = 2; i < cpc_ptr->num_entries; i++) {
850                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
851
852                 if (addr)
853                         iounmap(addr);
854         }
855         kfree(cpc_ptr);
856
857 out_buf_free:
858         kfree(output.pointer);
859         return ret;
860 }
861 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
862
863 /**
864  * acpi_cppc_processor_exit - Cleanup CPC structs.
865  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
866  *
867  * Return: Void
868  */
869 void acpi_cppc_processor_exit(struct acpi_processor *pr)
870 {
871         struct cpc_desc *cpc_ptr;
872         unsigned int i;
873         void __iomem *addr;
874         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
875
876         if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
877                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
878                         pcc_data[pcc_ss_id]->refcount--;
879                         if (!pcc_data[pcc_ss_id]->refcount) {
880                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
881                                 pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
882                                 kfree(pcc_data[pcc_ss_id]);
883                         }
884                 }
885         }
886
887         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
888         if (!cpc_ptr)
889                 return;
890
891         /* Free all the mapped sys mem areas for this CPU */
892         for (i = 2; i < cpc_ptr->num_entries; i++) {
893                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
894                 if (addr)
895                         iounmap(addr);
896         }
897
898         kobject_put(&cpc_ptr->kobj);
899         kfree(cpc_ptr);
900 }
901 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
902
903 /**
904  * cpc_read_ffh() - Read FFH register
905  * @cpunum:     cpu number to read
906  * @reg:        cppc register information
907  * @val:        place holder for return value
908  *
909  * Read bit_width bits from a specified address and bit_offset
910  *
911  * Return: 0 for success and error code
912  */
913 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
914 {
915         return -ENOTSUPP;
916 }
917
918 /**
919  * cpc_write_ffh() - Write FFH register
920  * @cpunum:     cpu number to write
921  * @reg:        cppc register information
922  * @val:        value to write
923  *
924  * Write value of bit_width bits to a specified address and bit_offset
925  *
926  * Return: 0 for success and error code
927  */
928 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
929 {
930         return -ENOTSUPP;
931 }
932
933 /*
934  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
935  * as fast as possible. We have already mapped the PCC subspace during init, so
936  * we can directly write to it.
937  */
938
939 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
940 {
941         int ret_val = 0;
942         void __iomem *vaddr = 0;
943         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
944         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
945
946         if (reg_res->type == ACPI_TYPE_INTEGER) {
947                 *val = reg_res->cpc_entry.int_value;
948                 return ret_val;
949         }
950
951         *val = 0;
952         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
953                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
954         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
955                 vaddr = reg_res->sys_mem_vaddr;
956         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
957                 return cpc_read_ffh(cpu, reg, val);
958         else
959                 return acpi_os_read_memory((acpi_physical_address)reg->address,
960                                 val, reg->bit_width);
961
962         switch (reg->bit_width) {
963                 case 8:
964                         *val = readb_relaxed(vaddr);
965                         break;
966                 case 16:
967                         *val = readw_relaxed(vaddr);
968                         break;
969                 case 32:
970                         *val = readl_relaxed(vaddr);
971                         break;
972                 case 64:
973                         *val = readq_relaxed(vaddr);
974                         break;
975                 default:
976                         pr_debug("Error: Cannot read %u bit width from PCC\n",
977                                         reg->bit_width);
978                         ret_val = -EFAULT;
979         }
980
981         return ret_val;
982 }
983
984 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
985 {
986         int ret_val = 0;
987         void __iomem *vaddr = 0;
988         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
989         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
990
991         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
992                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
993         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
994                 vaddr = reg_res->sys_mem_vaddr;
995         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
996                 return cpc_write_ffh(cpu, reg, val);
997         else
998                 return acpi_os_write_memory((acpi_physical_address)reg->address,
999                                 val, reg->bit_width);
1000
1001         switch (reg->bit_width) {
1002                 case 8:
1003                         writeb_relaxed(val, vaddr);
1004                         break;
1005                 case 16:
1006                         writew_relaxed(val, vaddr);
1007                         break;
1008                 case 32:
1009                         writel_relaxed(val, vaddr);
1010                         break;
1011                 case 64:
1012                         writeq_relaxed(val, vaddr);
1013                         break;
1014                 default:
1015                         pr_debug("Error: Cannot write %u bit width to PCC\n",
1016                                         reg->bit_width);
1017                         ret_val = -EFAULT;
1018                         break;
1019         }
1020
1021         return ret_val;
1022 }
1023
1024 /**
1025  * cppc_get_perf_caps - Get a CPUs performance capabilities.
1026  * @cpunum: CPU from which to get capabilities info.
1027  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1028  *
1029  * Return: 0 for success with perf_caps populated else -ERRNO.
