Merge tag 'vfs-6.10.rw' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[sfrench/cifs-2.6.git] / block / blk-map.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11
12 #include "blk.h"
13
14 struct bio_map_data {
15         bool is_our_pages : 1;
16         bool is_null_mapped : 1;
17         struct iov_iter iter;
18         struct iovec iov[];
19 };
20
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22                                                gfp_t gfp_mask)
23 {
24         struct bio_map_data *bmd;
25
26         if (data->nr_segs > UIO_MAXIOV)
27                 return NULL;
28
29         bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30         if (!bmd)
31                 return NULL;
32         bmd->iter = *data;
33         if (iter_is_iovec(data)) {
34                 memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs);
35                 bmd->iter.__iov = bmd->iov;
36         }
37         return bmd;
38 }
39
40 /**
41  * bio_copy_from_iter - copy all pages from iov_iter to bio
42  * @bio: The &struct bio which describes the I/O as destination
43  * @iter: iov_iter as source
44  *
45  * Copy all pages from iov_iter to bio.
46  * Returns 0 on success, or error on failure.
47  */
48 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
49 {
50         struct bio_vec *bvec;
51         struct bvec_iter_all iter_all;
52
53         bio_for_each_segment_all(bvec, bio, iter_all) {
54                 ssize_t ret;
55
56                 ret = copy_page_from_iter(bvec->bv_page,
57                                           bvec->bv_offset,
58                                           bvec->bv_len,
59                                           iter);
60
61                 if (!iov_iter_count(iter))
62                         break;
63
64                 if (ret < bvec->bv_len)
65                         return -EFAULT;
66         }
67
68         return 0;
69 }
70
71 /**
72  * bio_copy_to_iter - copy all pages from bio to iov_iter
73  * @bio: The &struct bio which describes the I/O as source
74  * @iter: iov_iter as destination
75  *
76  * Copy all pages from bio to iov_iter.
77  * Returns 0 on success, or error on failure.
78  */
79 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
80 {
81         struct bio_vec *bvec;
82         struct bvec_iter_all iter_all;
83
84         bio_for_each_segment_all(bvec, bio, iter_all) {
85                 ssize_t ret;
86
87                 ret = copy_page_to_iter(bvec->bv_page,
88                                         bvec->bv_offset,
89                                         bvec->bv_len,
90                                         &iter);
91
92                 if (!iov_iter_count(&iter))
93                         break;
94
95                 if (ret < bvec->bv_len)
96                         return -EFAULT;
97         }
98
99         return 0;
100 }
101
102 /**
103  *      bio_uncopy_user -       finish previously mapped bio
104  *      @bio: bio being terminated
105  *
106  *      Free pages allocated from bio_copy_user_iov() and write back data
107  *      to user space in case of a read.
108  */
109 static int bio_uncopy_user(struct bio *bio)
110 {
111         struct bio_map_data *bmd = bio->bi_private;
112         int ret = 0;
113
114         if (!bmd->is_null_mapped) {
115                 /*
116                  * if we're in a workqueue, the request is orphaned, so
117                  * don't copy into a random user address space, just free
118                  * and return -EINTR so user space doesn't expect any data.
119                  */
120                 if (!current->mm)
121                         ret = -EINTR;
122                 else if (bio_data_dir(bio) == READ)
123                         ret = bio_copy_to_iter(bio, bmd->iter);
124                 if (bmd->is_our_pages)
125                         bio_free_pages(bio);
126         }
127         kfree(bmd);
128         return ret;
129 }
130
131 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
132                 struct iov_iter *iter, gfp_t gfp_mask)
133 {
134         struct bio_map_data *bmd;
135         struct page *page;
136         struct bio *bio;
137         int i = 0, ret;
138         int nr_pages;
139         unsigned int len = iter->count;
140         unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
141
142         bmd = bio_alloc_map_data(iter, gfp_mask);
143         if (!bmd)
144                 return -ENOMEM;
145
146         /*
147          * We need to do a deep copy of the iov_iter including the iovecs.
