Merge branches 'x86/numa-fixes', 'x86/apic', 'x86/apm', 'x86/bitops', 'x86/build...
[sfrench/cifs-2.6.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 static unsigned long dma_reserve __initdata;
52
53 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
54
55 int direct_gbpages __meminitdata
56 #ifdef CONFIG_DIRECT_GBPAGES
57                                 = 1
58 #endif
59 ;
60
61 static int __init parse_direct_gbpages_off(char *arg)
62 {
63         direct_gbpages = 0;
64         return 0;
65 }
66 early_param("nogbpages", parse_direct_gbpages_off);
67
68 static int __init parse_direct_gbpages_on(char *arg)
69 {
70         direct_gbpages = 1;
71         return 0;
72 }
73 early_param("gbpages", parse_direct_gbpages_on);
74
75 /*
76  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
77  * physical space so we can cache the place of the first one and move
78  * around without checking the pgd every time.
79  */
80
81 void show_mem(void)
82 {
83         long i, total = 0, reserved = 0;
84         long shared = 0, cached = 0;
85         struct page *page;
86         pg_data_t *pgdat;
87
88         printk(KERN_INFO "Mem-info:\n");
89         show_free_areas();
90         for_each_online_pgdat(pgdat) {
91                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
92                         /*
93                          * This loop can take a while with 256 GB and
94                          * 4k pages so defer the NMI watchdog:
95                          */
96                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
97                                 touch_nmi_watchdog();
98
99                         if (!pfn_valid(pgdat->node_start_pfn + i))
100                                 continue;
101
102                         page = pfn_to_page(pgdat->node_start_pfn + i);
103                         total++;
104                         if (PageReserved(page))
105                                 reserved++;
106                         else if (PageSwapCache(page))
107                                 cached++;
108                         else if (page_count(page))
109                                 shared += page_count(page) - 1;
110                 }
111         }
112         printk(KERN_INFO "%lu pages of RAM\n",          total);
113         printk(KERN_INFO "%lu reserved pages\n",        reserved);
114         printk(KERN_INFO "%lu pages shared\n",          shared);
115         printk(KERN_INFO "%lu pages swap cached\n",     cached);
116 }
117
118 int after_bootmem;
119
120 static __init void *spp_getpage(void)
121 {
122         void *ptr;
123
124         if (after_bootmem)
125                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
126         else
127                 ptr = alloc_bootmem_pages(PAGE_SIZE);
128
129         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
130                 panic("set_pte_phys: cannot allocate page data %s\n",
131                         after_bootmem ? "after bootmem" : "");
132         }
133
134         pr_debug("spp_getpage %p\n", ptr);
135
136         return ptr;
137 }
138
139 static __init void
140 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
141 {
142         pgd_t *pgd;
143         pud_t *pud;
144         pmd_t *pmd;
145         pte_t *pte, new_pte;
146
147         pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
148
149         pgd = pgd_offset_k(vaddr);
150         if (pgd_none(*pgd)) {
151                 printk(KERN_ERR
152                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
153                 return;
154         }
155         pud = pud_offset(pgd, vaddr);
156         if (pud_none(*pud)) {
157                 pmd = (pmd_t *) spp_getpage();
158                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
159                 if (pmd != pmd_offset(pud, 0)) {
160                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
161                                 pmd, pmd_offset(pud, 0));
162                         return;
163                 }
164         }
165         pmd = pmd_offset(pud, vaddr);
166         if (pmd_none(*pmd)) {
167                 pte = (pte_t *) spp_getpage();
168                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
169                 if (pte != pte_offset_kernel(pmd, 0)) {
170                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
171                         return;
172                 }
173         }
174         new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
175
176         pte = pte_offset_kernel(pmd, vaddr);
177         if (!pte_none(*pte) && pte_val(new_pte) &&
178             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
179                 pte_ERROR(*pte);
180         set_pte(pte, new_pte);
181
182         /*
183          * It's enough to flush this one mapping.
184          * (PGE mappings get flushed as well)
185          */
186         __flush_tlb_one(vaddr);
187 }
188
189 /*
190  * The head.S code sets up the kernel high mapping:
191  *
192  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
193  *
194  * phys_addr holds the negative offset to the kernel, which is added
195  * to the compile time generated pmds. This results in invalid pmds up
196  * to the point where we hit the physaddr 0 mapping.
