Merge tag 'pm-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[sfrench/cifs-2.6.git] / crypto / drbg.c
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *              * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *              * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *              * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *              * with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99
100 #include <crypto/drbg.h>
101 #include <linux/kernel.h>
102
103 /***************************************************************
104  * Backend cipher definitions available to DRBG
105  ***************************************************************/
106
107 /*
108  * The order of the DRBG definitions here matter: every DRBG is registered
109  * as stdrng. Each DRBG receives an increasing cra_priority values the later
110  * they are defined in this array (see drbg_fill_array).
111  *
112  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113  * the SHA256 / AES 256 over other ciphers. Thus, the favored
114  * DRBGs are the latest entries in this array.
115  */
116 static const struct drbg_core drbg_cores[] = {
117 #ifdef CONFIG_CRYPTO_DRBG_CTR
118         {
119                 .flags = DRBG_CTR | DRBG_STRENGTH128,
120                 .statelen = 32, /* 256 bits as defined in 10.2.1 */
121                 .blocklen_bytes = 16,
122                 .cra_name = "ctr_aes128",
123                 .backend_cra_name = "aes",
124         }, {
125                 .flags = DRBG_CTR | DRBG_STRENGTH192,
126                 .statelen = 40, /* 320 bits as defined in 10.2.1 */
127                 .blocklen_bytes = 16,
128                 .cra_name = "ctr_aes192",
129                 .backend_cra_name = "aes",
130         }, {
131                 .flags = DRBG_CTR | DRBG_STRENGTH256,
132                 .statelen = 48, /* 384 bits as defined in 10.2.1 */
133                 .blocklen_bytes = 16,
134                 .cra_name = "ctr_aes256",
135                 .backend_cra_name = "aes",
136         },
137 #endif /* CONFIG_CRYPTO_DRBG_CTR */
138 #ifdef CONFIG_CRYPTO_DRBG_HASH
139         {
140                 .flags = DRBG_HASH | DRBG_STRENGTH128,
141                 .statelen = 55, /* 440 bits */
142                 .blocklen_bytes = 20,
143                 .cra_name = "sha1",
144                 .backend_cra_name = "sha1",
145         }, {
146                 .flags = DRBG_HASH | DRBG_STRENGTH256,
147                 .statelen = 111, /* 888 bits */
148                 .blocklen_bytes = 48,
149                 .cra_name = "sha384",
150                 .backend_cra_name = "sha384",
151         }, {
152                 .flags = DRBG_HASH | DRBG_STRENGTH256,
153                 .statelen = 111, /* 888 bits */
154                 .blocklen_bytes = 64,
155                 .cra_name = "sha512",
156                 .backend_cra_name = "sha512",
157         }, {
158                 .flags = DRBG_HASH | DRBG_STRENGTH256,
159                 .statelen = 55, /* 440 bits */
160                 .blocklen_bytes = 32,
161                 .cra_name = "sha256",
162                 .backend_cra_name = "sha256",
163         },
164 #endif /* CONFIG_CRYPTO_DRBG_HASH */
165 #ifdef CONFIG_CRYPTO_DRBG_HMAC
166         {
167                 .flags = DRBG_HMAC | DRBG_STRENGTH128,
168                 .statelen = 20, /* block length of cipher */
169                 .blocklen_bytes = 20,
170                 .cra_name = "hmac_sha1",
171                 .backend_cra_name = "hmac(sha1)",
172         }, {
173                 .flags = DRBG_HMAC | DRBG_STRENGTH256,
174                 .statelen = 48, /* block length of cipher */
175                 .blocklen_bytes = 48,
176                 .cra_name = "hmac_sha384",
177                 .backend_cra_name = "hmac(sha384)",
178         }, {
179                 .flags = DRBG_HMAC | DRBG_STRENGTH256,
180                 .statelen = 64, /* block length of cipher */
181                 .blocklen_bytes = 64,
182                 .cra_name = "hmac_sha512",
183                 .backend_cra_name = "hmac(sha512)",
184         }, {
185                 .flags = DRBG_HMAC | DRBG_STRENGTH256,
186                 .statelen = 32, /* block length of cipher */
187                 .blocklen_bytes = 32,
188                 .cra_name = "hmac_sha256",
189                 .backend_cra_name = "hmac(sha256)",
190         },
191 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
192 };
193
194 static int drbg_uninstantiate(struct drbg_state *drbg);
195
196 /******************************************************************
197  * Generic helper functions
198  ******************************************************************/
199
200 /*
201  * Return strength of DRBG according to SP800-90A section 8.4
202  *
203  * @flags DRBG flags reference
204  *
205  * Return: normalized strength in *bytes* value or 32 as default
206  *         to counter programming errors
207  */
208 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
209 {
210         switch (flags & DRBG_STRENGTH_MASK) {
211         case DRBG_STRENGTH128:
212                 return 16;
213         case DRBG_STRENGTH192:
214                 return 24;
215         case DRBG_STRENGTH256:
216                 return 32;
217         default:
218                 return 32;
219         }
220 }
221
222 /*
223  * FIPS 140-2 continuous self test for the noise source
224  * The test is performed on the noise source input data. Thus, the function
225  * implicitly knows the size of the buffer to be equal to the security
226  * strength.
227  *
228  * Note, this function disregards the nonce trailing the entropy data during
229  * initial seeding.
230  *
231  * drbg->drbg_mutex must have been taken.
232  *
233  * @drbg DRBG handle
234  * @entropy buffer of seed data to be checked
235  *
236  * return:
237  *      0 on success
238  *      -EAGAIN on when the CTRNG is not yet primed
239  *      < 0 on error
240  */
241 static int drbg_fips_continuous_test(struct drbg_state *drbg,
242                                      const unsigned char *entropy)
243 {
244         unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
245         int ret = 0;
246
247         if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
248                 return 0;
249
250         /* skip test if we test the overall system */
251         if (list_empty(&drbg->test_data.list))
252                 return 0;
253         /* only perform test in FIPS mode */
254         if (!fips_enabled)
255                 return 0;
256
257         if (!drbg->fips_primed) {
258                 /* Priming of FIPS test */
259                 memcpy(drbg->prev, entropy, entropylen);
260                 drbg->fips_primed = true;
261                 /* priming: another round is needed */
262                 return -EAGAIN;
263         }
264         ret = memcmp(drbg->prev, entropy, entropylen);
265         if (!ret)
266                 panic("DRBG continuous self test failed\n");
267         memcpy(drbg->prev, entropy, entropylen);
268
269         /* the test shall pass when the two values are not equal */
270         return 0;
271 }
272
273 /*
274  * Convert an integer into a byte representation of this integer.
275  * The byte representation is big-endian
276  *
277  * @val value to be converted
278  * @buf buffer holding the converted integer -- caller must ensure that
279  *      buffer size is at least 32 bit
280  */
281 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
282 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
283 {
284         struct s {
285                 __be32 conv;
286         };
287         struct s *conversion = (struct s *) buf;
288
289         conversion->conv = cpu_to_be32(val);
290 }
291 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
292
293 /******************************************************************
294  * CTR DRBG callback functions
295  ******************************************************************/
296
297 #ifdef CONFIG_CRYPTO_DRBG_CTR
298 #define CRYPTO_DRBG_CTR_STRING "CTR "
299 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
300 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
301 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
302 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
303 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
304 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
305
306 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
307                                  const unsigned char *key);
308 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
309                           const struct drbg_string *in);
310 static int drbg_init_sym_kernel(struct drbg_state *drbg);
311 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
312 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
313                               u8 *inbuf, u32 inbuflen,
314                               u8 *outbuf, u32 outlen);
315 #define DRBG_OUTSCRATCHLEN 256
316
317 /* BCC function for CTR DRBG as defined in 10.4.3 */
318 static int drbg_ctr_bcc(struct drbg_state *drbg,
319                         unsigned char *out, const unsigned char *key,
320                         struct list_head *in)
321 {
322         int ret = 0;
323         struct drbg_string *curr = NULL;
324         struct drbg_string data;
325         short cnt = 0;
326
327         drbg_string_fill(&data, out, drbg_blocklen(drbg));
328
329         /* 10.4.3 step 2 / 4 */
330         drbg_kcapi_symsetkey(drbg, key);
331         list_for_each_entry(curr, in, list) {
332                 const unsigned char *pos = curr->buf;
333                 size_t len = curr->len;
334                 /* 10.4.3 step 4.1 */
335                 while (len) {
336                         /* 10.4.3 step 4.2 */
337                         if (drbg_blocklen(drbg) == cnt) {
338                                 cnt = 0;
339                                 ret = drbg_kcapi_sym(drbg, out, &data);
340                                 if (ret)
341                                         return ret;
342                         }
343                         out[cnt] ^= *pos;
344                         pos++;
345                         cnt++;
346                         len--;
347                 }
348         }
349         /* 10.4.3 step 4.2 for last block */
350         if (cnt)
351                 ret = drbg_kcapi_sym(drbg, out, &data);
352
353         return ret;
354 }
355
356 /*
357  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
358  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
359  * the scratchpad is used as follows:
360  * drbg_ctr_update:
361  *      temp
362  *              start: drbg->scratchpad
363  *              length: drbg_statelen(drbg) + drbg_blocklen(drbg)
364  *                      note: the cipher writing into this variable works
365  *                      blocklen-wise. Now, when the statelen is not a multiple
366  *                      of blocklen, the generateion loop below "spills over"
367  *                      by at most blocklen. Thus, we need to give sufficient
368  *                      memory.
