ed31c31b2485b1e06476f93ab7934b216ed1cacc
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114
115 static bool backwards_tsc_observed = false;
116
117 #define KVM_NR_SHARED_MSRS 16
118
119 struct kvm_shared_msrs_global {
120         int nr;
121         u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123
124 struct kvm_shared_msrs {
125         struct user_return_notifier urn;
126         bool registered;
127         struct kvm_shared_msr_values {
128                 u64 host;
129                 u64 curr;
130         } values[KVM_NR_SHARED_MSRS];
131 };
132
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137         { "pf_fixed", VCPU_STAT(pf_fixed) },
138         { "pf_guest", VCPU_STAT(pf_guest) },
139         { "tlb_flush", VCPU_STAT(tlb_flush) },
140         { "invlpg", VCPU_STAT(invlpg) },
141         { "exits", VCPU_STAT(exits) },
142         { "io_exits", VCPU_STAT(io_exits) },
143         { "mmio_exits", VCPU_STAT(mmio_exits) },
144         { "signal_exits", VCPU_STAT(signal_exits) },
145         { "irq_window", VCPU_STAT(irq_window_exits) },
146         { "nmi_window", VCPU_STAT(nmi_window_exits) },
147         { "halt_exits", VCPU_STAT(halt_exits) },
148         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
150         { "hypercalls", VCPU_STAT(hypercalls) },
151         { "request_irq", VCPU_STAT(request_irq_exits) },
152         { "irq_exits", VCPU_STAT(irq_exits) },
153         { "host_state_reload", VCPU_STAT(host_state_reload) },
154         { "efer_reload", VCPU_STAT(efer_reload) },
155         { "fpu_reload", VCPU_STAT(fpu_reload) },
156         { "insn_emulation", VCPU_STAT(insn_emulation) },
157         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158         { "irq_injections", VCPU_STAT(irq_injections) },
159         { "nmi_injections", VCPU_STAT(nmi_injections) },
160         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
162         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164         { "mmu_flooded", VM_STAT(mmu_flooded) },
165         { "mmu_recycled", VM_STAT(mmu_recycled) },
166         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167         { "mmu_unsync", VM_STAT(mmu_unsync) },
168         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169         { "largepages", VM_STAT(lpages) },
170         { NULL }
171 };
172
173 u64 __read_mostly host_xcr0;
174
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179         int i;
180         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181                 vcpu->arch.apf.gfns[i] = ~0;
182 }
183
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186         unsigned slot;
187         struct kvm_shared_msrs *locals
188                 = container_of(urn, struct kvm_shared_msrs, urn);
189         struct kvm_shared_msr_values *values;
190
191         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192                 values = &locals->values[slot];
193                 if (values->host != values->curr) {
194                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
195                         values->curr = values->host;
196                 }
197         }
198         locals->registered = false;
199         user_return_notifier_unregister(urn);
200 }
201
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204         u64 value;
205         unsigned int cpu = smp_processor_id();
206         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207
208         /* only read, and nobody should modify it at this time,
209          * so don't need lock */
210         if (slot >= shared_msrs_global.nr) {
211                 printk(KERN_ERR "kvm: invalid MSR slot!");
212                 return;
213         }
214         rdmsrl_safe(msr, &value);
215         smsr->values[slot].host = value;
216         smsr->values[slot].curr = value;
217 }
218
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222         if (slot >= shared_msrs_global.nr)
223                 shared_msrs_global.nr = slot + 1;
224         shared_msrs_global.msrs[slot] = msr;
225         /* we need ensured the shared_msr_global have been updated */
226         smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229
230 static void kvm_shared_msr_cpu_online(void)
231 {
232         unsigned i;
233
234         for (i = 0; i < shared_msrs_global.nr; ++i)
235                 shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240         unsigned int cpu = smp_processor_id();
241         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242         int err;
243
244         if (((value ^ smsr->values[slot].curr) & mask) == 0)
245                 return 0;
246         smsr->values[slot].curr = value;
247         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248         if (err)
249                 return 1;
250
251         if (!smsr->registered) {
252                 smsr->urn.on_user_return = kvm_on_user_return;
253                 user_return_notifier_register(&smsr->urn);
254                 smsr->registered = true;
255         }
256         return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259
260 static void drop_user_return_notifiers(void)
261 {
262         unsigned int cpu = smp_processor_id();
263         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264
265         if (smsr->registered)
266                 kvm_on_user_return(&smsr->urn);
267 }
268
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271         return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277         u64 old_state = vcpu->arch.apic_base &
278                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279         u64 new_state = msr_info->data &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283
284         if (!msr_info->host_initiated &&
285             ((msr_info->data & reserved_bits) != 0 ||
286              new_state == X2APIC_ENABLE ||
287              (new_state == MSR_IA32_APICBASE_ENABLE &&
288               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290               old_state == 0)))
291                 return 1;
292
293         kvm_lapic_set_base(vcpu, msr_info->data);
294         return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300         /* Fault while not rebooting.  We want the trace. */
301         BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304
305 #define EXCPT_BENIGN            0
306 #define EXCPT_CONTRIBUTORY      1
307 #define EXCPT_PF                2
308
309 static int exception_class(int vector)
310 {
311         switch (vector) {
312         case PF_VECTOR:
313                 return EXCPT_PF;
314         case DE_VECTOR:
315         case TS_VECTOR:
316         case NP_VECTOR:
317         case SS_VECTOR:
318         case GP_VECTOR:
319                 return EXCPT_CONTRIBUTORY;
320         default:
321                 break;
322         }
323         return EXCPT_BENIGN;
324 }
325
326 #define EXCPT_FAULT             0
327 #define EXCPT_TRAP              1
328 #define EXCPT_ABORT             2
329 #define EXCPT_INTERRUPT         3
330
331 static int exception_type(int vector)
332 {
333         unsigned int mask;
334
335         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336                 return EXCPT_INTERRUPT;
337
338         mask = 1 << vector;
339
340         /* #DB is trap, as instruction watchpoints are handled elsewhere */
341         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342                 return EXCPT_TRAP;
343
344         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345                 return EXCPT_ABORT;
346
347         /* Reserved exceptions will result in fault */
348         return EXCPT_FAULT;
349 }
350
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352                 unsigned nr, bool has_error, u32 error_code,
353                 bool reinject)
354 {
355         u32 prev_nr;
356         int class1, class2;
357
358         kvm_make_request(KVM_REQ_EVENT, vcpu);
359
360         if (!vcpu->arch.exception.pending) {
361         queue:
362                 if (has_error && !is_protmode(vcpu))
363                         has_error = false;
364                 vcpu->arch.exception.pending = true;
365                 vcpu->arch.exception.has_error_code = has_error;
366                 vcpu->arch.exception.nr = nr;
367                 vcpu->arch.exception.error_code = error_code;
368                 vcpu->arch.exception.reinject = reinject;
369                 return;
370         }
371
372         /* to check exception */
373         prev_nr = vcpu->arch.exception.nr;
374         if (prev_nr == DF_VECTOR) {
375                 /* triple fault -> shutdown */
376                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377                 return;
378         }
379         class1 = exception_class(prev_nr);
380         class2 = exception_class(nr);
381         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383                 /* generate double fault per SDM Table 5-5 */
384                 vcpu->arch.exception.pending = true;
385                 vcpu->arch.exception.has_error_code = true;
386                 vcpu->arch.exception.nr = DF_VECTOR;
387                 vcpu->arch.exception.error_code = 0;
388         } else
389                 /* replace previous exception with a new one in a hope
390                    that instruction re-execution will regenerate lost
391                    exception */
392                 goto queue;
393 }
394
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397         kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403         kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409         if (err)
410                 kvm_inject_gp(vcpu, 0);
411         else
412                 kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418         ++vcpu->stat.pf_guest;
419         vcpu->arch.cr2 = fault->address;
420         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428         else
429                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430
431         return fault->nested_page_fault;
432 }
433
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436         atomic_inc(&vcpu->arch.nmi_queued);
437         kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443         kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449         kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460                 return true;
461         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462         return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469                 return true;
470
471         kvm_queue_exception(vcpu, UD_VECTOR);
472         return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482                             gfn_t ngfn, void *data, int offset, int len,
483                             u32 access)
484 {
485         struct x86_exception exception;
486         gfn_t real_gfn;
487         gpa_t ngpa;
488
489         ngpa     = gfn_to_gpa(ngfn);
490         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491         if (real_gfn == UNMAPPED_GVA)
492                 return -EFAULT;
493
494         real_gfn = gpa_to_gfn(real_gfn);
495
496         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501                                void *data, int offset, int len, u32 access)
502 {
503         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504                                        data, offset, len, access);
505 }
506
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514         int i;
515         int ret;
516         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517
518         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519                                       offset * sizeof(u64), sizeof(pdpte),
520                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
521         if (ret < 0) {
522                 ret = 0;
523                 goto out;
524         }
525         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526                 if (is_present_gpte(pdpte[i]) &&
527                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528                         ret = 0;
529                         goto out;
530                 }
531         }
532         ret = 1;
533
534         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535         __set_bit(VCPU_EXREG_PDPTR,
536                   (unsigned long *)&vcpu->arch.regs_avail);
537         __set_bit(VCPU_EXREG_PDPTR,
538                   (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540
541         return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548         bool changed = true;
549         int offset;
550         gfn_t gfn;
551         int r;
552
553         if (is_long_mode(vcpu) || !is_pae(vcpu))
554                 return false;
555
556         if (!test_bit(VCPU_EXREG_PDPTR,
557                       (unsigned long *)&vcpu->arch.regs_avail))
558                 return true;
559
560         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
564         if (r < 0)
565                 goto out;
566         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568
569         return changed;
570 }
571
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574         unsigned long old_cr0 = kvm_read_cr0(vcpu);
575         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576                                     X86_CR0_CD | X86_CR0_NW;
577
578         cr0 |= X86_CR0_ET;
579
580 #ifdef CONFIG_X86_64
581         if (cr0 & 0xffffffff00000000UL)
582                 return 1;
583 #endif
584
585         cr0 &= ~CR0_RESERVED_BITS;
586
587         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588                 return 1;
589
590         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591                 return 1;
592
593         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595                 if ((vcpu->arch.efer & EFER_LME)) {
596                         int cs_db, cs_l;
597
598                         if (!is_pae(vcpu))
599                                 return 1;
600                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601                         if (cs_l)
602                                 return 1;
603                 } else
604 #endif
605                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606                                                  kvm_read_cr3(vcpu)))
607                         return 1;
608         }
609
610         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611                 return 1;
612
613         kvm_x86_ops->set_cr0(vcpu, cr0);
614
615         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616                 kvm_clear_async_pf_completion_queue(vcpu);
617                 kvm_async_pf_hash_reset(vcpu);
618         }
619
620         if ((cr0 ^ old_cr0) & update_bits)
621                 kvm_mmu_reset_context(vcpu);
622         return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635                         !vcpu->guest_xcr0_loaded) {
636                 /* kvm_set_xcr() also depends on this */
637                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638                 vcpu->guest_xcr0_loaded = 1;
639         }
640 }
641
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644         if (vcpu->guest_xcr0_loaded) {
645                 if (vcpu->arch.xcr0 != host_xcr0)
646                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647                 vcpu->guest_xcr0_loaded = 0;
648         }
649 }
650
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653         u64 xcr0 = xcr;
654         u64 old_xcr0 = vcpu->arch.xcr0;
655         u64 valid_bits;
656
657         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
658         if (index != XCR_XFEATURE_ENABLED_MASK)
659                 return 1;
660         if (!(xcr0 & XSTATE_FP))
661                 return 1;
662         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663                 return 1;
664
665         /*
666          * Do not allow the guest to set bits that we do not support
667          * saving.  However, xcr0 bit 0 is always set, even if the
668          * emulated CPU does not support XSAVE (see fx_init).
669          */
670         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671         if (xcr0 & ~valid_bits)
672                 return 1;
673
674         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675                 return 1;
676
677         if (xcr0 & XSTATE_AVX512) {
678                 if (!(xcr0 & XSTATE_YMM))
679                         return 1;
680                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681                         return 1;
682         }
683         kvm_put_guest_xcr0(vcpu);
684         vcpu->arch.xcr0 = xcr0;
685
686         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687                 kvm_update_cpuid(vcpu);
688         return 0;
689 }
690
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694             __kvm_set_xcr(vcpu, index, xcr)) {
695                 kvm_inject_gp(vcpu, 0);
696                 return 1;
697         }
698         return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704         unsigned long old_cr4 = kvm_read_cr4(vcpu);
705         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
706                                    X86_CR4_PAE | X86_CR4_SMEP;
707         if (cr4 & CR4_RESERVED_BITS)
708                 return 1;
709
710         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711                 return 1;
712
713         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714                 return 1;
715
716         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717                 return 1;
718
719         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720                 return 1;
721
722         if (is_long_mode(vcpu)) {
723                 if (!(cr4 & X86_CR4_PAE))
724                         return 1;
725         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726                    && ((cr4 ^ old_cr4) & pdptr_bits)
727                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728                                    kvm_read_cr3(vcpu)))
729                 return 1;
730
731         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732                 if (!guest_cpuid_has_pcid(vcpu))
733                         return 1;
734
735                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737                         return 1;
738         }
739
740         if (kvm_x86_ops->set_cr4(vcpu, cr4))
741                 return 1;
742
743         if (((cr4 ^ old_cr4) & pdptr_bits) ||
744             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745                 kvm_mmu_reset_context(vcpu);
746
747         if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
748                 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
749
750         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751                 kvm_update_cpuid(vcpu);
752
753         return 0;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cr4);
756
757 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758 {
759 #ifdef CONFIG_X86_64
760         cr3 &= ~CR3_PCID_INVD;
761 #endif
762
763         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764                 kvm_mmu_sync_roots(vcpu);
765                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766                 return 0;
767         }
768
769         if (is_long_mode(vcpu)) {
770                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
771                         return 1;
772         } else if (is_pae(vcpu) && is_paging(vcpu) &&
773                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774                 return 1;
775
776         vcpu->arch.cr3 = cr3;
777         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778         kvm_mmu_new_cr3(vcpu);
779         return 0;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_cr3);
782
783 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784 {
785         if (cr8 & CR8_RESERVED_BITS)
786                 return 1;
787         if (irqchip_in_kernel(vcpu->kvm))
788                 kvm_lapic_set_tpr(vcpu, cr8);
789         else
790                 vcpu->arch.cr8 = cr8;
791         return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr8);
794
795 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796 {
797         if (irqchip_in_kernel(vcpu->kvm))
798                 return kvm_lapic_get_cr8(vcpu);
799         else
800                 return vcpu->arch.cr8;
801 }
802 EXPORT_SYMBOL_GPL(kvm_get_cr8);
803
804 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
805 {
806         int i;
807
808         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
809                 for (i = 0; i < KVM_NR_DB_REGS; i++)
810                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
811                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
812         }
813 }
814
815 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
816 {
817         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
818                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
819 }
820
821 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
822 {
823         unsigned long dr7;
824
825         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
826                 dr7 = vcpu->arch.guest_debug_dr7;
827         else
828                 dr7 = vcpu->arch.dr7;
829         kvm_x86_ops->set_dr7(vcpu, dr7);
830         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
831         if (dr7 & DR7_BP_EN_MASK)
832                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
833 }
834
835 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
836 {
837         u64 fixed = DR6_FIXED_1;
838
839         if (!guest_cpuid_has_rtm(vcpu))
840                 fixed |= DR6_RTM;
841         return fixed;
842 }
843
844 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
845 {
846         switch (dr) {
847         case 0 ... 3:
848                 vcpu->arch.db[dr] = val;
849                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
850                         vcpu->arch.eff_db[dr] = val;
851                 break;
852         case 4:
853                 /* fall through */
854         case 6:
855                 if (val & 0xffffffff00000000ULL)
856                         return -1; /* #GP */
857                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
858                 kvm_update_dr6(vcpu);
859                 break;
860         case 5:
861                 /* fall through */
862         default: /* 7 */
863                 if (val & 0xffffffff00000000ULL)
864                         return -1; /* #GP */
865                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
866                 kvm_update_dr7(vcpu);
867                 break;
868         }
869
870         return 0;
871 }
872
873 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
874 {
875         if (__kvm_set_dr(vcpu, dr, val)) {
876                 kvm_inject_gp(vcpu, 0);
877                 return 1;
878         }
879         return 0;
880 }
881 EXPORT_SYMBOL_GPL(kvm_set_dr);
882
883 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
884 {
885         switch (dr) {
886         case 0 ... 3:
887                 *val = vcpu->arch.db[dr];
888                 break;
889         case 4:
890                 /* fall through */
891         case 6:
892                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
893                         *val = vcpu->arch.dr6;
894                 else
895                         *val = kvm_x86_ops->get_dr6(vcpu);
896                 break;
897         case 5:
898                 /* fall through */
899         default: /* 7 */
900                 *val = vcpu->arch.dr7;
901                 break;
902         }
903         return 0;
904 }
905 EXPORT_SYMBOL_GPL(kvm_get_dr);
906
907 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
908 {
909         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
910         u64 data;
911         int err;
912
913         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
914         if (err)
915                 return err;
916         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
917         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
918         return err;
919 }
920 EXPORT_SYMBOL_GPL(kvm_rdpmc);
921
922 /*
923  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
924  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
925  *
926  * This list is modified at module load time to reflect the
927  * capabilities of the host cpu. This capabilities test skips MSRs that are
928  * kvm-specific. Those are put in the beginning of the list.
929  */
930
931 #define KVM_SAVE_MSRS_BEGIN     12
932 static u32 msrs_to_save[] = {
933         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
934         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
935         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
936         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
937         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
938         MSR_KVM_PV_EOI_EN,
939         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
940         MSR_STAR,
941 #ifdef CONFIG_X86_64
942         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
943 #endif
944         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
945         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
946 };
947
948 static unsigned num_msrs_to_save;
949
950 static const u32 emulated_msrs[] = {
951         MSR_IA32_TSC_ADJUST,
952         MSR_IA32_TSCDEADLINE,
953         MSR_IA32_MISC_ENABLE,
954         MSR_IA32_MCG_STATUS,
955         MSR_IA32_MCG_CTL,
956 };
957
958 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
959 {
960         if (efer & efer_reserved_bits)
961                 return false;
962
963         if (efer & EFER_FFXSR) {
964                 struct kvm_cpuid_entry2 *feat;
965
966                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
967                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
968                         return false;
969         }
970
971         if (efer & EFER_SVME) {
972                 struct kvm_cpuid_entry2 *feat;
973
974                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
975                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
976                         return false;
977         }
978
979         return true;
980 }
981 EXPORT_SYMBOL_GPL(kvm_valid_efer);
982
983 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
984 {
985         u64 old_efer = vcpu->arch.efer;
986
987         if (!kvm_valid_efer(vcpu, efer))
988                 return 1;
989
990         if (is_paging(vcpu)
991             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
992                 return 1;
993
994         efer &= ~EFER_LMA;
995         efer |= vcpu->arch.efer & EFER_LMA;
996
997         kvm_x86_ops->set_efer(vcpu, efer);
998
999         /* Update reserved bits */
1000         if ((efer ^ old_efer) & EFER_NX)
1001                 kvm_mmu_reset_context(vcpu);
1002
1003         return 0;
1004 }
1005
1006 void kvm_enable_efer_bits(u64 mask)
1007 {
1008        efer_reserved_bits &= ~mask;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1011
1012 /*
1013  * Writes msr value into into the appropriate "register".
1014  * Returns 0 on success, non-0 otherwise.
1015  * Assumes vcpu_load() was already called.
1016  */
1017 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1018 {
1019         switch (msr->index) {
1020         case MSR_FS_BASE:
1021         case MSR_GS_BASE:
1022         case MSR_KERNEL_GS_BASE:
1023         case MSR_CSTAR:
1024         case MSR_LSTAR:
1025                 if (is_noncanonical_address(msr->data))
1026                         return 1;
1027                 break;
1028         case MSR_IA32_SYSENTER_EIP:
1029         case MSR_IA32_SYSENTER_ESP:
1030                 /*
1031                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1032                  * non-canonical address is written on Intel but not on
1033                  * AMD (which ignores the top 32-bits, because it does
1034                  * not implement 64-bit SYSENTER).
1035                  *
1036                  * 64-bit code should hence be able to write a non-canonical
1037                  * value on AMD.  Making the address canonical ensures that
1038                  * vmentry does not fail on Intel after writing a non-canonical
1039                  * value, and that something deterministic happens if the guest
1040                  * invokes 64-bit SYSENTER.
1041                  */
1042                 msr->data = get_canonical(msr->data);
1043         }
1044         return kvm_x86_ops->set_msr(vcpu, msr);
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_msr);
1047
1048 /*
1049  * Adapt set_msr() to msr_io()'s calling convention
1050  */
1051 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1052 {
1053         struct msr_data msr;
1054
1055         msr.data = *data;
1056         msr.index = index;
1057         msr.host_initiated = true;
1058         return kvm_set_msr(vcpu, &msr);
1059 }
1060
1061 #ifdef CONFIG_X86_64
1062 struct pvclock_gtod_data {
1063         seqcount_t      seq;
1064
1065         struct { /* extract of a clocksource struct */
1066                 int vclock_mode;
1067                 cycle_t cycle_last;
1068                 cycle_t mask;
1069                 u32     mult;
1070                 u32     shift;
1071         } clock;
1072
1073         u64             boot_ns;
1074         u64             nsec_base;
1075 };
1076
1077 static struct pvclock_gtod_data pvclock_gtod_data;
1078
1079 static void update_pvclock_gtod(struct timekeeper *tk)
1080 {
1081         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1082         u64 boot_ns;
1083
1084         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1085
1086         write_seqcount_begin(&vdata->seq);
1087
1088         /* copy pvclock gtod data */
1089         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1090         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1091         vdata->clock.mask               = tk->tkr_mono.mask;
1092         vdata->clock.mult               = tk->tkr_mono.mult;
1093         vdata->clock.shift              = tk->tkr_mono.shift;
1094
1095         vdata->boot_ns                  = boot_ns;
1096         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1097
1098         write_seqcount_end(&vdata->seq);
1099 }
1100 #endif
1101
1102 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1103 {
1104         /*
1105          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1106          * vcpu_enter_guest.  This function is only called from
1107          * the physical CPU that is running vcpu.
1108          */
1109         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1110 }
1111
1112 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1113 {
1114         int version;
1115         int r;
1116         struct pvclock_wall_clock wc;
1117         struct timespec boot;
1118
1119         if (!wall_clock)
1120                 return;
1121
1122         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1123         if (r)
1124                 return;
1125
1126         if (version & 1)
1127                 ++version;  /* first time write, random junk */
1128
1129         ++version;
1130
1131         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1132
1133         /*
1134          * The guest calculates current wall clock time by adding
1135          * system time (updated by kvm_guest_time_update below) to the
1136          * wall clock specified here.  guest system time equals host
1137          * system time for us, thus we must fill in host boot time here.