197  *
198  * We limit the mappings to the region from _text to _end.  _end is
199  * rounded up to the 2MB boundary. This catches the invalid pmds as
200  * well, as they are located before _text:
201  */
202 void __init cleanup_highmap(void)
203 {
204         unsigned long vaddr = __START_KERNEL_map;
205         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
206         pmd_t *pmd = level2_kernel_pgt;
207         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
208
209         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
210                 if (pmd_none(*pmd))
211                         continue;
212                 if (vaddr < (unsigned long) _text || vaddr > end)
213                         set_pmd(pmd, __pmd(0));
214         }
215 }
216
217 /* NOTE: this is meant to be run only at boot */
218 void __init __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
219 {
220         unsigned long address = __fix_to_virt(idx);
221
222         if (idx >= __end_of_fixed_addresses) {
223                 printk(KERN_ERR "Invalid __set_fixmap\n");
224                 return;
225         }
226         set_pte_phys(address, phys, prot);
227 }
228
229 static unsigned long __initdata table_start;
230 static unsigned long __meminitdata table_end;
231
232 static __meminit void *alloc_low_page(unsigned long *phys)
233 {
234         unsigned long pfn = table_end++;
235         void *adr;
236
237         if (after_bootmem) {
238                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
239                 *phys = __pa(adr);
240
241                 return adr;
242         }
243
244         if (pfn >= end_pfn)
245                 panic("alloc_low_page: ran out of memory");
246
247         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
248         memset(adr, 0, PAGE_SIZE);
249         *phys  = pfn * PAGE_SIZE;
250         return adr;
251 }
252
253 static __meminit void unmap_low_page(void *adr)
254 {
255         if (after_bootmem)
256                 return;
257
258         early_iounmap(adr, PAGE_SIZE);
259 }
260
261 /* Must run before zap_low_mappings */
262 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
263 {
264         pmd_t *pmd, *last_pmd;
265         unsigned long vaddr;
266         int i, pmds;
267
268         pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
269         vaddr = __START_KERNEL_map;
270         pmd = level2_kernel_pgt;
271         last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
272
273         for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
274                 for (i = 0; i < pmds; i++) {
275                         if (pmd_present(pmd[i]))
276                                 goto continue_outer_loop;
277                 }
278                 vaddr += addr & ~PMD_MASK;
279                 addr &= PMD_MASK;
280
281                 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
282                         set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
283                 __flush_tlb_all();
284
285                 return (void *)vaddr;
286 continue_outer_loop:
287                 ;
288         }
289         printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
290
291         return NULL;
292 }
293
294 /*
295  * To avoid virtual aliases later:
296  */
297 __meminit void early_iounmap(void *addr, unsigned long size)
298 {
299         unsigned long vaddr;
300         pmd_t *pmd;
301         int i, pmds;
302
303         vaddr = (unsigned long)addr;
304         pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
305         pmd = level2_kernel_pgt + pmd_index(vaddr);
306
307         for (i = 0; i < pmds; i++)
308                 pmd_clear(pmd + i);
309
310         __flush_tlb_all();
311 }
312
313 static unsigned long __meminit
314 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
315 {
316         unsigned long pages = 0;
317
318         int i = pmd_index(address);
319
320         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
321                 pmd_t *pmd = pmd_page + pmd_index(address);
322
323                 if (address >= end) {
324                         if (!after_bootmem) {
325                                 for (; i < PTRS_PER_PMD; i++, pmd++)
326                                         set_pmd(pmd, __pmd(0));
327                         }
328                         break;
329                 }
330
331                 if (pmd_val(*pmd))
332                         continue;
333
334                 pages++;
335                 set_pte((pte_t *)pmd,
336                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
337         }
338         update_page_count(PG_LEVEL_2M, pages);
339         return address;
340 }
341
342 static unsigned long __meminit
343 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
344 {
345         pmd_t *pmd = pmd_offset(pud, 0);
346         unsigned long last_map_addr;
347
348         spin_lock(&init_mm.page_table_lock);
349         last_map_addr = phys_pmd_init(pmd, address, end);
350         spin_unlock(&init_mm.page_table_lock);
351         __flush_tlb_all();
352         return last_map_addr;
353 }
354
355 static unsigned long __meminit
356 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
357 {
358         unsigned long pages = 0;
359         unsigned long last_map_addr = end;
360         int i = pud_index(addr);
361
362         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
363                 unsigned long pmd_phys;
364                 pud_t *pud = pud_page + pud_index(addr);
365                 pmd_t *pmd;
366
367                 if (addr >= end)
368                         break;
369
370                 if (!after_bootmem &&
371                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
372                         set_pud(pud, __pud(0));
373                         continue;
374                 }
375
376                 if (pud_val(*pud)) {
377                         if (!pud_large(*pud))
378                                 last_map_addr = phys_pmd_update(pud, addr, end);
379                         continue;
380                 }
381
382                 if (direct_gbpages) {
383                         pages++;
384                         set_pte((pte_t *)pud,