369  *      df_data
370  *              start: drbg->scratchpad +
371  *                              drbg_statelen(drbg) + drbg_blocklen(drbg)
372  *              length: drbg_statelen(drbg)
373  *
374  * drbg_ctr_df:
375  *      pad
376  *              start: df_data + drbg_statelen(drbg)
377  *              length: drbg_blocklen(drbg)
378  *      iv
379  *              start: pad + drbg_blocklen(drbg)
380  *              length: drbg_blocklen(drbg)
381  *      temp
382  *              start: iv + drbg_blocklen(drbg)
383  *              length: drbg_satelen(drbg) + drbg_blocklen(drbg)
384  *                      note: temp is the buffer that the BCC function operates
385  *                      on. BCC operates blockwise. drbg_statelen(drbg)
386  *                      is sufficient when the DRBG state length is a multiple
387  *                      of the block size. For AES192 (and maybe other ciphers)
388  *                      this is not correct and the length for temp is
389  *                      insufficient (yes, that also means for such ciphers,
390  *                      the final output of all BCC rounds are truncated).
391  *                      Therefore, add drbg_blocklen(drbg) to cover all
392  *                      possibilities.
393  */
394
395 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
396 static int drbg_ctr_df(struct drbg_state *drbg,
397                        unsigned char *df_data, size_t bytes_to_return,
398                        struct list_head *seedlist)
399 {
400         int ret = -EFAULT;
401         unsigned char L_N[8];
402         /* S3 is input */
403         struct drbg_string S1, S2, S4, cipherin;
404         LIST_HEAD(bcc_list);
405         unsigned char *pad = df_data + drbg_statelen(drbg);
406         unsigned char *iv = pad + drbg_blocklen(drbg);
407         unsigned char *temp = iv + drbg_blocklen(drbg);
408         size_t padlen = 0;
409         unsigned int templen = 0;
410         /* 10.4.2 step 7 */
411         unsigned int i = 0;
412         /* 10.4.2 step 8 */
413         const unsigned char *K = (unsigned char *)
414                            "\x00\x01\x02\x03\x04\x05\x06\x07"
415                            "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
416                            "\x10\x11\x12\x13\x14\x15\x16\x17"
417                            "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
418         unsigned char *X;
419         size_t generated_len = 0;
420         size_t inputlen = 0;
421         struct drbg_string *seed = NULL;
422
423         memset(pad, 0, drbg_blocklen(drbg));
424         memset(iv, 0, drbg_blocklen(drbg));
425
426         /* 10.4.2 step 1 is implicit as we work byte-wise */
427
428         /* 10.4.2 step 2 */
429         if ((512/8) < bytes_to_return)
430                 return -EINVAL;
431
432         /* 10.4.2 step 2 -- calculate the entire length of all input data */
433         list_for_each_entry(seed, seedlist, list)
434                 inputlen += seed->len;
435         drbg_cpu_to_be32(inputlen, &L_N[0]);
436
437         /* 10.4.2 step 3 */
438         drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
439
440         /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
441         padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
442         /* wrap the padlen appropriately */
443         if (padlen)
444                 padlen = drbg_blocklen(drbg) - padlen;
445         /*
446          * pad / padlen contains the 0x80 byte and the following zero bytes.
447          * As the calculated padlen value only covers the number of zero
448          * bytes, this value has to be incremented by one for the 0x80 byte.
449          */
450         padlen++;
451         pad[0] = 0x80;
452
453         /* 10.4.2 step 4 -- first fill the linked list and then order it */
454         drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
455         list_add_tail(&S1.list, &bcc_list);
456         drbg_string_fill(&S2, L_N, sizeof(L_N));
457         list_add_tail(&S2.list, &bcc_list);
458         list_splice_tail(seedlist, &bcc_list);
459         drbg_string_fill(&S4, pad, padlen);
460         list_add_tail(&S4.list, &bcc_list);
461
462         /* 10.4.2 step 9 */
463         while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
464                 /*
465                  * 10.4.2 step 9.1 - the padding is implicit as the buffer
466                  * holds zeros after allocation -- even the increment of i
467                  * is irrelevant as the increment remains within length of i
468                  */
469                 drbg_cpu_to_be32(i, iv);
470                 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
471                 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
472                 if (ret)
473                         goto out;
474                 /* 10.4.2 step 9.3 */
475                 i++;
476                 templen += drbg_blocklen(drbg);
477         }
478
479         /* 10.4.2 step 11 */
480         X = temp + (drbg_keylen(drbg));
481         drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
482
483         /* 10.4.2 step 12: overwriting of outval is implemented in next step */
484
485         /* 10.4.2 step 13 */
486         drbg_kcapi_symsetkey(drbg, temp);
487         while (generated_len < bytes_to_return) {
488                 short blocklen = 0;
489                 /*
490                  * 10.4.2 step 13.1: the truncation of the key length is
491                  * implicit as the key is only drbg_blocklen in size based on
492                  * the implementation of the cipher function callback
493                  */
494                 ret = drbg_kcapi_sym(drbg, X, &cipherin);
495                 if (ret)
496                         goto out;
497                 blocklen = (drbg_blocklen(drbg) <
498                                 (bytes_to_return - generated_len)) ?
499                             drbg_blocklen(drbg) :
500                                 (bytes_to_return - generated_len);
501                 /* 10.4.2 step 13.2 and 14 */
502                 memcpy(df_data + generated_len, X, blocklen);
503                 generated_len += blocklen;
504         }
505
506         ret = 0;
507
508 out:
509         memset(iv, 0, drbg_blocklen(drbg));
510         memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
511         memset(pad, 0, drbg_blocklen(drbg));
512         return ret;
513 }
514
515 /*
516  * update function of CTR DRBG as defined in 10.2.1.2
517  *
518  * The reseed variable has an enhanced meaning compared to the update
519  * functions of the other DRBGs as follows:
520  * 0 => initial seed from initialization
521  * 1 => reseed via drbg_seed
522  * 2 => first invocation from drbg_ctr_update when addtl is present. In
523  *      this case, the df_data scratchpad is not deleted so that it is
524  *      available for another calls to prevent calling the DF function
525  *      again.
526  * 3 => second invocation from drbg_ctr_update. When the update function
527  *      was called with addtl, the df_data memory already contains the
528  *      DFed addtl information and we do not need to call DF again.
529  */
530 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
531                            int reseed)
532 {
533         int ret = -EFAULT;
534         /* 10.2.1.2 step 1 */
535         unsigned char *temp = drbg->scratchpad;
536         unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
537                                  drbg_blocklen(drbg);
538
539         if (3 > reseed)
540                 memset(df_data, 0, drbg_statelen(drbg));
541
542         if (!reseed) {
543                 /*
544                  * The DRBG uses the CTR mode of the underlying AES cipher. The
545                  * CTR mode increments the counter value after the AES operation
546                  * but SP800-90A requires that the counter is incremented before
547                  * the AES operation. Hence, we increment it at the time we set
548                  * it by one.