148          * The caller provided iov might point to an on-stack or otherwise
149          * shortlived one.
150          */
151         bmd->is_our_pages = !map_data;
152         bmd->is_null_mapped = (map_data && map_data->null_mapped);
153
154         nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
155
156         ret = -ENOMEM;
157         bio = bio_kmalloc(nr_pages, gfp_mask);
158         if (!bio)
159                 goto out_bmd;
160         bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
161
162         if (map_data) {
163                 nr_pages = 1U << map_data->page_order;
164                 i = map_data->offset / PAGE_SIZE;
165         }
166         while (len) {
167                 unsigned int bytes = PAGE_SIZE;
168
169                 bytes -= offset;
170
171                 if (bytes > len)
172                         bytes = len;
173
174                 if (map_data) {
175                         if (i == map_data->nr_entries * nr_pages) {
176                                 ret = -ENOMEM;
177                                 goto cleanup;
178                         }
179
180                         page = map_data->pages[i / nr_pages];
181                         page += (i % nr_pages);
182
183                         i++;
184                 } else {
185                         page = alloc_page(GFP_NOIO | gfp_mask);
186                         if (!page) {
187                                 ret = -ENOMEM;
188                                 goto cleanup;
189                         }
190                 }
191
192                 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
193                         if (!map_data)
194                                 __free_page(page);
195                         break;
196                 }
197
198                 len -= bytes;
199                 offset = 0;
200         }
201
202         if (map_data)
203                 map_data->offset += bio->bi_iter.bi_size;
204
205         /*
206          * success
207          */
208         if (iov_iter_rw(iter) == WRITE &&
209              (!map_data || !map_data->null_mapped)) {
210                 ret = bio_copy_from_iter(bio, iter);
211                 if (ret)
212                         goto cleanup;
213         } else if (map_data && map_data->from_user) {
214                 struct iov_iter iter2 = *iter;
215
216                 /* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */
217                 iter2.data_source = ITER_SOURCE;
218                 ret = bio_copy_from_iter(bio, &iter2);
219                 if (ret)
220                         goto cleanup;
221         } else {
222                 if (bmd->is_our_pages)
223                         zero_fill_bio(bio);
224                 iov_iter_advance(iter, bio->bi_iter.bi_size);
225         }
226
227         bio->bi_private = bmd;
228
229         ret = blk_rq_append_bio(rq, bio);
230         if (ret)
231                 goto cleanup;
232         return 0;
233 cleanup:
234         if (!map_data)
235                 bio_free_pages(bio);
236         bio_uninit(bio);
237         kfree(bio);
238 out_bmd:
239         kfree(bmd);
240         return ret;
241 }
242
243 static void blk_mq_map_bio_put(struct bio *bio)
244 {
245         if (bio->bi_opf & REQ_ALLOC_CACHE) {
246                 bio_put(bio);
247         } else {
248                 bio_uninit(bio);
249                 kfree(bio);
250         }
251 }
252
253 static struct bio *blk_rq_map_bio_alloc(struct request *rq,
254                 unsigned int nr_vecs, gfp_t gfp_mask)
255 {
256         struct bio *bio;
257
258         if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) {
259                 bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask,
260                                         &fs_bio_set);
261                 if (!bio)
262                         return NULL;
263         } else {
264                 bio = bio_kmalloc(nr_vecs, gfp_mask);
265                 if (!bio)
266                         return NULL;
267                 bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
268         }
269         return bio;
270 }
271
272 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
273                 gfp_t gfp_mask)
274 {