385                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
386                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
387                         continue;
388                 }
389
390                 pmd = alloc_low_page(&pmd_phys);
391
392                 spin_lock(&init_mm.page_table_lock);
393                 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
394                 last_map_addr = phys_pmd_init(pmd, addr, end);
395                 spin_unlock(&init_mm.page_table_lock);
396
397                 unmap_low_page(pmd);
398         }
399         __flush_tlb_all();
400         update_page_count(PG_LEVEL_1G, pages);
401
402         return last_map_addr >> PAGE_SHIFT;
403 }
404
405 static void __init find_early_table_space(unsigned long end)
406 {
407         unsigned long puds, pmds, tables, start;
408
409         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
410         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
411         if (!direct_gbpages) {
412                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
413                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
414         }
415
416         /*
417          * RED-PEN putting page tables only on node 0 could
418          * cause a hotspot and fill up ZONE_DMA. The page tables
419          * need roughly 0.5KB per GB.
420          */
421         start = 0x8000;
422         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
423         if (table_start == -1UL)
424                 panic("Cannot find space for the kernel page tables");
425
426         table_start >>= PAGE_SHIFT;
427         table_end = table_start;
428
429         early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
430                 end, table_start << PAGE_SHIFT,
431                 (table_start << PAGE_SHIFT) + tables);
432 }
433
434 static void __init init_gbpages(void)
435 {
436         if (direct_gbpages && cpu_has_gbpages)
437                 printk(KERN_INFO "Using GB pages for direct mapping\n");
438         else
439                 direct_gbpages = 0;
440 }
441
442 #ifdef CONFIG_MEMTEST
443
444 static void __init memtest(unsigned long start_phys, unsigned long size,
445                                  unsigned pattern)
446 {
447         unsigned long i;
448         unsigned long *start;
449         unsigned long start_bad;
450         unsigned long last_bad;
451         unsigned long val;
452         unsigned long start_phys_aligned;
453         unsigned long count;
454         unsigned long incr;
455
456         switch (pattern) {
457         case 0:
458                 val = 0UL;
459                 break;
460         case 1:
461                 val = -1UL;
462                 break;
463         case 2:
464                 val = 0x5555555555555555UL;
465                 break;
466         case 3:
467                 val = 0xaaaaaaaaaaaaaaaaUL;
468                 break;
469         default:
470                 return;
471         }
472
473         incr = sizeof(unsigned long);
474         start_phys_aligned = ALIGN(start_phys, incr);
475         count = (size - (start_phys_aligned - start_phys))/incr;
476         start = __va(start_phys_aligned);
477         start_bad = 0;
478         last_bad = 0;
479
480         for (i = 0; i < count; i++)
481                 start[i] = val;
482         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
483                 if (*start != val) {
484                         if (start_phys_aligned == last_bad + incr) {
485                                 last_bad += incr;
486                         } else {
487                                 if (start_bad) {
488                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
489                                                 val, start_bad, last_bad + incr);
490                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
491                                 }
492                                 start_bad = last_bad = start_phys_aligned;
493                         }
494                 }
495         }
496         if (start_bad) {
497                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
498                         val, start_bad, last_bad + incr);
499                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
500         }
501
502 }
503
504 /* default is disabled */
505 static int memtest_pattern __initdata;
506
507 static int __init parse_memtest(char *arg)
508 {
509         if (arg)
510                 memtest_pattern = simple_strtoul(arg, NULL, 0);
511         return 0;
512 }
513
514 early_param("memtest", parse_memtest);
515
516 static void __init early_memtest(unsigned long start, unsigned long end)
517 {
518         u64 t_start, t_size;
519         unsigned pattern;
520
521         if (!memtest_pattern)
522                 return;
523
524         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
525         for (pattern = 0; pattern < memtest_pattern; pattern++) {
526                 t_start = start;
527                 t_size = 0;
528                 while (t_start < end) {
529                         t_start = find_e820_area_size(t_start, &t_size, 1);
530
531                         /* done ? */
532                         if (t_start >= end)
533                                 break;
534                         if (t_start + t_size > end)
535                                 t_size = end - t_start;
536
537                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
538                                 (unsigned long long)t_start,
539                                 (unsigned long long)t_start + t_size, pattern);
540
541                         memtest(t_start, t_size, pattern);
542
543                         t_start += t_size;
544                 }
545         }
546         printk(KERN_CONT "\n");
547 }
548 #else
549 static void __init early_memtest(unsigned long start, unsigned long end)
550 {
551 }
552 #endif
553
554 /*
555  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
556  * This runs before bootmem is initialized and gets pages directly from
557  * the physical memory. To access them they are temporarily mapped.