549                  */
550                 crypto_inc(drbg->V, drbg_blocklen(drbg));
551
552                 ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
553                                              drbg_keylen(drbg));
554                 if (ret)
555                         goto out;
556         }
557
558         /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
559         if (seed) {
560                 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
561                 if (ret)
562                         goto out;
563         }
564
565         ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
566                                  temp, drbg_statelen(drbg));
567         if (ret)
568                 return ret;
569
570         /* 10.2.1.2 step 5 */
571         ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
572                                      drbg_keylen(drbg));
573         if (ret)
574                 goto out;
575         /* 10.2.1.2 step 6 */
576         memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
577         /* See above: increment counter by one to compensate timing of CTR op */
578         crypto_inc(drbg->V, drbg_blocklen(drbg));
579         ret = 0;
580
581 out:
582         memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
583         if (2 != reseed)
584                 memset(df_data, 0, drbg_statelen(drbg));
585         return ret;
586 }
587
588 /*
589  * scratchpad use: drbg_ctr_update is called independently from
590  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
591  */
592 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
593 static int drbg_ctr_generate(struct drbg_state *drbg,
594                              unsigned char *buf, unsigned int buflen,
595                              struct list_head *addtl)
596 {
597         int ret;
598         int len = min_t(int, buflen, INT_MAX);
599
600         /* 10.2.1.5.2 step 2 */
601         if (addtl && !list_empty(addtl)) {
602                 ret = drbg_ctr_update(drbg, addtl, 2);
603                 if (ret)
604                         return 0;
605         }
606
607         /* 10.2.1.5.2 step 4.1 */
608         ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
609         if (ret)
610                 return ret;
611
612         /* 10.2.1.5.2 step 6 */
613         ret = drbg_ctr_update(drbg, NULL, 3);
614         if (ret)
615                 len = ret;
616
617         return len;
618 }
619
620 static const struct drbg_state_ops drbg_ctr_ops = {
621         .update         = drbg_ctr_update,
622         .generate       = drbg_ctr_generate,
623         .crypto_init    = drbg_init_sym_kernel,
624         .crypto_fini    = drbg_fini_sym_kernel,
625 };
626 #endif /* CONFIG_CRYPTO_DRBG_CTR */
627
628 /******************************************************************
629  * HMAC DRBG callback functions
630  ******************************************************************/
631
632 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
633 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
634                            const struct list_head *in);
635 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
636                                   const unsigned char *key);
637 static int drbg_init_hash_kernel(struct drbg_state *drbg);
638 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
639 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
640
641 #ifdef CONFIG_CRYPTO_DRBG_HMAC
642 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
643 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
644 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
645 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
646 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
647 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
648 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
649 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
650 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
651
652 /* update function of HMAC DRBG as defined in 10.1.2.2 */
653 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
654                             int reseed)
655 {
656         int ret = -EFAULT;
657         int i = 0;
658         struct drbg_string seed1, seed2, vdata;
659         LIST_HEAD(seedlist);
660         LIST_HEAD(vdatalist);
661
662         if (!reseed) {
663                 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
664                 memset(drbg->V, 1, drbg_statelen(drbg));
665                 drbg_kcapi_hmacsetkey(drbg, drbg->C);
666         }
667
668         drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
669         list_add_tail(&seed1.list, &seedlist);
670         /* buffer of seed2 will be filled in for loop below with one byte */
671         drbg_string_fill(&seed2, NULL, 1);
672         list_add_tail(&seed2.list, &seedlist);
673         /* input data of seed is allowed to be NULL at this point */
674         if (seed)
675                 list_splice_tail(seed, &seedlist);
676
677         drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
678         list_add_tail(&vdata.list, &vdatalist);
679         for (i = 2; 0 < i; i--) {
680                 /* first round uses 0x0, second 0x1 */
681                 unsigned char prefix = DRBG_PREFIX0;
682                 if (1 == i)
683                         prefix = DRBG_PREFIX1;
684                 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
685                 seed2.buf = &prefix;
686                 ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
687                 if (ret)
688                         return ret;
689                 drbg_kcapi_hmacsetkey(drbg, drbg->C);
690
691                 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
692                 ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
693                 if (ret)
694                         return ret;
695
696                 /* 10.1.2.2 step 3 */
697                 if (!seed)
698                         return ret;
699         }
700
701         return 0;
702 }
703
704 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
705 static int drbg_hmac_generate(struct drbg_state *drbg,
706                               unsigned char *buf,
707                               unsigned int buflen,
708                               struct list_head *addtl)
709 {
710         int len = 0;
711         int ret = 0;
712         struct drbg_string data;
713         LIST_HEAD(datalist);
714
715         /* 10.1.2.5 step 2 */
716         if (addtl && !list_empty(addtl)) {
717                 ret = drbg_hmac_update(drbg, addtl, 1);
718                 if (ret)
719                         return ret;
720         }
721
722         drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
723         list_add_tail(&data.list, &datalist);
724         while (len < buflen) {
725                 unsigned int outlen = 0;
726                 /* 10.1.2.5 step 4.1 */
727                 ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
728                 if (ret)
729                         return ret;
730                 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
731                           drbg_blocklen(drbg) : (buflen - len);
732
733                 /* 10.1.2.5 step 4.2 */
734                 memcpy(buf + len, drbg->V, outlen);
735                 len += outlen;
736         }
737
738         /* 10.1.2.5 step 6 */
739         if (addtl && !list_empty(addtl))
740                 ret = drbg_hmac_update(drbg, addtl, 1);
741         else
742                 ret = drbg_hmac_update(drbg, NULL, 1);
743         if (ret)
744                 return ret;
745
746         return len;
747 }
748
749 static const struct drbg_state_ops drbg_hmac_ops = {
750         .update         = drbg_hmac_update,
751         .generate       = drbg_hmac_generate,
752         .crypto_init    = drbg_init_hash_kernel,
753         .crypto_fini    = drbg_fini_hash_kernel,
754 };
755 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
756
757 /******************************************************************
758  * Hash DRBG callback functions
759  ******************************************************************/
760
761 #ifdef CONFIG_CRYPTO_DRBG_HASH
762 #define CRYPTO_DRBG_HASH_STRING "HASH "
763 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
764 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
765 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
766 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
767 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
768 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
769 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
770 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
771
772 /*
773  * Increment buffer
774  *
775  * @dst buffer to increment
776  * @add value to add
777  */
778 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
779                                 const unsigned char *add, size_t addlen)
780 {
781         /* implied: dstlen > addlen */
782         unsigned char *dstptr;
783         const unsigned char *addptr;
784         unsigned int remainder = 0;
785         size_t len = addlen;
786
787         dstptr = dst + (dstlen-1);
788         addptr = add + (addlen-1);
789         while (len) {
790                 remainder += *dstptr + *addptr;
791                 *dstptr = remainder & 0xff;
792                 remainder >>= 8;
793                 len--; dstptr--; addptr--;
794         }
795         len = dstlen - addlen;
796         while (len && remainder > 0) {
797                 remainder = *dstptr + 1;
798                 *dstptr = remainder & 0xff;
799                 remainder >>= 8;
800                 len--; dstptr--;
801         }
802 }
803
804 /*
805  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
806  * interlinked, the scratchpad is used as follows:
807  * drbg_hash_update
808  *      start: drbg->scratchpad
809  *      length: drbg_statelen(drbg)
810  * drbg_hash_df:
811  *      start: drbg->scratchpad + drbg_statelen(drbg)
812  *      length: drbg_blocklen(drbg)
813  *
814  * drbg_hash_process_addtl uses the scratchpad, but fully completes
815  * before either of the functions mentioned before are invoked. Therefore,
816  * drbg_hash_process_addtl does not need to be specifically considered.
