x86: clflush_page_range needs mfence
[sfrench/cifs-2.6.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11
12 #include <asm/e820.h>
13 #include <asm/processor.h>
14 #include <asm/tlbflush.h>
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17 #include <asm/pgalloc.h>
18
19 static inline int
20 within(unsigned long addr, unsigned long start, unsigned long end)
21 {
22         return addr >= start && addr < end;
23 }
24
25 /*
26  * Flushing functions
27  */
28
29
30 /**
31  * clflush_cache_range - flush a cache range with clflush
32  * @addr:       virtual start address
33  * @size:       number of bytes to flush
34  *
35  * clflush is an unordered instruction which needs fencing with mfence
36  * to avoid ordering issues.
37  */
38 void clflush_cache_range(void *addr, int size)
39 {
40         int i;
41
42         mb();
43         for (i = 0; i < size; i += boot_cpu_data.x86_clflush_size)
44                 clflush(addr+i);
45         mb();
46 }
47
48 static void __cpa_flush_all(void *arg)
49 {
50         /*
51          * Flush all to work around Errata in early athlons regarding
52          * large page flushing.
53          */
54         __flush_tlb_all();
55
56         if (boot_cpu_data.x86_model >= 4)
57                 wbinvd();
58 }
59
60 static void cpa_flush_all(void)
61 {
62         BUG_ON(irqs_disabled());
63
64         on_each_cpu(__cpa_flush_all, NULL, 1, 1);
65 }
66
67 struct clflush_data {
68         unsigned long addr;
69         int numpages;
70 };
71
72 static void __cpa_flush_range(void *arg)
73 {
74         struct clflush_data *cld = arg;
75
76         /*
77          * We could optimize that further and do individual per page
78          * tlb invalidates for a low number of pages. Caveat: we must
79          * flush the high aliases on 64bit as well.
80          */
81         __flush_tlb_all();
82
83         clflush_cache_range((void *) cld->addr, cld->numpages * PAGE_SIZE);
84 }
85
86 static void cpa_flush_range(unsigned long addr, int numpages)
87 {
88         struct clflush_data cld;
89
90         BUG_ON(irqs_disabled());
91
92         cld.addr = addr;
93         cld.numpages = numpages;
94
95         on_each_cpu(__cpa_flush_range, &cld, 1, 1);
96 }
97
98 /*
99  * Certain areas of memory on x86 require very specific protection flags,
100  * for example the BIOS area or kernel text. Callers don't always get this
101  * right (again, ioremap() on BIOS memory is not uncommon) so this function
102  * checks and fixes these known static required protection bits.
103  */
104 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
105 {
106         pgprot_t forbidden = __pgprot(0);
107
108         /*
109          * The BIOS area between 640k and 1Mb needs to be executable for
110          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
111          */
112         if (within(__pa(address), BIOS_BEGIN, BIOS_END))
113                 pgprot_val(forbidden) |= _PAGE_NX;
114
115         /*
116          * The kernel text needs to be executable for obvious reasons
117          * Does not cover __inittext since that is gone later on
118          */
119         if (within(address, (unsigned long)_text, (unsigned long)_etext))
120                 pgprot_val(forbidden) |= _PAGE_NX;
121
122 #ifdef CONFIG_DEBUG_RODATA
123         /* The .rodata section needs to be read-only */
124         if (within(address, (unsigned long)__start_rodata,
125                                 (unsigned long)__end_rodata))
126                 pgprot_val(forbidden) |= _PAGE_RW;
127 #endif
128
129         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
130
131         return prot;
132 }
133
134 pte_t *lookup_address(unsigned long address, int *level)
135 {
136         pgd_t *pgd = pgd_offset_k(address);
137         pud_t *pud;
138         pmd_t *pmd;
139
140         *level = PG_LEVEL_NONE;
141
142         if (pgd_none(*pgd))
143                 return NULL;
144         pud = pud_offset(pgd, address);
145         if (pud_none(*pud))
146                 return NULL;
147         pmd = pmd_offset(pud, address);
148         if (pmd_none(*pmd))
149                 return NULL;
150
151         *level = PG_LEVEL_2M;
