rbtree: avoid generating code twice for the cached versions (tools copy)
[sfrench/cifs-2.6.git] / crypto / aegis128-core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * The AEGIS-128 Authenticated-Encryption Algorithm
4  *
5  * Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com>
6  * Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
7  */
8
9 #include <crypto/algapi.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/simd.h>
12 #include <crypto/internal/skcipher.h>
13 #include <crypto/scatterwalk.h>
14 #include <linux/err.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/scatterlist.h>
19
20 #include <asm/simd.h>
21
22 #include "aegis.h"
23
24 #define AEGIS128_NONCE_SIZE 16
25 #define AEGIS128_STATE_BLOCKS 5
26 #define AEGIS128_KEY_SIZE 16
27 #define AEGIS128_MIN_AUTH_SIZE 8
28 #define AEGIS128_MAX_AUTH_SIZE 16
29
30 struct aegis_state {
31         union aegis_block blocks[AEGIS128_STATE_BLOCKS];
32 };
33
34 struct aegis_ctx {
35         union aegis_block key;
36 };
37
38 struct aegis128_ops {
39         int (*skcipher_walk_init)(struct skcipher_walk *walk,
40                                   struct aead_request *req, bool atomic);
41
42         void (*crypt_chunk)(struct aegis_state *state, u8 *dst,
43                             const u8 *src, unsigned int size);
44 };
45
46 static bool have_simd;
47
48 static const union aegis_block crypto_aegis_const[2] = {
49         { .words64 = {
50                 cpu_to_le64(U64_C(0x0d08050302010100)),
51                 cpu_to_le64(U64_C(0x6279e99059372215)),
52         } },
53         { .words64 = {
54                 cpu_to_le64(U64_C(0xf12fc26d55183ddb)),
55                 cpu_to_le64(U64_C(0xdd28b57342311120)),
56         } },
57 };
58
59 static bool aegis128_do_simd(void)
60 {
61 #ifdef CONFIG_CRYPTO_AEGIS128_SIMD
62         if (have_simd)
63                 return crypto_simd_usable();
64 #endif
65         return false;
66 }
67
68 bool crypto_aegis128_have_simd(void);
69 void crypto_aegis128_update_simd(struct aegis_state *state, const void *msg);
70 void crypto_aegis128_encrypt_chunk_simd(struct aegis_state *state, u8 *dst,
71                                         const u8 *src, unsigned int size);
72 void crypto_aegis128_decrypt_chunk_simd(struct aegis_state *state, u8 *dst,
73                                         const u8 *src, unsigned int size);
74
75 static void crypto_aegis128_update(struct aegis_state *state)
76 {
77         union aegis_block tmp;
78         unsigned int i;
79
80         tmp = state->blocks[AEGIS128_STATE_BLOCKS - 1];
81         for (i = AEGIS128_STATE_BLOCKS - 1; i > 0; i--)
82                 crypto_aegis_aesenc(&state->blocks[i], &state->blocks[i - 1],
83                                     &state->blocks[i]);
84         crypto_aegis_aesenc(&state->blocks[0], &tmp, &state->blocks[0]);
85 }
86
87 static void crypto_aegis128_update_a(struct aegis_state *state,
88                                      const union aegis_block *msg)
89 {
90         if (aegis128_do_simd()) {
91                 crypto_aegis128_update_simd(state, msg);
92                 return;
93         }
94
95         crypto_aegis128_update(state);
96         crypto_aegis_block_xor(&state->blocks[0], msg);
97 }
98
99 static void crypto_aegis128_update_u(struct aegis_state *state, const void *msg)
100 {
101         if (aegis128_do_simd()) {
102                 crypto_aegis128_update_simd(state, msg);
103                 return;
104         }
105
106         crypto_aegis128_update(state);
107         crypto_xor(state->blocks[0].bytes, msg, AEGIS_BLOCK_SIZE);
108 }
109
110 static void crypto_aegis128_init(struct aegis_state *state,
111                                  const union aegis_block *key,
112                                  const u8 *iv)
113 {
114         union aegis_block key_iv;
115         unsigned int i;