817  */
818
819 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
820 static int drbg_hash_df(struct drbg_state *drbg,
821                         unsigned char *outval, size_t outlen,
822                         struct list_head *entropylist)
823 {
824         int ret = 0;
825         size_t len = 0;
826         unsigned char input[5];
827         unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
828         struct drbg_string data;
829
830         /* 10.4.1 step 3 */
831         input[0] = 1;
832         drbg_cpu_to_be32((outlen * 8), &input[1]);
833
834         /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
835         drbg_string_fill(&data, input, 5);
836         list_add(&data.list, entropylist);
837
838         /* 10.4.1 step 4 */
839         while (len < outlen) {
840                 short blocklen = 0;
841                 /* 10.4.1 step 4.1 */
842                 ret = drbg_kcapi_hash(drbg, tmp, entropylist);
843                 if (ret)
844                         goto out;
845                 /* 10.4.1 step 4.2 */
846                 input[0]++;
847                 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
848                             drbg_blocklen(drbg) : (outlen - len);
849                 memcpy(outval + len, tmp, blocklen);
850                 len += blocklen;
851         }
852
853 out:
854         memset(tmp, 0, drbg_blocklen(drbg));
855         return ret;
856 }
857
858 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
859 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
860                             int reseed)
861 {
862         int ret = 0;
863         struct drbg_string data1, data2;
864         LIST_HEAD(datalist);
865         LIST_HEAD(datalist2);
866         unsigned char *V = drbg->scratchpad;
867         unsigned char prefix = DRBG_PREFIX1;
868
869         if (!seed)
870                 return -EINVAL;
871
872         if (reseed) {
873                 /* 10.1.1.3 step 1 */
874                 memcpy(V, drbg->V, drbg_statelen(drbg));
875                 drbg_string_fill(&data1, &prefix, 1);
876                 list_add_tail(&data1.list, &datalist);
877                 drbg_string_fill(&data2, V, drbg_statelen(drbg));
878                 list_add_tail(&data2.list, &datalist);
879         }
880         list_splice_tail(seed, &datalist);
881
882         /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
883         ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
884         if (ret)
885                 goto out;
886
887         /* 10.1.1.2 / 10.1.1.3 step 4  */
888         prefix = DRBG_PREFIX0;
889         drbg_string_fill(&data1, &prefix, 1);
890         list_add_tail(&data1.list, &datalist2);
891         drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
892         list_add_tail(&data2.list, &datalist2);
893         /* 10.1.1.2 / 10.1.1.3 step 4 */
894         ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
895
896 out:
897         memset(drbg->scratchpad, 0, drbg_statelen(drbg));
898         return ret;
899 }
900
901 /* processing of additional information string for Hash DRBG */
902 static int drbg_hash_process_addtl(struct drbg_state *drbg,
903                                    struct list_head *addtl)
904 {
905         int ret = 0;
906         struct drbg_string data1, data2;
907         LIST_HEAD(datalist);
908         unsigned char prefix = DRBG_PREFIX2;
909
910         /* 10.1.1.4 step 2 */
911         if (!addtl || list_empty(addtl))
912                 return 0;
913
914         /* 10.1.1.4 step 2a */
915         drbg_string_fill(&data1, &prefix, 1);
916         drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
917         list_add_tail(&data1.list, &datalist);
918         list_add_tail(&data2.list, &datalist);
919         list_splice_tail(addtl, &datalist);
920         ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
921         if (ret)
922                 goto out;
923
924         /* 10.1.1.4 step 2b */
925         drbg_add_buf(drbg->V, drbg_statelen(drbg),
926                      drbg->scratchpad, drbg_blocklen(drbg));
927
928 out:
929         memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
930         return ret;
931 }
932
933 /* Hashgen defined in 10.1.1.4 */
934 static int drbg_hash_hashgen(struct drbg_state *drbg,
935                              unsigned char *buf,
936                              unsigned int buflen)
937 {
938         int len = 0;
939         int ret = 0;
940         unsigned char *src = drbg->scratchpad;
941         unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
942         struct drbg_string data;
943         LIST_HEAD(datalist);
944
945         /* 10.1.1.4 step hashgen 2 */
946         memcpy(src, drbg->V, drbg_statelen(drbg));
947
948         drbg_string_fill(&data, src, drbg_statelen(drbg));
949         list_add_tail(&data.list, &datalist);
950         while (len < buflen) {
951                 unsigned int outlen = 0;
952                 /* 10.1.1.4 step hashgen 4.1 */
953                 ret = drbg_kcapi_hash(drbg, dst, &datalist);
954                 if (ret) {
955                         len = ret;
956                         goto out;
957                 }
958                 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
959                           drbg_blocklen(drbg) : (buflen - len);
960                 /* 10.1.1.4 step hashgen 4.2 */
961                 memcpy(buf + len, dst, outlen);
962                 len += outlen;
963                 /* 10.1.1.4 hashgen step 4.3 */
964                 if (len < buflen)
965                         crypto_inc(src, drbg_statelen(drbg));
966         }
967
968 out:
969         memset(drbg->scratchpad, 0,
970                (drbg_statelen(drbg) + drbg_blocklen(drbg)));
971         return len;
972 }
973
974 /* generate function for Hash DRBG as defined in  10.1.1.4 */
975 static int drbg_hash_generate(struct drbg_state *drbg,
976                               unsigned char *buf, unsigned int buflen,
977                               struct list_head *addtl)
978 {
979         int len = 0;
980         int ret = 0;
981         union {
982                 unsigned char req[8];
983                 __be64 req_int;
984         } u;
985         unsigned char prefix = DRBG_PREFIX3;
986         struct drbg_string data1, data2;
987         LIST_HEAD(datalist);
988
989         /* 10.1.1.4 step 2 */
990         ret = drbg_hash_process_addtl(drbg, addtl);
991         if (ret)
992                 return ret;
993         /* 10.1.1.4 step 3 */
994         len = drbg_hash_hashgen(drbg, buf, buflen);
995
996         /* this is the value H as documented in 10.1.1.4 */
997         /* 10.1.1.4 step 4 */
998         drbg_string_fill(&data1, &prefix, 1);
999         list_add_tail(&data1.list, &datalist);
1000         drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1001         list_add_tail(&data2.list, &datalist);
1002         ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
1003         if (ret) {
1004                 len = ret;
1005                 goto out;
1006         }
1007
1008         /* 10.1.1.4 step 5 */
1009         drbg_add_buf(drbg->V, drbg_statelen(drbg),
1010                      drbg->scratchpad, drbg_blocklen(drbg));
1011         drbg_add_buf(drbg->V, drbg_statelen(drbg),
1012                      drbg->C, drbg_statelen(drbg));
1013         u.req_int = cpu_to_be64(drbg->reseed_ctr);
1014         drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1015
1016 out:
1017         memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1018         return len;
1019 }
1020
1021 /*
1022  * scratchpad usage: as update and generate are used isolated, both
1023  * can use the scratchpad
1024  */
1025 static const struct drbg_state_ops drbg_hash_ops = {
1026         .update         = drbg_hash_update,
1027         .generate       = drbg_hash_generate,
1028         .crypto_init    = drbg_init_hash_kernel,
1029         .crypto_fini    = drbg_fini_hash_kernel,
1030 };
1031 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1032
1033 /******************************************************************
1034  * Functions common for DRBG implementations
1035  ******************************************************************/
1036
1037 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1038                               int reseed)
1039 {
1040         int ret = drbg->d_ops->update(drbg, seed, reseed);
1041
1042         if (ret)
1043                 return ret;
1044
1045         drbg->seeded = true;
1046         /* 10.1.1.2 / 10.1.1.3 step 5 */
1047         drbg->reseed_ctr = 1;
1048
1049         return ret;
1050 }
1051
1052 static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1053                                         unsigned char *entropy,
1054                                         unsigned int entropylen)
1055 {
1056         int ret;
1057
1058         do {
1059                 get_random_bytes(entropy, entropylen);
1060                 ret = drbg_fips_continuous_test(drbg, entropy);
1061                 if (ret && ret != -EAGAIN)
1062                         return ret;
1063         } while (ret);
1064
1065         return 0;
1066 }
1067
1068 static void drbg_async_seed(struct work_struct *work)
1069 {
1070         struct drbg_string data;
1071         LIST_HEAD(seedlist);
1072         struct drbg_state *drbg = container_of(work, struct drbg_state,
1073                                                seed_work);
1074         unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1075         unsigned char entropy[32];
1076         int ret;
1077
1078         BUG_ON(!entropylen);
1079         BUG_ON(entropylen > sizeof(entropy));
1080
1081         drbg_string_fill(&data, entropy, entropylen);
1082         list_add_tail(&data.list, &seedlist);
1083
1084         mutex_lock(&drbg->drbg_mutex);
1085
1086         ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1087         if (ret)
1088                 goto unlock;
1089
1090         /* If nonblocking pool is initialized, deactivate Jitter RNG */
1091         crypto_free_rng(drbg->jent);
1092         drbg->jent = NULL;
1093
1094         /* Set seeded to false so that if __drbg_seed fails the
1095          * next generate call will trigger a reseed.