1138          */
1139         getboottime(&boot);
1140
1141         if (kvm->arch.kvmclock_offset) {
1142                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1143                 boot = timespec_sub(boot, ts);
1144         }
1145         wc.sec = boot.tv_sec;
1146         wc.nsec = boot.tv_nsec;
1147         wc.version = version;
1148
1149         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1150
1151         version++;
1152         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1153 }
1154
1155 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1156 {
1157         uint32_t quotient, remainder;
1158
1159         /* Don't try to replace with do_div(), this one calculates
1160          * "(dividend << 32) / divisor" */
1161         __asm__ ( "divl %4"
1162                   : "=a" (quotient), "=d" (remainder)
1163                   : "0" (0), "1" (dividend), "r" (divisor) );
1164         return quotient;
1165 }
1166
1167 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1168                                s8 *pshift, u32 *pmultiplier)
1169 {
1170         uint64_t scaled64;
1171         int32_t  shift = 0;
1172         uint64_t tps64;
1173         uint32_t tps32;
1174
1175         tps64 = base_khz * 1000LL;
1176         scaled64 = scaled_khz * 1000LL;
1177         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1178                 tps64 >>= 1;
1179                 shift--;
1180         }
1181
1182         tps32 = (uint32_t)tps64;
1183         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1184                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1185                         scaled64 >>= 1;
1186                 else
1187                         tps32 <<= 1;
1188                 shift++;
1189         }
1190
1191         *pshift = shift;
1192         *pmultiplier = div_frac(scaled64, tps32);
1193
1194         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1195                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1196 }
1197
1198 static inline u64 get_kernel_ns(void)
1199 {
1200         return ktime_get_boot_ns();
1201 }
1202
1203 #ifdef CONFIG_X86_64
1204 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1205 #endif
1206
1207 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1208 static unsigned long max_tsc_khz;
1209
1210 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1211 {
1212         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1213                                    vcpu->arch.virtual_tsc_shift);
1214 }
1215
1216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1217 {
1218         u64 v = (u64)khz * (1000000 + ppm);
1219         do_div(v, 1000000);
1220         return v;
1221 }
1222
1223 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1224 {
1225         u32 thresh_lo, thresh_hi;
1226         int use_scaling = 0;
1227
1228         /* tsc_khz can be zero if TSC calibration fails */
1229         if (this_tsc_khz == 0)
1230                 return;
1231
1232         /* Compute a scale to convert nanoseconds in TSC cycles */
1233         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1234                            &vcpu->arch.virtual_tsc_shift,
1235                            &vcpu->arch.virtual_tsc_mult);
1236         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1237
1238         /*
1239          * Compute the variation in TSC rate which is acceptable
1240          * within the range of tolerance and decide if the
1241          * rate being applied is within that bounds of the hardware
1242          * rate.  If so, no scaling or compensation need be done.
1243          */
1244         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1245         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1246         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1247                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1248                 use_scaling = 1;
1249         }
1250         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1251 }
1252
1253 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1254 {
1255         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1256                                       vcpu->arch.virtual_tsc_mult,
1257                                       vcpu->arch.virtual_tsc_shift);
1258         tsc += vcpu->arch.this_tsc_write;
1259         return tsc;
1260 }
1261
1262 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1263 {
1264 #ifdef CONFIG_X86_64
1265         bool vcpus_matched;
1266         struct kvm_arch *ka = &vcpu->kvm->arch;
1267         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1268
1269         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1270                          atomic_read(&vcpu->kvm->online_vcpus));
1271
1272         /*
1273          * Once the masterclock is enabled, always perform request in
1274          * order to update it.
1275          *
1276          * In order to enable masterclock, the host clocksource must be TSC
1277          * and the vcpus need to have matched TSCs.  When that happens,
1278          * perform request to enable masterclock.
1279          */
1280         if (ka->use_master_clock ||
1281             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1282                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1283
1284         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1285                             atomic_read(&vcpu->kvm->online_vcpus),
1286                             ka->use_master_clock, gtod->clock.vclock_mode);
1287 #endif
1288 }
1289
1290 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1291 {
1292         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1293         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1294 }
1295
1296 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1297 {
1298         struct kvm *kvm = vcpu->kvm;
1299         u64 offset, ns, elapsed;
1300         unsigned long flags;
1301         s64 usdiff;
1302         bool matched;
1303         bool already_matched;
1304         u64 data = msr->data;
1305
1306         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1307         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1308         ns = get_kernel_ns();
1309         elapsed = ns - kvm->arch.last_tsc_nsec;
1310
1311         if (vcpu->arch.virtual_tsc_khz) {
1312                 int faulted = 0;
1313
1314                 /* n.b - signed multiplication and division required */
1315                 usdiff = data - kvm->arch.last_tsc_write;
1316 #ifdef CONFIG_X86_64
1317                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1318 #else
1319                 /* do_div() only does unsigned */
1320                 asm("1: idivl %[divisor]\n"
1321                     "2: xor %%edx, %%edx\n"
1322                     "   movl $0, %[faulted]\n"
1323                     "3:\n"
1324                     ".section .fixup,\"ax\"\n"
1325                     "4: movl $1, %[faulted]\n"
1326                     "   jmp  3b\n"
1327                     ".previous\n"
1328
1329                 _ASM_EXTABLE(1b, 4b)
1330
1331                 : "=A"(usdiff), [faulted] "=r" (faulted)
1332                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1333
1334 #endif
1335                 do_div(elapsed, 1000);
1336                 usdiff -= elapsed;
1337                 if (usdiff < 0)
1338                         usdiff = -usdiff;
1339
1340                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1341                 if (faulted)
1342                         usdiff = USEC_PER_SEC;
1343         } else
1344                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1345
1346         /*
1347          * Special case: TSC write with a small delta (1 second) of virtual
1348          * cycle time against real time is interpreted as an attempt to
1349          * synchronize the CPU.
1350          *
1351          * For a reliable TSC, we can match TSC offsets, and for an unstable
1352          * TSC, we add elapsed time in this computation.  We could let the
1353          * compensation code attempt to catch up if we fall behind, but
1354          * it's better to try to match offsets from the beginning.
1355          */
1356         if (usdiff < USEC_PER_SEC &&
1357             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1358                 if (!check_tsc_unstable()) {
1359                         offset = kvm->arch.cur_tsc_offset;
1360                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1361                 } else {
1362                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1363                         data += delta;
1364                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1365                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1366                 }
1367                 matched = true;
1368                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1369         } else {
1370                 /*
1371                  * We split periods of matched TSC writes into generations.
1372                  * For each generation, we track the original measured
1373                  * nanosecond time, offset, and write, so if TSCs are in
1374                  * sync, we can match exact offset, and if not, we can match
1375                  * exact software computation in compute_guest_tsc()
1376                  *
1377                  * These values are tracked in kvm->arch.cur_xxx variables.
1378                  */
1379                 kvm->arch.cur_tsc_generation++;
1380                 kvm->arch.cur_tsc_nsec = ns;
1381                 kvm->arch.cur_tsc_write = data;
1382                 kvm->arch.cur_tsc_offset = offset;
1383                 matched = false;
1384                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1385                          kvm->arch.cur_tsc_generation, data);
1386         }
1387
1388         /*
1389          * We also track th most recent recorded KHZ, write and time to
1390          * allow the matching interval to be extended at each write.
1391          */
1392         kvm->arch.last_tsc_nsec = ns;
1393         kvm->arch.last_tsc_write = data;
1394         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1395
1396         vcpu->arch.last_guest_tsc = data;
1397
1398         /* Keep track of which generation this VCPU has synchronized to */
1399         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1400         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1401         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1402
1403         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1404                 update_ia32_tsc_adjust_msr(vcpu, offset);
1405         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1406         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1407
1408         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1409         if (!matched) {
1410                 kvm->arch.nr_vcpus_matched_tsc = 0;
1411         } else if (!already_matched) {
1412                 kvm->arch.nr_vcpus_matched_tsc++;
1413         }
1414
1415         kvm_track_tsc_matching(vcpu);
1416         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1417 }
1418
1419 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1420
1421 #ifdef CONFIG_X86_64
1422
1423 static cycle_t read_tsc(void)
1424 {
1425         cycle_t ret;
1426         u64 last;
1427
1428         /*
1429          * Empirically, a fence (of type that depends on the CPU)
1430          * before rdtsc is enough to ensure that rdtsc is ordered
1431          * with respect to loads.  The various CPU manuals are unclear
1432          * as to whether rdtsc can be reordered with later loads,
1433          * but no one has ever seen it happen.
1434          */
1435         rdtsc_barrier();
1436         ret = (cycle_t)vget_cycles();
1437
1438         last = pvclock_gtod_data.clock.cycle_last;
1439
1440         if (likely(ret >= last))
1441                 return ret;
1442
1443         /*
1444          * GCC likes to generate cmov here, but this branch is extremely
1445          * predictable (it's just a funciton of time and the likely is
1446          * very likely) and there's a data dependence, so force GCC
1447          * to generate a branch instead.  I don't barrier() because
1448          * we don't actually need a barrier, and if this function
1449          * ever gets inlined it will generate worse code.
1450          */
1451         asm volatile ("");
1452         return last;
1453 }
1454
1455 static inline u64 vgettsc(cycle_t *cycle_now)
1456 {
1457         long v;
1458         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1459
1460         *cycle_now = read_tsc();
1461
1462         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1463         return v * gtod->clock.mult;
1464 }
1465
1466 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1467 {
1468         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1469         unsigned long seq;
1470         int mode;
1471         u64 ns;
1472
1473         do {
1474                 seq = read_seqcount_begin(&gtod->seq);
1475                 mode = gtod->clock.vclock_mode;
1476                 ns = gtod->nsec_base;
1477                 ns += vgettsc(cycle_now);
1478                 ns >>= gtod->clock.shift;
1479                 ns += gtod->boot_ns;
1480         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1481         *t = ns;
1482
1483         return mode;
1484 }
1485
1486 /* returns true if host is using tsc clocksource */
1487 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1488 {
1489         /* checked again under seqlock below */
1490         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1491                 return false;
1492
1493         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1494 }
1495 #endif
1496
1497 /*
1498  *
1499  * Assuming a stable TSC across physical CPUS, and a stable TSC
1500  * across virtual CPUs, the following condition is possible.
1501  * Each numbered line represents an event visible to both
1502  * CPUs at the next numbered event.
1503  *
1504  * "timespecX" represents host monotonic time. "tscX" represents
1505  * RDTSC value.
1506  *
1507  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1508  *
1509  * 1.  read timespec0,tsc0
1510  * 2.                                   | timespec1 = timespec0 + N
1511  *                                      | tsc1 = tsc0 + M
1512  * 3. transition to guest               | transition to guest
1513  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1514  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1515  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1516  *
1517  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1518  *
1519  *      - ret0 < ret1
1520  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1521  *              ...
1522  *      - 0 < N - M => M < N
1523  *
1524  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1525  * always the case (the difference between two distinct xtime instances
1526  * might be smaller then the difference between corresponding TSC reads,
1527  * when updating guest vcpus pvclock areas).
1528  *
1529  * To avoid that problem, do not allow visibility of distinct
1530  * system_timestamp/tsc_timestamp values simultaneously: use a master
1531  * copy of host monotonic time values. Update that master copy
1532  * in lockstep.
1533  *
1534  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1535  *
1536  */
1537
1538 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1539 {
1540 #ifdef CONFIG_X86_64
1541         struct kvm_arch *ka = &kvm->arch;
1542         int vclock_mode;
1543         bool host_tsc_clocksource, vcpus_matched;
1544
1545         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1546                         atomic_read(&kvm->online_vcpus));
1547
1548         /*
1549          * If the host uses TSC clock, then passthrough TSC as stable
1550          * to the guest.
1551          */
1552         host_tsc_clocksource = kvm_get_time_and_clockread(
1553                                         &ka->master_kernel_ns,
1554                                         &ka->master_cycle_now);
1555
1556         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1557                                 && !backwards_tsc_observed
1558                                 && !ka->boot_vcpu_runs_old_kvmclock;
1559
1560         if (ka->use_master_clock)
1561                 atomic_set(&kvm_guest_has_master_clock, 1);
1562
1563         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1564         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1565                                         vcpus_matched);
1566 #endif
1567 }
1568
1569 static void kvm_gen_update_masterclock(struct kvm *kvm)
1570 {
1571 #ifdef CONFIG_X86_64
1572         int i;
1573         struct kvm_vcpu *vcpu;
1574         struct kvm_arch *ka = &kvm->arch;
1575
1576         spin_lock(&ka->pvclock_gtod_sync_lock);
1577         kvm_make_mclock_inprogress_request(kvm);
1578         /* no guest entries from this point */
1579         pvclock_update_vm_gtod_copy(kvm);
1580
1581         kvm_for_each_vcpu(i, vcpu, kvm)
1582                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1583
1584         /* guest entries allowed */
1585         kvm_for_each_vcpu(i, vcpu, kvm)
1586                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1587
1588         spin_unlock(&ka->pvclock_gtod_sync_lock);
1589 #endif
1590 }
1591
1592 static int kvm_guest_time_update(struct kvm_vcpu *v)
1593 {
1594         unsigned long flags, this_tsc_khz;
1595         struct kvm_vcpu_arch *vcpu = &v->arch;
1596         struct kvm_arch *ka = &v->kvm->arch;
1597         s64 kernel_ns;
1598         u64 tsc_timestamp, host_tsc;
1599         struct pvclock_vcpu_time_info guest_hv_clock;
1600         u8 pvclock_flags;
1601         bool use_master_clock;
1602
1603         kernel_ns = 0;
1604         host_tsc = 0;
1605
1606         /*
1607          * If the host uses TSC clock, then passthrough TSC as stable
1608          * to the guest.
1609          */
1610         spin_lock(&ka->pvclock_gtod_sync_lock);
1611         use_master_clock = ka->use_master_clock;
1612         if (use_master_clock) {
1613                 host_tsc = ka->master_cycle_now;
1614                 kernel_ns = ka->master_kernel_ns;
1615         }
1616         spin_unlock(&ka->pvclock_gtod_sync_lock);
1617
1618         /* Keep irq disabled to prevent changes to the clock */
1619         local_irq_save(flags);
1620         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1621         if (unlikely(this_tsc_khz == 0)) {
1622                 local_irq_restore(flags);
1623                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1624                 return 1;
1625         }
1626         if (!use_master_clock) {
1627                 host_tsc = native_read_tsc();
1628                 kernel_ns = get_kernel_ns();
1629         }
1630
1631         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1632
1633         /*
1634          * We may have to catch up the TSC to match elapsed wall clock
1635          * time for two reasons, even if kvmclock is used.
1636          *   1) CPU could have been running below the maximum TSC rate
1637          *   2) Broken TSC compensation resets the base at each VCPU
1638          *      entry to avoid unknown leaps of TSC even when running
1639          *      again on the same CPU.  This may cause apparent elapsed
1640          *      time to disappear, and the guest to stand still or run
1641          *      very slowly.
1642          */
1643         if (vcpu->tsc_catchup) {
1644                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1645                 if (tsc > tsc_timestamp) {
1646                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1647                         tsc_timestamp = tsc;
1648                 }
1649         }
1650
1651         local_irq_restore(flags);
1652
1653         if (!vcpu->pv_time_enabled)
1654                 return 0;
1655
1656         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1657                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1658                                    &vcpu->hv_clock.tsc_shift,
1659                                    &vcpu->hv_clock.tsc_to_system_mul);
1660                 vcpu->hw_tsc_khz = this_tsc_khz;
1661         }
1662
1663         /* With all the info we got, fill in the values */
1664         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1665         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1666         vcpu->last_guest_tsc = tsc_timestamp;
1667
1668         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1669                 &guest_hv_clock, sizeof(guest_hv_clock))))
1670                 return 0;
1671
1672         /*
1673          * The interface expects us to write an even number signaling that the
1674          * update is finished. Since the guest won't see the intermediate
1675          * state, we just increase by 2 at the end.
1676          */
1677         vcpu->hv_clock.version = guest_hv_clock.version + 2;
1678
1679         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1680         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1681
1682         if (vcpu->pvclock_set_guest_stopped_request) {
1683                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1684                 vcpu->pvclock_set_guest_stopped_request = false;
1685         }
1686
1687         /* If the host uses TSC clocksource, then it is stable */
1688         if (use_master_clock)
1689                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1690
1691         vcpu->hv_clock.flags = pvclock_flags;
1692
1693         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1694
1695         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1696                                 &vcpu->hv_clock,
1697                                 sizeof(vcpu->hv_clock));
1698         return 0;
1699 }
1700
1701 /*
1702  * kvmclock updates which are isolated to a given vcpu, such as
1703  * vcpu->cpu migration, should not allow system_timestamp from
1704  * the rest of the vcpus to remain static. Otherwise ntp frequency
1705  * correction applies to one vcpu's system_timestamp but not
1706  * the others.
1707  *
1708  * So in those cases, request a kvmclock update for all vcpus.
1709  * We need to rate-limit these requests though, as they can
1710  * considerably slow guests that have a large number of vcpus.
1711  * The time for a remote vcpu to update its kvmclock is bound
1712  * by the delay we use to rate-limit the updates.