558  */
559 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
560 {
561         unsigned long next, last_map_addr = end;
562         unsigned long start_phys = start, end_phys = end;
563
564         printk(KERN_INFO "init_memory_mapping\n");
565
566         /*
567          * Find space for the kernel direct mapping tables.
568          *
569          * Later we should allocate these tables in the local node of the
570          * memory mapped. Unfortunately this is done currently before the
571          * nodes are discovered.
572          */
573         if (!after_bootmem) {
574                 init_gbpages();
575                 find_early_table_space(end);
576         }
577
578         start = (unsigned long)__va(start);
579         end = (unsigned long)__va(end);
580
581         for (; start < end; start = next) {
582                 pgd_t *pgd = pgd_offset_k(start);
583                 unsigned long pud_phys;
584                 pud_t *pud;
585
586                 if (after_bootmem)
587                         pud = pud_offset(pgd, start & PGDIR_MASK);
588                 else
589                         pud = alloc_low_page(&pud_phys);
590
591                 next = start + PGDIR_SIZE;
592                 if (next > end)
593                         next = end;
594                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
595                 if (!after_bootmem)
596                         set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
597                 unmap_low_page(pud);
598         }
599
600         if (!after_bootmem)
601                 mmu_cr4_features = read_cr4();
602         __flush_tlb_all();
603
604         if (!after_bootmem)
605                 reserve_early(table_start << PAGE_SHIFT,
606                                  table_end << PAGE_SHIFT, "PGTABLE");
607
608         if (!after_bootmem)
609                 early_memtest(start_phys, end_phys);
610
611         return last_map_addr;
612 }
613
614 #ifndef CONFIG_NUMA
615 void __init paging_init(void)
616 {
617         unsigned long max_zone_pfns[MAX_NR_ZONES];
618
619         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
620         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
621         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
622         max_zone_pfns[ZONE_NORMAL] = end_pfn;
623
624         memory_present(0, 0, end_pfn);
625         sparse_init();
626         free_area_init_nodes(max_zone_pfns);
627 }
628 #endif
629
630 /*
631  * Memory hotplug specific functions
632  */
633 #ifdef CONFIG_MEMORY_HOTPLUG
634 /*
635  * Memory is added always to NORMAL zone. This means you will never get
636  * additional DMA/DMA32 memory.
637  */
638 int arch_add_memory(int nid, u64 start, u64 size)
639 {
640         struct pglist_data *pgdat = NODE_DATA(nid);
641         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
642         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
643         unsigned long nr_pages = size >> PAGE_SHIFT;
644         int ret;
645
646         last_mapped_pfn = init_memory_mapping(start, start + size-1);
647         if (last_mapped_pfn > max_pfn_mapped)
648                 max_pfn_mapped = last_mapped_pfn;
649
650         ret = __add_pages(zone, start_pfn, nr_pages);
651         WARN_ON(1);
652
653         return ret;
654 }
655 EXPORT_SYMBOL_GPL(arch_add_memory);
656
657 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
658 int memory_add_physaddr_to_nid(u64 start)
659 {
660         return 0;
661 }
662 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
663 #endif
664
665 #endif /* CONFIG_MEMORY_HOTPLUG */
666
667 /*
668  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
669  * is valid. The argument is a physical page number.
670  *
671  *
672  * On x86, access has to be given to the first megabyte of ram because that area
673  * contains bios code and data regions used by X and dosemu and similar apps.
674  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
675  * mmio resources as well as potential bios/acpi data regions.