1096          */
1097         drbg->seeded = false;
1098
1099         __drbg_seed(drbg, &seedlist, true);
1100
1101         if (drbg->seeded)
1102                 drbg->reseed_threshold = drbg_max_requests(drbg);
1103
1104 unlock:
1105         mutex_unlock(&drbg->drbg_mutex);
1106
1107         memzero_explicit(entropy, entropylen);
1108 }
1109
1110 /*
1111  * Seeding or reseeding of the DRBG
1112  *
1113  * @drbg: DRBG state struct
1114  * @pers: personalization / additional information buffer
1115  * @reseed: 0 for initial seed process, 1 for reseeding
1116  *
1117  * return:
1118  *      0 on success
1119  *      error value otherwise
1120  */
1121 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1122                      bool reseed)
1123 {
1124         int ret;
1125         unsigned char entropy[((32 + 16) * 2)];
1126         unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1127         struct drbg_string data1;
1128         LIST_HEAD(seedlist);
1129
1130         /* 9.1 / 9.2 / 9.3.1 step 3 */
1131         if (pers && pers->len > (drbg_max_addtl(drbg))) {
1132                 pr_devel("DRBG: personalization string too long %zu\n",
1133                          pers->len);
1134                 return -EINVAL;
1135         }
1136
1137         if (list_empty(&drbg->test_data.list)) {
1138                 drbg_string_fill(&data1, drbg->test_data.buf,
1139                                  drbg->test_data.len);
1140                 pr_devel("DRBG: using test entropy\n");
1141         } else {
1142                 /*
1143                  * Gather entropy equal to the security strength of the DRBG.
1144                  * With a derivation function, a nonce is required in addition
1145                  * to the entropy. A nonce must be at least 1/2 of the security
1146                  * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1147                  * of the strength. The consideration of a nonce is only
1148                  * applicable during initial seeding.
1149                  */
1150                 BUG_ON(!entropylen);
1151                 if (!reseed)
1152                         entropylen = ((entropylen + 1) / 2) * 3;
1153                 BUG_ON((entropylen * 2) > sizeof(entropy));
1154
1155                 /* Get seed from in-kernel /dev/urandom */
1156                 ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1157                 if (ret)
1158                         goto out;
1159
1160                 if (!drbg->jent) {
1161                         drbg_string_fill(&data1, entropy, entropylen);
1162                         pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1163                                  entropylen);
1164                 } else {
1165                         /* Get seed from Jitter RNG */
1166                         ret = crypto_rng_get_bytes(drbg->jent,
1167                                                    entropy + entropylen,
1168                                                    entropylen);
1169                         if (ret) {
1170                                 pr_devel("DRBG: jent failed with %d\n", ret);
1171                                 goto out;
1172                         }
1173
1174                         drbg_string_fill(&data1, entropy, entropylen * 2);
1175                         pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1176                                  entropylen * 2);
1177                 }
1178         }
1179         list_add_tail(&data1.list, &seedlist);
1180
1181         /*
1182          * concatenation of entropy with personalization str / addtl input)
1183          * the variable pers is directly handed in by the caller, so check its
1184          * contents whether it is appropriate
1185          */
1186         if (pers && pers->buf && 0 < pers->len) {
1187                 list_add_tail(&pers->list, &seedlist);
1188                 pr_devel("DRBG: using personalization string\n");
1189         }
1190
1191         if (!reseed) {
1192                 memset(drbg->V, 0, drbg_statelen(drbg));
1193                 memset(drbg->C, 0, drbg_statelen(drbg));
1194         }
1195
1196         ret = __drbg_seed(drbg, &seedlist, reseed);
1197
1198 out:
1199         memzero_explicit(entropy, entropylen * 2);
1200
1201         return ret;
1202 }
1203
1204 /* Free all substructures in a DRBG state without the DRBG state structure */
1205 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1206 {
1207         if (!drbg)
1208                 return;
1209         kzfree(drbg->Vbuf);
1210         drbg->Vbuf = NULL;
1211         drbg->V = NULL;
1212         kzfree(drbg->Cbuf);
1213         drbg->Cbuf = NULL;
1214         drbg->C = NULL;
1215         kzfree(drbg->scratchpadbuf);
1216         drbg->scratchpadbuf = NULL;
1217         drbg->reseed_ctr = 0;
1218         drbg->d_ops = NULL;
1219         drbg->core = NULL;
1220         if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1221                 kzfree(drbg->prev);
1222                 drbg->prev = NULL;
1223                 drbg->fips_primed = false;
1224         }
1225 }
1226
1227 /*
1228  * Allocate all sub-structures for a DRBG state.
1229  * The DRBG state structure must already be allocated.
1230  */
1231 static inline int drbg_alloc_state(struct drbg_state *drbg)
1232 {
1233         int ret = -ENOMEM;
1234         unsigned int sb_size = 0;
1235
1236         switch (drbg->core->flags & DRBG_TYPE_MASK) {
1237 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1238         case DRBG_HMAC:
1239                 drbg->d_ops = &drbg_hmac_ops;
1240                 break;
1241 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1242 #ifdef CONFIG_CRYPTO_DRBG_HASH
1243         case DRBG_HASH:
1244                 drbg->d_ops = &drbg_hash_ops;
1245                 break;
1246 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1247 #ifdef CONFIG_CRYPTO_DRBG_CTR
1248         case DRBG_CTR:
1249                 drbg->d_ops = &drbg_ctr_ops;
1250                 break;
1251 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1252         default:
1253                 ret = -EOPNOTSUPP;
1254                 goto err;
1255         }
1256
1257         ret = drbg->d_ops->crypto_init(drbg);
1258         if (ret < 0)
1259                 goto err;
1260
1261         drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1262         if (!drbg->Vbuf) {
1263                 ret = -ENOMEM;
1264                 goto fini;
1265         }
1266         drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1267         drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1268         if (!drbg->Cbuf) {
1269                 ret = -ENOMEM;
1270                 goto fini;
1271         }
1272         drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1273         /* scratchpad is only generated for CTR and Hash */
1274         if (drbg->core->flags & DRBG_HMAC)
1275                 sb_size = 0;
1276         else if (drbg->core->flags & DRBG_CTR)
1277                 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1278                           drbg_statelen(drbg) + /* df_data */
1279                           drbg_blocklen(drbg) + /* pad */
1280                           drbg_blocklen(drbg) + /* iv */
1281                           drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1282         else
1283                 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1284
1285         if (0 < sb_size) {
1286                 drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1287                 if (!drbg->scratchpadbuf) {
1288                         ret = -ENOMEM;
1289                         goto fini;
1290                 }
1291                 drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1292         }
1293
1294         if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1295                 drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1296                                      GFP_KERNEL);
1297                 if (!drbg->prev)
1298                         goto fini;
1299                 drbg->fips_primed = false;
1300         }
1301
1302         return 0;
1303
1304 fini:
1305         drbg->d_ops->crypto_fini(drbg);
1306 err:
1307         drbg_dealloc_state(drbg);
1308         return ret;
1309 }
1310
1311 /*************************************************************************
1312  * DRBG interface functions
1313  *************************************************************************/
1314
1315 /*
1316  * DRBG generate function as required by SP800-90A - this function
1317  * generates random numbers
1318  *
1319  * @drbg DRBG state handle
1320  * @buf Buffer where to store the random numbers -- the buffer must already
1321  *      be pre-allocated by caller
1322  * @buflen Length of output buffer - this value defines the number of random
1323  *         bytes pulled from DRBG
1324  * @addtl Additional input that is mixed into state, may be NULL -- note
1325  *        the entropy is pulled by the DRBG internally unconditionally
1326  *        as defined in SP800-90A. The additional input is mixed into
1327  *        the state in addition to the pulled entropy.
1328  *
1329  * return: 0 when all bytes are generated; < 0 in case of an error
1330  */
1331 static int drbg_generate(struct drbg_state *drbg,
1332                          unsigned char *buf, unsigned int buflen,
1333                          struct drbg_string *addtl)
1334 {
1335         int len = 0;
1336         LIST_HEAD(addtllist);
1337
1338         if (!drbg->core) {
1339                 pr_devel("DRBG: not yet seeded\n");
1340                 return -EINVAL;
1341         }
1342         if (0 == buflen || !buf) {
1343                 pr_devel("DRBG: no output buffer provided\n");
1344                 return -EINVAL;
1345         }
1346         if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1347                 pr_devel("DRBG: wrong format of additional information\n");
1348                 return -EINVAL;
1349         }
1350
1351         /* 9.3.1 step 2 */
1352         len = -EINVAL;
1353         if (buflen > (drbg_max_request_bytes(drbg))) {
1354                 pr_devel("DRBG: requested random numbers too large %u\n",
1355                          buflen);
1356                 goto err;
1357         }
1358
1359         /* 9.3.1 step 3 is implicit with the chosen DRBG */
1360
1361         /* 9.3.1 step 4 */
1362         if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1363                 pr_devel("DRBG: additional information string too long %zu\n",
1364                          addtl->len);
1365                 goto err;
1366         }
1367         /* 9.3.1 step 5 is implicit with the chosen DRBG */
1368
1369         /*
1370          * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1371          * here. The spec is a bit convoluted here, we make it simpler.