1713  */
1714
1715 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1716
1717 static void kvmclock_update_fn(struct work_struct *work)
1718 {
1719         int i;
1720         struct delayed_work *dwork = to_delayed_work(work);
1721         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1722                                            kvmclock_update_work);
1723         struct kvm *kvm = container_of(ka, struct kvm, arch);
1724         struct kvm_vcpu *vcpu;
1725
1726         kvm_for_each_vcpu(i, vcpu, kvm) {
1727                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1728                 kvm_vcpu_kick(vcpu);
1729         }
1730 }
1731
1732 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1733 {
1734         struct kvm *kvm = v->kvm;
1735
1736         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1737         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1738                                         KVMCLOCK_UPDATE_DELAY);
1739 }
1740
1741 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1742
1743 static void kvmclock_sync_fn(struct work_struct *work)
1744 {
1745         struct delayed_work *dwork = to_delayed_work(work);
1746         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1747                                            kvmclock_sync_work);
1748         struct kvm *kvm = container_of(ka, struct kvm, arch);
1749
1750         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1751         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1752                                         KVMCLOCK_SYNC_PERIOD);
1753 }
1754
1755 static bool msr_mtrr_valid(unsigned msr)
1756 {
1757         switch (msr) {
1758         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1759         case MSR_MTRRfix64K_00000:
1760         case MSR_MTRRfix16K_80000:
1761         case MSR_MTRRfix16K_A0000:
1762         case MSR_MTRRfix4K_C0000:
1763         case MSR_MTRRfix4K_C8000:
1764         case MSR_MTRRfix4K_D0000:
1765         case MSR_MTRRfix4K_D8000:
1766         case MSR_MTRRfix4K_E0000:
1767         case MSR_MTRRfix4K_E8000:
1768         case MSR_MTRRfix4K_F0000:
1769         case MSR_MTRRfix4K_F8000:
1770         case MSR_MTRRdefType:
1771         case MSR_IA32_CR_PAT:
1772                 return true;
1773         case 0x2f8:
1774                 return true;
1775         }
1776         return false;
1777 }
1778
1779 static bool valid_pat_type(unsigned t)
1780 {
1781         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1782 }
1783
1784 static bool valid_mtrr_type(unsigned t)
1785 {
1786         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1787 }
1788
1789 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1790 {
1791         int i;
1792         u64 mask;
1793
1794         if (!msr_mtrr_valid(msr))
1795                 return false;
1796
1797         if (msr == MSR_IA32_CR_PAT) {
1798                 for (i = 0; i < 8; i++)
1799                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1800                                 return false;
1801                 return true;
1802         } else if (msr == MSR_MTRRdefType) {
1803                 if (data & ~0xcff)
1804                         return false;
1805                 return valid_mtrr_type(data & 0xff);
1806         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1807                 for (i = 0; i < 8 ; i++)
1808                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1809                                 return false;
1810                 return true;
1811         }
1812
1813         /* variable MTRRs */
1814         WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1815
1816         mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1817         if ((msr & 1) == 0) {
1818                 /* MTRR base */
1819                 if (!valid_mtrr_type(data & 0xff))
1820                         return false;
1821                 mask |= 0xf00;
1822         } else
1823                 /* MTRR mask */
1824                 mask |= 0x7ff;
1825         if (data & mask) {
1826                 kvm_inject_gp(vcpu, 0);
1827                 return false;
1828         }
1829
1830         return true;
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1833
1834 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1835 {
1836         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1837
1838         if (!kvm_mtrr_valid(vcpu, msr, data))
1839                 return 1;
1840
1841         if (msr == MSR_MTRRdefType) {
1842                 vcpu->arch.mtrr_state.def_type = data;
1843                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1844         } else if (msr == MSR_MTRRfix64K_00000)
1845                 p[0] = data;
1846         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1847                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1848         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1849                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1850         else if (msr == MSR_IA32_CR_PAT)
1851                 vcpu->arch.pat = data;
1852         else {  /* Variable MTRRs */
1853                 int idx, is_mtrr_mask;
1854                 u64 *pt;
1855
1856                 idx = (msr - 0x200) / 2;
1857                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1858                 if (!is_mtrr_mask)
1859                         pt =
1860                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1861                 else
1862                         pt =
1863                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1864                 *pt = data;
1865         }
1866
1867         kvm_mmu_reset_context(vcpu);
1868         return 0;
1869 }
1870
1871 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1872 {
1873         u64 mcg_cap = vcpu->arch.mcg_cap;
1874         unsigned bank_num = mcg_cap & 0xff;
1875
1876         switch (msr) {
1877         case MSR_IA32_MCG_STATUS:
1878                 vcpu->arch.mcg_status = data;
1879                 break;
1880         case MSR_IA32_MCG_CTL:
1881                 if (!(mcg_cap & MCG_CTL_P))
1882                         return 1;
1883                 if (data != 0 && data != ~(u64)0)
1884                         return -1;
1885                 vcpu->arch.mcg_ctl = data;
1886                 break;
1887         default:
1888                 if (msr >= MSR_IA32_MC0_CTL &&
1889                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1890                         u32 offset = msr - MSR_IA32_MC0_CTL;
1891                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1892                          * some Linux kernels though clear bit 10 in bank 4 to
1893                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1894                          * this to avoid an uncatched #GP in the guest
1895                          */
1896                         if ((offset & 0x3) == 0 &&
1897                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1898                                 return -1;
1899                         vcpu->arch.mce_banks[offset] = data;
1900                         break;
1901                 }
1902                 return 1;
1903         }
1904         return 0;
1905 }
1906
1907 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1908 {
1909         struct kvm *kvm = vcpu->kvm;
1910         int lm = is_long_mode(vcpu);
1911         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1912                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1913         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1914                 : kvm->arch.xen_hvm_config.blob_size_32;
1915         u32 page_num = data & ~PAGE_MASK;
1916         u64 page_addr = data & PAGE_MASK;
1917         u8 *page;
1918         int r;
1919
1920         r = -E2BIG;
1921         if (page_num >= blob_size)
1922                 goto out;
1923         r = -ENOMEM;
1924         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1925         if (IS_ERR(page)) {
1926                 r = PTR_ERR(page);
1927                 goto out;
1928         }
1929         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1930                 goto out_free;
1931         r = 0;
1932 out_free:
1933         kfree(page);
1934 out:
1935         return r;
1936 }
1937
1938 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1939 {
1940         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1941 }
1942
1943 static bool kvm_hv_msr_partition_wide(u32 msr)
1944 {
1945         bool r = false;
1946         switch (msr) {
1947         case HV_X64_MSR_GUEST_OS_ID:
1948         case HV_X64_MSR_HYPERCALL:
1949         case HV_X64_MSR_REFERENCE_TSC:
1950         case HV_X64_MSR_TIME_REF_COUNT:
1951                 r = true;
1952                 break;
1953         }
1954
1955         return r;
1956 }
1957
1958 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1959 {
1960         struct kvm *kvm = vcpu->kvm;
1961
1962         switch (msr) {
1963         case HV_X64_MSR_GUEST_OS_ID:
1964                 kvm->arch.hv_guest_os_id = data;
1965                 /* setting guest os id to zero disables hypercall page */
1966                 if (!kvm->arch.hv_guest_os_id)
1967                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1968                 break;
1969         case HV_X64_MSR_HYPERCALL: {
1970                 u64 gfn;
1971                 unsigned long addr;
1972                 u8 instructions[4];
1973
1974                 /* if guest os id is not set hypercall should remain disabled */
1975                 if (!kvm->arch.hv_guest_os_id)
1976                         break;
1977                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1978                         kvm->arch.hv_hypercall = data;
1979                         break;
1980                 }
1981                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1982                 addr = gfn_to_hva(kvm, gfn);
1983                 if (kvm_is_error_hva(addr))
1984                         return 1;
1985                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1986                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1987                 if (__copy_to_user((void __user *)addr, instructions, 4))
1988                         return 1;
1989                 kvm->arch.hv_hypercall = data;
1990                 mark_page_dirty(kvm, gfn);
1991                 break;
1992         }
1993         case HV_X64_MSR_REFERENCE_TSC: {
1994                 u64 gfn;
1995                 HV_REFERENCE_TSC_PAGE tsc_ref;
1996                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1997                 kvm->arch.hv_tsc_page = data;
1998                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1999                         break;
2000                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2001                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2002                         &tsc_ref, sizeof(tsc_ref)))
2003                         return 1;
2004                 mark_page_dirty(kvm, gfn);
2005                 break;
2006         }
2007         default:
2008                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2009                             "data 0x%llx\n", msr, data);
2010                 return 1;
2011         }
2012         return 0;
2013 }
2014
2015 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2016 {
2017         switch (msr) {
2018         case HV_X64_MSR_APIC_ASSIST_PAGE: {
2019                 u64 gfn;
2020                 unsigned long addr;
2021
2022                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2023                         vcpu->arch.hv_vapic = data;
2024                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2025                                 return 1;
2026                         break;
2027                 }
2028                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2029                 addr = gfn_to_hva(vcpu->kvm, gfn);
2030                 if (kvm_is_error_hva(addr))
2031                         return 1;
2032                 if (__clear_user((void __user *)addr, PAGE_SIZE))
2033                         return 1;
2034                 vcpu->arch.hv_vapic = data;
2035                 mark_page_dirty(vcpu->kvm, gfn);
2036                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2037                         return 1;
2038                 break;
2039         }
2040         case HV_X64_MSR_EOI:
2041                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2042         case HV_X64_MSR_ICR:
2043                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2044         case HV_X64_MSR_TPR:
2045                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2046         default:
2047                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2048                             "data 0x%llx\n", msr, data);
2049                 return 1;
2050         }
2051
2052         return 0;
2053 }
2054
2055 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2056 {
2057         gpa_t gpa = data & ~0x3f;
2058
2059         /* Bits 2:5 are reserved, Should be zero */
2060         if (data & 0x3c)
2061                 return 1;
2062
2063         vcpu->arch.apf.msr_val = data;
2064
2065         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2066                 kvm_clear_async_pf_completion_queue(vcpu);
2067                 kvm_async_pf_hash_reset(vcpu);
2068                 return 0;
2069         }
2070
2071         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2072                                         sizeof(u32)))
2073                 return 1;
2074
2075         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2076         kvm_async_pf_wakeup_all(vcpu);
2077         return 0;
2078 }
2079
2080 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2081 {
2082         vcpu->arch.pv_time_enabled = false;
2083 }
2084
2085 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2086 {
2087         u64 delta;
2088
2089         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2090                 return;
2091
2092         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2093         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2094         vcpu->arch.st.accum_steal = delta;
2095 }
2096
2097 static void record_steal_time(struct kvm_vcpu *vcpu)
2098 {
2099         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2100                 return;
2101
2102         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2103                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2104                 return;
2105
2106         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2107         vcpu->arch.st.steal.version += 2;
2108         vcpu->arch.st.accum_steal = 0;
2109
2110         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2111                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2112 }
2113
2114 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2115 {
2116         bool pr = false;
2117         u32 msr = msr_info->index;
2118         u64 data = msr_info->data;
2119
2120         switch (msr) {
2121         case MSR_AMD64_NB_CFG:
2122         case MSR_IA32_UCODE_REV:
2123         case MSR_IA32_UCODE_WRITE:
2124         case MSR_VM_HSAVE_PA:
2125         case MSR_AMD64_PATCH_LOADER:
2126         case MSR_AMD64_BU_CFG2:
2127                 break;
2128
2129         case MSR_EFER:
2130                 return set_efer(vcpu, data);
2131         case MSR_K7_HWCR:
2132                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2133                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2134                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2135                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2136                 if (data != 0) {
2137                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2138                                     data);
2139                         return 1;
2140                 }
2141                 break;
2142         case MSR_FAM10H_MMIO_CONF_BASE:
2143                 if (data != 0) {
2144                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2145                                     "0x%llx\n", data);
2146                         return 1;
2147                 }
2148                 break;
2149         case MSR_IA32_DEBUGCTLMSR:
2150                 if (!data) {
2151                         /* We support the non-activated case already */
2152                         break;
2153                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2154                         /* Values other than LBR and BTF are vendor-specific,
2155                            thus reserved and should throw a #GP */
2156                         return 1;
2157                 }
2158                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2159                             __func__, data);
2160                 break;
2161         case 0x200 ... 0x2ff:
2162                 return set_msr_mtrr(vcpu, msr, data);
2163         case MSR_IA32_APICBASE:
2164                 return kvm_set_apic_base(vcpu, msr_info);
2165         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2166                 return kvm_x2apic_msr_write(vcpu, msr, data);
2167         case MSR_IA32_TSCDEADLINE:
2168                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2169                 break;
2170         case MSR_IA32_TSC_ADJUST:
2171                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2172                         if (!msr_info->host_initiated) {
2173                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2174                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2175                         }
2176                         vcpu->arch.ia32_tsc_adjust_msr = data;
2177                 }
2178                 break;
2179         case MSR_IA32_MISC_ENABLE:
2180                 vcpu->arch.ia32_misc_enable_msr = data;
2181                 break;
2182         case MSR_KVM_WALL_CLOCK_NEW:
2183         case MSR_KVM_WALL_CLOCK:
2184                 vcpu->kvm->arch.wall_clock = data;
2185                 kvm_write_wall_clock(vcpu->kvm, data);
2186                 break;
2187         case MSR_KVM_SYSTEM_TIME_NEW:
2188         case MSR_KVM_SYSTEM_TIME: {
2189                 u64 gpa_offset;
2190                 struct kvm_arch *ka = &vcpu->kvm->arch;
2191
2192                 kvmclock_reset(vcpu);
2193
2194                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2195                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2196
2197                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2198                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2199                                         &vcpu->requests);
2200
2201                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2202                 }
2203
2204                 vcpu->arch.time = data;
2205                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2206
2207                 /* we verify if the enable bit is set... */
2208                 if (!(data & 1))
2209                         break;
2210
2211                 gpa_offset = data & ~(PAGE_MASK | 1);
2212
2213                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2214                      &vcpu->arch.pv_time, data & ~1ULL,
2215                      sizeof(struct pvclock_vcpu_time_info)))
2216                         vcpu->arch.pv_time_enabled = false;
2217                 else
2218                         vcpu->arch.pv_time_enabled = true;
2219
2220                 break;
2221         }
2222         case MSR_KVM_ASYNC_PF_EN:
2223                 if (kvm_pv_enable_async_pf(vcpu, data))
2224                         return 1;
2225                 break;
2226         case MSR_KVM_STEAL_TIME:
2227
2228                 if (unlikely(!sched_info_on()))
2229                         return 1;
2230
2231                 if (data & KVM_STEAL_RESERVED_MASK)
2232                         return 1;
2233
2234                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2235                                                 data & KVM_STEAL_VALID_BITS,
2236                                                 sizeof(struct kvm_steal_time)))
2237                         return 1;
2238
2239                 vcpu->arch.st.msr_val = data;
2240
2241                 if (!(data & KVM_MSR_ENABLED))
2242                         break;
2243
2244                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2245
2246                 preempt_disable();
2247                 accumulate_steal_time(vcpu);
2248                 preempt_enable();
2249
2250                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2251
2252                 break;
2253         case MSR_KVM_PV_EOI_EN:
2254                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2255                         return 1;
2256                 break;
2257
2258         case MSR_IA32_MCG_CTL:
2259         case MSR_IA32_MCG_STATUS:
2260         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2261                 return set_msr_mce(vcpu, msr, data);
2262
2263         /* Performance counters are not protected by a CPUID bit,
2264          * so we should check all of them in the generic path for the sake of
2265          * cross vendor migration.
2266          * Writing a zero into the event select MSRs disables them,
2267          * which we perfectly emulate ;-). Any other value should be at least
2268          * reported, some guests depend on them.
2269          */
2270         case MSR_K7_EVNTSEL0:
2271         case MSR_K7_EVNTSEL1:
2272         case MSR_K7_EVNTSEL2:
2273         case MSR_K7_EVNTSEL3:
2274                 if (data != 0)
2275                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2276                                     "0x%x data 0x%llx\n", msr, data);
2277                 break;
2278         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2279          * so we ignore writes to make it happy.
2280          */
2281         case MSR_K7_PERFCTR0:
2282         case MSR_K7_PERFCTR1:
2283         case MSR_K7_PERFCTR2:
2284         case MSR_K7_PERFCTR3:
2285                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2286                             "0x%x data 0x%llx\n", msr, data);
2287                 break;
2288         case MSR_P6_PERFCTR0:
2289         case MSR_P6_PERFCTR1:
2290                 pr = true;
2291         case MSR_P6_EVNTSEL0:
2292         case MSR_P6_EVNTSEL1:
2293                 if (kvm_pmu_msr(vcpu, msr))
2294                         return kvm_pmu_set_msr(vcpu, msr_info);
2295
2296                 if (pr || data != 0)
2297                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2298                                     "0x%x data 0x%llx\n", msr, data);
2299                 break;
2300         case MSR_K7_CLK_CTL:
2301                 /*
2302                  * Ignore all writes to this no longer documented MSR.
2303                  * Writes are only relevant for old K7 processors,
2304                  * all pre-dating SVM, but a recommended workaround from
2305                  * AMD for these chips. It is possible to specify the
2306                  * affected processor models on the command line, hence
2307                  * the need to ignore the workaround.
2308                  */
2309                 break;
2310         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2311                 if (kvm_hv_msr_partition_wide(msr)) {
2312                         int r;
2313                         mutex_lock(&vcpu->kvm->lock);
2314                         r = set_msr_hyperv_pw(vcpu, msr, data);
2315                         mutex_unlock(&vcpu->kvm->lock);
2316                         return r;
2317                 } else
2318                         return set_msr_hyperv(vcpu, msr, data);
2319                 break;
2320         case MSR_IA32_BBL_CR_CTL3:
2321                 /* Drop writes to this legacy MSR -- see rdmsr
2322                  * counterpart for further detail.
2323                  */
2324                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2325                 break;
2326         case MSR_AMD64_OSVW_ID_LENGTH:
2327                 if (!guest_cpuid_has_osvw(vcpu))
2328                         return 1;
2329                 vcpu->arch.osvw.length = data;
2330                 break;
2331         case MSR_AMD64_OSVW_STATUS:
2332                 if (!guest_cpuid_has_osvw(vcpu))
2333                         return 1;
2334                 vcpu->arch.osvw.status = data;
2335                 break;
2336         default:
2337                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2338                         return xen_hvm_config(vcpu, data);
2339                 if (kvm_pmu_msr(vcpu, msr))
2340                         return kvm_pmu_set_msr(vcpu, msr_info);
2341                 if (!ignore_msrs) {
2342                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2343                                     msr, data);
2344                         return 1;
2345                 } else {
2346                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2347                                     msr, data);
2348                         break;
2349                 }
2350         }
2351         return 0;
2352 }
2353 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2354
2355
2356 /*
2357  * Reads an msr value (of 'msr_index') into 'pdata'.
2358  * Returns 0 on success, non-0 otherwise.
2359  * Assumes vcpu_load() was already called.
2360  */
2361 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2362 {
2363         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2364 }
2365 EXPORT_SYMBOL_GPL(kvm_get_msr);
2366
2367 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2368 {
2369         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2370
2371         if (!msr_mtrr_valid(msr))
2372                 return 1;
2373
2374         if (msr == MSR_MTRRdefType)
2375                 *pdata = vcpu->arch.mtrr_state.def_type +
2376                          (vcpu->arch.mtrr_state.enabled << 10);
2377         else if (msr == MSR_MTRRfix64K_00000)
2378                 *pdata = p[0];
2379         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2380                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2381         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2382                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2383         else if (msr == MSR_IA32_CR_PAT)
2384                 *pdata = vcpu->arch.pat;
2385         else {  /* Variable MTRRs */
2386                 int idx, is_mtrr_mask;
2387                 u64 *pt;
2388
2389                 idx = (msr - 0x200) / 2;
2390                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2391                 if (!is_mtrr_mask)
2392                         pt =
2393                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2394                 else
2395                         pt =
2396                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2397                 *pdata = *pt;
2398         }
2399
2400         return 0;
2401 }
2402
2403 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2404 {
2405         u64 data;
2406         u64 mcg_cap = vcpu->arch.mcg_cap;
2407         unsigned bank_num = mcg_cap & 0xff;
2408
2409         switch (msr) {
2410         case MSR_IA32_P5_MC_ADDR:
2411         case MSR_IA32_P5_MC_TYPE:
2412                 data = 0;
2413                 break;
2414         case MSR_IA32_MCG_CAP:
2415                 data = vcpu->arch.mcg_cap;
2416                 break;
2417         case MSR_IA32_MCG_CTL:
2418                 if (!(mcg_cap & MCG_CTL_P))
2419                         return 1;
2420                 data = vcpu->arch.mcg_ctl;
2421                 break;
2422         case MSR_IA32_MCG_STATUS:
2423                 data = vcpu->arch.mcg_status;
2424                 break;
2425         default:
2426                 if (msr >= MSR_IA32_MC0_CTL &&
2427                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2428                         u32 offset = msr - MSR_IA32_MC0_CTL;
2429                         data = vcpu->arch.mce_banks[offset];
2430                         break;
2431                 }
2432                 return 1;
2433         }
2434         *pdata = data;
2435         return 0;
2436 }
2437
2438 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2439 {
2440         u64 data = 0;
2441         struct kvm *kvm = vcpu->kvm;
2442
2443         switch (msr) {
2444         case HV_X64_MSR_GUEST_OS_ID:
2445                 data = kvm->arch.hv_guest_os_id;
2446                 break;
2447         case HV_X64_MSR_HYPERCALL:
2448                 data = kvm->arch.hv_hypercall;
2449                 break;
2450         case HV_X64_MSR_TIME_REF_COUNT: {
2451                 data =
2452                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2453                 break;
2454         }
2455         case HV_X64_MSR_REFERENCE_TSC:
2456                 data = kvm->arch.hv_tsc_page;
2457                 break;
2458         default:
2459                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2460                 return 1;
2461         }
2462
2463         *pdata = data;
2464         return 0;
2465 }
2466
2467 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2468 {
2469         u64 data = 0;
2470
2471         switch (msr) {
2472         case HV_X64_MSR_VP_INDEX: {
2473                 int r;
2474                 struct kvm_vcpu *v;
2475                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2476                         if (v == vcpu) {
2477                                 data = r;
2478                                 break;
2479                         }
2480                 }
2481                 break;
2482         }
2483         case HV_X64_MSR_EOI:
2484                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2485         case HV_X64_MSR_ICR:
2486                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2487         case HV_X64_MSR_TPR:
2488                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2489         case HV_X64_MSR_APIC_ASSIST_PAGE:
2490                 data = vcpu->arch.hv_vapic;
2491                 break;
2492         default:
2493                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2494                 return 1;
2495         }
2496         *pdata = data;
2497         return 0;
2498 }
2499
2500 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2501 {
2502         u64 data;
2503
2504         switch (msr) {
2505         case MSR_IA32_PLATFORM_ID:
2506         case MSR_IA32_EBL_CR_POWERON:
2507         case MSR_IA32_DEBUGCTLMSR:
2508         case MSR_IA32_LASTBRANCHFROMIP:
2509         case MSR_IA32_LASTBRANCHTOIP:
2510         case MSR_IA32_LASTINTFROMIP:
2511         case MSR_IA32_LASTINTTOIP:
2512         case MSR_K8_SYSCFG:
2513         case MSR_K7_HWCR:
2514         case MSR_VM_HSAVE_PA:
2515         case MSR_K7_EVNTSEL0:
2516         case MSR_K7_EVNTSEL1:
2517         case MSR_K7_EVNTSEL2:
2518         case MSR_K7_EVNTSEL3:
2519         case MSR_K7_PERFCTR0:
2520         case MSR_K7_PERFCTR1:
2521         case MSR_K7_PERFCTR2:
2522         case MSR_K7_PERFCTR3:
2523         case MSR_K8_INT_PENDING_MSG:
2524         case MSR_AMD64_NB_CFG:
2525         case MSR_FAM10H_MMIO_CONF_BASE:
2526         case MSR_AMD64_BU_CFG2:
2527                 data = 0;
2528                 break;
2529         case MSR_P6_PERFCTR0:
2530         case MSR_P6_PERFCTR1:
2531         case MSR_P6_EVNTSEL0:
2532         case MSR_P6_EVNTSEL1:
2533                 if (kvm_pmu_msr(vcpu, msr))
2534                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2535                 data = 0;
2536                 break;
2537         case MSR_IA32_UCODE_REV:
2538                 data = 0x100000000ULL;
2539                 break;
2540         case MSR_MTRRcap:
2541                 data = 0x500 | KVM_NR_VAR_MTRR;
2542                 break;
2543         case 0x200 ... 0x2ff:
2544                 return get_msr_mtrr(vcpu, msr, pdata);
2545         case 0xcd: /* fsb frequency */
2546                 data = 3;
2547                 break;
2548                 /*
2549                  * MSR_EBC_FREQUENCY_ID
2550                  * Conservative value valid for even the basic CPU models.
2551                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2552                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2553                  * and 266MHz for model 3, or 4. Set Core Clock
2554                  * Frequency to System Bus Frequency Ratio to 1 (bits
2555                  * 31:24) even though these are only valid for CPU
2556                  * models > 2, however guests may end up dividing or
2557                  * multiplying by zero otherwise.
2558                  */
2559         case MSR_EBC_FREQUENCY_ID:
2560                 data = 1 << 24;
2561                 break;
2562         case MSR_IA32_APICBASE:
2563                 data = kvm_get_apic_base(vcpu);
2564                 break;
2565         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2566                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2567                 break;
2568         case MSR_IA32_TSCDEADLINE:
2569                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2570                 break;
2571         case MSR_IA32_TSC_ADJUST:
2572                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2573                 break;
2574         case MSR_IA32_MISC_ENABLE:
2575                 data = vcpu->arch.ia32_misc_enable_msr;
2576                 break;
2577         case MSR_IA32_PERF_STATUS:
2578                 /* TSC increment by tick */
2579                 data = 1000ULL;
2580                 /* CPU multiplier */
2581                 data |= (((uint64_t)4ULL) << 40);
2582                 break;
2583         case MSR_EFER:
2584                 data = vcpu->arch.efer;
2585                 break;
2586         case MSR_KVM_WALL_CLOCK:
2587         case MSR_KVM_WALL_CLOCK_NEW:
2588                 data = vcpu->kvm->arch.wall_clock;
2589                 break;
2590         case MSR_KVM_SYSTEM_TIME:
2591         case MSR_KVM_SYSTEM_TIME_NEW:
2592                 data = vcpu->arch.time;
2593                 break;
2594         case MSR_KVM_ASYNC_PF_EN:
2595                 data = vcpu->arch.apf.msr_val;
2596                 break;
2597         case MSR_KVM_STEAL_TIME:
2598                 data = vcpu->arch.st.msr_val;
2599                 break;
2600         case MSR_KVM_PV_EOI_EN:
2601                 data = vcpu->arch.pv_eoi.msr_val;
2602                 break;
2603         case MSR_IA32_P5_MC_ADDR:
2604         case MSR_IA32_P5_MC_TYPE:
2605         case MSR_IA32_MCG_CAP:
2606         case MSR_IA32_MCG_CTL:
2607         case MSR_IA32_MCG_STATUS:
2608         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2609                 return get_msr_mce(vcpu, msr, pdata);
2610         case MSR_K7_CLK_CTL:
2611                 /*
2612                  * Provide expected ramp-up count for K7. All other
2613                  * are set to zero, indicating minimum divisors for
2614                  * every field.
2615                  *
2616                  * This prevents guest kernels on AMD host with CPU
2617                  * type 6, model 8 and higher from exploding due to
2618                  * the rdmsr failing.
2619                  */
2620                 data = 0x20000000;
2621                 break;
2622         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2623                 if (kvm_hv_msr_partition_wide(msr)) {
2624                         int r;
2625                         mutex_lock(&vcpu->kvm->lock);
2626                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2627                         mutex_unlock(&vcpu->kvm->lock);
2628                         return r;
2629                 } else
2630                         return get_msr_hyperv(vcpu, msr, pdata);
2631                 break;
2632         case MSR_IA32_BBL_CR_CTL3:
2633                 /* This legacy MSR exists but isn't fully documented in current
2634                  * silicon.  It is however accessed by winxp in very narrow
2635                  * scenarios where it sets bit #19, itself documented as
2636                  * a "reserved" bit.  Best effort attempt to source coherent
2637                  * read data here should the balance of the register be
2638                  * interpreted by the guest:
2639                  *
2640                  * L2 cache control register 3: 64GB range, 256KB size,
2641                  * enabled, latency 0x1, configured
2642                  */
2643                 data = 0xbe702111;
2644                 break;
2645         case MSR_AMD64_OSVW_ID_LENGTH:
2646                 if (!guest_cpuid_has_osvw(vcpu))
2647                         return 1;
2648                 data = vcpu->arch.osvw.length;
2649                 break;
2650         case MSR_AMD64_OSVW_STATUS:
2651                 if (!guest_cpuid_has_osvw(vcpu))
2652                         return 1;
2653                 data = vcpu->arch.osvw.status;
2654                 break;
2655         default:
2656                 if (kvm_pmu_msr(vcpu, msr))
2657                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2658                 if (!ignore_msrs) {
2659                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2660                         return 1;
2661                 } else {
2662                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2663                         data = 0;
2664                 }
2665                 break;
2666         }
2667         *pdata = data;
2668         return 0;
2669 }
2670 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2671
2672 /*
2673  * Read or write a bunch of msrs. All parameters are kernel addresses.