676  */
677 int devmem_is_allowed(unsigned long pagenr)
678 {
679         if (pagenr <= 256)
680                 return 1;
681         if (!page_is_ram(pagenr))
682                 return 1;
683         return 0;
684 }
685
686
687 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
688                          kcore_modules, kcore_vsyscall;
689
690 void __init mem_init(void)
691 {
692         long codesize, reservedpages, datasize, initsize;
693
694         pci_iommu_alloc();
695
696         /* clear_bss() already clear the empty_zero_page */
697
698         reservedpages = 0;
699
700         /* this will put all low memory onto the freelists */
701 #ifdef CONFIG_NUMA
702         totalram_pages = numa_free_all_bootmem();
703 #else
704         totalram_pages = free_all_bootmem();
705 #endif
706         reservedpages = end_pfn - totalram_pages -
707                                         absent_pages_in_range(0, end_pfn);
708         after_bootmem = 1;
709
710         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
711         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
712         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
713
714         /* Register memory areas for /proc/kcore */
715         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
716         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
717                    VMALLOC_END-VMALLOC_START);
718         kclist_add(&kcore_kernel, &_stext, _end - _stext);
719         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
720         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
721                                  VSYSCALL_END - VSYSCALL_START);
722
723         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
724                                 "%ldk reserved, %ldk data, %ldk init)\n",
725                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
726                 end_pfn << (PAGE_SHIFT-10),
727                 codesize >> 10,
728                 reservedpages << (PAGE_SHIFT-10),
729                 datasize >> 10,
730                 initsize >> 10);
731
732         cpa_init();
733 }
734
735 void free_init_pages(char *what, unsigned long begin, unsigned long end)
736 {
737         unsigned long addr = begin;
738
739         if (addr >= end)
740                 return;
741
742         /*
743          * If debugging page accesses then do not free this memory but
744          * mark them not present - any buggy init-section access will
745          * create a kernel page fault:
746          */
747 #ifdef CONFIG_DEBUG_PAGEALLOC
748         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
749                 begin, PAGE_ALIGN(end));
750         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
751 #else
752         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
753
754         for (; addr < end; addr += PAGE_SIZE) {
755                 ClearPageReserved(virt_to_page(addr));
756                 init_page_count(virt_to_page(addr));
757                 memset((void *)(addr & ~(PAGE_SIZE-1)),
758                         POISON_FREE_INITMEM, PAGE_SIZE);
759                 free_page(addr);
760                 totalram_pages++;
761         }
762 #endif
763 }
764
765 void free_initmem(void)
766 {
767         free_init_pages("unused kernel memory",
768                         (unsigned long)(&__init_begin),
769                         (unsigned long)(&__init_end));
770 }
771
772 #ifdef CONFIG_DEBUG_RODATA
773 const int rodata_test_data = 0xC3;
774 EXPORT_SYMBOL_GPL(rodata_test_data);
775
776 void mark_rodata_ro(void)
777 {
778         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
779
780         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
781                (end - start) >> 10);
782         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
783
784         /*
785          * The rodata section (but not the kernel text!) should also be
786          * not-executable.
787          */
788         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
789         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
790
791         rodata_test();
792
793 #ifdef CONFIG_CPA_DEBUG
794         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
795         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
796
797         printk(KERN_INFO "Testing CPA: again\n");
798         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
799 #endif
800 }
801
802 #endif
803
804 #ifdef CONFIG_BLK_DEV_INITRD
805 void free_initrd_mem(unsigned long start, unsigned long end)
806 {
807         free_init_pages("initrd memory", start, end);
808 }
809 #endif
810
811 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
812 {
813 #ifdef CONFIG_NUMA
814         int nid, next_nid;
815 #endif
816         unsigned long pfn = phys >> PAGE_SHIFT;
817
818         if (pfn >= end_pfn) {
819                 /*
820                  * This can happen with kdump kernels when accessing
821                  * firmware tables:
822                  */
823                 if (pfn < max_pfn_mapped)
824                         return;
825
826                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
827                                 phys, len);
828                 return;
829         }
830
831         /* Should check here against the e820 map to avoid double free */
832 #ifdef CONFIG_NUMA
833         nid = phys_to_nid(phys);
834         next_nid = phys_to_nid(phys + len - 1);
835         if (nid == next_nid)
836                 reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
