Merge tag 'execve-v6.9-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[sfrench/cifs-2.6.git] / block / blk-crypto-fallback.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9
10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11
12 #include <crypto/skcipher.h>
13 #include <linux/blk-crypto.h>
14 #include <linux/blk-crypto-profile.h>
15 #include <linux/blkdev.h>
16 #include <linux/crypto.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/random.h>
20 #include <linux/scatterlist.h>
21
22 #include "blk-cgroup.h"
23 #include "blk-crypto-internal.h"
24
25 static unsigned int num_prealloc_bounce_pg = 32;
26 module_param(num_prealloc_bounce_pg, uint, 0);
27 MODULE_PARM_DESC(num_prealloc_bounce_pg,
28                  "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
29
30 static unsigned int blk_crypto_num_keyslots = 100;
31 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
32 MODULE_PARM_DESC(num_keyslots,
33                  "Number of keyslots for the blk-crypto crypto API fallback");
34
35 static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
36 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
37 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
38                  "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
39
40 struct bio_fallback_crypt_ctx {
41         struct bio_crypt_ctx crypt_ctx;
42         /*
43          * Copy of the bvec_iter when this bio was submitted.
44          * We only want to en/decrypt the part of the bio as described by the
45          * bvec_iter upon submission because bio might be split before being
46          * resubmitted
47          */
48         struct bvec_iter crypt_iter;
49         union {
50                 struct {
51                         struct work_struct work;
52                         struct bio *bio;
53                 };
54                 struct {
55                         void *bi_private_orig;
56                         bio_end_io_t *bi_end_io_orig;
57                 };
58         };
59 };
60
61 static struct kmem_cache *bio_fallback_crypt_ctx_cache;
62 static mempool_t *bio_fallback_crypt_ctx_pool;
63
64 /*
65  * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
66  * all of a mode's tfms when that mode starts being used. Since each mode may
67  * need all the keyslots at some point, each mode needs its own tfm for each
68  * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
69  * match the behavior of real inline encryption hardware (which only supports a
70  * single encryption context per keyslot), we only allow one tfm per keyslot to
71  * be used at a time - the rest of the unused tfms have their keys cleared.
72  */
73 static DEFINE_MUTEX(tfms_init_lock);
74 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
75
76 static struct blk_crypto_fallback_keyslot {
77         enum blk_crypto_mode_num crypto_mode;
78         struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
79 } *blk_crypto_keyslots;
80
81 static struct blk_crypto_profile *blk_crypto_fallback_profile;
82 static struct workqueue_struct *blk_crypto_wq;
83 static mempool_t *blk_crypto_bounce_page_pool;
84 static struct bio_set crypto_bio_split;
85
86 /*
87  * This is the key we set when evicting a keyslot. This *should* be the all 0's
88  * key, but AES-XTS rejects that key, so we use some random bytes instead.
89  */
90 static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
91
92 static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
93 {
94         struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
95         enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
96         int err;
97
98         WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
99
100         /* Clear the key in the skcipher */
101         err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
102                                      blk_crypto_modes[crypto_mode].keysize);
103         WARN_ON(err);
104         slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
105 }
106
107 static int
108 blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
109                                     const struct blk_crypto_key *key,
110                                     unsigned int slot)
111 {
112         struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
113         const enum blk_crypto_mode_num crypto_mode =
114                                                 key->crypto_cfg.crypto_mode;
115         int err;
116
117         if (crypto_mode != slotp->crypto_mode &&
118             slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
119                 blk_crypto_fallback_evict_keyslot(slot);
120
121         slotp->crypto_mode = crypto_mode;
122         err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
123                                      key->size);
124         if (err) {
125                 blk_crypto_fallback_evict_keyslot(slot);
126                 return err;
127         }
128         return 0;
129 }
130
131 static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
132                                              const struct blk_crypto_key *key,
133                                              unsigned int slot)
134 {
135         blk_crypto_fallback_evict_keyslot(slot);
136         return 0;
137 }
138
139 static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
140         .keyslot_program        = blk_crypto_fallback_keyslot_program,
141         .keyslot_evict          = blk_crypto_fallback_keyslot_evict,
142 };
143