2674  *
2675  * @return number of msrs set successfully.
2676  */
2677 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2678                     struct kvm_msr_entry *entries,
2679                     int (*do_msr)(struct kvm_vcpu *vcpu,
2680                                   unsigned index, u64 *data))
2681 {
2682         int i, idx;
2683
2684         idx = srcu_read_lock(&vcpu->kvm->srcu);
2685         for (i = 0; i < msrs->nmsrs; ++i)
2686                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2687                         break;
2688         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2689
2690         return i;
2691 }
2692
2693 /*
2694  * Read or write a bunch of msrs. Parameters are user addresses.
2695  *
2696  * @return number of msrs set successfully.
2697  */
2698 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2699                   int (*do_msr)(struct kvm_vcpu *vcpu,
2700                                 unsigned index, u64 *data),
2701                   int writeback)
2702 {
2703         struct kvm_msrs msrs;
2704         struct kvm_msr_entry *entries;
2705         int r, n;
2706         unsigned size;
2707
2708         r = -EFAULT;
2709         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2710                 goto out;
2711
2712         r = -E2BIG;
2713         if (msrs.nmsrs >= MAX_IO_MSRS)
2714                 goto out;
2715
2716         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2717         entries = memdup_user(user_msrs->entries, size);
2718         if (IS_ERR(entries)) {
2719                 r = PTR_ERR(entries);
2720                 goto out;
2721         }
2722
2723         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2724         if (r < 0)
2725                 goto out_free;
2726
2727         r = -EFAULT;
2728         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2729                 goto out_free;
2730
2731         r = n;
2732
2733 out_free:
2734         kfree(entries);
2735 out:
2736         return r;
2737 }
2738
2739 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2740 {
2741         int r;
2742
2743         switch (ext) {
2744         case KVM_CAP_IRQCHIP:
2745         case KVM_CAP_HLT:
2746         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2747         case KVM_CAP_SET_TSS_ADDR:
2748         case KVM_CAP_EXT_CPUID:
2749         case KVM_CAP_EXT_EMUL_CPUID:
2750         case KVM_CAP_CLOCKSOURCE:
2751         case KVM_CAP_PIT:
2752         case KVM_CAP_NOP_IO_DELAY:
2753         case KVM_CAP_MP_STATE:
2754         case KVM_CAP_SYNC_MMU:
2755         case KVM_CAP_USER_NMI:
2756         case KVM_CAP_REINJECT_CONTROL:
2757         case KVM_CAP_IRQ_INJECT_STATUS:
2758         case KVM_CAP_IOEVENTFD:
2759         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2760         case KVM_CAP_PIT2:
2761         case KVM_CAP_PIT_STATE2:
2762         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2763         case KVM_CAP_XEN_HVM:
2764         case KVM_CAP_ADJUST_CLOCK:
2765         case KVM_CAP_VCPU_EVENTS:
2766         case KVM_CAP_HYPERV:
2767         case KVM_CAP_HYPERV_VAPIC:
2768         case KVM_CAP_HYPERV_SPIN:
2769         case KVM_CAP_PCI_SEGMENT:
2770         case KVM_CAP_DEBUGREGS:
2771         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2772         case KVM_CAP_XSAVE:
2773         case KVM_CAP_ASYNC_PF:
2774         case KVM_CAP_GET_TSC_KHZ:
2775         case KVM_CAP_KVMCLOCK_CTRL:
2776         case KVM_CAP_READONLY_MEM:
2777         case KVM_CAP_HYPERV_TIME:
2778         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2779         case KVM_CAP_TSC_DEADLINE_TIMER:
2780 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2781         case KVM_CAP_ASSIGN_DEV_IRQ:
2782         case KVM_CAP_PCI_2_3:
2783 #endif
2784                 r = 1;
2785                 break;
2786         case KVM_CAP_COALESCED_MMIO:
2787                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2788                 break;
2789         case KVM_CAP_VAPIC:
2790                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2791                 break;
2792         case KVM_CAP_NR_VCPUS:
2793                 r = KVM_SOFT_MAX_VCPUS;
2794                 break;
2795         case KVM_CAP_MAX_VCPUS:
2796                 r = KVM_MAX_VCPUS;
2797                 break;
2798         case KVM_CAP_NR_MEMSLOTS:
2799                 r = KVM_USER_MEM_SLOTS;
2800                 break;
2801         case KVM_CAP_PV_MMU:    /* obsolete */
2802                 r = 0;
2803                 break;
2804 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2805         case KVM_CAP_IOMMU:
2806                 r = iommu_present(&pci_bus_type);
2807                 break;
2808 #endif
2809         case KVM_CAP_MCE:
2810                 r = KVM_MAX_MCE_BANKS;
2811                 break;
2812         case KVM_CAP_XCRS:
2813                 r = cpu_has_xsave;
2814                 break;
2815         case KVM_CAP_TSC_CONTROL:
2816                 r = kvm_has_tsc_control;
2817                 break;
2818         default:
2819                 r = 0;
2820                 break;
2821         }
2822         return r;
2823
2824 }
2825
2826 long kvm_arch_dev_ioctl(struct file *filp,
2827                         unsigned int ioctl, unsigned long arg)
2828 {
2829         void __user *argp = (void __user *)arg;
2830         long r;
2831
2832         switch (ioctl) {
2833         case KVM_GET_MSR_INDEX_LIST: {
2834                 struct kvm_msr_list __user *user_msr_list = argp;
2835                 struct kvm_msr_list msr_list;
2836                 unsigned n;
2837
2838                 r = -EFAULT;
2839                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2840                         goto out;
2841                 n = msr_list.nmsrs;
2842                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2843                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2844                         goto out;
2845                 r = -E2BIG;
2846                 if (n < msr_list.nmsrs)
2847                         goto out;
2848                 r = -EFAULT;
2849                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2850                                  num_msrs_to_save * sizeof(u32)))
2851                         goto out;
2852                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2853                                  &emulated_msrs,
2854                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2855                         goto out;
2856                 r = 0;
2857                 break;
2858         }
2859         case KVM_GET_SUPPORTED_CPUID:
2860         case KVM_GET_EMULATED_CPUID: {
2861                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2862                 struct kvm_cpuid2 cpuid;
2863
2864                 r = -EFAULT;
2865                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2866                         goto out;
2867
2868                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2869                                             ioctl);
2870                 if (r)
2871                         goto out;
2872
2873                 r = -EFAULT;
2874                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2875                         goto out;
2876                 r = 0;
2877                 break;
2878         }
2879         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2880                 u64 mce_cap;
2881
2882                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2883                 r = -EFAULT;
2884                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2885                         goto out;
2886                 r = 0;
2887                 break;
2888         }
2889         default:
2890                 r = -EINVAL;
2891         }
2892 out:
2893         return r;
2894 }
2895
2896 static void wbinvd_ipi(void *garbage)
2897 {
2898         wbinvd();
2899 }
2900
2901 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2902 {
2903         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2904 }
2905
2906 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2907 {
2908         /* Address WBINVD may be executed by guest */
2909         if (need_emulate_wbinvd(vcpu)) {
2910                 if (kvm_x86_ops->has_wbinvd_exit())
2911                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2912                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2913                         smp_call_function_single(vcpu->cpu,
2914                                         wbinvd_ipi, NULL, 1);
2915         }
2916
2917         kvm_x86_ops->vcpu_load(vcpu, cpu);
2918
2919         /* Apply any externally detected TSC adjustments (due to suspend) */
2920         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2921                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2922                 vcpu->arch.tsc_offset_adjustment = 0;
2923                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2924         }
2925
2926         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2927                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2928                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2929                 if (tsc_delta < 0)
2930                         mark_tsc_unstable("KVM discovered backwards TSC");
2931                 if (check_tsc_unstable()) {
2932                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2933                                                 vcpu->arch.last_guest_tsc);
2934                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2935                         vcpu->arch.tsc_catchup = 1;
2936                 }
2937                 /*
2938                  * On a host with synchronized TSC, there is no need to update
2939                  * kvmclock on vcpu->cpu migration
2940                  */
2941                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2942                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2943                 if (vcpu->cpu != cpu)
2944                         kvm_migrate_timers(vcpu);
2945                 vcpu->cpu = cpu;
2946         }
2947
2948         accumulate_steal_time(vcpu);
2949         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2950 }
2951
2952 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2953 {
2954         kvm_x86_ops->vcpu_put(vcpu);
2955         kvm_put_guest_fpu(vcpu);
2956         vcpu->arch.last_host_tsc = native_read_tsc();
2957 }
2958
2959 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2960                                     struct kvm_lapic_state *s)
2961 {
2962         kvm_x86_ops->sync_pir_to_irr(vcpu);
2963         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2964
2965         return 0;
2966 }
2967
2968 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2969                                     struct kvm_lapic_state *s)
2970 {
2971         kvm_apic_post_state_restore(vcpu, s);
2972         update_cr8_intercept(vcpu);
2973
2974         return 0;
2975 }
2976
2977 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2978                                     struct kvm_interrupt *irq)
2979 {
2980         if (irq->irq >= KVM_NR_INTERRUPTS)
2981                 return -EINVAL;
2982         if (irqchip_in_kernel(vcpu->kvm))
2983                 return -ENXIO;
2984
2985         kvm_queue_interrupt(vcpu, irq->irq, false);
2986         kvm_make_request(KVM_REQ_EVENT, vcpu);
2987
2988         return 0;
2989 }
2990
2991 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2992 {
2993         kvm_inject_nmi(vcpu);
2994
2995         return 0;
2996 }
2997
2998 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2999                                            struct kvm_tpr_access_ctl *tac)
3000 {
3001         if (tac->flags)
3002                 return -EINVAL;
3003         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3004         return 0;
3005 }
3006
3007 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3008                                         u64 mcg_cap)
3009 {
3010         int r;
3011         unsigned bank_num = mcg_cap & 0xff, bank;
3012
3013         r = -EINVAL;
3014         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3015                 goto out;
3016         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3017                 goto out;
3018         r = 0;
3019         vcpu->arch.mcg_cap = mcg_cap;
3020         /* Init IA32_MCG_CTL to all 1s */
3021         if (mcg_cap & MCG_CTL_P)
3022                 vcpu->arch.mcg_ctl = ~(u64)0;
3023         /* Init IA32_MCi_CTL to all 1s */
3024         for (bank = 0; bank < bank_num; bank++)
3025                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3026 out:
3027         return r;
3028 }
3029
3030 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3031                                       struct kvm_x86_mce *mce)
3032 {
3033         u64 mcg_cap = vcpu->arch.mcg_cap;
3034         unsigned bank_num = mcg_cap & 0xff;
3035         u64 *banks = vcpu->arch.mce_banks;
3036
3037         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3038                 return -EINVAL;
3039         /*
3040          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3041          * reporting is disabled
3042          */
3043         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3044             vcpu->arch.mcg_ctl != ~(u64)0)
3045                 return 0;
3046         banks += 4 * mce->bank;
3047         /*
3048          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3049          * reporting is disabled for the bank
3050          */
3051         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3052                 return 0;
3053         if (mce->status & MCI_STATUS_UC) {
3054                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3055                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3056                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3057                         return 0;
3058                 }
3059                 if (banks[1] & MCI_STATUS_VAL)
3060                         mce->status |= MCI_STATUS_OVER;
3061                 banks[2] = mce->addr;
3062                 banks[3] = mce->misc;
3063                 vcpu->arch.mcg_status = mce->mcg_status;
3064                 banks[1] = mce->status;
3065                 kvm_queue_exception(vcpu, MC_VECTOR);
3066         } else if (!(banks[1] & MCI_STATUS_VAL)
3067                    || !(banks[1] & MCI_STATUS_UC)) {
3068                 if (banks[1] & MCI_STATUS_VAL)
3069                         mce->status |= MCI_STATUS_OVER;
3070                 banks[2] = mce->addr;
3071                 banks[3] = mce->misc;
3072                 banks[1] = mce->status;
3073         } else
3074                 banks[1] |= MCI_STATUS_OVER;
3075         return 0;
3076 }
3077
3078 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3079                                                struct kvm_vcpu_events *events)
3080 {
3081         process_nmi(vcpu);
3082         events->exception.injected =
3083                 vcpu->arch.exception.pending &&
3084                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3085         events->exception.nr = vcpu->arch.exception.nr;
3086         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3087         events->exception.pad = 0;
3088         events->exception.error_code = vcpu->arch.exception.error_code;
3089
3090         events->interrupt.injected =
3091                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3092         events->interrupt.nr = vcpu->arch.interrupt.nr;
3093         events->interrupt.soft = 0;
3094         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3095
3096         events->nmi.injected = vcpu->arch.nmi_injected;
3097         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3098         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3099         events->nmi.pad = 0;
3100
3101         events->sipi_vector = 0; /* never valid when reporting to user space */
3102
3103         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3104                          | KVM_VCPUEVENT_VALID_SHADOW);
3105         memset(&events->reserved, 0, sizeof(events->reserved));
3106 }
3107
3108 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3109                                               struct kvm_vcpu_events *events)
3110 {
3111         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3112                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3113                               | KVM_VCPUEVENT_VALID_SHADOW))
3114                 return -EINVAL;
3115
3116         process_nmi(vcpu);
3117         vcpu->arch.exception.pending = events->exception.injected;
3118         vcpu->arch.exception.nr = events->exception.nr;
3119         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3120         vcpu->arch.exception.error_code = events->exception.error_code;
3121
3122         vcpu->arch.interrupt.pending = events->interrupt.injected;
3123         vcpu->arch.interrupt.nr = events->interrupt.nr;
3124         vcpu->arch.interrupt.soft = events->interrupt.soft;
3125         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3126                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3127                                                   events->interrupt.shadow);
3128
3129         vcpu->arch.nmi_injected = events->nmi.injected;
3130         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3131                 vcpu->arch.nmi_pending = events->nmi.pending;
3132         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3133
3134         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3135             kvm_vcpu_has_lapic(vcpu))
3136                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3137
3138         kvm_make_request(KVM_REQ_EVENT, vcpu);
3139
3140         return 0;
3141 }
3142
3143 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3144                                              struct kvm_debugregs *dbgregs)
3145 {
3146         unsigned long val;
3147
3148         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3149         kvm_get_dr(vcpu, 6, &val);
3150         dbgregs->dr6 = val;
3151         dbgregs->dr7 = vcpu->arch.dr7;
3152         dbgregs->flags = 0;
3153         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3154 }
3155
3156 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3157                                             struct kvm_debugregs *dbgregs)
3158 {
3159         if (dbgregs->flags)
3160                 return -EINVAL;
3161
3162         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3163         kvm_update_dr0123(vcpu);
3164         vcpu->arch.dr6 = dbgregs->dr6;
3165         kvm_update_dr6(vcpu);
3166         vcpu->arch.dr7 = dbgregs->dr7;
3167         kvm_update_dr7(vcpu);
3168
3169         return 0;
3170 }
3171
3172 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3173
3174 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3175 {
3176         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3177         u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3178         u64 valid;
3179
3180         /*
3181          * Copy legacy XSAVE area, to avoid complications with CPUID
3182          * leaves 0 and 1 in the loop below.
3183          */
3184         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3185
3186         /* Set XSTATE_BV */
3187         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3188
3189         /*
3190          * Copy each region from the possibly compacted offset to the
3191          * non-compacted offset.
3192          */
3193         valid = xstate_bv & ~XSTATE_FPSSE;
3194         while (valid) {
3195                 u64 feature = valid & -valid;
3196                 int index = fls64(feature) - 1;
3197                 void *src = get_xsave_addr(xsave, feature);
3198
3199                 if (src) {
3200                         u32 size, offset, ecx, edx;
3201                         cpuid_count(XSTATE_CPUID, index,
3202                                     &size, &offset, &ecx, &edx);
3203                         memcpy(dest + offset, src, size);
3204                 }
3205
3206                 valid -= feature;
3207         }
3208 }
3209
3210 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3211 {
3212         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3213         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3214         u64 valid;
3215
3216         /*
3217          * Copy legacy XSAVE area, to avoid complications with CPUID
3218          * leaves 0 and 1 in the loop below.
3219          */
3220         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3221
3222         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3223         xsave->xsave_hdr.xstate_bv = xstate_bv;
3224         if (cpu_has_xsaves)
3225                 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3226
3227         /*
3228          * Copy each region from the non-compacted offset to the
3229          * possibly compacted offset.
3230          */
3231         valid = xstate_bv & ~XSTATE_FPSSE;
3232         while (valid) {
3233                 u64 feature = valid & -valid;
3234                 int index = fls64(feature) - 1;
3235                 void *dest = get_xsave_addr(xsave, feature);
3236
3237                 if (dest) {
3238                         u32 size, offset, ecx, edx;
3239                         cpuid_count(XSTATE_CPUID, index,
3240                                     &size, &offset, &ecx, &edx);
3241                         memcpy(dest, src + offset, size);
3242                 } else
3243                         WARN_ON_ONCE(1);
3244
3245                 valid -= feature;
3246         }
3247 }
3248
3249 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3250                                          struct kvm_xsave *guest_xsave)
3251 {
3252         if (cpu_has_xsave) {
3253                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3254                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3255         } else {
3256                 memcpy(guest_xsave->region,
3257                         &vcpu->arch.guest_fpu.state->fxsave,
3258                         sizeof(struct i387_fxsave_struct));
3259                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3260                         XSTATE_FPSSE;
3261         }
3262 }
3263
3264 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3265                                         struct kvm_xsave *guest_xsave)
3266 {
3267         u64 xstate_bv =
3268                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3269
3270         if (cpu_has_xsave) {
3271                 /*
3272                  * Here we allow setting states that are not present in
3273                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3274                  * with old userspace.
3275                  */
3276                 if (xstate_bv & ~kvm_supported_xcr0())
3277                         return -EINVAL;
3278                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3279         } else {
3280                 if (xstate_bv & ~XSTATE_FPSSE)
3281                         return -EINVAL;
3282                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3283                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3284         }
3285         return 0;
3286 }
3287
3288 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3289                                         struct kvm_xcrs *guest_xcrs)
3290 {
3291         if (!cpu_has_xsave) {
3292                 guest_xcrs->nr_xcrs = 0;
3293                 return;
3294         }
3295
3296         guest_xcrs->nr_xcrs = 1;
3297         guest_xcrs->flags = 0;
3298         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3299         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3300 }
3301
3302 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3303                                        struct kvm_xcrs *guest_xcrs)
3304 {
3305         int i, r = 0;
3306
3307         if (!cpu_has_xsave)
3308                 return -EINVAL;
3309
3310         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3311                 return -EINVAL;
3312
3313         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3314                 /* Only support XCR0 currently */
3315                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3316                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3317                                 guest_xcrs->xcrs[i].value);
3318                         break;
3319                 }
3320         if (r)
3321                 r = -EINVAL;
3322         return r;
3323 }
3324
3325 /*
3326  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3327  * stopped by the hypervisor.  This function will be called from the host only.
3328  * EINVAL is returned when the host attempts to set the flag for a guest that
3329  * does not support pv clocks.