275         iov_iter_extraction_t extraction_flags = 0;
276         unsigned int max_sectors = queue_max_hw_sectors(rq->q);
277         unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
278         struct bio *bio;
279         int ret;
280         int j;
281
282         if (!iov_iter_count(iter))
283                 return -EINVAL;
284
285         bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
286         if (bio == NULL)
287                 return -ENOMEM;
288
289         if (blk_queue_pci_p2pdma(rq->q))
290                 extraction_flags |= ITER_ALLOW_P2PDMA;
291         if (iov_iter_extract_will_pin(iter))
292                 bio_set_flag(bio, BIO_PAGE_PINNED);
293
294         while (iov_iter_count(iter)) {
295                 struct page *stack_pages[UIO_FASTIOV];
296                 struct page **pages = stack_pages;
297                 ssize_t bytes;
298                 size_t offs;
299                 int npages;
300
301                 if (nr_vecs > ARRAY_SIZE(stack_pages))
302                         pages = NULL;
303
304                 bytes = iov_iter_extract_pages(iter, &pages, LONG_MAX,
305                                                nr_vecs, extraction_flags, &offs);
306                 if (unlikely(bytes <= 0)) {
307                         ret = bytes ? bytes : -EFAULT;
308                         goto out_unmap;
309                 }
310
311                 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
312
313                 if (unlikely(offs & queue_dma_alignment(rq->q)))
314                         j = 0;
315                 else {
316                         for (j = 0; j < npages; j++) {
317                                 struct page *page = pages[j];
318                                 unsigned int n = PAGE_SIZE - offs;
319                                 bool same_page = false;
320
321                                 if (n > bytes)
322                                         n = bytes;
323
324                                 if (!bio_add_hw_page(rq->q, bio, page, n, offs,
325                                                      max_sectors, &same_page))
326                                         break;
327
328                                 if (same_page)
329                                         bio_release_page(bio, page);
330                                 bytes -= n;
331                                 offs = 0;
332                         }
333                 }
334                 /*
335                  * release the pages we didn't map into the bio, if any
336                  */
337                 while (j < npages)
338                         bio_release_page(bio, pages[j++]);
339                 if (pages != stack_pages)
340                         kvfree(pages);
341                 /* couldn't stuff something into bio? */
342                 if (bytes) {
343                         iov_iter_revert(iter, bytes);
344                         break;
345                 }
346         }
347
348         ret = blk_rq_append_bio(rq, bio);
349         if (ret)
350                 goto out_unmap;
351         return 0;
352
353  out_unmap:
354         bio_release_pages(bio, false);
355         blk_mq_map_bio_put(bio);
356         return ret;
357 }
358
359 static void bio_invalidate_vmalloc_pages(struct bio *bio)
360 {
361 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
362         if (bio->bi_private && !op_is_write(bio_op(bio))) {
363                 unsigned long i, len = 0;
364
365                 for (i = 0; i < bio->bi_vcnt; i++)
366                         len += bio->bi_io_vec[i].bv_len;
367                 invalidate_kernel_vmap_range(bio->bi_private, len);
368         }
369 #endif
370 }
371
372 static void bio_map_kern_endio(struct bio *bio)
373 {
374         bio_invalidate_vmalloc_pages(bio);
375         bio_uninit(bio);
376         kfree(bio);
377 }
378
379 /**
380  *      bio_map_kern    -       map kernel address into bio
381  *      @q: the struct request_queue for the bio
382  *      @data: pointer to buffer to map
383  *      @len: length in bytes
384  *      @gfp_mask: allocation flags for bio allocation
385  *
386  *      Map the kernel address into a bio suitable for io to a block
387  *      device. Returns an error pointer in case of error.