152         if (pmd_large(*pmd))
153                 return (pte_t *)pmd;
154
155         *level = PG_LEVEL_4K;
156         return pte_offset_kernel(pmd, address);
157 }
158
159 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
160 {
161         /* change init_mm */
162         set_pte_atomic(kpte, pte);
163 #ifdef CONFIG_X86_32
164         if (!SHARED_KERNEL_PMD) {
165                 struct page *page;
166
167                 for (page = pgd_list; page; page = (struct page *)page->index) {
168                         pgd_t *pgd;
169                         pud_t *pud;
170                         pmd_t *pmd;
171
172                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
173                         pud = pud_offset(pgd, address);
174                         pmd = pmd_offset(pud, address);
175                         set_pte_atomic((pte_t *)pmd, pte);
176                 }
177         }
178 #endif
179 }
180
181 static int split_large_page(pte_t *kpte, unsigned long address)
182 {
183         pgprot_t ref_prot = pte_pgprot(pte_clrhuge(*kpte));
184         gfp_t gfp_flags = GFP_KERNEL;
185         unsigned long flags;
186         unsigned long addr;
187         pte_t *pbase, *tmp;
188         struct page *base;
189         int i, level;
190
191 #ifdef CONFIG_DEBUG_PAGEALLOC
192         gfp_flags = GFP_ATOMIC;
193 #endif
194         base = alloc_pages(gfp_flags, 0);
195         if (!base)
196                 return -ENOMEM;
197
198         spin_lock_irqsave(&pgd_lock, flags);
199         /*
200          * Check for races, another CPU might have split this page
201          * up for us already:
202          */
203         tmp = lookup_address(address, &level);
204         if (tmp != kpte) {
205                 WARN_ON_ONCE(1);
206                 goto out_unlock;
207         }
208
209         address = __pa(address);
210         addr = address & LARGE_PAGE_MASK;
211         pbase = (pte_t *)page_address(base);
212 #ifdef CONFIG_X86_32
213         paravirt_alloc_pt(&init_mm, page_to_pfn(base));
214 #endif
215
216         for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE)
217                 set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT, ref_prot));
218
219         /*
220          * Install the new, split up pagetable. Important detail here:
221          *
222          * On Intel the NX bit of all levels must be cleared to make a
223          * page executable. See section 4.13.2 of Intel 64 and IA-32
224          * Architectures Software Developer's Manual).
225          */
226         ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
227         __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
228         base = NULL;
229
230 out_unlock:
231         spin_unlock_irqrestore(&pgd_lock, flags);
232
233         if (base)
234                 __free_pages(base, 0);
235
236         return 0;
237 }
238
239 static int
240 __change_page_attr(unsigned long address, unsigned long pfn, pgprot_t prot)
241 {
242         struct page *kpte_page;
243         int level, err = 0;
244         pte_t *kpte;
245
246 #ifdef CONFIG_X86_32
247         BUG_ON(pfn > max_low_pfn);
248 #endif
249
250 repeat:
251         kpte = lookup_address(address, &level);
252         if (!kpte)
253                 return -EINVAL;
254
255         kpte_page = virt_to_page(kpte);
256         BUG_ON(PageLRU(kpte_page));
257         BUG_ON(PageCompound(kpte_page));
258
259         prot = static_protections(prot, address);
260
261         if (level == PG_LEVEL_4K) {
262                 WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PSE);
263                 set_pte_atomic(kpte, pfn_pte(pfn, canon_pgprot(prot)));
264         } else {
265                 /* Clear the PSE bit for the 4k level pages ! */
266                 pgprot_val(prot) = pgprot_val(prot) & ~_PAGE_PSE;
267
268                 err = split_large_page(kpte, address);
269                 if (!err)
270                         goto repeat;
271         }
272         return err;
273 }
274
275 /**
276  * change_page_attr_addr - Change page table attributes in linear mapping
277  * @address: Virtual address in linear mapping.