3330  */
3331 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3332 {
3333         if (!vcpu->arch.pv_time_enabled)
3334                 return -EINVAL;
3335         vcpu->arch.pvclock_set_guest_stopped_request = true;
3336         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3337         return 0;
3338 }
3339
3340 long kvm_arch_vcpu_ioctl(struct file *filp,
3341                          unsigned int ioctl, unsigned long arg)
3342 {
3343         struct kvm_vcpu *vcpu = filp->private_data;
3344         void __user *argp = (void __user *)arg;
3345         int r;
3346         union {
3347                 struct kvm_lapic_state *lapic;
3348                 struct kvm_xsave *xsave;
3349                 struct kvm_xcrs *xcrs;
3350                 void *buffer;
3351         } u;
3352
3353         u.buffer = NULL;
3354         switch (ioctl) {
3355         case KVM_GET_LAPIC: {
3356                 r = -EINVAL;
3357                 if (!vcpu->arch.apic)
3358                         goto out;
3359                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3360
3361                 r = -ENOMEM;
3362                 if (!u.lapic)
3363                         goto out;
3364                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3365                 if (r)
3366                         goto out;
3367                 r = -EFAULT;
3368                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3369                         goto out;
3370                 r = 0;
3371                 break;
3372         }
3373         case KVM_SET_LAPIC: {
3374                 r = -EINVAL;
3375                 if (!vcpu->arch.apic)
3376                         goto out;
3377                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3378                 if (IS_ERR(u.lapic))
3379                         return PTR_ERR(u.lapic);
3380
3381                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3382                 break;
3383         }
3384         case KVM_INTERRUPT: {
3385                 struct kvm_interrupt irq;
3386
3387                 r = -EFAULT;
3388                 if (copy_from_user(&irq, argp, sizeof irq))
3389                         goto out;
3390                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3391                 break;
3392         }
3393         case KVM_NMI: {
3394                 r = kvm_vcpu_ioctl_nmi(vcpu);
3395                 break;
3396         }
3397         case KVM_SET_CPUID: {
3398                 struct kvm_cpuid __user *cpuid_arg = argp;
3399                 struct kvm_cpuid cpuid;
3400
3401                 r = -EFAULT;
3402                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3403                         goto out;
3404                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3405                 break;
3406         }
3407         case KVM_SET_CPUID2: {
3408                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3409                 struct kvm_cpuid2 cpuid;
3410
3411                 r = -EFAULT;
3412                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3413                         goto out;
3414                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3415                                               cpuid_arg->entries);
3416                 break;
3417         }
3418         case KVM_GET_CPUID2: {
3419                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3420                 struct kvm_cpuid2 cpuid;
3421
3422                 r = -EFAULT;
3423                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3424                         goto out;
3425                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3426                                               cpuid_arg->entries);
3427                 if (r)
3428                         goto out;
3429                 r = -EFAULT;
3430                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3431                         goto out;
3432                 r = 0;
3433                 break;
3434         }
3435         case KVM_GET_MSRS:
3436                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3437                 break;
3438         case KVM_SET_MSRS:
3439                 r = msr_io(vcpu, argp, do_set_msr, 0);
3440                 break;
3441         case KVM_TPR_ACCESS_REPORTING: {
3442                 struct kvm_tpr_access_ctl tac;
3443
3444                 r = -EFAULT;
3445                 if (copy_from_user(&tac, argp, sizeof tac))
3446                         goto out;
3447                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3448                 if (r)
3449                         goto out;
3450                 r = -EFAULT;
3451                 if (copy_to_user(argp, &tac, sizeof tac))
3452                         goto out;
3453                 r = 0;
3454                 break;
3455         };
3456         case KVM_SET_VAPIC_ADDR: {
3457                 struct kvm_vapic_addr va;
3458
3459                 r = -EINVAL;
3460                 if (!irqchip_in_kernel(vcpu->kvm))
3461                         goto out;
3462                 r = -EFAULT;
3463                 if (copy_from_user(&va, argp, sizeof va))
3464                         goto out;
3465                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3466                 break;
3467         }
3468         case KVM_X86_SETUP_MCE: {
3469                 u64 mcg_cap;
3470
3471                 r = -EFAULT;
3472                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3473                         goto out;
3474                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3475                 break;
3476         }
3477         case KVM_X86_SET_MCE: {
3478                 struct kvm_x86_mce mce;
3479
3480                 r = -EFAULT;
3481                 if (copy_from_user(&mce, argp, sizeof mce))
3482                         goto out;
3483                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3484                 break;
3485         }
3486         case KVM_GET_VCPU_EVENTS: {
3487                 struct kvm_vcpu_events events;
3488
3489                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3490
3491                 r = -EFAULT;
3492                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3493                         break;
3494                 r = 0;
3495                 break;
3496         }
3497         case KVM_SET_VCPU_EVENTS: {
3498                 struct kvm_vcpu_events events;
3499
3500                 r = -EFAULT;
3501                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3502                         break;
3503
3504                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3505                 break;
3506         }
3507         case KVM_GET_DEBUGREGS: {
3508                 struct kvm_debugregs dbgregs;
3509
3510                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3511
3512                 r = -EFAULT;
3513                 if (copy_to_user(argp, &dbgregs,
3514                                  sizeof(struct kvm_debugregs)))
3515                         break;
3516                 r = 0;
3517                 break;
3518         }
3519         case KVM_SET_DEBUGREGS: {
3520                 struct kvm_debugregs dbgregs;
3521
3522                 r = -EFAULT;
3523                 if (copy_from_user(&dbgregs, argp,
3524                                    sizeof(struct kvm_debugregs)))
3525                         break;
3526
3527                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3528                 break;
3529         }
3530         case KVM_GET_XSAVE: {
3531                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3532                 r = -ENOMEM;
3533                 if (!u.xsave)
3534                         break;
3535
3536                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3537
3538                 r = -EFAULT;
3539                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3540                         break;
3541                 r = 0;
3542                 break;
3543         }
3544         case KVM_SET_XSAVE: {
3545                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3546                 if (IS_ERR(u.xsave))
3547                         return PTR_ERR(u.xsave);
3548
3549                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3550                 break;
3551         }
3552         case KVM_GET_XCRS: {
3553                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3554                 r = -ENOMEM;
3555                 if (!u.xcrs)
3556                         break;
3557
3558                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3559
3560                 r = -EFAULT;
3561                 if (copy_to_user(argp, u.xcrs,
3562                                  sizeof(struct kvm_xcrs)))
3563                         break;
3564                 r = 0;
3565                 break;
3566         }
3567         case KVM_SET_XCRS: {
3568                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3569                 if (IS_ERR(u.xcrs))
3570                         return PTR_ERR(u.xcrs);
3571
3572                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3573                 break;
3574         }
3575         case KVM_SET_TSC_KHZ: {
3576                 u32 user_tsc_khz;
3577
3578                 r = -EINVAL;
3579                 user_tsc_khz = (u32)arg;
3580
3581                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3582                         goto out;
3583
3584                 if (user_tsc_khz == 0)
3585                         user_tsc_khz = tsc_khz;
3586
3587                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3588
3589                 r = 0;
3590                 goto out;
3591         }
3592         case KVM_GET_TSC_KHZ: {
3593                 r = vcpu->arch.virtual_tsc_khz;
3594                 goto out;
3595         }
3596         case KVM_KVMCLOCK_CTRL: {
3597                 r = kvm_set_guest_paused(vcpu);
3598                 goto out;
3599         }
3600         default:
3601                 r = -EINVAL;
3602         }
3603 out:
3604         kfree(u.buffer);
3605         return r;
3606 }
3607
3608 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3609 {
3610         return VM_FAULT_SIGBUS;
3611 }
3612
3613 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3614 {
3615         int ret;
3616
3617         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3618                 return -EINVAL;
3619         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3620         return ret;
3621 }
3622
3623 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3624                                               u64 ident_addr)
3625 {
3626         kvm->arch.ept_identity_map_addr = ident_addr;
3627         return 0;
3628 }
3629
3630 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3631                                           u32 kvm_nr_mmu_pages)
3632 {
3633         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3634                 return -EINVAL;
3635
3636         mutex_lock(&kvm->slots_lock);
3637
3638         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3639         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3640
3641         mutex_unlock(&kvm->slots_lock);
3642         return 0;
3643 }
3644
3645 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3646 {
3647         return kvm->arch.n_max_mmu_pages;
3648 }
3649
3650 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3651 {
3652         int r;
3653
3654         r = 0;
3655         switch (chip->chip_id) {
3656         case KVM_IRQCHIP_PIC_MASTER:
3657                 memcpy(&chip->chip.pic,
3658                         &pic_irqchip(kvm)->pics[0],
3659                         sizeof(struct kvm_pic_state));
3660                 break;
3661         case KVM_IRQCHIP_PIC_SLAVE:
3662                 memcpy(&chip->chip.pic,
3663                         &pic_irqchip(kvm)->pics[1],
3664                         sizeof(struct kvm_pic_state));
3665                 break;
3666         case KVM_IRQCHIP_IOAPIC:
3667                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3668                 break;
3669         default:
3670                 r = -EINVAL;
3671                 break;
3672         }
3673         return r;
3674 }
3675
3676 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3677 {
3678         int r;
3679
3680         r = 0;
3681         switch (chip->chip_id) {
3682         case KVM_IRQCHIP_PIC_MASTER:
3683                 spin_lock(&pic_irqchip(kvm)->lock);
3684                 memcpy(&pic_irqchip(kvm)->pics[0],
3685                         &chip->chip.pic,
3686                         sizeof(struct kvm_pic_state));
3687                 spin_unlock(&pic_irqchip(kvm)->lock);
3688                 break;
3689         case KVM_IRQCHIP_PIC_SLAVE:
3690                 spin_lock(&pic_irqchip(kvm)->lock);
3691                 memcpy(&pic_irqchip(kvm)->pics[1],
3692                         &chip->chip.pic,
3693                         sizeof(struct kvm_pic_state));
3694                 spin_unlock(&pic_irqchip(kvm)->lock);
3695                 break;
3696         case KVM_IRQCHIP_IOAPIC:
3697                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3698                 break;
3699         default:
3700                 r = -EINVAL;
3701                 break;
3702         }
3703         kvm_pic_update_irq(pic_irqchip(kvm));
3704         return r;
3705 }
3706
3707 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3708 {
3709         int r = 0;
3710
3711         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3712         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3713         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3714         return r;
3715 }
3716
3717 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3718 {
3719         int r = 0;
3720
3721         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3722         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3723         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3724         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3725         return r;
3726 }
3727
3728 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3729 {
3730         int r = 0;
3731
3732         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3733         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3734                 sizeof(ps->channels));
3735         ps->flags = kvm->arch.vpit->pit_state.flags;
3736         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3737         memset(&ps->reserved, 0, sizeof(ps->reserved));
3738         return r;
3739 }
3740
3741 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3742 {
3743         int r = 0, start = 0;
3744         u32 prev_legacy, cur_legacy;
3745         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3746         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3747         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3748         if (!prev_legacy && cur_legacy)
3749                 start = 1;
3750         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3751                sizeof(kvm->arch.vpit->pit_state.channels));
3752         kvm->arch.vpit->pit_state.flags = ps->flags;
3753         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3754         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3755         return r;
3756 }
3757
3758 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3759                                  struct kvm_reinject_control *control)
3760 {
3761         if (!kvm->arch.vpit)
3762                 return -ENXIO;
3763         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3764         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3765         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3766         return 0;
3767 }
3768
3769 /**
3770  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3771  * @kvm: kvm instance
3772  * @log: slot id and address to which we copy the log
3773  *
3774  * Steps 1-4 below provide general overview of dirty page logging. See
3775  * kvm_get_dirty_log_protect() function description for additional details.
3776  *
3777  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3778  * always flush the TLB (step 4) even if previous step failed  and the dirty
3779  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3780  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3781  * writes will be marked dirty for next log read.
3782  *
3783  *   1. Take a snapshot of the bit and clear it if needed.
3784  *   2. Write protect the corresponding page.
3785  *   3. Copy the snapshot to the userspace.
3786  *   4. Flush TLB's if needed.
3787  */
3788 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3789 {
3790         bool is_dirty = false;
3791         int r;
3792
3793         mutex_lock(&kvm->slots_lock);
3794
3795         /*
3796          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3797          */
3798         if (kvm_x86_ops->flush_log_dirty)
3799                 kvm_x86_ops->flush_log_dirty(kvm);
3800
3801         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3802
3803         /*
3804          * All the TLBs can be flushed out of mmu lock, see the comments in
3805          * kvm_mmu_slot_remove_write_access().
3806          */
3807         lockdep_assert_held(&kvm->slots_lock);
3808         if (is_dirty)
3809                 kvm_flush_remote_tlbs(kvm);
3810
3811         mutex_unlock(&kvm->slots_lock);
3812         return r;
3813 }
3814
3815 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3816                         bool line_status)
3817 {
3818         if (!irqchip_in_kernel(kvm))
3819                 return -ENXIO;
3820
3821         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3822                                         irq_event->irq, irq_event->level,
3823                                         line_status);
3824         return 0;
3825 }
3826
3827 long kvm_arch_vm_ioctl(struct file *filp,
3828                        unsigned int ioctl, unsigned long arg)
3829 {
3830         struct kvm *kvm = filp->private_data;
3831         void __user *argp = (void __user *)arg;
3832         int r = -ENOTTY;
3833         /*
3834          * This union makes it completely explicit to gcc-3.x
3835          * that these two variables' stack usage should be
3836          * combined, not added together.
3837          */
3838         union {
3839                 struct kvm_pit_state ps;
3840                 struct kvm_pit_state2 ps2;
3841                 struct kvm_pit_config pit_config;
3842         } u;
3843
3844         switch (ioctl) {
3845         case KVM_SET_TSS_ADDR:
3846                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3847                 break;
3848         case KVM_SET_IDENTITY_MAP_ADDR: {
3849                 u64 ident_addr;
3850
3851                 r = -EFAULT;
3852                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3853                         goto out;
3854                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3855                 break;
3856         }
3857         case KVM_SET_NR_MMU_PAGES:
3858                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3859                 break;
3860         case KVM_GET_NR_MMU_PAGES:
3861                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3862                 break;
3863         case KVM_CREATE_IRQCHIP: {
3864                 struct kvm_pic *vpic;
3865
3866                 mutex_lock(&kvm->lock);
3867                 r = -EEXIST;
3868                 if (kvm->arch.vpic)
3869                         goto create_irqchip_unlock;
3870                 r = -EINVAL;
3871                 if (atomic_read(&kvm->online_vcpus))
3872                         goto create_irqchip_unlock;
3873                 r = -ENOMEM;
3874                 vpic = kvm_create_pic(kvm);
3875                 if (vpic) {
3876                         r = kvm_ioapic_init(kvm);
3877                         if (r) {
3878                                 mutex_lock(&kvm->slots_lock);
3879                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3880                                                           &vpic->dev_master);
3881                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3882                                                           &vpic->dev_slave);
3883                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3884                                                           &vpic->dev_eclr);
3885                                 mutex_unlock(&kvm->slots_lock);
3886                                 kfree(vpic);
3887                                 goto create_irqchip_unlock;
3888                         }
3889                 } else
3890                         goto create_irqchip_unlock;
3891                 smp_wmb();
3892                 kvm->arch.vpic = vpic;
3893                 smp_wmb();
3894                 r = kvm_setup_default_irq_routing(kvm);
3895                 if (r) {
3896                         mutex_lock(&kvm->slots_lock);
3897                         mutex_lock(&kvm->irq_lock);
3898                         kvm_ioapic_destroy(kvm);
3899                         kvm_destroy_pic(kvm);
3900                         mutex_unlock(&kvm->irq_lock);
3901                         mutex_unlock(&kvm->slots_lock);
3902                 }
3903         create_irqchip_unlock:
3904                 mutex_unlock(&kvm->lock);
3905                 break;
3906         }
3907         case KVM_CREATE_PIT:
3908                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3909                 goto create_pit;
3910         case KVM_CREATE_PIT2:
3911                 r = -EFAULT;
3912                 if (copy_from_user(&u.pit_config, argp,
3913                                    sizeof(struct kvm_pit_config)))
3914                         goto out;
3915         create_pit:
3916                 mutex_lock(&kvm->slots_lock);
3917                 r = -EEXIST;
3918                 if (kvm->arch.vpit)
3919                         goto create_pit_unlock;
3920                 r = -ENOMEM;
3921                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3922                 if (kvm->arch.vpit)
3923                         r = 0;
3924         create_pit_unlock:
3925                 mutex_unlock(&kvm->slots_lock);
3926                 break;
3927         case KVM_GET_IRQCHIP: {
3928                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3929                 struct kvm_irqchip *chip;
3930
3931                 chip = memdup_user(argp, sizeof(*chip));
3932                 if (IS_ERR(chip)) {
3933                         r = PTR_ERR(chip);
3934                         goto out;
3935                 }
3936
3937                 r = -ENXIO;
3938                 if (!irqchip_in_kernel(kvm))
3939                         goto get_irqchip_out;
3940                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3941                 if (r)
3942                         goto get_irqchip_out;
3943                 r = -EFAULT;
3944                 if (copy_to_user(argp, chip, sizeof *chip))
3945                         goto get_irqchip_out;
3946                 r = 0;
3947         get_irqchip_out:
3948                 kfree(chip);
3949                 break;
3950         }
3951         case KVM_SET_IRQCHIP: {
3952                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3953                 struct kvm_irqchip *chip;
3954
3955                 chip = memdup_user(argp, sizeof(*chip));
3956                 if (IS_ERR(chip)) {
3957                         r = PTR_ERR(chip);
3958                         goto out;
3959                 }
3960
3961                 r = -ENXIO;
3962                 if (!irqchip_in_kernel(kvm))
3963                         goto set_irqchip_out;
3964                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3965                 if (r)
3966                         goto set_irqchip_out;
3967                 r = 0;
3968         set_irqchip_out:
3969                 kfree(chip);
3970                 break;
3971         }
3972         case KVM_GET_PIT: {
3973                 r = -EFAULT;
3974                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3975                         goto out;
3976                 r = -ENXIO;
3977                 if (!kvm->arch.vpit)
3978                         goto out;
3979                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3980                 if (r)
3981                         goto out;
3982                 r = -EFAULT;
3983                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3984                         goto out;
3985                 r = 0;
3986                 break;
3987         }
3988         case KVM_SET_PIT: {
3989                 r = -EFAULT;
3990                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3991                         goto out;
3992                 r = -ENXIO;
3993                 if (!kvm->arch.vpit)
3994                         goto out;
3995                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3996                 break;
3997         }
3998         case KVM_GET_PIT2: {
3999                 r = -ENXIO;
4000                 if (!kvm->arch.vpit)
4001                         goto out;
4002                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4003                 if (r)
4004                         goto out;
4005                 r = -EFAULT;
4006                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4007                         goto out;
4008                 r = 0;
4009                 break;
4010         }
4011         case KVM_SET_PIT2: {
4012                 r = -EFAULT;
4013                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4014                         goto out;
4015                 r = -ENXIO;
4016                 if (!kvm->arch.vpit)
4017                         goto out;
4018                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4019                 break;
4020         }
4021         case KVM_REINJECT_CONTROL: {
4022                 struct kvm_reinject_control control;
4023                 r =  -EFAULT;
4024                 if (copy_from_user(&control, argp, sizeof(control)))
4025                         goto out;
4026                 r = kvm_vm_ioctl_reinject(kvm, &control);
4027                 break;
4028         }
4029         case KVM_XEN_HVM_CONFIG: {
4030                 r = -EFAULT;
4031                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4032                                    sizeof(struct kvm_xen_hvm_config)))
4033                         goto out;
4034                 r = -EINVAL;
4035                 if (kvm->arch.xen_hvm_config.flags)
4036                         goto out;
4037                 r = 0;
4038                 break;
4039         }
4040         case KVM_SET_CLOCK: {
4041                 struct kvm_clock_data user_ns;
4042                 u64 now_ns;
4043                 s64 delta;
4044
4045                 r = -EFAULT;
4046                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4047                         goto out;
4048
4049                 r = -EINVAL;
4050                 if (user_ns.flags)
4051                         goto out;
4052
4053                 r = 0;
4054                 local_irq_disable();
4055                 now_ns = get_kernel_ns();
4056                 delta = user_ns.clock - now_ns;
4057                 local_irq_enable();
4058                 kvm->arch.kvmclock_offset = delta;
4059                 kvm_gen_update_masterclock(kvm);
4060                 break;
4061         }
4062         case KVM_GET_CLOCK: {
4063                 struct kvm_clock_data user_ns;
4064                 u64 now_ns;
4065
4066                 local_irq_disable();
4067                 now_ns = get_kernel_ns();
4068                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4069                 local_irq_enable();
4070                 user_ns.flags = 0;
4071                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4072
4073                 r = -EFAULT;
4074                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4075                         goto out;
4076                 r = 0;
4077                 break;
4078         }
4079
4080         default:
4081                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4082         }
4083 out:
4084         return r;
4085 }
4086
4087 static void kvm_init_msr_list(void)
4088 {
4089         u32 dummy[2];
4090         unsigned i, j;
4091
4092         /* skip the first msrs in the list. KVM-specific */
4093         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4094                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4095                         continue;
4096
4097                 /*
4098                  * Even MSRs that are valid in the host may not be exposed
4099                  * to the guests in some cases.  We could work around this
4100                  * in VMX with the generic MSR save/load machinery, but it
4101                  * is not really worthwhile since it will really only
4102                  * happen with nested virtualization.
4103                  */
4104                 switch (msrs_to_save[i]) {
4105                 case MSR_IA32_BNDCFGS:
4106                         if (!kvm_x86_ops->mpx_supported())
4107                                 continue;
4108                         break;
4109                 default:
4110                         break;
4111                 }
4112
4113                 if (j < i)
4114                         msrs_to_save[j] = msrs_to_save[i];
4115                 j++;
4116         }
4117         num_msrs_to_save = j;
4118 }
4119
4120 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4121                            const void *v)
4122 {
4123         int handled = 0;
4124         int n;
4125
4126         do {
4127                 n = min(len, 8);
4128                 if (!(vcpu->arch.apic &&
4129                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4130                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4131                         break;
4132                 handled += n;
4133                 addr += n;
4134                 len -= n;
4135                 v += n;
4136         } while (len);
4137
4138         return handled;
4139 }
4140
4141 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4142 {
4143         int handled = 0;
4144         int n;
4145
4146         do {
4147                 n = min(len, 8);
4148                 if (!(vcpu->arch.apic &&
4149                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4150                                          addr, n, v))
4151                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4152                         break;
4153                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4154                 handled += n;
4155                 addr += n;
4156                 len -= n;
4157                 v += n;
4158         } while (len);
4159
4160         return handled;
4161 }
4162
4163 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4164                         struct kvm_segment *var, int seg)
4165 {
4166         kvm_x86_ops->set_segment(vcpu, var, seg);
4167 }
4168
4169 void kvm_get_segment(struct kvm_vcpu *vcpu,
4170                      struct kvm_segment *var, int seg)
4171 {
4172         kvm_x86_ops->get_segment(vcpu, var, seg);
4173 }
4174
4175 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4176                            struct x86_exception *exception)
4177 {
4178         gpa_t t_gpa;
4179
4180         BUG_ON(!mmu_is_nested(vcpu));
4181
4182         /* NPT walks are always user-walks */
4183         access |= PFERR_USER_MASK;
4184         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4185
4186         return t_gpa;
4187 }
4188
4189 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4190                               struct x86_exception *exception)
4191 {
4192         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4193         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4194 }
4195
4196  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4197                                 struct x86_exception *exception)
4198 {
4199         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4200         access |= PFERR_FETCH_MASK;
4201         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4202 }
4203
4204 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4205                                struct x86_exception *exception)
4206 {
4207         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4208         access |= PFERR_WRITE_MASK;
4209         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4210 }
4211
4212 /* uses this to access any guest's mapped memory without checking CPL */
4213 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4214                                 struct x86_exception *exception)
4215 {
4216         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4217 }
4218
4219 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4220                                       struct kvm_vcpu *vcpu, u32 access,
4221                                       struct x86_exception *exception)
4222 {
4223         void *data = val;
4224         int r = X86EMUL_CONTINUE;
4225
4226         while (bytes) {
4227                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4228                                                             exception);
4229                 unsigned offset = addr & (PAGE_SIZE-1);
4230                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4231                 int ret;
4232
4233                 if (gpa == UNMAPPED_GVA)
4234                         return X86EMUL_PROPAGATE_FAULT;
4235                 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4236                                           offset, toread);
4237                 if (ret < 0) {
4238                         r = X86EMUL_IO_NEEDED;
4239                         goto out;
4240                 }
4241
4242                 bytes -= toread;
4243                 data += toread;
4244                 addr += toread;
4245         }
4246 out:
4247         return r;
4248 }
4249
4250 /* used for instruction fetching */
4251 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4252                                 gva_t addr, void *val, unsigned int bytes,
4253                                 struct x86_exception *exception)
4254 {
4255         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4256         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4257         unsigned offset;
4258         int ret;
4259
4260         /* Inline kvm_read_guest_virt_helper for speed.  */
4261         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4262                                                     exception);
4263         if (unlikely(gpa == UNMAPPED_GVA))
4264                 return X86EMUL_PROPAGATE_FAULT;
4265
4266         offset = addr & (PAGE_SIZE-1);
4267         if (WARN_ON(offset + bytes > PAGE_SIZE))
4268                 bytes = (unsigned)PAGE_SIZE - offset;
4269         ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4270                                   offset, bytes);
4271         if (unlikely(ret < 0))
4272                 return X86EMUL_IO_NEEDED;
4273
4274         return X86EMUL_CONTINUE;
4275 }
4276
4277 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4278                                gva_t addr, void *val, unsigned int bytes,
4279                                struct x86_exception *exception)
4280 {
4281         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4282         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4283
4284         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4285                                           exception);
4286 }
4287 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4288
4289 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4290                                       gva_t addr, void *val, unsigned int bytes,
4291                                       struct x86_exception *exception)
4292 {
4293         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4294         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4295 }
4296
4297 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4298                                        gva_t addr, void *val,
4299                                        unsigned int bytes,
4300                                        struct x86_exception *exception)
4301 {
4302         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4303         void *data = val;
4304         int r = X86EMUL_CONTINUE;
4305
4306         while (bytes) {
4307                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4308                                                              PFERR_WRITE_MASK,
4309                                                              exception);
4310                 unsigned offset = addr & (PAGE_SIZE-1);
4311                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4312                 int ret;
4313
4314                 if (gpa == UNMAPPED_GVA)
4315                         return X86EMUL_PROPAGATE_FAULT;
4316                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4317                 if (ret < 0) {
4318                         r = X86EMUL_IO_NEEDED;
4319                         goto out;
4320                 }
4321
4322                 bytes -= towrite;
4323                 data += towrite;
4324                 addr += towrite;
4325         }
4326 out:
4327         return r;
4328 }
4329 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4330
4331 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4332                                 gpa_t *gpa, struct x86_exception *exception,
4333                                 bool write)
4334 {
4335         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4336                 | (write ? PFERR_WRITE_MASK : 0);
4337
4338         if (vcpu_match_mmio_gva(vcpu, gva)
4339             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4340                                  vcpu->arch.access, access)) {
4341                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4342                                         (gva & (PAGE_SIZE - 1));
4343                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4344                 return 1;
4345         }
4346
4347         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4348
4349         if (*gpa == UNMAPPED_GVA)
4350                 return -1;
4351
4352         /* For APIC access vmexit */
4353         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4354                 return 1;
4355
4356         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4357                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4358                 return 1;
4359         }
4360
4361         return 0;
4362 }
4363
4364 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4365                         const void *val, int bytes)
4366 {
4367         int ret;
4368
4369         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4370         if (ret < 0)
4371                 return 0;
4372         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4373         return 1;
4374 }
4375
4376 struct read_write_emulator_ops {
4377         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4378                                   int bytes);
4379         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4380                                   void *val, int bytes);
4381         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382                                int bytes, void *val);
4383         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4384                                     void *val, int bytes);
4385         bool write;
4386 };
4387
4388 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4389 {
4390         if (vcpu->mmio_read_completed) {
4391                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4392                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4393                 vcpu->mmio_read_completed = 0;
4394                 return 1;
4395         }
4396
4397         return 0;
4398 }
4399
4400 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4401                         void *val, int bytes)
4402 {
4403         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4404 }
4405
4406 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4407                          void *val, int bytes)
4408 {
4409         return emulator_write_phys(vcpu, gpa, val, bytes);
4410 }
4411
4412 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4413 {
4414         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4415         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4416 }
4417
4418 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4419                           void *val, int bytes)
4420 {
4421         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4422         return X86EMUL_IO_NEEDED;
4423 }
4424
4425 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4426                            void *val, int bytes)
4427 {
4428         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4429
4430         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4431         return X86EMUL_CONTINUE;
4432 }
4433
4434 static const struct read_write_emulator_ops read_emultor = {
4435         .read_write_prepare = read_prepare,
4436         .read_write_emulate = read_emulate,
4437         .read_write_mmio = vcpu_mmio_read,
4438         .read_write_exit_mmio = read_exit_mmio,
4439 };
4440
4441 static const struct read_write_emulator_ops write_emultor = {
4442         .read_write_emulate = write_emulate,
4443         .read_write_mmio = write_mmio,
4444         .read_write_exit_mmio = write_exit_mmio,
4445         .write = true,
4446 };
4447
4448 static int emulator_read_write_onepage(unsigned long addr, void *val,
4449                                        unsigned int bytes,
4450                                        struct x86_exception *exception,
4451                                        struct kvm_vcpu *vcpu,
4452                                        const struct read_write_emulator_ops *ops)
4453 {
4454         gpa_t gpa;
4455         int handled, ret;
4456         bool write = ops->write;
4457         struct kvm_mmio_fragment *frag;
4458
4459         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4460
4461         if (ret < 0)
4462                 return X86EMUL_PROPAGATE_FAULT;
4463
4464         /* For APIC access vmexit */
4465         if (ret)
4466                 goto mmio;
4467
4468         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4469                 return X86EMUL_CONTINUE;
4470
4471 mmio:
4472         /*
4473          * Is this MMIO handled locally?