116
117         key_iv = *key;
118         crypto_xor(key_iv.bytes, iv, AEGIS_BLOCK_SIZE);
119
120         state->blocks[0] = key_iv;
121         state->blocks[1] = crypto_aegis_const[1];
122         state->blocks[2] = crypto_aegis_const[0];
123         state->blocks[3] = *key;
124         state->blocks[4] = *key;
125
126         crypto_aegis_block_xor(&state->blocks[3], &crypto_aegis_const[0]);
127         crypto_aegis_block_xor(&state->blocks[4], &crypto_aegis_const[1]);
128
129         for (i = 0; i < 5; i++) {
130                 crypto_aegis128_update_a(state, key);
131                 crypto_aegis128_update_a(state, &key_iv);
132         }
133 }
134
135 static void crypto_aegis128_ad(struct aegis_state *state,
136                                const u8 *src, unsigned int size)
137 {
138         if (AEGIS_ALIGNED(src)) {
139                 const union aegis_block *src_blk =
140                                 (const union aegis_block *)src;
141
142                 while (size >= AEGIS_BLOCK_SIZE) {
143                         crypto_aegis128_update_a(state, src_blk);
144
145                         size -= AEGIS_BLOCK_SIZE;
146                         src_blk++;
147                 }
148         } else {
149                 while (size >= AEGIS_BLOCK_SIZE) {
150                         crypto_aegis128_update_u(state, src);
151
152                         size -= AEGIS_BLOCK_SIZE;
153                         src += AEGIS_BLOCK_SIZE;
154                 }
155         }
156 }
157
158 static void crypto_aegis128_encrypt_chunk(struct aegis_state *state, u8 *dst,
159                                           const u8 *src, unsigned int size)
160 {
161         union aegis_block tmp;
162
163         if (AEGIS_ALIGNED(src) && AEGIS_ALIGNED(dst)) {
164                 while (size >= AEGIS_BLOCK_SIZE) {
165                         union aegis_block *dst_blk =
166                                         (union aegis_block *)dst;
167                         const union aegis_block *src_blk =
168                                         (const union aegis_block *)src;
169
170                         tmp = state->blocks[2];
171                         crypto_aegis_block_and(&tmp, &state->blocks[3]);
172                         crypto_aegis_block_xor(&tmp, &state->blocks[4]);
173                         crypto_aegis_block_xor(&tmp, &state->blocks[1]);
174                         crypto_aegis_block_xor(&tmp, src_blk);
175
176                         crypto_aegis128_update_a(state, src_blk);
177
178                         *dst_blk = tmp;
179
180                         size -= AEGIS_BLOCK_SIZE;
181                         src += AEGIS_BLOCK_SIZE;
182                         dst += AEGIS_BLOCK_SIZE;
183                 }
184         } else {
185                 while (size >= AEGIS_BLOCK_SIZE) {
186                         tmp = state->blocks[2];
187                         crypto_aegis_block_and(&tmp, &state->blocks[3]);
188                         crypto_aegis_block_xor(&tmp, &state->blocks[4]);
189                         crypto_aegis_block_xor(&tmp, &state->blocks[1]);
190                         crypto_xor(tmp.bytes, src, AEGIS_BLOCK_SIZE);
191
192                         crypto_aegis128_update_u(state, src);
193
194                         memcpy(dst, tmp.bytes, AEGIS_BLOCK_SIZE);
195
196                         size -= AEGIS_BLOCK_SIZE;
197                         src += AEGIS_BLOCK_SIZE;
198                         dst += AEGIS_BLOCK_SIZE;
199                 }
200         }
201
202         if (size > 0) {
203                 union aegis_block msg = {};
204                 memcpy(msg.bytes, src, size);
205
206                 tmp = state->blocks[2];
207                 crypto_aegis_block_and(&tmp, &state->blocks[3]);
208                 crypto_aegis_block_xor(&tmp, &state->blocks[4]);