278  * @prot:    New page table attribute (PAGE_*)
279  *
280  * Change page attributes of a page in the direct mapping. This is a variant
281  * of change_page_attr() that also works on memory holes that do not have
282  * mem_map entry (pfn_valid() is false).
283  *
284  * See change_page_attr() documentation for more details.
285  *
286  * Modules and drivers should use the set_memory_* APIs instead.
287  */
288
289 static int change_page_attr_addr(unsigned long address, pgprot_t prot)
290 {
291         int err = 0, kernel_map = 0;
292         unsigned long pfn = __pa(address) >> PAGE_SHIFT;
293
294 #ifdef CONFIG_X86_64
295         if (address >= __START_KERNEL_map &&
296                         address < __START_KERNEL_map + KERNEL_TEXT_SIZE) {
297
298                 address = (unsigned long)__va(__pa(address));
299                 kernel_map = 1;
300         }
301 #endif
302
303         if (!kernel_map || pte_present(pfn_pte(0, prot))) {
304                 err = __change_page_attr(address, pfn, prot);
305                 if (err)
306                         return err;
307         }
308
309 #ifdef CONFIG_X86_64
310         /*
311          * Handle kernel mapping too which aliases part of
312          * lowmem:
313          */
314         if (__pa(address) < KERNEL_TEXT_SIZE) {
315                 unsigned long addr2;
316                 pgprot_t prot2;
317
318                 addr2 = __START_KERNEL_map + __pa(address);
319                 /* Make sure the kernel mappings stay executable */
320                 prot2 = pte_pgprot(pte_mkexec(pfn_pte(0, prot)));
321                 err = __change_page_attr(addr2, pfn, prot2);
322         }
323 #endif
324
325         return err;
326 }
327
328 static int __change_page_attr_set_clr(unsigned long addr, int numpages,
329                                       pgprot_t mask_set, pgprot_t mask_clr)
330 {
331         pgprot_t new_prot;
332         int level;
333         pte_t *pte;
334         int i, ret;
335
336         for (i = 0; i < numpages ; i++) {
337
338                 pte = lookup_address(addr, &level);
339                 if (!pte)
340                         return -EINVAL;
341
342                 new_prot = pte_pgprot(*pte);
343
344                 pgprot_val(new_prot) &= ~pgprot_val(mask_clr);
345                 pgprot_val(new_prot) |= pgprot_val(mask_set);
346
347                 ret = change_page_attr_addr(addr, new_prot);
348                 if (ret)
349                         return ret;
350                 addr += PAGE_SIZE;
351         }
352
353         return 0;
354 }
355
356 static int change_page_attr_set_clr(unsigned long addr, int numpages,
357                                     pgprot_t mask_set, pgprot_t mask_clr)
358 {
359         int ret = __change_page_attr_set_clr(addr, numpages, mask_set,
360                                              mask_clr);
361
362         /*
363          * On success we use clflush, when the CPU supports it to
364          * avoid the wbindv. If the CPU does not support it and in the
365          * error case we fall back to cpa_flush_all (which uses
366          * wbindv):
367          */
368         if (!ret && cpu_has_clflush)
369                 cpa_flush_range(addr, numpages);
370         else
371                 cpa_flush_all();
372
373         return ret;
374 }
375
376 static inline int change_page_attr_set(unsigned long addr, int numpages,
377                                        pgprot_t mask)
378 {
379         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
380 }
381
382 static inline int change_page_attr_clear(unsigned long addr, int numpages,
383                                          pgprot_t mask)
384 {
385         return __change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
386
387 }
388
389 int set_memory_uc(unsigned long addr, int numpages)
390 {
391         return change_page_attr_set(addr, numpages,
392                                     __pgprot(_PAGE_PCD | _PAGE_PWT));
393 }
394 EXPORT_SYMBOL(set_memory_uc);
395
396 int set_memory_wb(unsigned long addr, int numpages)
397 {
398         return change_page_attr_clear(addr, numpages,
399                                       __pgprot(_PAGE_PCD | _PAGE_PWT));
400 }
401 EXPORT_SYMBOL(set_memory_wb);
402
403 int set_memory_x(unsigned long addr, int numpages)
404 {
405         return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