4474          */
4475         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4476         if (handled == bytes)
4477                 return X86EMUL_CONTINUE;
4478
4479         gpa += handled;
4480         bytes -= handled;
4481         val += handled;
4482
4483         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4484         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4485         frag->gpa = gpa;
4486         frag->data = val;
4487         frag->len = bytes;
4488         return X86EMUL_CONTINUE;
4489 }
4490
4491 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4492                         unsigned long addr,
4493                         void *val, unsigned int bytes,
4494                         struct x86_exception *exception,
4495                         const struct read_write_emulator_ops *ops)
4496 {
4497         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4498         gpa_t gpa;
4499         int rc;
4500
4501         if (ops->read_write_prepare &&
4502                   ops->read_write_prepare(vcpu, val, bytes))
4503                 return X86EMUL_CONTINUE;
4504
4505         vcpu->mmio_nr_fragments = 0;
4506
4507         /* Crossing a page boundary? */
4508         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4509                 int now;
4510
4511                 now = -addr & ~PAGE_MASK;
4512                 rc = emulator_read_write_onepage(addr, val, now, exception,
4513                                                  vcpu, ops);
4514
4515                 if (rc != X86EMUL_CONTINUE)
4516                         return rc;
4517                 addr += now;
4518                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4519                         addr = (u32)addr;
4520                 val += now;
4521                 bytes -= now;
4522         }
4523
4524         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4525                                          vcpu, ops);
4526         if (rc != X86EMUL_CONTINUE)
4527                 return rc;
4528
4529         if (!vcpu->mmio_nr_fragments)
4530                 return rc;
4531
4532         gpa = vcpu->mmio_fragments[0].gpa;
4533
4534         vcpu->mmio_needed = 1;
4535         vcpu->mmio_cur_fragment = 0;
4536
4537         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4538         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4539         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4540         vcpu->run->mmio.phys_addr = gpa;
4541
4542         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4543 }
4544
4545 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4546                                   unsigned long addr,
4547                                   void *val,
4548                                   unsigned int bytes,
4549                                   struct x86_exception *exception)
4550 {
4551         return emulator_read_write(ctxt, addr, val, bytes,
4552                                    exception, &read_emultor);
4553 }
4554
4555 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4556                             unsigned long addr,
4557                             const void *val,
4558                             unsigned int bytes,
4559                             struct x86_exception *exception)
4560 {
4561         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4562                                    exception, &write_emultor);
4563 }
4564
4565 #define CMPXCHG_TYPE(t, ptr, old, new) \
4566         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4567
4568 #ifdef CONFIG_X86_64
4569 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4570 #else
4571 #  define CMPXCHG64(ptr, old, new) \
4572         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4573 #endif
4574
4575 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4576                                      unsigned long addr,
4577                                      const void *old,
4578                                      const void *new,
4579                                      unsigned int bytes,
4580                                      struct x86_exception *exception)
4581 {
4582         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4583         gpa_t gpa;
4584         struct page *page;
4585         char *kaddr;
4586         bool exchanged;
4587
4588         /* guests cmpxchg8b have to be emulated atomically */
4589         if (bytes > 8 || (bytes & (bytes - 1)))
4590                 goto emul_write;
4591
4592         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4593
4594         if (gpa == UNMAPPED_GVA ||
4595             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4596                 goto emul_write;
4597
4598         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4599                 goto emul_write;
4600
4601         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4602         if (is_error_page(page))
4603                 goto emul_write;
4604
4605         kaddr = kmap_atomic(page);
4606         kaddr += offset_in_page(gpa);
4607         switch (bytes) {
4608         case 1:
4609                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4610                 break;
4611         case 2:
4612                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4613                 break;
4614         case 4:
4615                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4616                 break;
4617         case 8:
4618                 exchanged = CMPXCHG64(kaddr, old, new);
4619                 break;
4620         default:
4621                 BUG();
4622         }
4623         kunmap_atomic(kaddr);
4624         kvm_release_page_dirty(page);
4625
4626         if (!exchanged)
4627                 return X86EMUL_CMPXCHG_FAILED;
4628
4629         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4630         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4631
4632         return X86EMUL_CONTINUE;
4633
4634 emul_write:
4635         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4636
4637         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4638 }
4639
4640 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4641 {
4642         /* TODO: String I/O for in kernel device */
4643         int r;
4644
4645         if (vcpu->arch.pio.in)
4646                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4647                                     vcpu->arch.pio.size, pd);
4648         else
4649                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4650                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4651                                      pd);
4652         return r;
4653 }
4654
4655 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4656                                unsigned short port, void *val,
4657                                unsigned int count, bool in)
4658 {
4659         vcpu->arch.pio.port = port;
4660         vcpu->arch.pio.in = in;
4661         vcpu->arch.pio.count  = count;
4662         vcpu->arch.pio.size = size;
4663
4664         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4665                 vcpu->arch.pio.count = 0;
4666                 return 1;
4667         }
4668
4669         vcpu->run->exit_reason = KVM_EXIT_IO;
4670         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4671         vcpu->run->io.size = size;
4672         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4673         vcpu->run->io.count = count;
4674         vcpu->run->io.port = port;
4675
4676         return 0;
4677 }
4678
4679 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4680                                     int size, unsigned short port, void *val,
4681                                     unsigned int count)
4682 {
4683         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4684         int ret;
4685
4686         if (vcpu->arch.pio.count)
4687                 goto data_avail;
4688
4689         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4690         if (ret) {
4691 data_avail:
4692                 memcpy(val, vcpu->arch.pio_data, size * count);
4693                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4694                 vcpu->arch.pio.count = 0;
4695                 return 1;
4696         }
4697
4698         return 0;
4699 }
4700
4701 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4702                                      int size, unsigned short port,
4703                                      const void *val, unsigned int count)
4704 {
4705         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4706
4707         memcpy(vcpu->arch.pio_data, val, size * count);
4708         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4709         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4710 }
4711
4712 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4713 {
4714         return kvm_x86_ops->get_segment_base(vcpu, seg);
4715 }
4716
4717 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4718 {
4719         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4720 }
4721
4722 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4723 {
4724         if (!need_emulate_wbinvd(vcpu))
4725                 return X86EMUL_CONTINUE;
4726
4727         if (kvm_x86_ops->has_wbinvd_exit()) {
4728                 int cpu = get_cpu();
4729
4730                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4731                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4732                                 wbinvd_ipi, NULL, 1);
4733                 put_cpu();
4734                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4735         } else
4736                 wbinvd();
4737         return X86EMUL_CONTINUE;
4738 }
4739
4740 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4741 {
4742         kvm_x86_ops->skip_emulated_instruction(vcpu);
4743         return kvm_emulate_wbinvd_noskip(vcpu);
4744 }
4745 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4746
4747
4748
4749 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4750 {
4751         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4752 }
4753
4754 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4755                            unsigned long *dest)
4756 {
4757         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4758 }
4759
4760 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4761                            unsigned long value)
4762 {
4763
4764         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4765 }
4766
4767 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4768 {
4769         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4770 }
4771
4772 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4773 {
4774         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4775         unsigned long value;
4776
4777         switch (cr) {
4778         case 0:
4779                 value = kvm_read_cr0(vcpu);
4780                 break;
4781         case 2:
4782                 value = vcpu->arch.cr2;
4783                 break;
4784         case 3:
4785                 value = kvm_read_cr3(vcpu);
4786                 break;
4787         case 4:
4788                 value = kvm_read_cr4(vcpu);
4789                 break;
4790         case 8:
4791                 value = kvm_get_cr8(vcpu);
4792                 break;
4793         default:
4794                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4795                 return 0;
4796         }
4797
4798         return value;
4799 }
4800
4801 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4802 {
4803         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4804         int res = 0;
4805
4806         switch (cr) {
4807         case 0:
4808                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4809                 break;
4810         case 2:
4811                 vcpu->arch.cr2 = val;
4812                 break;
4813         case 3:
4814                 res = kvm_set_cr3(vcpu, val);
4815                 break;
4816         case 4:
4817                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4818                 break;
4819         case 8:
4820                 res = kvm_set_cr8(vcpu, val);
4821                 break;
4822         default:
4823                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4824                 res = -1;
4825         }
4826
4827         return res;
4828 }
4829
4830 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4831 {
4832         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4833 }
4834
4835 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4836 {
4837         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4838 }
4839
4840 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4841 {
4842         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4843 }
4844
4845 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4846 {
4847         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4848 }
4849
4850 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4851 {
4852         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4853 }
4854
4855 static unsigned long emulator_get_cached_segment_base(
4856         struct x86_emulate_ctxt *ctxt, int seg)
4857 {
4858         return get_segment_base(emul_to_vcpu(ctxt), seg);
4859 }
4860
4861 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4862                                  struct desc_struct *desc, u32 *base3,
4863                                  int seg)
4864 {
4865         struct kvm_segment var;
4866
4867         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4868         *selector = var.selector;
4869
4870         if (var.unusable) {
4871                 memset(desc, 0, sizeof(*desc));
4872                 return false;
4873         }
4874
4875         if (var.g)
4876                 var.limit >>= 12;
4877         set_desc_limit(desc, var.limit);
4878         set_desc_base(desc, (unsigned long)var.base);
4879 #ifdef CONFIG_X86_64
4880         if (base3)
4881                 *base3 = var.base >> 32;
4882 #endif
4883         desc->type = var.type;
4884         desc->s = var.s;
4885         desc->dpl = var.dpl;
4886         desc->p = var.present;
4887         desc->avl = var.avl;
4888         desc->l = var.l;
4889         desc->d = var.db;
4890         desc->g = var.g;
4891
4892         return true;
4893 }
4894
4895 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4896                                  struct desc_struct *desc, u32 base3,
4897                                  int seg)
4898 {
4899         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4900         struct kvm_segment var;
4901
4902         var.selector = selector;
4903         var.base = get_desc_base(desc);
4904 #ifdef CONFIG_X86_64
4905         var.base |= ((u64)base3) << 32;
4906 #endif
4907         var.limit = get_desc_limit(desc);
4908         if (desc->g)
4909                 var.limit = (var.limit << 12) | 0xfff;
4910         var.type = desc->type;
4911         var.dpl = desc->dpl;
4912         var.db = desc->d;
4913         var.s = desc->s;
4914         var.l = desc->l;
4915         var.g = desc->g;
4916         var.avl = desc->avl;
4917         var.present = desc->p;
4918         var.unusable = !var.present;
4919         var.padding = 0;
4920
4921         kvm_set_segment(vcpu, &var, seg);
4922         return;
4923 }
4924
4925 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4926                             u32 msr_index, u64 *pdata)
4927 {
4928         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4929 }
4930
4931 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4932                             u32 msr_index, u64 data)
4933 {
4934         struct msr_data msr;
4935
4936         msr.data = data;
4937         msr.index = msr_index;
4938         msr.host_initiated = false;
4939         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4940 }
4941
4942 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4943                               u32 pmc)
4944 {
4945         return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4946 }
4947
4948 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4949                              u32 pmc, u64 *pdata)
4950 {
4951         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4952 }
4953
4954 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4955 {
4956         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4957 }
4958
4959 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4960 {
4961         preempt_disable();
4962         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4963         /*
4964          * CR0.TS may reference the host fpu state, not the guest fpu state,
4965          * so it may be clear at this point.
4966          */
4967         clts();
4968 }
4969
4970 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4971 {
4972         preempt_enable();
4973 }
4974
4975 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4976                               struct x86_instruction_info *info,
4977                               enum x86_intercept_stage stage)
4978 {
4979         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4980 }
4981
4982 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4983                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4984 {
4985         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4986 }
4987
4988 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4989 {
4990         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4991 }
4992
4993 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4994 {
4995         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4996 }
4997
4998 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4999 {
5000         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5001 }
5002
5003 static const struct x86_emulate_ops emulate_ops = {
5004         .read_gpr            = emulator_read_gpr,
5005         .write_gpr           = emulator_write_gpr,
5006         .read_std            = kvm_read_guest_virt_system,
5007         .write_std           = kvm_write_guest_virt_system,
5008         .fetch               = kvm_fetch_guest_virt,
5009         .read_emulated       = emulator_read_emulated,
5010         .write_emulated      = emulator_write_emulated,
5011         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5012         .invlpg              = emulator_invlpg,
5013         .pio_in_emulated     = emulator_pio_in_emulated,
5014         .pio_out_emulated    = emulator_pio_out_emulated,
5015         .get_segment         = emulator_get_segment,
5016         .set_segment         = emulator_set_segment,
5017         .get_cached_segment_base = emulator_get_cached_segment_base,
5018         .get_gdt             = emulator_get_gdt,
5019         .get_idt             = emulator_get_idt,
5020         .set_gdt             = emulator_set_gdt,
5021         .set_idt             = emulator_set_idt,
5022         .get_cr              = emulator_get_cr,
5023         .set_cr              = emulator_set_cr,
5024         .cpl                 = emulator_get_cpl,
5025         .get_dr              = emulator_get_dr,
5026         .set_dr              = emulator_set_dr,
5027         .set_msr             = emulator_set_msr,
5028         .get_msr             = emulator_get_msr,
5029         .check_pmc           = emulator_check_pmc,
5030         .read_pmc            = emulator_read_pmc,
5031         .halt                = emulator_halt,
5032         .wbinvd              = emulator_wbinvd,
5033         .fix_hypercall       = emulator_fix_hypercall,
5034         .get_fpu             = emulator_get_fpu,
5035         .put_fpu             = emulator_put_fpu,
5036         .intercept           = emulator_intercept,
5037         .get_cpuid           = emulator_get_cpuid,
5038         .set_nmi_mask        = emulator_set_nmi_mask,
5039 };
5040
5041 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5042 {
5043         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5044         /*
5045          * an sti; sti; sequence only disable interrupts for the first
5046          * instruction. So, if the last instruction, be it emulated or
5047          * not, left the system with the INT_STI flag enabled, it
5048          * means that the last instruction is an sti. We should not
5049          * leave the flag on in this case. The same goes for mov ss
5050          */
5051         if (int_shadow & mask)
5052                 mask = 0;
5053         if (unlikely(int_shadow || mask)) {
5054                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5055                 if (!mask)
5056                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5057         }
5058 }
5059
5060 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5061 {
5062         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5063         if (ctxt->exception.vector == PF_VECTOR)
5064                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5065
5066         if (ctxt->exception.error_code_valid)
5067                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5068                                       ctxt->exception.error_code);
5069         else
5070                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5071         return false;
5072 }
5073
5074 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5075 {
5076         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5077         int cs_db, cs_l;
5078
5079         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5080
5081         ctxt->eflags = kvm_get_rflags(vcpu);
5082         ctxt->eip = kvm_rip_read(vcpu);
5083         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5084                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5085                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5086                      cs_db                              ? X86EMUL_MODE_PROT32 :
5087                                                           X86EMUL_MODE_PROT16;
5088         ctxt->guest_mode = is_guest_mode(vcpu);
5089
5090         init_decode_cache(ctxt);
5091         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5092 }
5093
5094 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5095 {
5096         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5097         int ret;
5098
5099         init_emulate_ctxt(vcpu);
5100
5101         ctxt->op_bytes = 2;
5102         ctxt->ad_bytes = 2;
5103         ctxt->_eip = ctxt->eip + inc_eip;
5104         ret = emulate_int_real(ctxt, irq);
5105
5106         if (ret != X86EMUL_CONTINUE)
5107                 return EMULATE_FAIL;
5108
5109         ctxt->eip = ctxt->_eip;
5110         kvm_rip_write(vcpu, ctxt->eip);
5111         kvm_set_rflags(vcpu, ctxt->eflags);
5112
5113         if (irq == NMI_VECTOR)
5114                 vcpu->arch.nmi_pending = 0;
5115         else
5116                 vcpu->arch.interrupt.pending = false;
5117
5118         return EMULATE_DONE;
5119 }
5120 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5121
5122 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5123 {
5124         int r = EMULATE_DONE;
5125
5126         ++vcpu->stat.insn_emulation_fail;
5127         trace_kvm_emulate_insn_failed(vcpu);
5128         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5129                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5130                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5131                 vcpu->run->internal.ndata = 0;
5132                 r = EMULATE_FAIL;
5133         }
5134         kvm_queue_exception(vcpu, UD_VECTOR);
5135
5136         return r;
5137 }
5138
5139 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5140                                   bool write_fault_to_shadow_pgtable,
5141                                   int emulation_type)
5142 {
5143         gpa_t gpa = cr2;
5144         pfn_t pfn;
5145
5146         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5147                 return false;
5148
5149         if (!vcpu->arch.mmu.direct_map) {
5150                 /*
5151                  * Write permission should be allowed since only
5152                  * write access need to be emulated.
5153                  */
5154                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5155
5156                 /*
5157                  * If the mapping is invalid in guest, let cpu retry
5158                  * it to generate fault.
5159                  */
5160                 if (gpa == UNMAPPED_GVA)
5161                         return true;
5162         }
5163
5164         /*
5165          * Do not retry the unhandleable instruction if it faults on the
5166          * readonly host memory, otherwise it will goto a infinite loop:
5167          * retry instruction -> write #PF -> emulation fail -> retry
5168          * instruction -> ...
5169          */
5170         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5171
5172         /*
5173          * If the instruction failed on the error pfn, it can not be fixed,
5174          * report the error to userspace.
5175          */
5176         if (is_error_noslot_pfn(pfn))
5177                 return false;
5178
5179         kvm_release_pfn_clean(pfn);
5180
5181         /* The instructions are well-emulated on direct mmu. */
5182         if (vcpu->arch.mmu.direct_map) {
5183                 unsigned int indirect_shadow_pages;
5184
5185                 spin_lock(&vcpu->kvm->mmu_lock);
5186                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5187                 spin_unlock(&vcpu->kvm->mmu_lock);
5188
5189                 if (indirect_shadow_pages)
5190                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5191
5192                 return true;
5193         }
5194
5195         /*
5196          * if emulation was due to access to shadowed page table
5197          * and it failed try to unshadow page and re-enter the
5198          * guest to let CPU execute the instruction.
5199          */
5200         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5201
5202         /*
5203          * If the access faults on its page table, it can not
5204          * be fixed by unprotecting shadow page and it should
5205          * be reported to userspace.
5206          */
5207         return !write_fault_to_shadow_pgtable;
5208 }
5209
5210 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5211                               unsigned long cr2,  int emulation_type)
5212 {
5213         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5214         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5215
5216         last_retry_eip = vcpu->arch.last_retry_eip;
5217         last_retry_addr = vcpu->arch.last_retry_addr;
5218
5219         /*
5220          * If the emulation is caused by #PF and it is non-page_table
5221          * writing instruction, it means the VM-EXIT is caused by shadow
5222          * page protected, we can zap the shadow page and retry this
5223          * instruction directly.
5224          *
5225          * Note: if the guest uses a non-page-table modifying instruction
5226          * on the PDE that points to the instruction, then we will unmap
5227          * the instruction and go to an infinite loop. So, we cache the
5228          * last retried eip and the last fault address, if we meet the eip
5229          * and the address again, we can break out of the potential infinite
5230          * loop.
5231          */
5232         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5233
5234         if (!(emulation_type & EMULTYPE_RETRY))
5235                 return false;
5236
5237         if (x86_page_table_writing_insn(ctxt))
5238                 return false;
5239
5240         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5241                 return false;
5242
5243         vcpu->arch.last_retry_eip = ctxt->eip;
5244         vcpu->arch.last_retry_addr = cr2;
5245
5246         if (!vcpu->arch.mmu.direct_map)
5247                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5248
5249         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5250
5251         return true;
5252 }
5253
5254 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5255 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5256
5257 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5258                                 unsigned long *db)
5259 {
5260         u32 dr6 = 0;
5261         int i;
5262         u32 enable, rwlen;
5263
5264         enable = dr7;
5265         rwlen = dr7 >> 16;
5266         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5267                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5268                         dr6 |= (1 << i);
5269         return dr6;
5270 }
5271
5272 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5273 {
5274         struct kvm_run *kvm_run = vcpu->run;
5275
5276         /*
5277          * rflags is the old, "raw" value of the flags.  The new value has
5278          * not been saved yet.