837         else
838                 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
839 #else
840         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
841 #endif
842
843         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
844                 dma_reserve += len / PAGE_SIZE;
845                 set_dma_reserve(dma_reserve);
846         }
847 }
848
849 int kern_addr_valid(unsigned long addr)
850 {
851         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
852         pgd_t *pgd;
853         pud_t *pud;
854         pmd_t *pmd;
855         pte_t *pte;
856
857         if (above != 0 && above != -1UL)
858                 return 0;
859
860         pgd = pgd_offset_k(addr);
861         if (pgd_none(*pgd))
862                 return 0;
863
864         pud = pud_offset(pgd, addr);
865         if (pud_none(*pud))
866                 return 0;
867
868         pmd = pmd_offset(pud, addr);
869         if (pmd_none(*pmd))
870                 return 0;
871
872         if (pmd_large(*pmd))
873                 return pfn_valid(pmd_pfn(*pmd));
874
875         pte = pte_offset_kernel(pmd, addr);
876         if (pte_none(*pte))
877                 return 0;
878
879         return pfn_valid(pte_pfn(*pte));
880 }
881
882 /*
883  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
884  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
885  * not need special handling anymore:
886  */
887 static struct vm_area_struct gate_vma = {
888         .vm_start       = VSYSCALL_START,
889         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
890         .vm_page_prot   = PAGE_READONLY_EXEC,
891         .vm_flags       = VM_READ | VM_EXEC
892 };
893
894 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
895 {
896 #ifdef CONFIG_IA32_EMULATION
897         if (test_tsk_thread_flag(tsk, TIF_IA32))
898                 return NULL;
899 #endif
900         return &gate_vma;
901 }
902
903 int in_gate_area(struct task_struct *task, unsigned long addr)
904 {
905         struct vm_area_struct *vma = get_gate_vma(task);
906
907         if (!vma)
908                 return 0;
909
910         return (addr >= vma->vm_start) && (addr < vma->vm_end);
911 }
912
913 /*
914  * Use this when you have no reliable task/vma, typically from interrupt
915  * context. It is less reliable than using the task's vma and may give
916  * false positives:
917  */
918 int in_gate_area_no_task(unsigned long addr)
919 {
920         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
921 }
922
923 const char *arch_vma_name(struct vm_area_struct *vma)
924 {
925         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
926                 return "[vdso]";
927         if (vma == &gate_vma)
928                 return "[vsyscall]";
929         return NULL;
930 }
931
932 #ifdef CONFIG_SPARSEMEM_VMEMMAP
933 /*
934  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
935  */
936 static long __meminitdata addr_start, addr_end;
937 static void __meminitdata *p_start, *p_end;
938 static int __meminitdata node_start;
939
940 int __meminit
941 vmemmap_populate(struct page *start_page, unsigned long size, int node)
942 {
943         unsigned long addr = (unsigned long)start_page;
944         unsigned long end = (unsigned long)(start_page + size);
945         unsigned long next;
946         pgd_t *pgd;
947         pud_t *pud;
948         pmd_t *pmd;
949
950         for (; addr < end; addr = next) {
951                 next = pmd_addr_end(addr, end);
952
953                 pgd = vmemmap_pgd_populate(addr, node);
954                 if (!pgd)
955                         return -ENOMEM;
956
957                 pud = vmemmap_pud_populate(pgd, addr, node);
958                 if (!pud)
959                         return -ENOMEM;
960
961                 pmd = pmd_offset(pud, addr);
962                 if (pmd_none(*pmd)) {
963                         pte_t entry;
964                         void *p;
965
966                         p = vmemmap_alloc_block(PMD_SIZE, node);
967                         if (!p)
968                                 return -ENOMEM;
969
970                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
971                                                         PAGE_KERNEL_LARGE);
972                         set_pmd(pmd, __pmd(pte_val(entry)));
973
974                         /* check to see if we have contiguous blocks */
975                         if (p_end != p || node_start != node) {
976                                 if (p_start)
977                                         printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
978                                                 addr_start, addr_end-1, p_start, p_end-1, node_start);
979                                 addr_start = addr;
980                                 node_start = node;
981                                 p_start = p;
982                         }
983                         addr_end = addr + PMD_SIZE;
984                         p_end = p + PMD_SIZE;
985                 } else {
986                         vmemmap_verify((pte_t *)pmd, node, addr, next);
987                 }
988         }
989         return 0;
990 }
991
992 void __meminit vmemmap_populate_print_last(void)
993 {
994         if (p_start) {
995                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
996                         addr_start, addr_end-1, p_start, p_end-1, node_start);
997                 p_start = NULL;
998                 p_end = NULL;
999                 node_start = 0;
1000         }
1001 }
1002 #endif