209                 crypto_aegis_block_xor(&tmp, &state->blocks[1]);
210
211                 crypto_aegis128_update_a(state, &msg);
212
213                 crypto_aegis_block_xor(&msg, &tmp);
214
215                 memcpy(dst, msg.bytes, size);
216         }
217 }
218
219 static void crypto_aegis128_decrypt_chunk(struct aegis_state *state, u8 *dst,
220                                           const u8 *src, unsigned int size)
221 {
222         union aegis_block tmp;
223
224         if (AEGIS_ALIGNED(src) && AEGIS_ALIGNED(dst)) {
225                 while (size >= AEGIS_BLOCK_SIZE) {
226                         union aegis_block *dst_blk =
227                                         (union aegis_block *)dst;
228                         const union aegis_block *src_blk =
229                                         (const union aegis_block *)src;
230
231                         tmp = state->blocks[2];
232                         crypto_aegis_block_and(&tmp, &state->blocks[3]);
233                         crypto_aegis_block_xor(&tmp, &state->blocks[4]);
234                         crypto_aegis_block_xor(&tmp, &state->blocks[1]);
235                         crypto_aegis_block_xor(&tmp, src_blk);
236
237                         crypto_aegis128_update_a(state, &tmp);
238
239                         *dst_blk = tmp;
240
241                         size -= AEGIS_BLOCK_SIZE;
242                         src += AEGIS_BLOCK_SIZE;
243                         dst += AEGIS_BLOCK_SIZE;
244                 }
245         } else {
246                 while (size >= AEGIS_BLOCK_SIZE) {
247                         tmp = state->blocks[2];
248                         crypto_aegis_block_and(&tmp, &state->blocks[3]);
249                         crypto_aegis_block_xor(&tmp, &state->blocks[4]);
250                         crypto_aegis_block_xor(&tmp, &state->blocks[1]);
251                         crypto_xor(tmp.bytes, src, AEGIS_BLOCK_SIZE);
252
253                         crypto_aegis128_update_a(state, &tmp);
254
255                         memcpy(dst, tmp.bytes, AEGIS_BLOCK_SIZE);
256
257                         size -= AEGIS_BLOCK_SIZE;
258                         src += AEGIS_BLOCK_SIZE;
259                         dst += AEGIS_BLOCK_SIZE;
260                 }
261         }
262
263         if (size > 0) {
264                 union aegis_block msg = {};
265                 memcpy(msg.bytes, src, size);
266
267                 tmp = state->blocks[2];
268                 crypto_aegis_block_and(&tmp, &state->blocks[3]);
269                 crypto_aegis_block_xor(&tmp, &state->blocks[4]);
270                 crypto_aegis_block_xor(&tmp, &state->blocks[1]);
271                 crypto_aegis_block_xor(&msg, &tmp);
272
273                 memset(msg.bytes + size, 0, AEGIS_BLOCK_SIZE - size);
274
275                 crypto_aegis128_update_a(state, &msg);
276
277                 memcpy(dst, msg.bytes, size);
278         }
279 }
280
281 static void crypto_aegis128_process_ad(struct aegis_state *state,
282                                        struct scatterlist *sg_src,
283                                        unsigned int assoclen)
284 {
285         struct scatter_walk walk;
286         union aegis_block buf;
287         unsigned int pos = 0;
288
289         scatterwalk_start(&walk, sg_src);
290         while (assoclen != 0) {
291                 unsigned int size = scatterwalk_clamp(&walk, assoclen);
292                 unsigned int left = size;
293                 void *mapped = scatterwalk_map(&walk);
294                 const u8 *src = (const u8 *)mapped;
295
296                 if (pos + size >= AEGIS_BLOCK_SIZE) {
297                         if (pos > 0) {
298                                 unsigned int fill = AEGIS_BLOCK_SIZE - pos;
299                                 memcpy(buf.bytes + pos, src, fill);
