Merge tag 'spi-fix-v5.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[sfrench/cifs-2.6.git] / crypto / simd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Shared crypto simd helpers
4  *
5  * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
6  * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
7  * Copyright (c) 2019 Google LLC
8  *
9  * Based on aesni-intel_glue.c by:
10  *  Copyright (C) 2008, Intel Corp.
11  *    Author: Huang Ying <ying.huang@intel.com>
12  */
13
14 /*
15  * Shared crypto SIMD helpers.  These functions dynamically create and register
16  * an skcipher or AEAD algorithm that wraps another, internal algorithm.  The
17  * wrapper ensures that the internal algorithm is only executed in a context
18  * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
19  * If SIMD is already usable, the wrapper directly calls the internal algorithm.
20  * Otherwise it defers execution to a workqueue via cryptd.
21  *
22  * This is an alternative to the internal algorithm implementing a fallback for
23  * the !may_use_simd() case itself.
24  *
25  * Note that the wrapper algorithm is asynchronous, i.e. it has the
26  * CRYPTO_ALG_ASYNC flag set.  Therefore it won't be found by users who
27  * explicitly allocate a synchronous algorithm.
28  */
29
30 #include <crypto/cryptd.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/preempt.h>
37 #include <asm/simd.h>
38
39 /* skcipher support */
40
41 struct simd_skcipher_alg {
42         const char *ialg_name;
43         struct skcipher_alg alg;
44 };
45
46 struct simd_skcipher_ctx {
47         struct cryptd_skcipher *cryptd_tfm;
48 };
49
50 static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
51                                 unsigned int key_len)
52 {
53         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
54         struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
55         int err;
56
57         crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
58         crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
59                                          CRYPTO_TFM_REQ_MASK);
60         err = crypto_skcipher_setkey(child, key, key_len);
61         crypto_skcipher_set_flags(tfm, crypto_skcipher_get_flags(child) &
62                                        CRYPTO_TFM_RES_MASK);
63         return err;
64 }
65
66 static int simd_skcipher_encrypt(struct skcipher_request *req)
67 {
68         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
69         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
70         struct skcipher_request *subreq;
71         struct crypto_skcipher *child;
72
73         subreq = skcipher_request_ctx(req);
74         *subreq = *req;
75
76         if (!crypto_simd_usable() ||
77             (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
78                 child = &ctx->cryptd_tfm->base;
79         else
80                 child = cryptd_skcipher_child(ctx->cryptd_tfm);
81
82         skcipher_request_set_tfm(subreq, child);
83
84         return crypto_skcipher_encrypt(subreq);
85 }
86
87 static int simd_skcipher_decrypt(struct skcipher_request *req)
88 {
89         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
90         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
91         struct skcipher_request *subreq;
92         struct crypto_skcipher *child;
93
94         subreq = skcipher_request_ctx(req);
95         *subreq = *req;
96
97         if (!crypto_simd_usable() ||
98             (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
99                 child = &ctx->cryptd_tfm->base;
100         else
101                 child = cryptd_skcipher_child(ctx->cryptd_tfm);
102
103         skcipher_request_set_tfm(subreq, child);
104
105         return crypto_skcipher_decrypt(subreq);
106 }
107
108 static void simd_skcipher_exit(struct crypto_skcipher *tfm)
109 {
110         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
111
112         cryptd_free_skcipher(ctx->cryptd_tfm);
113 }
114
115 static int simd_skcipher_init(struct crypto_skcipher *tfm)
116 {
117         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
118         struct cryptd_skcipher *cryptd_tfm;
119         struct simd_skcipher_alg *salg;
120         struct skcipher_alg *alg;
121         unsigned reqsize;
122
123         alg = crypto_skcipher_alg(tfm);
124         salg = container_of(alg, struct simd_skcipher_alg, alg);
125
126         cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
127                                            CRYPTO_ALG_INTERNAL,
128                                            CRYPTO_ALG_INTERNAL);
129         if (IS_ERR(cryptd_tfm))