1372          */
1373         if (drbg->reseed_threshold < drbg->reseed_ctr)
1374                 drbg->seeded = false;
1375
1376         if (drbg->pr || !drbg->seeded) {
1377                 pr_devel("DRBG: reseeding before generation (prediction "
1378                          "resistance: %s, state %s)\n",
1379                          drbg->pr ? "true" : "false",
1380                          drbg->seeded ? "seeded" : "unseeded");
1381                 /* 9.3.1 steps 7.1 through 7.3 */
1382                 len = drbg_seed(drbg, addtl, true);
1383                 if (len)
1384                         goto err;
1385                 /* 9.3.1 step 7.4 */
1386                 addtl = NULL;
1387         }
1388
1389         if (addtl && 0 < addtl->len)
1390                 list_add_tail(&addtl->list, &addtllist);
1391         /* 9.3.1 step 8 and 10 */
1392         len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1393
1394         /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1395         drbg->reseed_ctr++;
1396         if (0 >= len)
1397                 goto err;
1398
1399         /*
1400          * Section 11.3.3 requires to re-perform self tests after some
1401          * generated random numbers. The chosen value after which self
1402          * test is performed is arbitrary, but it should be reasonable.
1403          * However, we do not perform the self tests because of the following
1404          * reasons: it is mathematically impossible that the initial self tests
1405          * were successfully and the following are not. If the initial would
1406          * pass and the following would not, the kernel integrity is violated.
1407          * In this case, the entire kernel operation is questionable and it
1408          * is unlikely that the integrity violation only affects the
1409          * correct operation of the DRBG.
1410          *
1411          * Albeit the following code is commented out, it is provided in
1412          * case somebody has a need to implement the test of 11.3.3.
1413          */
1414 #if 0
1415         if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1416                 int err = 0;
1417                 pr_devel("DRBG: start to perform self test\n");
1418                 if (drbg->core->flags & DRBG_HMAC)
1419                         err = alg_test("drbg_pr_hmac_sha256",
1420                                        "drbg_pr_hmac_sha256", 0, 0);
1421                 else if (drbg->core->flags & DRBG_CTR)
1422                         err = alg_test("drbg_pr_ctr_aes128",
1423                                        "drbg_pr_ctr_aes128", 0, 0);
1424                 else
1425                         err = alg_test("drbg_pr_sha256",
1426                                        "drbg_pr_sha256", 0, 0);
1427                 if (err) {
1428                         pr_err("DRBG: periodical self test failed\n");
1429                         /*
1430                          * uninstantiate implies that from now on, only errors
1431                          * are returned when reusing this DRBG cipher handle
1432                          */
1433                         drbg_uninstantiate(drbg);
1434                         return 0;
1435                 } else {
1436                         pr_devel("DRBG: self test successful\n");
1437                 }
1438         }
1439 #endif
1440
1441         /*
1442          * All operations were successful, return 0 as mandated by
1443          * the kernel crypto API interface.
1444          */
1445         len = 0;
1446 err:
1447         return len;
1448 }
1449
1450 /*
1451  * Wrapper around drbg_generate which can pull arbitrary long strings
1452  * from the DRBG without hitting the maximum request limitation.
1453  *
1454  * Parameters: see drbg_generate
1455  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1456  *               the entire drbg_generate_long request fails
1457  */
1458 static int drbg_generate_long(struct drbg_state *drbg,
1459                               unsigned char *buf, unsigned int buflen,
1460                               struct drbg_string *addtl)
1461 {
1462         unsigned int len = 0;
1463         unsigned int slice = 0;
1464         do {
1465                 int err = 0;
1466                 unsigned int chunk = 0;
1467                 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1468                 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1469                 mutex_lock(&drbg->drbg_mutex);
1470                 err = drbg_generate(drbg, buf + len, chunk, addtl);
1471                 mutex_unlock(&drbg->drbg_mutex);
1472                 if (0 > err)
1473                         return err;
1474                 len += chunk;
1475         } while (slice > 0 && (len < buflen));
1476         return 0;
1477 }
1478
1479 static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1480 {
1481         struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1482                                                random_ready);
1483
1484         schedule_work(&drbg->seed_work);
1485 }
1486
1487 static int drbg_prepare_hrng(struct drbg_state *drbg)
1488 {
1489         int err;
1490
1491         /* We do not need an HRNG in test mode. */
1492         if (list_empty(&drbg->test_data.list))
1493                 return 0;
1494
1495         INIT_WORK(&drbg->seed_work, drbg_async_seed);
1496
1497         drbg->random_ready.owner = THIS_MODULE;
1498         drbg->random_ready.func = drbg_schedule_async_seed;
1499
1500         err = add_random_ready_callback(&drbg->random_ready);
1501
1502         switch (err) {
1503         case 0:
1504                 break;
1505
1506         case -EALREADY:
1507                 err = 0;
1508                 /* fall through */
1509
1510         default:
1511                 drbg->random_ready.func = NULL;
1512                 return err;
1513         }
1514
1515         drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1516
1517         /*
1518          * Require frequent reseeds until the seed source is fully
1519          * initialized.
1520          */
1521         drbg->reseed_threshold = 50;
1522
1523         return err;
1524 }
1525
1526 /*
1527  * DRBG instantiation function as required by SP800-90A - this function
1528  * sets up the DRBG handle, performs the initial seeding and all sanity
1529  * checks required by SP800-90A
1530  *
1531  * @drbg memory of state -- if NULL, new memory is allocated
1532  * @pers Personalization string that is mixed into state, may be NULL -- note
1533  *       the entropy is pulled by the DRBG internally unconditionally
1534  *       as defined in SP800-90A. The additional input is mixed into
1535  *       the state in addition to the pulled entropy.