5279          *
5280          * This is correct even for TF set by the guest, because "the
5281          * processor will not generate this exception after the instruction
5282          * that sets the TF flag".
5283          */
5284         if (unlikely(rflags & X86_EFLAGS_TF)) {
5285                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5286                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5287                                                   DR6_RTM;
5288                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5289                         kvm_run->debug.arch.exception = DB_VECTOR;
5290                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5291                         *r = EMULATE_USER_EXIT;
5292                 } else {
5293                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5294                         /*
5295                          * "Certain debug exceptions may clear bit 0-3.  The
5296                          * remaining contents of the DR6 register are never
5297                          * cleared by the processor".
5298                          */
5299                         vcpu->arch.dr6 &= ~15;
5300                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5301                         kvm_queue_exception(vcpu, DB_VECTOR);
5302                 }
5303         }
5304 }
5305
5306 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5307 {
5308         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5309             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5310                 struct kvm_run *kvm_run = vcpu->run;
5311                 unsigned long eip = kvm_get_linear_rip(vcpu);
5312                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5313                                            vcpu->arch.guest_debug_dr7,
5314                                            vcpu->arch.eff_db);
5315
5316                 if (dr6 != 0) {
5317                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5318                         kvm_run->debug.arch.pc = eip;
5319                         kvm_run->debug.arch.exception = DB_VECTOR;
5320                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5321                         *r = EMULATE_USER_EXIT;
5322                         return true;
5323                 }
5324         }
5325
5326         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5327             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5328                 unsigned long eip = kvm_get_linear_rip(vcpu);
5329                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5330                                            vcpu->arch.dr7,
5331                                            vcpu->arch.db);
5332
5333                 if (dr6 != 0) {
5334                         vcpu->arch.dr6 &= ~15;
5335                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5336                         kvm_queue_exception(vcpu, DB_VECTOR);
5337                         *r = EMULATE_DONE;
5338                         return true;
5339                 }
5340         }
5341
5342         return false;
5343 }
5344
5345 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5346                             unsigned long cr2,
5347                             int emulation_type,
5348                             void *insn,
5349                             int insn_len)
5350 {
5351         int r;
5352         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5353         bool writeback = true;
5354         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5355
5356         /*
5357          * Clear write_fault_to_shadow_pgtable here to ensure it is
5358          * never reused.
5359          */
5360         vcpu->arch.write_fault_to_shadow_pgtable = false;
5361         kvm_clear_exception_queue(vcpu);
5362
5363         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5364                 init_emulate_ctxt(vcpu);
5365
5366                 /*
5367                  * We will reenter on the same instruction since
5368                  * we do not set complete_userspace_io.  This does not
5369                  * handle watchpoints yet, those would be handled in
5370                  * the emulate_ops.
5371                  */
5372                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5373                         return r;
5374
5375                 ctxt->interruptibility = 0;
5376                 ctxt->have_exception = false;
5377                 ctxt->exception.vector = -1;
5378                 ctxt->perm_ok = false;
5379
5380                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5381
5382                 r = x86_decode_insn(ctxt, insn, insn_len);
5383
5384                 trace_kvm_emulate_insn_start(vcpu);
5385                 ++vcpu->stat.insn_emulation;
5386                 if (r != EMULATION_OK)  {
5387                         if (emulation_type & EMULTYPE_TRAP_UD)
5388                                 return EMULATE_FAIL;
5389                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5390                                                 emulation_type))
5391                                 return EMULATE_DONE;
5392                         if (emulation_type & EMULTYPE_SKIP)
5393                                 return EMULATE_FAIL;
5394                         return handle_emulation_failure(vcpu);
5395                 }
5396         }
5397
5398         if (emulation_type & EMULTYPE_SKIP) {
5399                 kvm_rip_write(vcpu, ctxt->_eip);
5400                 if (ctxt->eflags & X86_EFLAGS_RF)
5401                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5402                 return EMULATE_DONE;
5403         }
5404
5405         if (retry_instruction(ctxt, cr2, emulation_type))
5406                 return EMULATE_DONE;
5407
5408         /* this is needed for vmware backdoor interface to work since it
5409            changes registers values  during IO operation */
5410         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5411                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5412                 emulator_invalidate_register_cache(ctxt);
5413         }
5414
5415 restart:
5416         r = x86_emulate_insn(ctxt);
5417
5418         if (r == EMULATION_INTERCEPTED)
5419                 return EMULATE_DONE;
5420
5421         if (r == EMULATION_FAILED) {
5422                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5423                                         emulation_type))
5424                         return EMULATE_DONE;
5425
5426                 return handle_emulation_failure(vcpu);
5427         }
5428
5429         if (ctxt->have_exception) {
5430                 r = EMULATE_DONE;
5431                 if (inject_emulated_exception(vcpu))
5432                         return r;
5433         } else if (vcpu->arch.pio.count) {
5434                 if (!vcpu->arch.pio.in) {
5435                         /* FIXME: return into emulator if single-stepping.  */
5436                         vcpu->arch.pio.count = 0;
5437                 } else {
5438                         writeback = false;
5439                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5440                 }
5441                 r = EMULATE_USER_EXIT;
5442         } else if (vcpu->mmio_needed) {
5443                 if (!vcpu->mmio_is_write)
5444                         writeback = false;
5445                 r = EMULATE_USER_EXIT;
5446                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5447         } else if (r == EMULATION_RESTART)
5448                 goto restart;
5449         else
5450                 r = EMULATE_DONE;
5451
5452         if (writeback) {
5453                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5454                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5455                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5456                 kvm_rip_write(vcpu, ctxt->eip);
5457                 if (r == EMULATE_DONE)
5458                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5459                 if (!ctxt->have_exception ||
5460                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5461                         __kvm_set_rflags(vcpu, ctxt->eflags);
5462
5463                 /*
5464                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5465                  * do nothing, and it will be requested again as soon as
5466                  * the shadow expires.  But we still need to check here,
5467                  * because POPF has no interrupt shadow.
5468                  */
5469                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5470                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5471         } else
5472                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5473
5474         return r;
5475 }
5476 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5477
5478 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5479 {
5480         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5481         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5482                                             size, port, &val, 1);
5483         /* do not return to emulator after return from userspace */
5484         vcpu->arch.pio.count = 0;
5485         return ret;
5486 }
5487 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5488
5489 static void tsc_bad(void *info)
5490 {
5491         __this_cpu_write(cpu_tsc_khz, 0);
5492 }
5493
5494 static void tsc_khz_changed(void *data)
5495 {
5496         struct cpufreq_freqs *freq = data;
5497         unsigned long khz = 0;
5498
5499         if (data)
5500                 khz = freq->new;
5501         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5502                 khz = cpufreq_quick_get(raw_smp_processor_id());
5503         if (!khz)
5504                 khz = tsc_khz;
5505         __this_cpu_write(cpu_tsc_khz, khz);
5506 }
5507
5508 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5509                                      void *data)
5510 {
5511         struct cpufreq_freqs *freq = data;
5512         struct kvm *kvm;
5513         struct kvm_vcpu *vcpu;
5514         int i, send_ipi = 0;
5515
5516         /*
5517          * We allow guests to temporarily run on slowing clocks,
5518          * provided we notify them after, or to run on accelerating
5519          * clocks, provided we notify them before.  Thus time never
5520          * goes backwards.
5521          *
5522          * However, we have a problem.  We can't atomically update
5523          * the frequency of a given CPU from this function; it is
5524          * merely a notifier, which can be called from any CPU.
5525          * Changing the TSC frequency at arbitrary points in time
5526          * requires a recomputation of local variables related to
5527          * the TSC for each VCPU.  We must flag these local variables
5528          * to be updated and be sure the update takes place with the
5529          * new frequency before any guests proceed.
5530          *
5531          * Unfortunately, the combination of hotplug CPU and frequency
5532          * change creates an intractable locking scenario; the order
5533          * of when these callouts happen is undefined with respect to
5534          * CPU hotplug, and they can race with each other.  As such,
5535          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5536          * undefined; you can actually have a CPU frequency change take
5537          * place in between the computation of X and the setting of the
5538          * variable.  To protect against this problem, all updates of
5539          * the per_cpu tsc_khz variable are done in an interrupt
5540          * protected IPI, and all callers wishing to update the value
5541          * must wait for a synchronous IPI to complete (which is trivial
5542          * if the caller is on the CPU already).  This establishes the
5543          * necessary total order on variable updates.
5544          *
5545          * Note that because a guest time update may take place
5546          * anytime after the setting of the VCPU's request bit, the
5547          * correct TSC value must be set before the request.  However,
5548          * to ensure the update actually makes it to any guest which
5549          * starts running in hardware virtualization between the set
5550          * and the acquisition of the spinlock, we must also ping the
5551          * CPU after setting the request bit.
5552          *
5553          */
5554
5555         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5556                 return 0;
5557         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5558                 return 0;
5559
5560         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5561
5562         spin_lock(&kvm_lock);
5563         list_for_each_entry(kvm, &vm_list, vm_list) {
5564                 kvm_for_each_vcpu(i, vcpu, kvm) {
5565                         if (vcpu->cpu != freq->cpu)
5566                                 continue;
5567                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5568                         if (vcpu->cpu != smp_processor_id())
5569                                 send_ipi = 1;
5570                 }
5571         }
5572         spin_unlock(&kvm_lock);
5573
5574         if (freq->old < freq->new && send_ipi) {
5575                 /*
5576                  * We upscale the frequency.  Must make the guest
5577                  * doesn't see old kvmclock values while running with
5578                  * the new frequency, otherwise we risk the guest sees
5579                  * time go backwards.
5580                  *
5581                  * In case we update the frequency for another cpu
5582                  * (which might be in guest context) send an interrupt
5583                  * to kick the cpu out of guest context.  Next time
5584                  * guest context is entered kvmclock will be updated,
5585                  * so the guest will not see stale values.
5586                  */
5587                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5588         }
5589         return 0;
5590 }
5591
5592 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5593         .notifier_call  = kvmclock_cpufreq_notifier
5594 };
5595
5596 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5597                                         unsigned long action, void *hcpu)
5598 {
5599         unsigned int cpu = (unsigned long)hcpu;
5600
5601         switch (action) {
5602                 case CPU_ONLINE:
5603                 case CPU_DOWN_FAILED:
5604                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5605                         break;
5606                 case CPU_DOWN_PREPARE:
5607                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5608                         break;
5609         }
5610         return NOTIFY_OK;
5611 }
5612
5613 static struct notifier_block kvmclock_cpu_notifier_block = {
5614         .notifier_call  = kvmclock_cpu_notifier,
5615         .priority = -INT_MAX
5616 };
5617
5618 static void kvm_timer_init(void)
5619 {
5620         int cpu;
5621
5622         max_tsc_khz = tsc_khz;
5623
5624         cpu_notifier_register_begin();
5625         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5626 #ifdef CONFIG_CPU_FREQ
5627                 struct cpufreq_policy policy;
5628                 memset(&policy, 0, sizeof(policy));
5629                 cpu = get_cpu();
5630                 cpufreq_get_policy(&policy, cpu);
5631                 if (policy.cpuinfo.max_freq)
5632                         max_tsc_khz = policy.cpuinfo.max_freq;
5633                 put_cpu();
5634 #endif
5635                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5636                                           CPUFREQ_TRANSITION_NOTIFIER);
5637         }
5638         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5639         for_each_online_cpu(cpu)
5640                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5641
5642         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5643         cpu_notifier_register_done();
5644
5645 }
5646
5647 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5648
5649 int kvm_is_in_guest(void)
5650 {
5651         return __this_cpu_read(current_vcpu) != NULL;
5652 }
5653
5654 static int kvm_is_user_mode(void)
5655 {
5656         int user_mode = 3;
5657
5658         if (__this_cpu_read(current_vcpu))
5659                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5660
5661         return user_mode != 0;
5662 }
5663
5664 static unsigned long kvm_get_guest_ip(void)
5665 {
5666         unsigned long ip = 0;
5667
5668         if (__this_cpu_read(current_vcpu))
5669                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5670
5671         return ip;
5672 }
5673
5674 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5675         .is_in_guest            = kvm_is_in_guest,
5676         .is_user_mode           = kvm_is_user_mode,
5677         .get_guest_ip           = kvm_get_guest_ip,
5678 };
5679
5680 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5681 {
5682         __this_cpu_write(current_vcpu, vcpu);
5683 }
5684 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5685
5686 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5687 {
5688         __this_cpu_write(current_vcpu, NULL);
5689 }
5690 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5691
5692 static void kvm_set_mmio_spte_mask(void)
5693 {
5694         u64 mask;
5695         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5696
5697         /*
5698          * Set the reserved bits and the present bit of an paging-structure
5699          * entry to generate page fault with PFER.RSV = 1.
5700          */
5701          /* Mask the reserved physical address bits. */
5702         mask = rsvd_bits(maxphyaddr, 51);
5703
5704         /* Bit 62 is always reserved for 32bit host. */
5705         mask |= 0x3ull << 62;
5706
5707         /* Set the present bit. */
5708         mask |= 1ull;
5709
5710 #ifdef CONFIG_X86_64
5711         /*
5712          * If reserved bit is not supported, clear the present bit to disable
5713          * mmio page fault.
5714          */
5715         if (maxphyaddr == 52)
5716                 mask &= ~1ull;
5717 #endif
5718
5719         kvm_mmu_set_mmio_spte_mask(mask);
5720 }
5721
5722 #ifdef CONFIG_X86_64
5723 static void pvclock_gtod_update_fn(struct work_struct *work)
5724 {
5725         struct kvm *kvm;
5726
5727         struct kvm_vcpu *vcpu;
5728         int i;
5729
5730         spin_lock(&kvm_lock);
5731         list_for_each_entry(kvm, &vm_list, vm_list)
5732                 kvm_for_each_vcpu(i, vcpu, kvm)
5733                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5734         atomic_set(&kvm_guest_has_master_clock, 0);
5735         spin_unlock(&kvm_lock);
5736 }
5737
5738 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5739
5740 /*
5741  * Notification about pvclock gtod data update.
5742  */
5743 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5744                                void *priv)
5745 {
5746         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5747         struct timekeeper *tk = priv;
5748
5749         update_pvclock_gtod(tk);
5750
5751         /* disable master clock if host does not trust, or does not
5752          * use, TSC clocksource
5753          */
5754         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5755             atomic_read(&kvm_guest_has_master_clock) != 0)
5756                 queue_work(system_long_wq, &pvclock_gtod_work);
5757
5758         return 0;
5759 }
5760
5761 static struct notifier_block pvclock_gtod_notifier = {
5762         .notifier_call = pvclock_gtod_notify,
5763 };
5764 #endif
5765
5766 int kvm_arch_init(void *opaque)
5767 {
5768         int r;
5769         struct kvm_x86_ops *ops = opaque;
5770
5771         if (kvm_x86_ops) {
5772                 printk(KERN_ERR "kvm: already loaded the other module\n");
5773                 r = -EEXIST;
5774                 goto out;
5775         }
5776
5777         if (!ops->cpu_has_kvm_support()) {
5778                 printk(KERN_ERR "kvm: no hardware support\n");
5779                 r = -EOPNOTSUPP;
5780                 goto out;
5781         }
5782         if (ops->disabled_by_bios()) {
5783                 printk(KERN_ERR "kvm: disabled by bios\n");
5784                 r = -EOPNOTSUPP;
5785                 goto out;
5786         }
5787
5788         r = -ENOMEM;
5789         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5790         if (!shared_msrs) {
5791                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5792                 goto out;
5793         }
5794
5795         r = kvm_mmu_module_init();
5796         if (r)
5797                 goto out_free_percpu;
5798
5799         kvm_set_mmio_spte_mask();
5800
5801         kvm_x86_ops = ops;
5802
5803         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5804                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5805
5806         kvm_timer_init();
5807
5808         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5809
5810         if (cpu_has_xsave)
5811                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5812
5813         kvm_lapic_init();
5814 #ifdef CONFIG_X86_64
5815         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5816 #endif
5817
5818         return 0;
5819
5820 out_free_percpu:
5821         free_percpu(shared_msrs);
5822 out:
5823         return r;
5824 }
5825
5826 void kvm_arch_exit(void)
5827 {
5828         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5829
5830         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5831                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5832                                             CPUFREQ_TRANSITION_NOTIFIER);
5833         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5834 #ifdef CONFIG_X86_64
5835         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5836 #endif
5837         kvm_x86_ops = NULL;
5838         kvm_mmu_module_exit();
5839         free_percpu(shared_msrs);
5840 }
5841
5842 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5843 {
5844         ++vcpu->stat.halt_exits;
5845         if (irqchip_in_kernel(vcpu->kvm)) {
5846                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5847                 return 1;
5848         } else {
5849                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5850                 return 0;
5851         }
5852 }
5853 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5854
5855 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5856 {
5857         kvm_x86_ops->skip_emulated_instruction(vcpu);
5858         return kvm_vcpu_halt(vcpu);
5859 }
5860 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5861
5862 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5863 {
5864         u64 param, ingpa, outgpa, ret;
5865         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5866         bool fast, longmode;
5867
5868         /*
5869          * hypercall generates UD from non zero cpl and real mode
5870          * per HYPER-V spec
5871          */
5872         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5873                 kvm_queue_exception(vcpu, UD_VECTOR);
5874                 return 0;
5875         }
5876
5877         longmode = is_64_bit_mode(vcpu);
5878
5879         if (!longmode) {
5880                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5881                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5882                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5883                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5884                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5885                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5886         }
5887 #ifdef CONFIG_X86_64
5888         else {
5889                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5890                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5891                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5892         }
5893 #endif
5894
5895         code = param & 0xffff;
5896         fast = (param >> 16) & 0x1;
5897         rep_cnt = (param >> 32) & 0xfff;
5898         rep_idx = (param >> 48) & 0xfff;
5899
5900         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5901
5902         switch (code) {
5903         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5904                 kvm_vcpu_on_spin(vcpu);
5905                 break;
5906         default:
5907                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5908                 break;
5909         }
5910
5911         ret = res | (((u64)rep_done & 0xfff) << 32);
5912         if (longmode) {
5913                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5914         } else {
5915                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5916                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5917         }
5918
5919         return 1;
5920 }
5921
5922 /*
5923  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5924  *
5925  * @apicid - apicid of vcpu to be kicked.
5926  */
5927 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5928 {
5929         struct kvm_lapic_irq lapic_irq;
5930
5931         lapic_irq.shorthand = 0;
5932         lapic_irq.dest_mode = 0;
5933         lapic_irq.dest_id = apicid;
5934
5935         lapic_irq.delivery_mode = APIC_DM_REMRD;
5936         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5937 }
5938
5939 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5940 {
5941         unsigned long nr, a0, a1, a2, a3, ret;
5942         int op_64_bit, r = 1;
5943
5944         kvm_x86_ops->skip_emulated_instruction(vcpu);
5945
5946         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5947                 return kvm_hv_hypercall(vcpu);
5948
5949         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5950         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5951         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5952         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5953         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5954
5955         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5956
5957         op_64_bit = is_64_bit_mode(vcpu);
5958         if (!op_64_bit) {
5959                 nr &= 0xFFFFFFFF;
5960                 a0 &= 0xFFFFFFFF;
5961                 a1 &= 0xFFFFFFFF;
5962                 a2 &= 0xFFFFFFFF;
5963                 a3 &= 0xFFFFFFFF;
5964         }
5965
5966         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5967                 ret = -KVM_EPERM;
5968                 goto out;
5969         }
5970
5971         switch (nr) {
5972         case KVM_HC_VAPIC_POLL_IRQ:
5973                 ret = 0;
5974                 break;
5975         case KVM_HC_KICK_CPU:
5976                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5977                 ret = 0;
5978                 break;
5979         default:
5980                 ret = -KVM_ENOSYS;
5981                 break;
5982         }
5983 out:
5984         if (!op_64_bit)
5985                 ret = (u32)ret;
5986         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5987         ++vcpu->stat.hypercalls;
5988         return r;
5989 }
5990 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5991
5992 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5993 {
5994         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5995         char instruction[3];
5996         unsigned long rip = kvm_rip_read(vcpu);
5997
5998         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5999
6000         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6001 }
6002
6003 /*
6004  * Check if userspace requested an interrupt window, and that the
6005  * interrupt window is open.
6006  *
6007  * No need to exit to userspace if we already have an interrupt queued.
6008  */
6009 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6010 {
6011         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6012                 vcpu->run->request_interrupt_window &&
6013                 kvm_arch_interrupt_allowed(vcpu));
6014 }
6015
6016 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6017 {
6018         struct kvm_run *kvm_run = vcpu->run;
6019
6020         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6021         kvm_run->cr8 = kvm_get_cr8(vcpu);
6022         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6023         if (irqchip_in_kernel(vcpu->kvm))
6024                 kvm_run->ready_for_interrupt_injection = 1;
6025         else
6026                 kvm_run->ready_for_interrupt_injection =
6027                         kvm_arch_interrupt_allowed(vcpu) &&
6028                         !kvm_cpu_has_interrupt(vcpu) &&
6029                         !kvm_event_needs_reinjection(vcpu);
6030 }
6031
6032 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6033 {
6034         int max_irr, tpr;
6035
6036         if (!kvm_x86_ops->update_cr8_intercept)
6037                 return;
6038
6039         if (!vcpu->arch.apic)
6040                 return;
6041
6042         if (!vcpu->arch.apic->vapic_addr)
6043                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6044         else
6045                 max_irr = -1;
6046
6047         if (max_irr != -1)
6048                 max_irr >>= 4;
6049
6050         tpr = kvm_lapic_get_cr8(vcpu);
6051
6052         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6053 }
6054
6055 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6056 {
6057         int r;
6058
6059         /* try to reinject previous events if any */
6060         if (vcpu->arch.exception.pending) {
6061                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6062                                         vcpu->arch.exception.has_error_code,
6063                                         vcpu->arch.exception.error_code);
6064
6065                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6066                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6067                                              X86_EFLAGS_RF);
6068
6069                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6070                     (vcpu->arch.dr7 & DR7_GD)) {
6071                         vcpu->arch.dr7 &= ~DR7_GD;
6072                         kvm_update_dr7(vcpu);
6073                 }
6074
6075                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6076                                           vcpu->arch.exception.has_error_code,
6077                                           vcpu->arch.exception.error_code,
6078                                           vcpu->arch.exception.reinject);
6079                 return 0;
6080         }
6081
6082         if (vcpu->arch.nmi_injected) {
6083                 kvm_x86_ops->set_nmi(vcpu);
6084                 return 0;
6085         }
6086
6087         if (vcpu->arch.interrupt.pending) {
6088                 kvm_x86_ops->set_irq(vcpu);
6089                 return 0;
6090         }
6091
6092         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6093                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6094                 if (r != 0)
6095                         return r;
6096         }
6097
6098         /* try to inject new event if pending */
6099         if (vcpu->arch.nmi_pending) {
6100                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6101                         --vcpu->arch.nmi_pending;
6102                         vcpu->arch.nmi_injected = true;
6103                         kvm_x86_ops->set_nmi(vcpu);
6104                 }
6105         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6106                 /*
6107                  * Because interrupts can be injected asynchronously, we are
6108                  * calling check_nested_events again here to avoid a race condition.