130                 return PTR_ERR(cryptd_tfm);
131
132         ctx->cryptd_tfm = cryptd_tfm;
133
134         reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
135         reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
136         reqsize += sizeof(struct skcipher_request);
137
138         crypto_skcipher_set_reqsize(tfm, reqsize);
139
140         return 0;
141 }
142
143 struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
144                                                       const char *drvname,
145                                                       const char *basename)
146 {
147         struct simd_skcipher_alg *salg;
148         struct crypto_skcipher *tfm;
149         struct skcipher_alg *ialg;
150         struct skcipher_alg *alg;
151         int err;
152
153         tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
154                                     CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
155         if (IS_ERR(tfm))
156                 return ERR_CAST(tfm);
157
158         ialg = crypto_skcipher_alg(tfm);
159
160         salg = kzalloc(sizeof(*salg), GFP_KERNEL);
161         if (!salg) {
162                 salg = ERR_PTR(-ENOMEM);
163                 goto out_put_tfm;
164         }
165
166         salg->ialg_name = basename;
167         alg = &salg->alg;
168
169         err = -ENAMETOOLONG;
170         if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
171             CRYPTO_MAX_ALG_NAME)
172                 goto out_free_salg;
173
174         if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
175                      drvname) >= CRYPTO_MAX_ALG_NAME)
176                 goto out_free_salg;
177
178         alg->base.cra_flags = CRYPTO_ALG_ASYNC;
179         alg->base.cra_priority = ialg->base.cra_priority;
180         alg->base.cra_blocksize = ialg->base.cra_blocksize;
181         alg->base.cra_alignmask = ialg->base.cra_alignmask;
182         alg->base.cra_module = ialg->base.cra_module;
183         alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
184
185         alg->ivsize = ialg->ivsize;
186         alg->chunksize = ialg->chunksize;
187         alg->min_keysize = ialg->min_keysize;
188         alg->max_keysize = ialg->max_keysize;
189
190         alg->init = simd_skcipher_init;
191         alg->exit = simd_skcipher_exit;
192
193         alg->setkey = simd_skcipher_setkey;
194         alg->encrypt = simd_skcipher_encrypt;
195         alg->decrypt = simd_skcipher_decrypt;
196
197         err = crypto_register_skcipher(alg);
198         if (err)
199                 goto out_free_salg;
200
201 out_put_tfm:
202         crypto_free_skcipher(tfm);
203         return salg;
204
205 out_free_salg:
206         kfree(salg);
207         salg = ERR_PTR(err);
208         goto out_put_tfm;
209 }
210 EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
211
212 struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
213                                                const char *basename)
214 {
215         char drvname[CRYPTO_MAX_ALG_NAME];
216
217         if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
218             CRYPTO_MAX_ALG_NAME)
219                 return ERR_PTR(-ENAMETOOLONG);
220
221         return simd_skcipher_create_compat(algname, drvname, basename);
222 }
223 EXPORT_SYMBOL_GPL(simd_skcipher_create);
224
225 void simd_skcipher_free(struct simd_skcipher_alg *salg)
226 {
227         crypto_unregister_skcipher(&salg->alg);
228         kfree(salg);
229 }
230 EXPORT_SYMBOL_GPL(simd_skcipher_free);
231
232 int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
233                                    struct simd_skcipher_alg **simd_algs)
234 {
235         int err;
236         int i;
237         const char *algname;
238         const char *drvname;
239         const char *basename;
240         struct simd_skcipher_alg *simd;
241
242         err = crypto_register_skciphers(algs, count);
243         if (err)
244                 return err;
245
246         for (i = 0; i < count; i++) {
247                 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
248                 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
249                 algname = algs[i].base.cra_name + 2;
250                 drvname = algs[i].base.cra_driver_name + 2;
251                 basename = algs[i].base.cra_driver_name;
252                 simd = simd_skcipher_create_compat(algname, drvname, basename);
253                 err = PTR_ERR(simd);
254                 if (IS_ERR(simd))
255                         goto err_unregister;
256                 simd_algs[i] = simd;
257         }
258         return 0;