1536  * @coreref reference to core
1537  * @pr prediction resistance enabled
1538  *
1539  * return
1540  *      0 on success
1541  *      error value otherwise
1542  */
1543 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1544                             int coreref, bool pr)
1545 {
1546         int ret;
1547         bool reseed = true;
1548
1549         pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1550                  "%s\n", coreref, pr ? "enabled" : "disabled");
1551         mutex_lock(&drbg->drbg_mutex);
1552
1553         /* 9.1 step 1 is implicit with the selected DRBG type */
1554
1555         /*
1556          * 9.1 step 2 is implicit as caller can select prediction resistance
1557          * and the flag is copied into drbg->flags --
1558          * all DRBG types support prediction resistance
1559          */
1560
1561         /* 9.1 step 4 is implicit in  drbg_sec_strength */
1562
1563         if (!drbg->core) {
1564                 drbg->core = &drbg_cores[coreref];
1565                 drbg->pr = pr;
1566                 drbg->seeded = false;
1567                 drbg->reseed_threshold = drbg_max_requests(drbg);
1568
1569                 ret = drbg_alloc_state(drbg);
1570                 if (ret)
1571                         goto unlock;
1572
1573                 ret = drbg_prepare_hrng(drbg);
1574                 if (ret)
1575                         goto free_everything;
1576
1577                 if (IS_ERR(drbg->jent)) {
1578                         ret = PTR_ERR(drbg->jent);
1579                         drbg->jent = NULL;
1580                         if (fips_enabled || ret != -ENOENT)
1581                                 goto free_everything;
1582                         pr_info("DRBG: Continuing without Jitter RNG\n");
1583                 }
1584
1585                 reseed = false;
1586         }
1587
1588         ret = drbg_seed(drbg, pers, reseed);
1589
1590         if (ret && !reseed)
1591                 goto free_everything;
1592
1593         mutex_unlock(&drbg->drbg_mutex);
1594         return ret;
1595
1596 unlock:
1597         mutex_unlock(&drbg->drbg_mutex);
1598         return ret;
1599
1600 free_everything:
1601         mutex_unlock(&drbg->drbg_mutex);
1602         drbg_uninstantiate(drbg);
1603         return ret;
1604 }
1605
1606 /*
1607  * DRBG uninstantiate function as required by SP800-90A - this function
1608  * frees all buffers and the DRBG handle
1609  *
1610  * @drbg DRBG state handle
1611  *
1612  * return
1613  *      0 on success
1614  */
1615 static int drbg_uninstantiate(struct drbg_state *drbg)
1616 {
1617         if (drbg->random_ready.func) {
1618                 del_random_ready_callback(&drbg->random_ready);
1619                 cancel_work_sync(&drbg->seed_work);
1620                 crypto_free_rng(drbg->jent);
1621                 drbg->jent = NULL;
1622         }
1623
1624         if (drbg->d_ops)
1625                 drbg->d_ops->crypto_fini(drbg);
1626         drbg_dealloc_state(drbg);
1627         /* no scrubbing of test_data -- this shall survive an uninstantiate */
1628         return 0;
1629 }
1630
1631 /*
1632  * Helper function for setting the test data in the DRBG
1633  *
1634  * @drbg DRBG state handle
1635  * @data test data
1636  * @len test data length
1637  */
1638 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1639                                    const u8 *data, unsigned int len)
1640 {
1641         struct drbg_state *drbg = crypto_rng_ctx(tfm);
1642
1643         mutex_lock(&drbg->drbg_mutex);
1644         drbg_string_fill(&drbg->test_data, data, len);
1645         mutex_unlock(&drbg->drbg_mutex);
1646 }
1647
1648 /***************************************************************
1649  * Kernel crypto API cipher invocations requested by DRBG
1650  ***************************************************************/
1651
1652 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1653 struct sdesc {
1654         struct shash_desc shash;
1655         char ctx[];
1656 };
1657
1658 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1659 {
1660         struct sdesc *sdesc;
1661         struct crypto_shash *tfm;
1662
1663         tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1664         if (IS_ERR(tfm)) {
1665                 pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1666                                 drbg->core->backend_cra_name);
1667                 return PTR_ERR(tfm);
1668         }
1669         BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1670         sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1671                         GFP_KERNEL);
1672         if (!sdesc) {
1673                 crypto_free_shash(tfm);
1674                 return -ENOMEM;
1675         }
1676
1677         sdesc->shash.tfm = tfm;
1678         drbg->priv_data = sdesc;
1679
1680         return crypto_shash_alignmask(tfm);
1681 }
1682
1683 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1684 {
1685         struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1686         if (sdesc) {
1687                 crypto_free_shash(sdesc->shash.tfm);
1688                 kzfree(sdesc);
1689         }
1690         drbg->priv_data = NULL;
1691         return 0;
1692 }
1693
1694 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1695                                   const unsigned char *key)
1696 {
1697         struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1698
1699         crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1700 }
1701
1702 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1703                            const struct list_head *in)
1704 {
1705         struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1706         struct drbg_string *input = NULL;
1707
1708         crypto_shash_init(&sdesc->shash);
1709         list_for_each_entry(input, in, list)
1710                 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1711         return crypto_shash_final(&sdesc->shash, outval);
1712 }
1713 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1714
1715 #ifdef CONFIG_CRYPTO_DRBG_CTR
1716 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1717 {
1718         struct crypto_cipher *tfm =
1719                 (struct crypto_cipher *)drbg->priv_data;
1720         if (tfm)
1721                 crypto_free_cipher(tfm);
1722         drbg->priv_data = NULL;
1723
1724         if (drbg->ctr_handle)
1725                 crypto_free_skcipher(drbg->ctr_handle);
1726         drbg->ctr_handle = NULL;
1727
1728         if (drbg->ctr_req)
1729                 skcipher_request_free(drbg->ctr_req);
1730         drbg->ctr_req = NULL;
1731
1732         kfree(drbg->outscratchpadbuf);
1733         drbg->outscratchpadbuf = NULL;
1734
1735         return 0;
1736 }
1737
1738 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1739 {
1740         struct crypto_cipher *tfm;
1741         struct crypto_skcipher *sk_tfm;
1742         struct skcipher_request *req;
1743         unsigned int alignmask;
1744         char ctr_name[CRYPTO_MAX_ALG_NAME];
1745
1746         tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1747         if (IS_ERR(tfm)) {
1748                 pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1749                                 drbg->core->backend_cra_name);
1750                 return PTR_ERR(tfm);
1751         }
1752         BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1753         drbg->priv_data = tfm;
1754
1755         if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1756             drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1757                 drbg_fini_sym_kernel(drbg);
1758                 return -EINVAL;
1759         }
1760         sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1761         if (IS_ERR(sk_tfm)) {
1762                 pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1763                                 ctr_name);
1764                 drbg_fini_sym_kernel(drbg);
1765                 return PTR_ERR(sk_tfm);
1766         }
1767         drbg->ctr_handle = sk_tfm;
1768         crypto_init_wait(&drbg->ctr_wait);
1769
1770         req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1771         if (!req) {
1772                 pr_info("DRBG: could not allocate request queue\n");
1773                 drbg_fini_sym_kernel(drbg);
1774                 return -ENOMEM;
1775         }
1776         drbg->ctr_req = req;
1777         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1778                                                 CRYPTO_TFM_REQ_MAY_SLEEP,
1779                                         crypto_req_done, &drbg->ctr_wait);
1780
1781         alignmask = crypto_skcipher_alignmask(sk_tfm);
1782         drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1783                                          GFP_KERNEL);
1784         if (!drbg->outscratchpadbuf) {
1785                 drbg_fini_sym_kernel(drbg);
1786                 return -ENOMEM;
1787         }
1788         drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1789                                               alignmask + 1);
1790
1791         sg_init_table(&drbg->sg_in, 1);
1792         sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1793
1794         return alignmask;
1795 }
1796
1797 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1798                                  const unsigned char *key)
1799 {
1800         struct crypto_cipher *tfm =
1801                 (struct crypto_cipher *)drbg->priv_data;
1802
1803         crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1804 }
1805
1806 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1807                           const struct drbg_string *in)
1808 {
1809         struct crypto_cipher *tfm =
1810                 (struct crypto_cipher *)drbg->priv_data;
1811
1812         /* there is only component in *in */
1813         BUG_ON(in->len < drbg_blocklen(drbg));
1814         crypto_cipher_encrypt_one(tfm, outval, in->buf);
1815         return 0;
1816 }
1817
1818 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1819                               u8 *inbuf, u32 inlen,
1820                               u8 *outbuf, u32 outlen)
1821 {
1822         struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1823         u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1824         int ret;
1825
1826         if (inbuf) {
1827                 /* Use caller-provided input buffer */
1828                 sg_set_buf(sg_in, inbuf, inlen);
1829         } else {
1830                 /* Use scratchpad for in-place operation */
1831                 inlen = scratchpad_use;
1832                 memset(drbg->outscratchpad, 0, scratchpad_use);
1833                 sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1834         }
1835
1836         while (outlen) {
1837                 u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1838
1839                 /* Output buffer may not be valid for SGL, use scratchpad */
1840                 skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1841                                            cryptlen, drbg->V);
1842                 ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1843                                         &drbg->ctr_wait);
1844                 if (ret)
1845                         goto out;
1846
1847                 crypto_init_wait(&drbg->ctr_wait);
1848
1849                 memcpy(outbuf, drbg->outscratchpad, cryptlen);
1850                 memzero_explicit(drbg->outscratchpad, cryptlen);
1851
1852                 outlen -= cryptlen;
1853                 outbuf += cryptlen;
1854         }
1855         ret = 0;
1856
1857 out:
1858         return ret;
1859 }
1860 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1861
1862 /***************************************************************
1863  * Kernel crypto API interface to register DRBG
1864  ***************************************************************/
1865
1866 /*
1867  * Look up the DRBG flags by given kernel crypto API cra_name
1868  * The code uses the drbg_cores definition to do this
1869  *
1870  * @cra_name kernel crypto API cra_name
1871  * @coreref reference to integer which is filled with the pointer to
1872  *  the applicable core
1873  * @pr reference for setting prediction resistance
1874  *
1875  * return: flags
1876  */
1877 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1878                                          int *coreref, bool *pr)
1879 {
1880         int i = 0;
1881         size_t start = 0;
1882         int len = 0;
1883
1884         *pr = true;
1885         /* disassemble the names */
1886         if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1887                 start = 10;
1888                 *pr = false;
1889         } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1890                 start = 8;
1891         } else {
1892                 return;
1893         }
1894
1895         /* remove the first part */
1896         len = strlen(cra_driver_name) - start;
1897         for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1898                 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1899                             len)) {
1900                         *coreref = i;
1901                         return;
1902                 }
1903         }
1904 }
1905
1906 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1907 {
1908         struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1909
1910         mutex_init(&drbg->drbg_mutex);
1911
1912         return 0;
1913 }
1914
1915 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1916 {
1917         drbg_uninstantiate(crypto_tfm_ctx(tfm));
1918 }
1919
1920 /*
1921  * Generate random numbers invoked by the kernel crypto API:
1922  * The API of the kernel crypto API is extended as follows:
1923  *
1924  * src is additional input supplied to the RNG.
