Merge tag 'for-6.7-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[sfrench/cifs-2.6.git] / drivers / acpi / acpi_pad.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <linux/platform_device.h>
22 #include <asm/mwait.h>
23 #include <xen/xen.h>
24
25 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
26 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
27 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
28 static DEFINE_MUTEX(isolated_cpus_lock);
29 static DEFINE_MUTEX(round_robin_lock);
30
31 static unsigned long power_saving_mwait_eax;
32
33 static unsigned char tsc_detected_unstable;
34 static unsigned char tsc_marked_unstable;
35
36 static void power_saving_mwait_init(void)
37 {
38         unsigned int eax, ebx, ecx, edx;
39         unsigned int highest_cstate = 0;
40         unsigned int highest_subcstate = 0;
41         int i;
42
43         if (!boot_cpu_has(X86_FEATURE_MWAIT))
44                 return;
45         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
46                 return;
47
48         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
49
50         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
51             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
52                 return;
53
54         edx >>= MWAIT_SUBSTATE_SIZE;
55         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
56                 if (edx & MWAIT_SUBSTATE_MASK) {
57                         highest_cstate = i;
58                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
59                 }
60         }
61         power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
62                 (highest_subcstate - 1);
63
64 #if defined(CONFIG_X86)
65         switch (boot_cpu_data.x86_vendor) {
66         case X86_VENDOR_HYGON:
67         case X86_VENDOR_AMD:
68         case X86_VENDOR_INTEL:
69         case X86_VENDOR_ZHAOXIN:
70         case X86_VENDOR_CENTAUR:
71                 /*
72                  * AMD Fam10h TSC will tick in all
73                  * C/P/S0/S1 states when this bit is set.
74                  */
75                 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
76                         tsc_detected_unstable = 1;
77                 break;
78         default:
79                 /* TSC could halt in idle */
80                 tsc_detected_unstable = 1;
81         }
82 #endif
83 }
84
85 static unsigned long cpu_weight[NR_CPUS];
86 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
87 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
88 static void round_robin_cpu(unsigned int tsk_index)
89 {
90         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
91         cpumask_var_t tmp;
92         int cpu;
93         unsigned long min_weight = -1;
94         unsigned long preferred_cpu;
95
96         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
97                 return;
98
99         mutex_lock(&round_robin_lock);
100         cpumask_clear(tmp);
101         for_each_cpu(cpu, pad_busy_cpus)
102                 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
103         cpumask_andnot(tmp, cpu_online_mask, tmp);
104         /* avoid HT siblings if possible */
105         if (cpumask_empty(tmp))
106                 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
107         if (cpumask_empty(tmp)) {
108                 mutex_unlock(&round_robin_lock);
109                 free_cpumask_var(tmp);
110                 return;
111         }
112         for_each_cpu(cpu, tmp) {
113                 if (cpu_weight[cpu] < min_weight) {
114                         min_weight = cpu_weight[cpu];
115                         preferred_cpu = cpu;
116                 }
117         }
118
119         if (tsk_in_cpu[tsk_index] != -1)
120                 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
121         tsk_in_cpu[tsk_index] = preferred_cpu;
122         cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
123         cpu_weight[preferred_cpu]++;
124         mutex_unlock(&round_robin_lock);
125
126         set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
127
128         free_cpumask_var(tmp);
129 }
130
131 static void exit_round_robin(unsigned int tsk_index)
132 {
133         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
134
135         cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
136         tsk_in_cpu[tsk_index] = -1;
137 }
138
139 static unsigned int idle_pct = 5; /* percentage */
140 static unsigned int round_robin_time = 1; /* second */
141 static int power_saving_thread(void *data)
142 {
143         int do_sleep;
144         unsigned int tsk_index = (unsigned long)data;
145         u64 last_jiffies = 0;
146
147         sched_set_fifo_low(current);
148
149         while (!kthread_should_stop()) {
150                 unsigned long expire_time;
151
152                 /* round robin to cpus */
153                 expire_time = last_jiffies + round_robin_time * HZ;
154                 if (time_before(expire_time, jiffies)) {
155                         last_jiffies = jiffies;
156                         round_robin_cpu(tsk_index);
157                 }
158
159                 do_sleep = 0;
160
161                 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
162
163                 while (!need_resched()) {
164                         if (tsc_detected_unstable && !tsc_marked_unstable) {
165                                 /* TSC could halt in idle, so notify users */
166                                 mark_tsc_unstable("TSC halts in idle");
167                                 tsc_marked_unstable = 1;
168                         }
169                         local_irq_disable();
170
171                         perf_lopwr_cb(true);
172
173                         tick_broadcast_enable();
174                         tick_broadcast_enter();
175                         stop_critical_timings();
176
177                         mwait_idle_with_hints(power_saving_mwait_eax, 1);
178
179                         start_critical_timings();
180                         tick_broadcast_exit();
181
182                         perf_lopwr_cb(false);
183
184                         local_irq_enable();
185
186                         if (time_before(expire_time, jiffies)) {
187                                 do_sleep = 1;
188                                 break;
189                         }
190                 }
191
192                 /*
193                  * current sched_rt has threshold for rt task running time.