1030  */
1031 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1032 {
1033         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1034         struct cpc_register_resource *highest_reg, *lowest_reg,
1035                 *lowest_non_linear_reg, *nominal_reg;
1036         u64 high, low, nom, min_nonlinear;
1037         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1038         struct cppc_pcc_data *pcc_ss_data;
1039         int ret = 0, regs_in_pcc = 0;
1040
1041         if (!cpc_desc || pcc_ss_id < 0) {
1042                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1043                 return -ENODEV;
1044         }
1045
1046         pcc_ss_data = pcc_data[pcc_ss_id];
1047         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1048         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1049         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1050         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1051
1052         /* Are any of the regs PCC ?*/
1053         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1054                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
1055                 regs_in_pcc = 1;
1056                 down_write(&pcc_ss_data->pcc_lock);
1057                 /* Ring doorbell once to update PCC subspace */
1058                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1059                         ret = -EIO;
1060                         goto out_err;
1061                 }
1062         }
1063
1064         cpc_read(cpunum, highest_reg, &high);
1065         perf_caps->highest_perf = high;
1066
1067         cpc_read(cpunum, lowest_reg, &low);
1068         perf_caps->lowest_perf = low;
1069
1070         cpc_read(cpunum, nominal_reg, &nom);
1071         perf_caps->nominal_perf = nom;
1072
1073         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1074         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1075
1076         if (!high || !low || !nom || !min_nonlinear)
1077                 ret = -EFAULT;
1078
1079 out_err:
1080         if (regs_in_pcc)
1081                 up_write(&pcc_ss_data->pcc_lock);
1082         return ret;
1083 }
1084 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1085
1086 /**
1087  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1088  * @cpunum: CPU from which to read counters.
1089  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1090  *
1091  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1092  */
1093 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1094 {
1095         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1096         struct cpc_register_resource *delivered_reg, *reference_reg,
1097                 *ref_perf_reg, *ctr_wrap_reg;
1098         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1099         struct cppc_pcc_data *pcc_ss_data;
1100         u64 delivered, reference, ref_perf, ctr_wrap_time;
1101         int ret = 0, regs_in_pcc = 0;
1102
1103         if (!cpc_desc || pcc_ss_id < 0) {
1104                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1105                 return -ENODEV;
1106         }
1107
1108         pcc_ss_data = pcc_data[pcc_ss_id];
1109         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1110         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1111         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1112         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1113
1114         /*
1115          * If refernce perf register is not supported then we should
1116          * use the nominal perf value
1117          */
1118         if (!CPC_SUPPORTED(ref_perf_reg))
1119                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1120
1121         /* Are any of the regs PCC ?*/
1122         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1123                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1124                 down_write(&pcc_ss_data->pcc_lock);
1125                 regs_in_pcc = 1;
1126                 /* Ring doorbell once to update PCC subspace */
1127                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1128                         ret = -EIO;
1129                         goto out_err;
1130                 }
1131         }
1132
1133         cpc_read(cpunum, delivered_reg, &delivered);
1134         cpc_read(cpunum, reference_reg, &reference);
1135         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1136
1137         /*
1138          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1139          * performance counters are assumed to never wrap during the lifetime of
1140          * platform
1141          */
1142         ctr_wrap_time = (u64)(~((u64)0));
1143         if (CPC_SUPPORTED(ctr_wrap_reg))
1144                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1145
1146         if (!delivered || !reference || !ref_perf) {
1147                 ret = -EFAULT;
1148                 goto out_err;
1149         }
1150
1151         perf_fb_ctrs->delivered = delivered;
1152         perf_fb_ctrs->reference = reference;
1153         perf_fb_ctrs->reference_perf = ref_perf;
1154         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1155 out_err:
1156         if (regs_in_pcc)
1157                 up_write(&pcc_ss_data->pcc_lock);
1158         return ret;
1159 }
1160 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1161
1162 /**
1163  * cppc_set_perf - Set a CPUs performance controls.
1164  * @cpu: CPU for which to set performance controls.
1165  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1166  *
1167  * Return: 0 for success, -ERRNO otherwise.
1168  */
1169 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1170 {
1171         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1172         struct cpc_register_resource *desired_reg;
1173         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1174         struct cppc_pcc_data *pcc_ss_data;
1175         int ret = 0;
1176
1177         if (!cpc_desc || pcc_ss_id < 0) {
1178                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1179                 return -ENODEV;
1180         }
1181
1182         pcc_ss_data = pcc_data[pcc_ss_id];
1183         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1184
1185         /*
1186          * This is Phase-I where we want to write to CPC registers
1187          * -> We want all CPUs to be able to execute this phase in parallel
1188          *
1189          * Since read_lock can be acquired by multiple CPUs simultaneously we
1190          * achieve that goal here
1191          */
1192         if (CPC_IN_PCC(desired_reg)) {
1193                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1194                 if (pcc_ss_data->platform_owns_pcc) {
1195                         ret = check_pcc_chan(pcc_ss_id, false);
1196                         if (ret) {
1197                                 up_read(&pcc_ss_data->pcc_lock);
1198                                 return ret;
1199                         }
1200                 }
1201                 /*
1202                  * Update the pending_write to make sure a PCC CMD_READ will not
1203                  * arrive and steal the channel during the switch to write lock
1204                  */
1205                 pcc_ss_data->pending_pcc_write_cmd = true;
1206                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1207                 cpc_desc->write_cmd_status = 0;
1208         }
1209
1210         /*
1211          * Skip writing MIN/MAX until Linux knows how to come up with
1212          * useful values.