144 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
145 {
146         struct bio *src_bio = enc_bio->bi_private;
147         int i;
148
149         for (i = 0; i < enc_bio->bi_vcnt; i++)
150                 mempool_free(enc_bio->bi_io_vec[i].bv_page,
151                              blk_crypto_bounce_page_pool);
152
153         src_bio->bi_status = enc_bio->bi_status;
154
155         bio_uninit(enc_bio);
156         kfree(enc_bio);
157         bio_endio(src_bio);
158 }
159
160 static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
161 {
162         unsigned int nr_segs = bio_segments(bio_src);
163         struct bvec_iter iter;
164         struct bio_vec bv;
165         struct bio *bio;
166
167         bio = bio_kmalloc(nr_segs, GFP_NOIO);
168         if (!bio)
169                 return NULL;
170         bio_init(bio, bio_src->bi_bdev, bio->bi_inline_vecs, nr_segs,
171                  bio_src->bi_opf);
172         if (bio_flagged(bio_src, BIO_REMAPPED))
173                 bio_set_flag(bio, BIO_REMAPPED);
174         bio->bi_ioprio          = bio_src->bi_ioprio;
175         bio->bi_write_hint      = bio_src->bi_write_hint;
176         bio->bi_iter.bi_sector  = bio_src->bi_iter.bi_sector;
177         bio->bi_iter.bi_size    = bio_src->bi_iter.bi_size;
178
179         bio_for_each_segment(bv, bio_src, iter)
180                 bio->bi_io_vec[bio->bi_vcnt++] = bv;
181
182         bio_clone_blkg_association(bio, bio_src);
183
184         return bio;
185 }
186
187 static bool
188 blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
189                                      struct skcipher_request **ciph_req_ret,
190                                      struct crypto_wait *wait)
191 {
192         struct skcipher_request *ciph_req;
193         const struct blk_crypto_fallback_keyslot *slotp;
194         int keyslot_idx = blk_crypto_keyslot_index(slot);
195
196         slotp = &blk_crypto_keyslots[keyslot_idx];
197         ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
198                                           GFP_NOIO);
199         if (!ciph_req)
200                 return false;
201
202         skcipher_request_set_callback(ciph_req,
203                                       CRYPTO_TFM_REQ_MAY_BACKLOG |
204                                       CRYPTO_TFM_REQ_MAY_SLEEP,
205                                       crypto_req_done, wait);
206         *ciph_req_ret = ciph_req;
207
208         return true;
209 }
210
211 static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
212 {
213         struct bio *bio = *bio_ptr;
214         unsigned int i = 0;
215         unsigned int num_sectors = 0;
216         struct bio_vec bv;
217         struct bvec_iter iter;
218
219         bio_for_each_segment(bv, bio, iter) {
220                 num_sectors += bv.bv_len >> SECTOR_SHIFT;
221                 if (++i == BIO_MAX_VECS)
222                         break;
223         }
224         if (num_sectors < bio_sectors(bio)) {
225                 struct bio *split_bio;
226
227                 split_bio = bio_split(bio, num_sectors, GFP_NOIO,
228                                       &crypto_bio_split);
229                 if (!split_bio) {
230                         bio->bi_status = BLK_STS_RESOURCE;
231                         return false;
232                 }
233                 bio_chain(split_bio, bio);
234                 submit_bio_noacct(bio);
235                 *bio_ptr = split_bio;
236         }
237
238         return true;
239 }
240
241 union blk_crypto_iv {
242         __le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
243         u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
244 };
245
246 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
247                                  union blk_crypto_iv *iv)
248 {
249         int i;
250
251         for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
252                 iv->dun[i] = cpu_to_le64(dun[i]);
253 }
254
255 /*
256  * The crypto API fallback's encryption routine.
257  * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
258  * and replace *bio_ptr with the bounce bio. May split input bio if it's too
259  * large. Returns true on success. Returns false and sets bio->bi_status on
260  * error.
261  */
262 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
263 {
264         struct bio *src_bio, *enc_bio;
265         struct bio_crypt_ctx *bc;
266         struct blk_crypto_keyslot *slot;
267         int data_unit_size;
268         struct skcipher_request *ciph_req = NULL;
269         DECLARE_CRYPTO_WAIT(wait);
270         u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
271         struct scatterlist src, dst;
272         union blk_crypto_iv iv;
273         unsigned int i, j;
274         bool ret = false;
275         blk_status_t blk_st;
276
277         /* Split the bio if it's too big for single page bvec */
278         if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr))
279                 return false;
280
281         src_bio = *bio_ptr;
282         bc = src_bio->bi_crypt_context;
283         data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
284
285         /* Allocate bounce bio for encryption */
286         enc_bio = blk_crypto_fallback_clone_bio(src_bio);
287         if (!enc_bio) {
288                 src_bio->bi_status = BLK_STS_RESOURCE;
289                 return false;
290         }
291
292         /*
293          * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
294          * this bio's algorithm and key.