259
260 err_unregister:
261         simd_unregister_skciphers(algs, count, simd_algs);
262         return err;
263 }
264 EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
265
266 void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
267                                struct simd_skcipher_alg **simd_algs)
268 {
269         int i;
270
271         crypto_unregister_skciphers(algs, count);
272
273         for (i = 0; i < count; i++) {
274                 if (simd_algs[i]) {
275                         simd_skcipher_free(simd_algs[i]);
276                         simd_algs[i] = NULL;
277                 }
278         }
279 }
280 EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
281
282 /* AEAD support */
283
284 struct simd_aead_alg {
285         const char *ialg_name;
286         struct aead_alg alg;
287 };
288
289 struct simd_aead_ctx {
290         struct cryptd_aead *cryptd_tfm;
291 };
292
293 static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
294                                 unsigned int key_len)
295 {
296         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
297         struct crypto_aead *child = &ctx->cryptd_tfm->base;
298         int err;
299
300         crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
301         crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
302                                      CRYPTO_TFM_REQ_MASK);
303         err = crypto_aead_setkey(child, key, key_len);
304         crypto_aead_set_flags(tfm, crypto_aead_get_flags(child) &
305                                    CRYPTO_TFM_RES_MASK);
306         return err;
307 }
308
309 static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
310 {
311         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
312         struct crypto_aead *child = &ctx->cryptd_tfm->base;
313
314         return crypto_aead_setauthsize(child, authsize);
315 }
316
317 static int simd_aead_encrypt(struct aead_request *req)
318 {
319         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
320         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
321         struct aead_request *subreq;
322         struct crypto_aead *child;
323
324         subreq = aead_request_ctx(req);
325         *subreq = *req;
326
327         if (!crypto_simd_usable() ||
328             (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
329                 child = &ctx->cryptd_tfm->base;
330         else
331                 child = cryptd_aead_child(ctx->cryptd_tfm);
332
333         aead_request_set_tfm(subreq, child);
334
335         return crypto_aead_encrypt(subreq);
336 }
337
338 static int simd_aead_decrypt(struct aead_request *req)
339 {
340         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
341         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
342         struct aead_request *subreq;
343         struct crypto_aead *child;
344
345         subreq = aead_request_ctx(req);
346         *subreq = *req;
347
348         if (!crypto_simd_usable() ||
349             (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
350                 child = &ctx->cryptd_tfm->base;
351         else
352                 child = cryptd_aead_child(ctx->cryptd_tfm);
353
354         aead_request_set_tfm(subreq, child);
355
356         return crypto_aead_decrypt(subreq);
357 }
358
359 static void simd_aead_exit(struct crypto_aead *tfm)
360 {
361         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
362
363         cryptd_free_aead(ctx->cryptd_tfm);
364 }
365
366 static int simd_aead_init(struct crypto_aead *tfm)
367 {
368         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
369         struct cryptd_aead *cryptd_tfm;
370         struct simd_aead_alg *salg;
371         struct aead_alg *alg;
372         unsigned reqsize;
373
374         alg = crypto_aead_alg(tfm);
375         salg = container_of(alg, struct simd_aead_alg, alg);
376
377         cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
378                                        CRYPTO_ALG_INTERNAL);
379         if (IS_ERR(cryptd_tfm))
380                 return PTR_ERR(cryptd_tfm);
381
382         ctx->cryptd_tfm = cryptd_tfm;
383
384         reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
385         reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
386         reqsize += sizeof(struct aead_request);
387
388         crypto_aead_set_reqsize(tfm, reqsize);
389
390         return 0;
391 }
392
393 struct simd_aead_alg *simd_aead_create_compat(const char *algname,
394                                               const char *drvname,
395                                               const char *basename)