194                  * When a rt task uses 95% CPU time, the rt thread will be
195                  * scheduled out for 5% CPU time to not starve other tasks. But
196                  * the mechanism only works when all CPUs have RT task running,
197                  * as if one CPU hasn't RT task, RT task from other CPUs will
198                  * borrow CPU time from this CPU and cause RT task use > 95%
199                  * CPU time. To make 'avoid starvation' work, takes a nap here.
200                  */
201                 if (unlikely(do_sleep))
202                         schedule_timeout_killable(HZ * idle_pct / 100);
203
204                 /* If an external event has set the need_resched flag, then
205                  * we need to deal with it, or this loop will continue to
206                  * spin without calling __mwait().
207                  */
208                 if (unlikely(need_resched()))
209                         schedule();
210         }
211
212         exit_round_robin(tsk_index);
213         return 0;
214 }
215
216 static struct task_struct *ps_tsks[NR_CPUS];
217 static unsigned int ps_tsk_num;
218 static int create_power_saving_task(void)
219 {
220         int rc;
221
222         ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
223                 (void *)(unsigned long)ps_tsk_num,
224                 "acpi_pad/%d", ps_tsk_num);
225
226         if (IS_ERR(ps_tsks[ps_tsk_num])) {
227                 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
228                 ps_tsks[ps_tsk_num] = NULL;
229         } else {
230                 rc = 0;
231                 ps_tsk_num++;
232         }
233
234         return rc;
235 }
236
237 static void destroy_power_saving_task(void)
238 {
239         if (ps_tsk_num > 0) {
240                 ps_tsk_num--;
241                 kthread_stop(ps_tsks[ps_tsk_num]);
242                 ps_tsks[ps_tsk_num] = NULL;
243         }
244 }
245
246 static void set_power_saving_task_num(unsigned int num)
247 {
248         if (num > ps_tsk_num) {
249                 while (ps_tsk_num < num) {
250                         if (create_power_saving_task())
251                                 return;
252                 }
253         } else if (num < ps_tsk_num) {
254                 while (ps_tsk_num > num)
255                         destroy_power_saving_task();
256         }
257 }
258
259 static void acpi_pad_idle_cpus(unsigned int num_cpus)
260 {
261         cpus_read_lock();
262
263         num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
264         set_power_saving_task_num(num_cpus);
265
266         cpus_read_unlock();
267 }
268
269 static uint32_t acpi_pad_idle_cpus_num(void)
270 {
271         return ps_tsk_num;
272 }
273
274 static ssize_t rrtime_store(struct device *dev,
275         struct device_attribute *attr, const char *buf, size_t count)
276 {
277         unsigned long num;
278
279         if (kstrtoul(buf, 0, &num))
280                 return -EINVAL;
281         if (num < 1 || num >= 100)
282                 return -EINVAL;
283         mutex_lock(&isolated_cpus_lock);
284         round_robin_time = num;
285         mutex_unlock(&isolated_cpus_lock);
286         return count;
287 }
288
289 static ssize_t rrtime_show(struct device *dev,
290         struct device_attribute *attr, char *buf)
291 {
292         return sysfs_emit(buf, "%d\n", round_robin_time);
293 }
294 static DEVICE_ATTR_RW(rrtime);
295
296 static ssize_t idlepct_store(struct device *dev,
297         struct device_attribute *attr, const char *buf, size_t count)
298 {
299         unsigned long num;
300
301         if (kstrtoul(buf, 0, &num))
302                 return -EINVAL;
303         if (num < 1 || num >= 100)
304                 return -EINVAL;
305         mutex_lock(&isolated_cpus_lock);
306         idle_pct = num;
307         mutex_unlock(&isolated_cpus_lock);
308         return count;
309 }
310
311 static ssize_t idlepct_show(struct device *dev,
312         struct device_attribute *attr, char *buf)
313 {
314         return sysfs_emit(buf, "%d\n", idle_pct);
315 }
316 static DEVICE_ATTR_RW(idlepct);
317
318 static ssize_t idlecpus_store(struct device *dev,
319         struct device_attribute *attr, const char *buf, size_t count)
320 {
321         unsigned long num;
322
323         if (kstrtoul(buf, 0, &num))
324                 return -EINVAL;
325         mutex_lock(&isolated_cpus_lock);
326         acpi_pad_idle_cpus(num);
327         mutex_unlock(&isolated_cpus_lock);
328         return count;
329 }
330
331 static ssize_t idlecpus_show(struct device *dev,
332         struct device_attribute *attr, char *buf)
333 {
334         return cpumap_print_to_pagebuf(false, buf,