295          */
296         blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
297                                         bc->bc_key, &slot);
298         if (blk_st != BLK_STS_OK) {
299                 src_bio->bi_status = blk_st;
300                 goto out_put_enc_bio;
301         }
302
303         /* and then allocate an skcipher_request for it */
304         if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
305                 src_bio->bi_status = BLK_STS_RESOURCE;
306                 goto out_release_keyslot;
307         }
308
309         memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
310         sg_init_table(&src, 1);
311         sg_init_table(&dst, 1);
312
313         skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
314                                    iv.bytes);
315
316         /* Encrypt each page in the bounce bio */
317         for (i = 0; i < enc_bio->bi_vcnt; i++) {
318                 struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
319                 struct page *plaintext_page = enc_bvec->bv_page;
320                 struct page *ciphertext_page =
321                         mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
322
323                 enc_bvec->bv_page = ciphertext_page;
324
325                 if (!ciphertext_page) {
326                         src_bio->bi_status = BLK_STS_RESOURCE;
327                         goto out_free_bounce_pages;
328                 }
329
330                 sg_set_page(&src, plaintext_page, data_unit_size,
331                             enc_bvec->bv_offset);
332                 sg_set_page(&dst, ciphertext_page, data_unit_size,
333                             enc_bvec->bv_offset);
334
335                 /* Encrypt each data unit in this page */
336                 for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
337                         blk_crypto_dun_to_iv(curr_dun, &iv);
338                         if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
339                                             &wait)) {
340                                 i++;
341                                 src_bio->bi_status = BLK_STS_IOERR;
342                                 goto out_free_bounce_pages;
343                         }
344                         bio_crypt_dun_increment(curr_dun, 1);
345                         src.offset += data_unit_size;
346                         dst.offset += data_unit_size;
347                 }
348         }
349
350         enc_bio->bi_private = src_bio;
351         enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
352         *bio_ptr = enc_bio;
353         ret = true;
354
355         enc_bio = NULL;
356         goto out_free_ciph_req;
357
358 out_free_bounce_pages:
359         while (i > 0)
360                 mempool_free(enc_bio->bi_io_vec[--i].bv_page,
361                              blk_crypto_bounce_page_pool);
362 out_free_ciph_req:
363         skcipher_request_free(ciph_req);
364 out_release_keyslot:
365         blk_crypto_put_keyslot(slot);
366 out_put_enc_bio:
367         if (enc_bio)
368                 bio_uninit(enc_bio);
369         kfree(enc_bio);
370         return ret;
371 }
372
373 /*
374  * The crypto API fallback's main decryption routine.
375  * Decrypts input bio in place, and calls bio_endio on the bio.
376  */
377 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
378 {
379         struct bio_fallback_crypt_ctx *f_ctx =
380                 container_of(work, struct bio_fallback_crypt_ctx, work);
381         struct bio *bio = f_ctx->bio;
382         struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
383         struct blk_crypto_keyslot *slot;
384         struct skcipher_request *ciph_req = NULL;
385         DECLARE_CRYPTO_WAIT(wait);
386         u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
387         union blk_crypto_iv iv;
388         struct scatterlist sg;
389         struct bio_vec bv;
390         struct bvec_iter iter;
391         const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
392         unsigned int i;
393         blk_status_t blk_st;
394
395         /*
396          * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
397          * this bio's algorithm and key.