388  */
389 static struct bio *bio_map_kern(struct request_queue *q, void *data,
390                 unsigned int len, gfp_t gfp_mask)
391 {
392         unsigned long kaddr = (unsigned long)data;
393         unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
394         unsigned long start = kaddr >> PAGE_SHIFT;
395         const int nr_pages = end - start;
396         bool is_vmalloc = is_vmalloc_addr(data);
397         struct page *page;
398         int offset, i;
399         struct bio *bio;
400
401         bio = bio_kmalloc(nr_pages, gfp_mask);
402         if (!bio)
403                 return ERR_PTR(-ENOMEM);
404         bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
405
406         if (is_vmalloc) {
407                 flush_kernel_vmap_range(data, len);
408                 bio->bi_private = data;
409         }
410
411         offset = offset_in_page(kaddr);
412         for (i = 0; i < nr_pages; i++) {
413                 unsigned int bytes = PAGE_SIZE - offset;
414
415                 if (len <= 0)
416                         break;
417
418                 if (bytes > len)
419                         bytes = len;
420
421                 if (!is_vmalloc)
422                         page = virt_to_page(data);
423                 else
424                         page = vmalloc_to_page(data);
425                 if (bio_add_pc_page(q, bio, page, bytes,
426                                     offset) < bytes) {
427                         /* we don't support partial mappings */
428                         bio_uninit(bio);
429                         kfree(bio);
430                         return ERR_PTR(-EINVAL);
431                 }
432
433                 data += bytes;
434                 len -= bytes;
435                 offset = 0;
436         }
437
438         bio->bi_end_io = bio_map_kern_endio;
439         return bio;
440 }
441
442 static void bio_copy_kern_endio(struct bio *bio)
443 {
444         bio_free_pages(bio);
445         bio_uninit(bio);
446         kfree(bio);
447 }
448
449 static void bio_copy_kern_endio_read(struct bio *bio)
450 {
451         char *p = bio->bi_private;
452         struct bio_vec *bvec;
453         struct bvec_iter_all iter_all;
454
455         bio_for_each_segment_all(bvec, bio, iter_all) {
456                 memcpy_from_bvec(p, bvec);
457                 p += bvec->bv_len;
458         }
459
460         bio_copy_kern_endio(bio);
461 }
462
463 /**
464  *      bio_copy_kern   -       copy kernel address into bio
465  *      @q: the struct request_queue for the bio
466  *      @data: pointer to buffer to copy
467  *      @len: length in bytes
468  *      @gfp_mask: allocation flags for bio and page allocation
469  *      @reading: data direction is READ
470  *
471  *      copy the kernel address into a bio suitable for io to a block
472  *      device. Returns an error pointer in case of error.
473  */
474 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
475                 unsigned int len, gfp_t gfp_mask, int reading)
476 {
477         unsigned long kaddr = (unsigned long)data;
478         unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
479         unsigned long start = kaddr >> PAGE_SHIFT;
480         struct bio *bio;
481         void *p = data;
482         int nr_pages = 0;
483
484         /*
485          * Overflow, abort
486          */
487         if (end < start)
488                 return ERR_PTR(-EINVAL);
489
490         nr_pages = end - start;
491         bio = bio_kmalloc(nr_pages, gfp_mask);
492         if (!bio)
493                 return ERR_PTR(-ENOMEM);
494         bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
495
496         while (len) {
497                 struct page *page;
498                 unsigned int bytes = PAGE_SIZE;
499
500                 if (bytes > len)
501                         bytes = len;
502
503                 page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
504                 if (!page)
505                         goto cleanup;
506
507                 if (!reading)
508                         memcpy(page_address(page), p, bytes);
509
510                 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
511                         break;
512
513                 len -= bytes;
514                 p += bytes;
515         }
516
517         if (reading) {
518                 bio->bi_end_io = bio_copy_kern_endio_read;
519                 bio->bi_private = data;
520         } else {
521                 bio->bi_end_io = bio_copy_kern_endio;
522         }
523
524         return bio;
525
526 cleanup:
527         bio_free_pages(bio);
528         bio_uninit(bio);
529         kfree(bio);
530         return ERR_PTR(-ENOMEM);
531 }
532
533 /*
534  * Append a bio to a passthrough request.  Only works if the bio can be merged
535  * into the request based on the driver constraints.