406 }
407 EXPORT_SYMBOL(set_memory_x);
408
409 int set_memory_nx(unsigned long addr, int numpages)
410 {
411         return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
412 }
413 EXPORT_SYMBOL(set_memory_nx);
414
415 int set_memory_ro(unsigned long addr, int numpages)
416 {
417         return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
418 }
419
420 int set_memory_rw(unsigned long addr, int numpages)
421 {
422         return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
423 }
424
425 int set_memory_np(unsigned long addr, int numpages)
426 {
427         return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
428 }
429
430 int set_pages_uc(struct page *page, int numpages)
431 {
432         unsigned long addr = (unsigned long)page_address(page);
433
434         return set_memory_uc(addr, numpages);
435 }
436 EXPORT_SYMBOL(set_pages_uc);
437
438 int set_pages_wb(struct page *page, int numpages)
439 {
440         unsigned long addr = (unsigned long)page_address(page);
441
442         return set_memory_wb(addr, numpages);
443 }
444 EXPORT_SYMBOL(set_pages_wb);
445
446 int set_pages_x(struct page *page, int numpages)
447 {
448         unsigned long addr = (unsigned long)page_address(page);
449
450         return set_memory_x(addr, numpages);
451 }
452 EXPORT_SYMBOL(set_pages_x);
453
454 int set_pages_nx(struct page *page, int numpages)
455 {
456         unsigned long addr = (unsigned long)page_address(page);
457
458         return set_memory_nx(addr, numpages);
459 }
460 EXPORT_SYMBOL(set_pages_nx);
461
462 int set_pages_ro(struct page *page, int numpages)
463 {
464         unsigned long addr = (unsigned long)page_address(page);
465
466         return set_memory_ro(addr, numpages);
467 }
468
469 int set_pages_rw(struct page *page, int numpages)
470 {
471         unsigned long addr = (unsigned long)page_address(page);
472
473         return set_memory_rw(addr, numpages);
474 }
475
476
477 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_CPA_DEBUG)
478 static inline int __change_page_attr_set(unsigned long addr, int numpages,
479                                          pgprot_t mask)
480 {
481         return __change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
482 }
483
484 static inline int __change_page_attr_clear(unsigned long addr, int numpages,
485                                            pgprot_t mask)
486 {
487         return __change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
488 }
489 #endif
490
491 #ifdef CONFIG_DEBUG_PAGEALLOC
492
493 static int __set_pages_p(struct page *page, int numpages)
494 {
495         unsigned long addr = (unsigned long)page_address(page);
496
497         return __change_page_attr_set(addr, numpages,
498                                       __pgprot(_PAGE_PRESENT | _PAGE_RW));
499 }
500
501 static int __set_pages_np(struct page *page, int numpages)
502 {
503         unsigned long addr = (unsigned long)page_address(page);
504
505         return __change_page_attr_clear(addr, numpages,
506                                         __pgprot(_PAGE_PRESENT));
507 }
508
509 void kernel_map_pages(struct page *page, int numpages, int enable)
510 {
511         if (PageHighMem(page))
512                 return;
513         if (!enable) {
514                 debug_check_no_locks_freed(page_address(page),
515                                            numpages * PAGE_SIZE);
516         }
517
518         /*
519          * If page allocator is not up yet then do not call c_p_a():
520          */
521         if (!debug_pagealloc_enabled)
522                 return;
523
524         /*
525          * The return value is ignored - the calls cannot fail,
526          * large pages are disabled at boot time:
527          */
528         if (enable)
529                 __set_pages_p(page, numpages);
530         else
531                 __set_pages_np(page, numpages);
532
533         /*
534          * We should perform an IPI and flush all tlbs,
535          * but that can deadlock->flush only current cpu:
536          */
537         __flush_tlb_all();
538 }
539 #endif
540
541 /*
542  * The testcases use internal knowledge of the implementation that shouldn't
543  * be exposed to the rest of the kernel. Include these directly here.
544  */
545 #ifdef CONFIG_CPA_DEBUG
546 #include "pageattr-test.c"
547 #endif