335                                        to_cpumask(pad_busy_cpus_bits));
336 }
337
338 static DEVICE_ATTR_RW(idlecpus);
339
340 static struct attribute *acpi_pad_attrs[] = {
341         &dev_attr_idlecpus.attr,
342         &dev_attr_idlepct.attr,
343         &dev_attr_rrtime.attr,
344         NULL
345 };
346
347 ATTRIBUTE_GROUPS(acpi_pad);
348
349 /*
350  * Query firmware how many CPUs should be idle
351  * return -1 on failure
352  */
353 static int acpi_pad_pur(acpi_handle handle)
354 {
355         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
356         union acpi_object *package;
357         int num = -1;
358
359         if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
360                 return num;
361
362         if (!buffer.length || !buffer.pointer)
363                 return num;
364
365         package = buffer.pointer;
366
367         if (package->type == ACPI_TYPE_PACKAGE &&
368                 package->package.count == 2 &&
369                 package->package.elements[0].integer.value == 1) /* rev 1 */
370
371                 num = package->package.elements[1].integer.value;
372
373         kfree(buffer.pointer);
374         return num;
375 }
376
377 static void acpi_pad_handle_notify(acpi_handle handle)
378 {
379         int num_cpus;
380         uint32_t idle_cpus;
381         struct acpi_buffer param = {
382                 .length = 4,
383                 .pointer = (void *)&idle_cpus,
384         };
385
386         mutex_lock(&isolated_cpus_lock);
387         num_cpus = acpi_pad_pur(handle);
388         if (num_cpus < 0) {
389                 mutex_unlock(&isolated_cpus_lock);
390                 return;
391         }
392         acpi_pad_idle_cpus(num_cpus);
393         idle_cpus = acpi_pad_idle_cpus_num();
394         acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
395         mutex_unlock(&isolated_cpus_lock);
396 }
397
398 static void acpi_pad_notify(acpi_handle handle, u32 event,
399         void *data)
400 {
401         struct acpi_device *adev = data;
402
403         switch (event) {
404         case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
405                 acpi_pad_handle_notify(handle);
406                 acpi_bus_generate_netlink_event(adev->pnp.device_class,
407                         dev_name(&adev->dev), event, 0);
408                 break;
409         default:
410                 pr_warn("Unsupported event [0x%x]\n", event);
411                 break;
412         }
413 }
414
415 static int acpi_pad_probe(struct platform_device *pdev)
416 {
417         struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
418         acpi_status status;
419
420         strcpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
421         strcpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS);
422
423         status = acpi_install_notify_handler(adev->handle,
424                 ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev);
425
426         if (ACPI_FAILURE(status))
427                 return -ENODEV;
428
429         return 0;
430 }
431
432 static void acpi_pad_remove(struct platform_device *pdev)
433 {
434         struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
435
436         mutex_lock(&isolated_cpus_lock);
437         acpi_pad_idle_cpus(0);
438         mutex_unlock(&isolated_cpus_lock);
439
440         acpi_remove_notify_handler(adev->handle,
441                 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
442 }
443
444 static const struct acpi_device_id pad_device_ids[] = {
445         {"ACPI000C", 0},
446         {"", 0},
447 };
448 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
449
450 static struct platform_driver acpi_pad_driver = {
451         .probe = acpi_pad_probe,
452         .remove_new = acpi_pad_remove,
453         .driver = {
454                 .dev_groups = acpi_pad_groups,
455                 .name = "processor_aggregator",
456                 .acpi_match_table = pad_device_ids,
457         },
458 };
459
460 static int __init acpi_pad_init(void)
461 {
462         /* Xen ACPI PAD is used when running as Xen Dom0. */
463         if (xen_initial_domain())
464                 return -ENODEV;
465
466         power_saving_mwait_init();
467         if (power_saving_mwait_eax == 0)
468                 return -EINVAL;
469
470         return platform_driver_register(&acpi_pad_driver);
471 }
472
473 static void __exit acpi_pad_exit(void)
474 {
475         platform_driver_unregister(&acpi_pad_driver);
476 }
477
478 module_init(acpi_pad_init);
479 module_exit(acpi_pad_exit);
480 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
481 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
482 MODULE_LICENSE("GPL");