536  */
537 int blk_rq_append_bio(struct request *rq, struct bio *bio)
538 {
539         struct bvec_iter iter;
540         struct bio_vec bv;
541         unsigned int nr_segs = 0;
542
543         bio_for_each_bvec(bv, bio, iter)
544                 nr_segs++;
545
546         if (!rq->bio) {
547                 blk_rq_bio_prep(rq, bio, nr_segs);
548         } else {
549                 if (!ll_back_merge_fn(rq, bio, nr_segs))
550                         return -EINVAL;
551                 rq->biotail->bi_next = bio;
552                 rq->biotail = bio;
553                 rq->__data_len += (bio)->bi_iter.bi_size;
554                 bio_crypt_free_ctx(bio);
555         }
556
557         return 0;
558 }
559 EXPORT_SYMBOL(blk_rq_append_bio);
560
561 /* Prepare bio for passthrough IO given ITER_BVEC iter */
562 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
563 {
564         struct request_queue *q = rq->q;
565         size_t nr_iter = iov_iter_count(iter);
566         size_t nr_segs = iter->nr_segs;
567         struct bio_vec *bvecs, *bvprvp = NULL;
568         const struct queue_limits *lim = &q->limits;
569         unsigned int nsegs = 0, bytes = 0;
570         struct bio *bio;
571         size_t i;
572
573         if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q))
574                 return -EINVAL;
575         if (nr_segs > queue_max_segments(q))
576                 return -EINVAL;
577
578         /* no iovecs to alloc, as we already have a BVEC iterator */
579         bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
580         if (bio == NULL)
581                 return -ENOMEM;
582
583         bio_iov_bvec_set(bio, (struct iov_iter *)iter);
584         blk_rq_bio_prep(rq, bio, nr_segs);
585
586         /* loop to perform a bunch of sanity checks */
587         bvecs = (struct bio_vec *)iter->bvec;
588         for (i = 0; i < nr_segs; i++) {
589                 struct bio_vec *bv = &bvecs[i];
590
591                 /*
592                  * If the queue doesn't support SG gaps and adding this
593                  * offset would create a gap, fallback to copy.
594                  */
595                 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) {
596                         blk_mq_map_bio_put(bio);
597                         return -EREMOTEIO;
598                 }
599                 /* check full condition */
600                 if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
601                         goto put_bio;
602                 if (bytes + bv->bv_len > nr_iter)
603                         goto put_bio;
604                 if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
605                         goto put_bio;
606
607                 nsegs++;
608                 bytes += bv->bv_len;
609                 bvprvp = bv;
610         }
611         return 0;
612 put_bio:
613         blk_mq_map_bio_put(bio);
614         return -EINVAL;
615 }
616
617 /**
618  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
619  * @q:          request queue where request should be inserted
620  * @rq:         request to map data to
621  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
622  * @iter:       iovec iterator
623  * @gfp_mask:   memory allocation flags
624  *
625  * Description:
626  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
627  *    a kernel bounce buffer is used.
628  *
629  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
630  *    still in process context.
631  */
632 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
633                         struct rq_map_data *map_data,
634                         const struct iov_iter *iter, gfp_t gfp_mask)
635 {
636         bool copy = false, map_bvec = false;
637         unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
638         struct bio *bio = NULL;
639         struct iov_iter i;
640         int ret = -EINVAL;
641
642         if (map_data)
643                 copy = true;
644         else if (blk_queue_may_bounce(q))
645                 copy = true;
646         else if (iov_iter_alignment(iter) & align)
647                 copy = true;
648         else if (iov_iter_is_bvec(iter))
649                 map_bvec = true;
650         else if (!user_backed_iter(iter))
651                 copy = true;
652         else if (queue_virt_boundary(q))
653                 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
654
655         if (map_bvec) {
656                 ret = blk_rq_map_user_bvec(rq, iter);
657                 if (!ret)
658                         return 0;
659                 if (ret != -EREMOTEIO)
660                         goto fail;
661                 /* fall back to copying the data on limits mismatches */
662                 copy = true;
663         }
664
665         i = *iter;
666         do {
667                 if (copy)
668                         ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
669                 else