1213          */
1214         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1215
1216         if (CPC_IN_PCC(desired_reg))
1217                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1218         /*
1219          * This is Phase-II where we transfer the ownership of PCC to Platform
1220          *
1221          * Short Summary: Basically if we think of a group of cppc_set_perf
1222          * requests that happened in short overlapping interval. The last CPU to
1223          * come out of Phase-I will enter Phase-II and ring the doorbell.
1224          *
1225          * We have the following requirements for Phase-II:
1226          *     1. We want to execute Phase-II only when there are no CPUs
1227          * currently executing in Phase-I
1228          *     2. Once we start Phase-II we want to avoid all other CPUs from
1229          * entering Phase-I.
1230          *     3. We want only one CPU among all those who went through Phase-I
1231          * to run phase-II
1232          *
1233          * If write_trylock fails to get the lock and doesn't transfer the
1234          * PCC ownership to the platform, then one of the following will be TRUE
1235          *     1. There is at-least one CPU in Phase-I which will later execute
1236          * write_trylock, so the CPUs in Phase-I will be responsible for
1237          * executing the Phase-II.
1238          *     2. Some other CPU has beaten this CPU to successfully execute the
1239          * write_trylock and has already acquired the write_lock. We know for a
1240          * fact it(other CPU acquiring the write_lock) couldn't have happened
1241          * before this CPU's Phase-I as we held the read_lock.
1242          *     3. Some other CPU executing pcc CMD_READ has stolen the
1243          * down_write, in which case, send_pcc_cmd will check for pending
1244          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1245          * So this CPU can be certain that its request will be delivered
1246          *    So in all cases, this CPU knows that its request will be delivered
1247          * by another CPU and can return
1248          *
1249          * After getting the down_write we still need to check for
1250          * pending_pcc_write_cmd to take care of the following scenario
1251          *    The thread running this code could be scheduled out between
1252          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1253          * could have delivered the request to Platform by triggering the
1254          * doorbell and transferred the ownership of PCC to platform. So this
1255          * avoids triggering an unnecessary doorbell and more importantly before
1256          * triggering the doorbell it makes sure that the PCC channel ownership
1257          * is still with OSPM.
1258          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1259          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1260          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1261          * case during a CMD_READ and if there are pending writes it delivers
1262          * the write command before servicing the read command
1263          */
1264         if (CPC_IN_PCC(desired_reg)) {
1265                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1266                         /* Update only if there are pending write commands */
1267                         if (pcc_ss_data->pending_pcc_write_cmd)
1268                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1269                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1270                 } else
1271                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1272                         wait_event(pcc_ss_data->pcc_write_wait_q,
1273                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1274
1275                 /* send_pcc_cmd updates the status in case of failure */
1276                 ret = cpc_desc->write_cmd_status;
1277         }
1278         return ret;
1279 }
1280 EXPORT_SYMBOL_GPL(cppc_set_perf);
1281
1282 /**
1283  * cppc_get_transition_latency - returns frequency transition latency in ns
1284  *
1285  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1286  * transition latency for perfromance change requests. The closest we have
1287  * is the timing information from the PCCT tables which provides the info
1288  * on the number and frequency of PCC commands the platform can handle.
1289  */
1290 unsigned int cppc_get_transition_latency(int cpu_num)
1291 {
1292         /*
1293          * Expected transition latency is based on the PCCT timing values
1294          * Below are definition from ACPI spec:
1295          * pcc_nominal- Expected latency to process a command, in microseconds
1296          * pcc_mpar   - The maximum number of periodic requests that the subspace
1297          *              channel can support, reported in commands per minute. 0
1298          *              indicates no limitation.
1299          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1300          *              completion of a command before issuing the next command,
1301          *              in microseconds.
1302          */
1303         unsigned int latency_ns = 0;
1304         struct cpc_desc *cpc_desc;
1305         struct cpc_register_resource *desired_reg;
1306         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1307         struct cppc_pcc_data *pcc_ss_data;
1308
1309         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1310         if (!cpc_desc)
1311                 return CPUFREQ_ETERNAL;
1312
1313         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1314         if (!CPC_IN_PCC(desired_reg))
1315                 return CPUFREQ_ETERNAL;
1316
1317         if (pcc_ss_id < 0)
1318                 return CPUFREQ_ETERNAL;
1319
1320         pcc_ss_data = pcc_data[pcc_ss_id];
1321         if (pcc_ss_data->pcc_mpar)
1322                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1323
1324         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1325         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1326
1327         return latency_ns;
1328 }
1329 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);