1925  * slen is the length of src.
1926  * dst is the output buffer where random data is to be stored.
1927  * dlen is the length of dst.
1928  */
1929 static int drbg_kcapi_random(struct crypto_rng *tfm,
1930                              const u8 *src, unsigned int slen,
1931                              u8 *dst, unsigned int dlen)
1932 {
1933         struct drbg_state *drbg = crypto_rng_ctx(tfm);
1934         struct drbg_string *addtl = NULL;
1935         struct drbg_string string;
1936
1937         if (slen) {
1938                 /* linked list variable is now local to allow modification */
1939                 drbg_string_fill(&string, src, slen);
1940                 addtl = &string;
1941         }
1942
1943         return drbg_generate_long(drbg, dst, dlen, addtl);
1944 }
1945
1946 /*
1947  * Seed the DRBG invoked by the kernel crypto API
1948  */
1949 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1950                            const u8 *seed, unsigned int slen)
1951 {
1952         struct drbg_state *drbg = crypto_rng_ctx(tfm);
1953         struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1954         bool pr = false;
1955         struct drbg_string string;
1956         struct drbg_string *seed_string = NULL;
1957         int coreref = 0;
1958
1959         drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1960                               &pr);
1961         if (0 < slen) {
1962                 drbg_string_fill(&string, seed, slen);
1963                 seed_string = &string;
1964         }
1965
1966         return drbg_instantiate(drbg, seed_string, coreref, pr);
1967 }
1968
1969 /***************************************************************
1970  * Kernel module: code to load the module
1971  ***************************************************************/
1972
1973 /*
1974  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1975  * of the error handling.
1976  *
1977  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1978  * as seed source of get_random_bytes does not fail.
1979  *
1980  * Note 2: There is no sensible way of testing the reseed counter
1981  * enforcement, so skip it.
1982  */
1983 static inline int __init drbg_healthcheck_sanity(void)
1984 {
1985         int len = 0;
1986 #define OUTBUFLEN 16
1987         unsigned char buf[OUTBUFLEN];
1988         struct drbg_state *drbg = NULL;
1989         int ret = -EFAULT;
1990         int rc = -EFAULT;
1991         bool pr = false;
1992         int coreref = 0;
1993         struct drbg_string addtl;
1994         size_t max_addtllen, max_request_bytes;
1995
1996         /* only perform test in FIPS mode */
1997         if (!fips_enabled)
1998                 return 0;
1999
2000 #ifdef CONFIG_CRYPTO_DRBG_CTR
2001         drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
2002 #elif defined CONFIG_CRYPTO_DRBG_HASH
2003         drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
2004 #else
2005         drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
2006 #endif
2007
2008         drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2009         if (!drbg)
2010                 return -ENOMEM;
2011
2012         mutex_init(&drbg->drbg_mutex);
2013         drbg->core = &drbg_cores[coreref];
2014         drbg->reseed_threshold = drbg_max_requests(drbg);
2015
2016         /*
2017          * if the following tests fail, it is likely that there is a buffer
2018          * overflow as buf is much smaller than the requested or provided
2019          * string lengths -- in case the error handling does not succeed
2020          * we may get an OOPS. And we want to get an OOPS as this is a
2021          * grave bug.
2022          */
2023
2024         max_addtllen = drbg_max_addtl(drbg);
2025         max_request_bytes = drbg_max_request_bytes(drbg);
2026         drbg_string_fill(&addtl, buf, max_addtllen + 1);
2027         /* overflow addtllen with additonal info string */
2028         len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2029         BUG_ON(0 < len);
2030         /* overflow max_bits */
2031         len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2032         BUG_ON(0 < len);
2033
2034         /* overflow max addtllen with personalization string */
2035         ret = drbg_seed(drbg, &addtl, false);
2036         BUG_ON(0 == ret);
2037         /* all tests passed */
2038         rc = 0;
2039
2040         pr_devel("DRBG: Sanity tests for failure code paths successfully "
2041                  "completed\n");
2042
2043         kfree(drbg);
2044         return rc;
2045 }
2046
2047 static struct rng_alg drbg_algs[22];
2048
2049 /*
2050  * Fill the array drbg_algs used to register the different DRBGs
2051  * with the kernel crypto API. To fill the array, the information
2052  * from drbg_cores[] is used.
2053  */
2054 static inline void __init drbg_fill_array(struct rng_alg *alg,
2055                                           const struct drbg_core *core, int pr)
2056 {
2057         int pos = 0;
2058         static int priority = 200;
2059
2060         memcpy(alg->base.cra_name, "stdrng", 6);
2061         if (pr) {
2062                 memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2063                 pos = 8;
2064         } else {
2065                 memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2066                 pos = 10;
2067         }
2068         memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2069                strlen(core->cra_name));
2070
2071         alg->base.cra_priority = priority;
2072         priority++;
2073         /*
2074          * If FIPS mode enabled, the selected DRBG shall have the
2075          * highest cra_priority over other stdrng instances to ensure
2076          * it is selected.
2077          */
2078         if (fips_enabled)
2079                 alg->base.cra_priority += 200;
2080
2081         alg->base.cra_ctxsize   = sizeof(struct drbg_state);
2082         alg->base.cra_module    = THIS_MODULE;
2083         alg->base.cra_init      = drbg_kcapi_init;
2084         alg->base.cra_exit      = drbg_kcapi_cleanup;
2085         alg->generate           = drbg_kcapi_random;
2086         alg->seed               = drbg_kcapi_seed;
2087         alg->set_ent            = drbg_kcapi_set_entropy;
2088         alg->seedsize           = 0;
2089 }
2090
2091 static int __init drbg_init(void)
2092 {
2093         unsigned int i = 0; /* pointer to drbg_algs */
2094         unsigned int j = 0; /* pointer to drbg_cores */
2095         int ret;
2096
2097         ret = drbg_healthcheck_sanity();
2098         if (ret)
2099                 return ret;
2100
2101         if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2102                 pr_info("DRBG: Cannot register all DRBG types"
2103                         "(slots needed: %zu, slots available: %zu)\n",
2104                         ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2105                 return -EFAULT;
2106         }
2107
2108         /*
2109          * each DRBG definition can be used with PR and without PR, thus
2110          * we instantiate each DRBG in drbg_cores[] twice.
2111          *
2112          * As the order of placing them into the drbg_algs array matters
2113          * (the later DRBGs receive a higher cra_priority) we register the
2114          * prediction resistance DRBGs first as the should not be too
2115          * interesting.
2116          */
2117         for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2118                 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2119         for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2120                 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2121         return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2122 }
2123
2124 static void __exit drbg_exit(void)
2125 {
2126         crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2127 }
2128
2129 subsys_initcall(drbg_init);
2130 module_exit(drbg_exit);
2131 #ifndef CRYPTO_DRBG_HASH_STRING
2132 #define CRYPTO_DRBG_HASH_STRING ""
2133 #endif
2134 #ifndef CRYPTO_DRBG_HMAC_STRING
2135 #define CRYPTO_DRBG_HMAC_STRING ""
2136 #endif
2137 #ifndef CRYPTO_DRBG_CTR_STRING
2138 #define CRYPTO_DRBG_CTR_STRING ""
2139 #endif
2140 MODULE_LICENSE("GPL");
2141 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2142 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2143                    "using following cores: "
2144                    CRYPTO_DRBG_HASH_STRING
2145                    CRYPTO_DRBG_HMAC_STRING
2146                    CRYPTO_DRBG_CTR_STRING);
2147 MODULE_ALIAS_CRYPTO("stdrng");