300                                 crypto_aegis128_update_a(state, &buf);
301                                 pos = 0;
302                                 left -= fill;
303                                 src += fill;
304                         }
305
306                         crypto_aegis128_ad(state, src, left);
307                         src += left & ~(AEGIS_BLOCK_SIZE - 1);
308                         left &= AEGIS_BLOCK_SIZE - 1;
309                 }
310
311                 memcpy(buf.bytes + pos, src, left);
312
313                 pos += left;
314                 assoclen -= size;
315                 scatterwalk_unmap(mapped);
316                 scatterwalk_advance(&walk, size);
317                 scatterwalk_done(&walk, 0, assoclen);
318         }
319
320         if (pos > 0) {
321                 memset(buf.bytes + pos, 0, AEGIS_BLOCK_SIZE - pos);
322                 crypto_aegis128_update_a(state, &buf);
323         }
324 }
325
326 static void crypto_aegis128_process_crypt(struct aegis_state *state,
327                                           struct aead_request *req,
328                                           const struct aegis128_ops *ops)
329 {
330         struct skcipher_walk walk;
331
332         ops->skcipher_walk_init(&walk, req, false);
333
334         while (walk.nbytes) {
335                 unsigned int nbytes = walk.nbytes;
336
337                 if (nbytes < walk.total)
338                         nbytes = round_down(nbytes, walk.stride);
339
340                 ops->crypt_chunk(state, walk.dst.virt.addr, walk.src.virt.addr,
341                                  nbytes);
342
343                 skcipher_walk_done(&walk, walk.nbytes - nbytes);
344         }
345 }
346
347 static void crypto_aegis128_final(struct aegis_state *state,
348                                   union aegis_block *tag_xor,
349                                   u64 assoclen, u64 cryptlen)
350 {
351         u64 assocbits = assoclen * 8;
352         u64 cryptbits = cryptlen * 8;
353
354         union aegis_block tmp;
355         unsigned int i;
356
357         tmp.words64[0] = cpu_to_le64(assocbits);
358         tmp.words64[1] = cpu_to_le64(cryptbits);
359
360         crypto_aegis_block_xor(&tmp, &state->blocks[3]);
361
362         for (i = 0; i < 7; i++)
363                 crypto_aegis128_update_a(state, &tmp);
364
365         for (i = 0; i < AEGIS128_STATE_BLOCKS; i++)
366                 crypto_aegis_block_xor(tag_xor, &state->blocks[i]);
367 }
368
369 static int crypto_aegis128_setkey(struct crypto_aead *aead, const u8 *key,
370                                   unsigned int keylen)
371 {
372         struct aegis_ctx *ctx = crypto_aead_ctx(aead);
373
374         if (keylen != AEGIS128_KEY_SIZE) {
375                 crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
376                 return -EINVAL;
377         }
378
379         memcpy(ctx->key.bytes, key, AEGIS128_KEY_SIZE);
380         return 0;
381 }
382
383 static int crypto_aegis128_setauthsize(struct crypto_aead *tfm,
384                                        unsigned int authsize)
385 {
386         if (authsize > AEGIS128_MAX_AUTH_SIZE)
387                 return -EINVAL;
388         if (authsize < AEGIS128_MIN_AUTH_SIZE)
389                 return -EINVAL;
390         return 0;
391 }
392
393 static void crypto_aegis128_crypt(struct aead_request *req,
394                                   union aegis_block *tag_xor,
395                                   unsigned int cryptlen,
396                                   const struct aegis128_ops *ops)
397 {
398         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
399         struct aegis_ctx *ctx = crypto_aead_ctx(tfm);
400         struct aegis_state state;
401
402         crypto_aegis128_init(&state, &ctx->key, req->iv);