396 {
397         struct simd_aead_alg *salg;
398         struct crypto_aead *tfm;
399         struct aead_alg *ialg;
400         struct aead_alg *alg;
401         int err;
402
403         tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
404                                 CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
405         if (IS_ERR(tfm))
406                 return ERR_CAST(tfm);
407
408         ialg = crypto_aead_alg(tfm);
409
410         salg = kzalloc(sizeof(*salg), GFP_KERNEL);
411         if (!salg) {
412                 salg = ERR_PTR(-ENOMEM);
413                 goto out_put_tfm;
414         }
415
416         salg->ialg_name = basename;
417         alg = &salg->alg;
418
419         err = -ENAMETOOLONG;
420         if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
421             CRYPTO_MAX_ALG_NAME)
422                 goto out_free_salg;
423
424         if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
425                      drvname) >= CRYPTO_MAX_ALG_NAME)
426                 goto out_free_salg;
427
428         alg->base.cra_flags = CRYPTO_ALG_ASYNC;
429         alg->base.cra_priority = ialg->base.cra_priority;
430         alg->base.cra_blocksize = ialg->base.cra_blocksize;
431         alg->base.cra_alignmask = ialg->base.cra_alignmask;
432         alg->base.cra_module = ialg->base.cra_module;
433         alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
434
435         alg->ivsize = ialg->ivsize;
436         alg->maxauthsize = ialg->maxauthsize;
437         alg->chunksize = ialg->chunksize;
438
439         alg->init = simd_aead_init;
440         alg->exit = simd_aead_exit;
441
442         alg->setkey = simd_aead_setkey;
443         alg->setauthsize = simd_aead_setauthsize;
444         alg->encrypt = simd_aead_encrypt;
445         alg->decrypt = simd_aead_decrypt;
446
447         err = crypto_register_aead(alg);
448         if (err)
449                 goto out_free_salg;
450
451 out_put_tfm:
452         crypto_free_aead(tfm);
453         return salg;
454
455 out_free_salg:
456         kfree(salg);
457         salg = ERR_PTR(err);
458         goto out_put_tfm;
459 }
460 EXPORT_SYMBOL_GPL(simd_aead_create_compat);
461
462 struct simd_aead_alg *simd_aead_create(const char *algname,
463                                        const char *basename)
464 {
465         char drvname[CRYPTO_MAX_ALG_NAME];
466
467         if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
468             CRYPTO_MAX_ALG_NAME)
469                 return ERR_PTR(-ENAMETOOLONG);
470
471         return simd_aead_create_compat(algname, drvname, basename);
472 }
473 EXPORT_SYMBOL_GPL(simd_aead_create);
474
475 void simd_aead_free(struct simd_aead_alg *salg)
476 {
477         crypto_unregister_aead(&salg->alg);
478         kfree(salg);
479 }
480 EXPORT_SYMBOL_GPL(simd_aead_free);
481
482 int simd_register_aeads_compat(struct aead_alg *algs, int count,
483                                struct simd_aead_alg **simd_algs)
484 {
485         int err;
486         int i;
487         const char *algname;
488         const char *drvname;
489         const char *basename;
490         struct simd_aead_alg *simd;
491
492         err = crypto_register_aeads(algs, count);
493         if (err)
494                 return err;
495
496         for (i = 0; i < count; i++) {
497                 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
498                 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
499                 algname = algs[i].base.cra_name + 2;
500                 drvname = algs[i].base.cra_driver_name + 2;
501                 basename = algs[i].base.cra_driver_name;
502                 simd = simd_aead_create_compat(algname, drvname, basename);
503                 err = PTR_ERR(simd);
504                 if (IS_ERR(simd))
505                         goto err_unregister;
506                 simd_algs[i] = simd;
507         }
508         return 0;
509
510 err_unregister:
511         simd_unregister_aeads(algs, count, simd_algs);
512         return err;
513 }
514 EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
515
516 void simd_unregister_aeads(struct aead_alg *algs, int count,
517                            struct simd_aead_alg **simd_algs)
518 {
519         int i;
520
521         crypto_unregister_aeads(algs, count);
522
523         for (i = 0; i < count; i++) {
524                 if (simd_algs[i]) {
525                         simd_aead_free(simd_algs[i]);
526                         simd_algs[i] = NULL;
527                 }
528         }
529 }
530 EXPORT_SYMBOL_GPL(simd_unregister_aeads);
531
532 MODULE_LICENSE("GPL");