398          */
399         blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
400                                         bc->bc_key, &slot);
401         if (blk_st != BLK_STS_OK) {
402                 bio->bi_status = blk_st;
403                 goto out_no_keyslot;
404         }
405
406         /* and then allocate an skcipher_request for it */
407         if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
408                 bio->bi_status = BLK_STS_RESOURCE;
409                 goto out;
410         }
411
412         memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
413         sg_init_table(&sg, 1);
414         skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
415                                    iv.bytes);
416
417         /* Decrypt each segment in the bio */
418         __bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
419                 struct page *page = bv.bv_page;
420
421                 sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
422
423                 /* Decrypt each data unit in the segment */
424                 for (i = 0; i < bv.bv_len; i += data_unit_size) {
425                         blk_crypto_dun_to_iv(curr_dun, &iv);
426                         if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
427                                             &wait)) {
428                                 bio->bi_status = BLK_STS_IOERR;
429                                 goto out;
430                         }
431                         bio_crypt_dun_increment(curr_dun, 1);
432                         sg.offset += data_unit_size;
433                 }
434         }
435
436 out:
437         skcipher_request_free(ciph_req);
438         blk_crypto_put_keyslot(slot);
439 out_no_keyslot:
440         mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
441         bio_endio(bio);
442 }
443
444 /**
445  * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
446  *
447  * @bio: the bio to queue
448  *
449  * Restore bi_private and bi_end_io, and queue the bio for decryption into a
450  * workqueue, since this function will be called from an atomic context.
451  */
452 static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
453 {
454         struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
455
456         bio->bi_private = f_ctx->bi_private_orig;
457         bio->bi_end_io = f_ctx->bi_end_io_orig;
458
459         /* If there was an IO error, don't queue for decrypt. */
460         if (bio->bi_status) {
461                 mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
462                 bio_endio(bio);
463                 return;
464         }
465
466         INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
467         f_ctx->bio = bio;
468         queue_work(blk_crypto_wq, &f_ctx->work);
469 }
470
471 /**
472  * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
473  *
474  * @bio_ptr: pointer to the bio to prepare
475  *
476  * If bio is doing a WRITE operation, this splits the bio into two parts if it's
477  * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a
478  * bounce bio for the first part, encrypts it, and updates bio_ptr to point to
479  * the bounce bio.
480  *
481  * For a READ operation, we mark the bio for decryption by using bi_private and
482  * bi_end_io.
483  *
484  * In either case, this function will make the bio look like a regular bio (i.e.
485  * as if no encryption context was ever specified) for the purposes of the rest
486  * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
487  * currently supported together).
488  *
489  * Return: true on success. Sets bio->bi_status and returns false on error.
490  */
491 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
492 {
493         struct bio *bio = *bio_ptr;
494         struct bio_crypt_ctx *bc = bio->bi_crypt_context;
495         struct bio_fallback_crypt_ctx *f_ctx;
496
497         if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
498                 /* User didn't call blk_crypto_start_using_key() first */
499                 bio->bi_status = BLK_STS_IOERR;
500                 return false;
501         }
502
503         if (!__blk_crypto_cfg_supported(blk_crypto_fallback_profile,
504                                         &bc->bc_key->crypto_cfg)) {
505                 bio->bi_status = BLK_STS_NOTSUPP;
506                 return false;
507         }
508
509         if (bio_data_dir(bio) == WRITE)
510                 return blk_crypto_fallback_encrypt_bio(bio_ptr);
511
512         /*
513          * bio READ case: Set up a f_ctx in the bio's bi_private and set the
514          * bi_end_io appropriately to trigger decryption when the bio is ended.