403         crypto_aegis128_process_ad(&state, req->src, req->assoclen);
404         crypto_aegis128_process_crypt(&state, req, ops);
405         crypto_aegis128_final(&state, tag_xor, req->assoclen, cryptlen);
406 }
407
408 static int crypto_aegis128_encrypt(struct aead_request *req)
409 {
410         const struct aegis128_ops *ops = &(struct aegis128_ops){
411                 .skcipher_walk_init = skcipher_walk_aead_encrypt,
412                 .crypt_chunk = crypto_aegis128_encrypt_chunk,
413         };
414
415         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
416         union aegis_block tag = {};
417         unsigned int authsize = crypto_aead_authsize(tfm);
418         unsigned int cryptlen = req->cryptlen;
419
420         if (aegis128_do_simd())
421                 ops = &(struct aegis128_ops){
422                         .skcipher_walk_init = skcipher_walk_aead_encrypt,
423                         .crypt_chunk = crypto_aegis128_encrypt_chunk_simd };
424
425         crypto_aegis128_crypt(req, &tag, cryptlen, ops);
426
427         scatterwalk_map_and_copy(tag.bytes, req->dst, req->assoclen + cryptlen,
428                                  authsize, 1);
429         return 0;
430 }
431
432 static int crypto_aegis128_decrypt(struct aead_request *req)
433 {
434         const struct aegis128_ops *ops = &(struct aegis128_ops){
435                 .skcipher_walk_init = skcipher_walk_aead_decrypt,
436                 .crypt_chunk = crypto_aegis128_decrypt_chunk,
437         };
438         static const u8 zeros[AEGIS128_MAX_AUTH_SIZE] = {};
439
440         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
441         union aegis_block tag;
442         unsigned int authsize = crypto_aead_authsize(tfm);
443         unsigned int cryptlen = req->cryptlen - authsize;
444
445         scatterwalk_map_and_copy(tag.bytes, req->src, req->assoclen + cryptlen,
446                                  authsize, 0);
447
448         if (aegis128_do_simd())
449                 ops = &(struct aegis128_ops){
450                         .skcipher_walk_init = skcipher_walk_aead_decrypt,
451                         .crypt_chunk = crypto_aegis128_decrypt_chunk_simd };
452
453         crypto_aegis128_crypt(req, &tag, cryptlen, ops);
454
455         return crypto_memneq(tag.bytes, zeros, authsize) ? -EBADMSG : 0;
456 }
457
458 static struct aead_alg crypto_aegis128_alg = {
459         .setkey = crypto_aegis128_setkey,
460         .setauthsize = crypto_aegis128_setauthsize,
461         .encrypt = crypto_aegis128_encrypt,
462         .decrypt = crypto_aegis128_decrypt,
463
464         .ivsize = AEGIS128_NONCE_SIZE,
465         .maxauthsize = AEGIS128_MAX_AUTH_SIZE,
466         .chunksize = AEGIS_BLOCK_SIZE,
467
468         .base = {
469                 .cra_blocksize = 1,
470                 .cra_ctxsize = sizeof(struct aegis_ctx),
471                 .cra_alignmask = 0,
472
473                 .cra_priority = 100,
474
475                 .cra_name = "aegis128",
476                 .cra_driver_name = "aegis128-generic",
477
478                 .cra_module = THIS_MODULE,
479         }
480 };
481
482 static int __init crypto_aegis128_module_init(void)
483 {
484         if (IS_ENABLED(CONFIG_CRYPTO_AEGIS128_SIMD))
485                 have_simd = crypto_aegis128_have_simd();
486
487         return crypto_register_aead(&crypto_aegis128_alg);
488 }
489
490 static void __exit crypto_aegis128_module_exit(void)
491 {
492         crypto_unregister_aead(&crypto_aegis128_alg);
493 }
494
495 subsys_initcall(crypto_aegis128_module_init);
496 module_exit(crypto_aegis128_module_exit);
497
498 MODULE_LICENSE("GPL");
499 MODULE_AUTHOR("Ondrej Mosnacek <omosnacek@gmail.com>");
500 MODULE_DESCRIPTION("AEGIS-128 AEAD algorithm");
501 MODULE_ALIAS_CRYPTO("aegis128");
502 MODULE_ALIAS_CRYPTO("aegis128-generic");