670                         ret = bio_map_user_iov(rq, &i, gfp_mask);
671                 if (ret)
672                         goto unmap_rq;
673                 if (!bio)
674                         bio = rq->bio;
675         } while (iov_iter_count(&i));
676
677         return 0;
678
679 unmap_rq:
680         blk_rq_unmap_user(bio);
681 fail:
682         rq->bio = NULL;
683         return ret;
684 }
685 EXPORT_SYMBOL(blk_rq_map_user_iov);
686
687 int blk_rq_map_user(struct request_queue *q, struct request *rq,
688                     struct rq_map_data *map_data, void __user *ubuf,
689                     unsigned long len, gfp_t gfp_mask)
690 {
691         struct iov_iter i;
692         int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i);
693
694         if (unlikely(ret < 0))
695                 return ret;
696
697         return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
698 }
699 EXPORT_SYMBOL(blk_rq_map_user);
700
701 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
702                 void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
703                 bool vec, int iov_count, bool check_iter_count, int rw)
704 {
705         int ret = 0;
706
707         if (vec) {
708                 struct iovec fast_iov[UIO_FASTIOV];
709                 struct iovec *iov = fast_iov;
710                 struct iov_iter iter;
711
712                 ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
713                                 UIO_FASTIOV, &iov, &iter);
714                 if (ret < 0)
715                         return ret;
716
717                 if (iov_count) {
718                         /* SG_IO howto says that the shorter of the two wins */
719                         iov_iter_truncate(&iter, buf_len);
720                         if (check_iter_count && !iov_iter_count(&iter)) {
721                                 kfree(iov);
722                                 return -EINVAL;
723                         }
724                 }
725
726                 ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
727                                 gfp_mask);
728                 kfree(iov);
729         } else if (buf_len) {
730                 ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
731                                 gfp_mask);
732         }
733         return ret;
734 }
735 EXPORT_SYMBOL(blk_rq_map_user_io);
736
737 /**
738  * blk_rq_unmap_user - unmap a request with user data
739  * @bio:               start of bio list
740  *
741  * Description:
742  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
743  *    supply the original rq->bio from the blk_rq_map_user() return, since
744  *    the I/O completion may have changed rq->bio.
745  */
746 int blk_rq_unmap_user(struct bio *bio)
747 {
748         struct bio *next_bio;
749         int ret = 0, ret2;
750
751         while (bio) {
752                 if (bio->bi_private) {
753                         ret2 = bio_uncopy_user(bio);
754                         if (ret2 && !ret)
755                                 ret = ret2;
756                 } else {
757                         bio_release_pages(bio, bio_data_dir(bio) == READ);
758                 }
759
760                 next_bio = bio;
761                 bio = bio->bi_next;
762                 blk_mq_map_bio_put(next_bio);
763         }
764
765         return ret;
766 }
767 EXPORT_SYMBOL(blk_rq_unmap_user);
768
769 /**
770  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
771  * @q:          request queue where request should be inserted
772  * @rq:         request to fill
773  * @kbuf:       the kernel buffer
774  * @len:        length of user data
775  * @gfp_mask:   memory allocation flags
776  *
777  * Description:
778  *    Data will be mapped directly if possible. Otherwise a bounce
779  *    buffer is used. Can be called multiple times to append multiple
780  *    buffers.
781  */
782 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
783                     unsigned int len, gfp_t gfp_mask)
784 {
785         int reading = rq_data_dir(rq) == READ;
786         unsigned long addr = (unsigned long) kbuf;
787         struct bio *bio;
788         int ret;
789
790         if (len > (queue_max_hw_sectors(q) << 9))
791                 return -EINVAL;
792         if (!len || !kbuf)
793                 return -EINVAL;
794
795         if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
796             blk_queue_may_bounce(q))
797                 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
798         else
799                 bio = bio_map_kern(q, kbuf, len, gfp_mask);
800
801         if (IS_ERR(bio))
802                 return PTR_ERR(bio);
803
804         bio->bi_opf &= ~REQ_OP_MASK;
805         bio->bi_opf |= req_op(rq);
806
807         ret = blk_rq_append_bio(rq, bio);
808         if (unlikely(ret)) {
809                 bio_uninit(bio);
810                 kfree(bio);
811         }
812         return ret;
813 }
814 EXPORT_SYMBOL(blk_rq_map_kern);