515          */
516         f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
517         f_ctx->crypt_ctx = *bc;
518         f_ctx->crypt_iter = bio->bi_iter;
519         f_ctx->bi_private_orig = bio->bi_private;
520         f_ctx->bi_end_io_orig = bio->bi_end_io;
521         bio->bi_private = (void *)f_ctx;
522         bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
523         bio_crypt_free_ctx(bio);
524
525         return true;
526 }
527
528 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
529 {
530         return __blk_crypto_evict_key(blk_crypto_fallback_profile, key);
531 }
532
533 static bool blk_crypto_fallback_inited;
534 static int blk_crypto_fallback_init(void)
535 {
536         int i;
537         int err;
538
539         if (blk_crypto_fallback_inited)
540                 return 0;
541
542         get_random_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
543
544         err = bioset_init(&crypto_bio_split, 64, 0, 0);
545         if (err)
546                 goto out;
547
548         /* Dynamic allocation is needed because of lockdep_register_key(). */
549         blk_crypto_fallback_profile =
550                 kzalloc(sizeof(*blk_crypto_fallback_profile), GFP_KERNEL);
551         if (!blk_crypto_fallback_profile) {
552                 err = -ENOMEM;
553                 goto fail_free_bioset;
554         }
555
556         err = blk_crypto_profile_init(blk_crypto_fallback_profile,
557                                       blk_crypto_num_keyslots);
558         if (err)
559                 goto fail_free_profile;
560         err = -ENOMEM;
561
562         blk_crypto_fallback_profile->ll_ops = blk_crypto_fallback_ll_ops;
563         blk_crypto_fallback_profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
564
565         /* All blk-crypto modes have a crypto API fallback. */
566         for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
567                 blk_crypto_fallback_profile->modes_supported[i] = 0xFFFFFFFF;
568         blk_crypto_fallback_profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
569
570         blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
571                                         WQ_UNBOUND | WQ_HIGHPRI |
572                                         WQ_MEM_RECLAIM, num_online_cpus());
573         if (!blk_crypto_wq)
574                 goto fail_destroy_profile;
575
576         blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
577                                       sizeof(blk_crypto_keyslots[0]),
578                                       GFP_KERNEL);
579         if (!blk_crypto_keyslots)
580                 goto fail_free_wq;
581
582         blk_crypto_bounce_page_pool =
583                 mempool_create_page_pool(num_prealloc_bounce_pg, 0);
584         if (!blk_crypto_bounce_page_pool)
585                 goto fail_free_keyslots;
586
587         bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
588         if (!bio_fallback_crypt_ctx_cache)
589                 goto fail_free_bounce_page_pool;
590
591         bio_fallback_crypt_ctx_pool =
592                 mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
593                                          bio_fallback_crypt_ctx_cache);
594         if (!bio_fallback_crypt_ctx_pool)
595                 goto fail_free_crypt_ctx_cache;
596
597         blk_crypto_fallback_inited = true;
598
599         return 0;
600 fail_free_crypt_ctx_cache:
601         kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
602 fail_free_bounce_page_pool:
603         mempool_destroy(blk_crypto_bounce_page_pool);
604 fail_free_keyslots:
605         kfree(blk_crypto_keyslots);
606 fail_free_wq:
607         destroy_workqueue(blk_crypto_wq);
608 fail_destroy_profile:
609         blk_crypto_profile_destroy(blk_crypto_fallback_profile);
610 fail_free_profile:
611         kfree(blk_crypto_fallback_profile);
612 fail_free_bioset:
613         bioset_exit(&crypto_bio_split);
614 out:
615         return err;
616 }
617
618 /*
619  * Prepare blk-crypto-fallback for the specified crypto mode.
620  * Returns -ENOPKG if the needed crypto API support is missing.
621  */
622 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
623 {
624         const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
625         struct blk_crypto_fallback_keyslot *slotp;
626         unsigned int i;
627         int err = 0;
628
629         /*
630          * Fast path
631          * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
632          * for each i are visible before we try to access them.
633          */
634         if (likely(smp_load_acquire(&tfms_inited[mode_num])))
635                 return 0;
636
637         mutex_lock(&tfms_init_lock);
638         if (tfms_inited[mode_num])
639                 goto out;
640
641         err = blk_crypto_fallback_init();
642         if (err)
643                 goto out;
644
645         for (i = 0; i < blk_crypto_num_keyslots; i++) {
646                 slotp = &blk_crypto_keyslots[i];
647                 slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
648                 if (IS_ERR(slotp->tfms[mode_num])) {
649                         err = PTR_ERR(slotp->tfms[mode_num]);
650                         if (err == -ENOENT) {
651                                 pr_warn_once("Missing crypto API support for \"%s\"\n",
652                                              cipher_str);
653                                 err = -ENOPKG;
654                         }
655                         slotp->tfms[mode_num] = NULL;
656                         goto out_free_tfms;
657                 }
658
659                 crypto_skcipher_set_flags(slotp->tfms[mode_num],
660                                           CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
661         }
662
663         /*
664          * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
665          * for each i are visible before we set tfms_inited[mode_num].
666          */
667         smp_store_release(&tfms_inited[mode_num], true);
668         goto out;
669
670 out_free_tfms:
671         for (i = 0; i < blk_crypto_num_keyslots; i++) {
672                 slotp = &blk_crypto_keyslots[i];
673                 crypto_free_skcipher(slotp->tfms[mode_num]);
674                 slotp->tfms[mode_num] = NULL;
675         }
676 out:
677         mutex_unlock(&tfms_init_lock);
678         return err;
679 }