6109                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6110                  * proposal and current concerns.  Perhaps we should be setting
6111                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6112                  */
6113                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6114                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6115                         if (r != 0)
6116                                 return r;
6117                 }
6118                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6119                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6120                                             false);
6121                         kvm_x86_ops->set_irq(vcpu);
6122                 }
6123         }
6124         return 0;
6125 }
6126
6127 static void process_nmi(struct kvm_vcpu *vcpu)
6128 {
6129         unsigned limit = 2;
6130
6131         /*
6132          * x86 is limited to one NMI running, and one NMI pending after it.
6133          * If an NMI is already in progress, limit further NMIs to just one.
6134          * Otherwise, allow two (and we'll inject the first one immediately).
6135          */
6136         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6137                 limit = 1;
6138
6139         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6140         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6141         kvm_make_request(KVM_REQ_EVENT, vcpu);
6142 }
6143
6144 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6145 {
6146         u64 eoi_exit_bitmap[4];
6147         u32 tmr[8];
6148
6149         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6150                 return;
6151
6152         memset(eoi_exit_bitmap, 0, 32);
6153         memset(tmr, 0, 32);
6154
6155         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6156         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6157         kvm_apic_update_tmr(vcpu, tmr);
6158 }
6159
6160 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6161 {
6162         ++vcpu->stat.tlb_flush;
6163         kvm_x86_ops->tlb_flush(vcpu);
6164 }
6165
6166 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6167 {
6168         struct page *page = NULL;
6169
6170         if (!irqchip_in_kernel(vcpu->kvm))
6171                 return;
6172
6173         if (!kvm_x86_ops->set_apic_access_page_addr)
6174                 return;
6175
6176         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6177         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6178
6179         /*
6180          * Do not pin apic access page in memory, the MMU notifier
6181          * will call us again if it is migrated or swapped out.
6182          */
6183         put_page(page);
6184 }
6185 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6186
6187 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6188                                            unsigned long address)
6189 {
6190         /*
6191          * The physical address of apic access page is stored in the VMCS.
6192          * Update it when it becomes invalid.
6193          */
6194         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6195                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6196 }
6197
6198 /*
6199  * Returns 1 to let vcpu_run() continue the guest execution loop without
6200  * exiting to the userspace.  Otherwise, the value will be returned to the
6201  * userspace.
6202  */
6203 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6204 {
6205         int r;
6206         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6207                 vcpu->run->request_interrupt_window;
6208         bool req_immediate_exit = false;
6209
6210         if (vcpu->requests) {
6211                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6212                         kvm_mmu_unload(vcpu);
6213                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6214                         __kvm_migrate_timers(vcpu);
6215                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6216                         kvm_gen_update_masterclock(vcpu->kvm);
6217                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6218                         kvm_gen_kvmclock_update(vcpu);
6219                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6220                         r = kvm_guest_time_update(vcpu);
6221                         if (unlikely(r))
6222                                 goto out;
6223                 }
6224                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6225                         kvm_mmu_sync_roots(vcpu);
6226                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6227                         kvm_vcpu_flush_tlb(vcpu);
6228                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6229                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6230                         r = 0;
6231                         goto out;
6232                 }
6233                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6234                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6235                         r = 0;
6236                         goto out;
6237                 }
6238                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6239                         vcpu->fpu_active = 0;
6240                         kvm_x86_ops->fpu_deactivate(vcpu);
6241                 }
6242                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6243                         /* Page is swapped out. Do synthetic halt */
6244                         vcpu->arch.apf.halted = true;
6245                         r = 1;
6246                         goto out;
6247                 }
6248                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6249                         record_steal_time(vcpu);
6250                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6251                         process_nmi(vcpu);
6252                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6253                         kvm_handle_pmu_event(vcpu);
6254                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6255                         kvm_deliver_pmi(vcpu);
6256                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6257                         vcpu_scan_ioapic(vcpu);
6258                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6259                         kvm_vcpu_reload_apic_access_page(vcpu);
6260         }
6261
6262         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6263                 kvm_apic_accept_events(vcpu);
6264                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6265                         r = 1;
6266                         goto out;
6267                 }
6268
6269                 if (inject_pending_event(vcpu, req_int_win) != 0)
6270                         req_immediate_exit = true;
6271                 /* enable NMI/IRQ window open exits if needed */
6272                 else if (vcpu->arch.nmi_pending)
6273                         kvm_x86_ops->enable_nmi_window(vcpu);
6274                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6275                         kvm_x86_ops->enable_irq_window(vcpu);
6276
6277                 if (kvm_lapic_enabled(vcpu)) {
6278                         /*
6279                          * Update architecture specific hints for APIC
6280                          * virtual interrupt delivery.
6281                          */
6282                         if (kvm_x86_ops->hwapic_irr_update)
6283                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6284                                         kvm_lapic_find_highest_irr(vcpu));
6285                         update_cr8_intercept(vcpu);
6286                         kvm_lapic_sync_to_vapic(vcpu);
6287                 }
6288         }
6289
6290         r = kvm_mmu_reload(vcpu);
6291         if (unlikely(r)) {
6292                 goto cancel_injection;
6293         }
6294
6295         preempt_disable();
6296
6297         kvm_x86_ops->prepare_guest_switch(vcpu);
6298         if (vcpu->fpu_active)
6299                 kvm_load_guest_fpu(vcpu);
6300         kvm_load_guest_xcr0(vcpu);
6301
6302         vcpu->mode = IN_GUEST_MODE;
6303
6304         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6305
6306         /* We should set ->mode before check ->requests,
6307          * see the comment in make_all_cpus_request.
6308          */
6309         smp_mb__after_srcu_read_unlock();
6310
6311         local_irq_disable();
6312
6313         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6314             || need_resched() || signal_pending(current)) {
6315                 vcpu->mode = OUTSIDE_GUEST_MODE;
6316                 smp_wmb();
6317                 local_irq_enable();
6318                 preempt_enable();
6319                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6320                 r = 1;
6321                 goto cancel_injection;
6322         }
6323
6324         if (req_immediate_exit)
6325                 smp_send_reschedule(vcpu->cpu);
6326
6327         kvm_guest_enter();
6328
6329         if (unlikely(vcpu->arch.switch_db_regs)) {
6330                 set_debugreg(0, 7);
6331                 set_debugreg(vcpu->arch.eff_db[0], 0);
6332                 set_debugreg(vcpu->arch.eff_db[1], 1);
6333                 set_debugreg(vcpu->arch.eff_db[2], 2);
6334                 set_debugreg(vcpu->arch.eff_db[3], 3);
6335                 set_debugreg(vcpu->arch.dr6, 6);
6336                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6337         }
6338
6339         trace_kvm_entry(vcpu->vcpu_id);
6340         wait_lapic_expire(vcpu);
6341         kvm_x86_ops->run(vcpu);
6342
6343         /*
6344          * Do this here before restoring debug registers on the host.  And
6345          * since we do this before handling the vmexit, a DR access vmexit
6346          * can (a) read the correct value of the debug registers, (b) set
6347          * KVM_DEBUGREG_WONT_EXIT again.
6348          */
6349         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6350                 int i;
6351
6352                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6353                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6354                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6355                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6356         }
6357
6358         /*
6359          * If the guest has used debug registers, at least dr7
6360          * will be disabled while returning to the host.
6361          * If we don't have active breakpoints in the host, we don't
6362          * care about the messed up debug address registers. But if
6363          * we have some of them active, restore the old state.
6364          */
6365         if (hw_breakpoint_active())
6366                 hw_breakpoint_restore();
6367
6368         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6369                                                            native_read_tsc());
6370
6371         vcpu->mode = OUTSIDE_GUEST_MODE;
6372         smp_wmb();
6373
6374         /* Interrupt is enabled by handle_external_intr() */
6375         kvm_x86_ops->handle_external_intr(vcpu);
6376
6377         ++vcpu->stat.exits;
6378
6379         /*
6380          * We must have an instruction between local_irq_enable() and
6381          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6382          * the interrupt shadow.  The stat.exits increment will do nicely.
6383          * But we need to prevent reordering, hence this barrier():
6384          */
6385         barrier();
6386
6387         kvm_guest_exit();
6388
6389         preempt_enable();
6390
6391         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6392
6393         /*
6394          * Profile KVM exit RIPs:
6395          */
6396         if (unlikely(prof_on == KVM_PROFILING)) {
6397                 unsigned long rip = kvm_rip_read(vcpu);
6398                 profile_hit(KVM_PROFILING, (void *)rip);
6399         }
6400
6401         if (unlikely(vcpu->arch.tsc_always_catchup))
6402                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6403
6404         if (vcpu->arch.apic_attention)
6405                 kvm_lapic_sync_from_vapic(vcpu);
6406
6407         r = kvm_x86_ops->handle_exit(vcpu);
6408         return r;
6409
6410 cancel_injection:
6411         kvm_x86_ops->cancel_injection(vcpu);
6412         if (unlikely(vcpu->arch.apic_attention))
6413                 kvm_lapic_sync_from_vapic(vcpu);
6414 out:
6415         return r;
6416 }
6417
6418 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6419 {
6420         if (!kvm_arch_vcpu_runnable(vcpu)) {
6421                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6422                 kvm_vcpu_block(vcpu);
6423                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6424                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6425                         return 1;
6426         }
6427
6428         kvm_apic_accept_events(vcpu);
6429         switch(vcpu->arch.mp_state) {
6430         case KVM_MP_STATE_HALTED:
6431                 vcpu->arch.pv.pv_unhalted = false;
6432                 vcpu->arch.mp_state =
6433                         KVM_MP_STATE_RUNNABLE;
6434         case KVM_MP_STATE_RUNNABLE:
6435                 vcpu->arch.apf.halted = false;
6436                 break;
6437         case KVM_MP_STATE_INIT_RECEIVED:
6438                 break;
6439         default:
6440                 return -EINTR;
6441                 break;
6442         }
6443         return 1;
6444 }
6445
6446 static int vcpu_run(struct kvm_vcpu *vcpu)
6447 {
6448         int r;
6449         struct kvm *kvm = vcpu->kvm;
6450
6451         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6452
6453         for (;;) {
6454                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6455                     !vcpu->arch.apf.halted)
6456                         r = vcpu_enter_guest(vcpu);
6457                 else
6458                         r = vcpu_block(kvm, vcpu);
6459                 if (r <= 0)
6460                         break;
6461
6462                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6463                 if (kvm_cpu_has_pending_timer(vcpu))
6464                         kvm_inject_pending_timer_irqs(vcpu);
6465
6466                 if (dm_request_for_irq_injection(vcpu)) {
6467                         r = -EINTR;
6468                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6469                         ++vcpu->stat.request_irq_exits;
6470                         break;
6471                 }
6472
6473                 kvm_check_async_pf_completion(vcpu);
6474
6475                 if (signal_pending(current)) {
6476                         r = -EINTR;
6477                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6478                         ++vcpu->stat.signal_exits;
6479                         break;
6480                 }
6481                 if (need_resched()) {
6482                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6483                         cond_resched();
6484                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6485                 }
6486         }
6487
6488         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6489
6490         return r;
6491 }
6492
6493 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6494 {
6495         int r;
6496         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6497         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6498         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6499         if (r != EMULATE_DONE)
6500                 return 0;
6501         return 1;
6502 }
6503
6504 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6505 {
6506         BUG_ON(!vcpu->arch.pio.count);
6507
6508         return complete_emulated_io(vcpu);
6509 }
6510
6511 /*
6512  * Implements the following, as a state machine:
6513  *
6514  * read:
6515  *   for each fragment
6516  *     for each mmio piece in the fragment
6517  *       write gpa, len
6518  *       exit
6519  *       copy data
6520  *   execute insn
6521  *
6522  * write:
6523  *   for each fragment
6524  *     for each mmio piece in the fragment
6525  *       write gpa, len
6526  *       copy data
6527  *       exit
6528  */
6529 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6530 {
6531         struct kvm_run *run = vcpu->run;
6532         struct kvm_mmio_fragment *frag;
6533         unsigned len;
6534
6535         BUG_ON(!vcpu->mmio_needed);
6536
6537         /* Complete previous fragment */
6538         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6539         len = min(8u, frag->len);
6540         if (!vcpu->mmio_is_write)
6541                 memcpy(frag->data, run->mmio.data, len);
6542
6543         if (frag->len <= 8) {
6544                 /* Switch to the next fragment. */
6545                 frag++;
6546                 vcpu->mmio_cur_fragment++;
6547         } else {
6548                 /* Go forward to the next mmio piece. */
6549                 frag->data += len;
6550                 frag->gpa += len;
6551                 frag->len -= len;
6552         }
6553
6554         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6555                 vcpu->mmio_needed = 0;
6556
6557                 /* FIXME: return into emulator if single-stepping.  */
6558                 if (vcpu->mmio_is_write)
6559                         return 1;
6560                 vcpu->mmio_read_completed = 1;
6561                 return complete_emulated_io(vcpu);
6562         }
6563
6564         run->exit_reason = KVM_EXIT_MMIO;
6565         run->mmio.phys_addr = frag->gpa;
6566         if (vcpu->mmio_is_write)
6567                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6568         run->mmio.len = min(8u, frag->len);
6569         run->mmio.is_write = vcpu->mmio_is_write;
6570         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6571         return 0;
6572 }
6573
6574
6575 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6576 {
6577         int r;
6578         sigset_t sigsaved;
6579
6580         if (!tsk_used_math(current) && init_fpu(current))
6581                 return -ENOMEM;
6582
6583         if (vcpu->sigset_active)
6584                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6585
6586         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6587                 kvm_vcpu_block(vcpu);
6588                 kvm_apic_accept_events(vcpu);
6589                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6590                 r = -EAGAIN;
6591                 goto out;
6592         }
6593
6594         /* re-sync apic's tpr */
6595         if (!irqchip_in_kernel(vcpu->kvm)) {
6596                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6597                         r = -EINVAL;
6598                         goto out;
6599                 }
6600         }
6601
6602         if (unlikely(vcpu->arch.complete_userspace_io)) {
6603                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6604                 vcpu->arch.complete_userspace_io = NULL;
6605                 r = cui(vcpu);
6606                 if (r <= 0)
6607                         goto out;
6608         } else
6609                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6610
6611         r = vcpu_run(vcpu);
6612
6613 out:
6614         post_kvm_run_save(vcpu);
6615         if (vcpu->sigset_active)
6616                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6617
6618         return r;
6619 }
6620
6621 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6622 {
6623         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6624                 /*
6625                  * We are here if userspace calls get_regs() in the middle of
6626                  * instruction emulation. Registers state needs to be copied
6627                  * back from emulation context to vcpu. Userspace shouldn't do
6628                  * that usually, but some bad designed PV devices (vmware
6629                  * backdoor interface) need this to work
6630                  */
6631                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6632                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6633         }
6634         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6635         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6636         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6637         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6638         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6639         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6640         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6641         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6642 #ifdef CONFIG_X86_64
6643         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6644         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6645         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6646         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6647         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6648         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6649         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6650         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6651 #endif
6652
6653         regs->rip = kvm_rip_read(vcpu);
6654         regs->rflags = kvm_get_rflags(vcpu);
6655
6656         return 0;
6657 }
6658
6659 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6660 {
6661         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6662         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6663
6664         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6665         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6666         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6667         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6668         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6669         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6670         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6671         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6672 #ifdef CONFIG_X86_64
6673         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6674         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6675         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6676         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6677         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6678         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6679         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6680         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6681 #endif
6682
6683         kvm_rip_write(vcpu, regs->rip);
6684         kvm_set_rflags(vcpu, regs->rflags);
6685
6686         vcpu->arch.exception.pending = false;
6687
6688         kvm_make_request(KVM_REQ_EVENT, vcpu);
6689
6690         return 0;
6691 }
6692
6693 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6694 {
6695         struct kvm_segment cs;
6696
6697         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6698         *db = cs.db;
6699         *l = cs.l;
6700 }
6701 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6702
6703 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6704                                   struct kvm_sregs *sregs)
6705 {
6706         struct desc_ptr dt;
6707
6708         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6709         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6710         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6711         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6712         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6713         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6714
6715         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6716         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6717
6718         kvm_x86_ops->get_idt(vcpu, &dt);
6719         sregs->idt.limit = dt.size;
6720         sregs->idt.base = dt.address;
6721         kvm_x86_ops->get_gdt(vcpu, &dt);
6722         sregs->gdt.limit = dt.size;
6723         sregs->gdt.base = dt.address;
6724
6725         sregs->cr0 = kvm_read_cr0(vcpu);
6726         sregs->cr2 = vcpu->arch.cr2;
6727         sregs->cr3 = kvm_read_cr3(vcpu);
6728         sregs->cr4 = kvm_read_cr4(vcpu);
6729         sregs->cr8 = kvm_get_cr8(vcpu);
6730         sregs->efer = vcpu->arch.efer;
6731         sregs->apic_base = kvm_get_apic_base(vcpu);
6732
6733         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6734
6735         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6736                 set_bit(vcpu->arch.interrupt.nr,
6737                         (unsigned long *)sregs->interrupt_bitmap);
6738
6739         return 0;
6740 }
6741
6742 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6743                                     struct kvm_mp_state *mp_state)
6744 {
6745         kvm_apic_accept_events(vcpu);
6746         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6747                                         vcpu->arch.pv.pv_unhalted)
6748                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6749         else
6750                 mp_state->mp_state = vcpu->arch.mp_state;
6751
6752         return 0;
6753 }
6754
6755 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6756                                     struct kvm_mp_state *mp_state)
6757 {
6758         if (!kvm_vcpu_has_lapic(vcpu) &&
6759             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6760                 return -EINVAL;
6761
6762         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6763                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6764                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6765         } else
6766                 vcpu->arch.mp_state = mp_state->mp_state;
6767         kvm_make_request(KVM_REQ_EVENT, vcpu);
6768         return 0;
6769 }
6770
6771 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6772                     int reason, bool has_error_code, u32 error_code)
6773 {
6774         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6775         int ret;
6776
6777         init_emulate_ctxt(vcpu);
6778
6779         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6780                                    has_error_code, error_code);
6781
6782         if (ret)
6783                 return EMULATE_FAIL;
6784
6785         kvm_rip_write(vcpu, ctxt->eip);
6786         kvm_set_rflags(vcpu, ctxt->eflags);
6787         kvm_make_request(KVM_REQ_EVENT, vcpu);
6788         return EMULATE_DONE;
6789 }
6790 EXPORT_SYMBOL_GPL(kvm_task_switch);
6791
6792 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6793                                   struct kvm_sregs *sregs)
6794 {
6795         struct msr_data apic_base_msr;
6796         int mmu_reset_needed = 0;
6797         int pending_vec, max_bits, idx;
6798         struct desc_ptr dt;
6799
6800         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6801                 return -EINVAL;
6802
6803         dt.size = sregs->idt.limit;
6804         dt.address = sregs->idt.base;
6805         kvm_x86_ops->set_idt(vcpu, &dt);
6806         dt.size = sregs->gdt.limit;
6807         dt.address = sregs->gdt.base;
6808         kvm_x86_ops->set_gdt(vcpu, &dt);
6809
6810         vcpu->arch.cr2 = sregs->cr2;
6811         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6812         vcpu->arch.cr3 = sregs->cr3;
6813         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6814
6815         kvm_set_cr8(vcpu, sregs->cr8);
6816
6817         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6818         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6819         apic_base_msr.data = sregs->apic_base;
6820         apic_base_msr.host_initiated = true;
6821         kvm_set_apic_base(vcpu, &apic_base_msr);
6822
6823         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6824         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6825         vcpu->arch.cr0 = sregs->cr0;
6826
6827         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6828         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6829         if (sregs->cr4 & X86_CR4_OSXSAVE)
6830                 kvm_update_cpuid(vcpu);
6831
6832         idx = srcu_read_lock(&vcpu->kvm->srcu);
6833         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6834                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6835                 mmu_reset_needed = 1;
6836         }
6837         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6838
6839         if (mmu_reset_needed)
6840                 kvm_mmu_reset_context(vcpu);
6841
6842         max_bits = KVM_NR_INTERRUPTS;
6843         pending_vec = find_first_bit(
6844                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6845         if (pending_vec < max_bits) {
6846                 kvm_queue_interrupt(vcpu, pending_vec, false);
6847                 pr_debug("Set back pending irq %d\n", pending_vec);
6848         }
6849
6850         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6851         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6852         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6853         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6854         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6855         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6856
6857         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6858         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6859
6860         update_cr8_intercept(vcpu);
6861
6862         /* Older userspace won't unhalt the vcpu on reset. */
6863         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6864             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6865             !is_protmode(vcpu))
6866                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6867
6868         kvm_make_request(KVM_REQ_EVENT, vcpu);
6869
6870         return 0;
6871 }
6872
6873 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6874                                         struct kvm_guest_debug *dbg)
6875 {
6876         unsigned long rflags;
6877         int i, r;
6878
6879         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6880                 r = -EBUSY;
6881                 if (vcpu->arch.exception.pending)
6882                         goto out;
6883                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6884                         kvm_queue_exception(vcpu, DB_VECTOR);
6885                 else
6886                         kvm_queue_exception(vcpu, BP_VECTOR);
6887         }
6888
6889         /*
6890          * Read rflags as long as potentially injected trace flags are still
6891          * filtered out.
6892          */
6893         rflags = kvm_get_rflags(vcpu);
6894
6895         vcpu->guest_debug = dbg->control;
6896         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6897                 vcpu->guest_debug = 0;
6898
6899         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6900                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6901                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6902                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6903         } else {
6904                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6905                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6906         }
6907         kvm_update_dr7(vcpu);
6908
6909         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6910                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6911                         get_segment_base(vcpu, VCPU_SREG_CS);
6912
6913         /*
6914          * Trigger an rflags update that will inject or remove the trace
6915          * flags.
6916          */
6917         kvm_set_rflags(vcpu, rflags);
6918
6919         kvm_x86_ops->update_db_bp_intercept(vcpu);
6920
6921         r = 0;
6922
6923 out:
6924
6925         return r;
6926 }
6927
6928 /*
6929  * Translate a guest virtual address to a guest physical address.
6930  */
6931 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6932                                     struct kvm_translation *tr)
6933 {
6934         unsigned long vaddr = tr->linear_address;
6935         gpa_t gpa;
6936         int idx;
6937
6938         idx = srcu_read_lock(&vcpu->kvm->srcu);
6939         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6940         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6941         tr->physical_address = gpa;
6942         tr->valid = gpa != UNMAPPED_GVA;
6943         tr->writeable = 1;
6944         tr->usermode = 0;
6945
6946         return 0;
6947 }
6948
6949 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6950 {
6951         struct i387_fxsave_struct *fxsave =
6952                         &vcpu->arch.guest_fpu.state->fxsave;
6953
6954         memcpy(fpu->fpr, fxsave->st_space, 128);
6955         fpu->fcw = fxsave->cwd;
6956         fpu->fsw = fxsave->swd;
6957         fpu->ftwx = fxsave->twd;
6958         fpu->last_opcode = fxsave->fop;
6959         fpu->last_ip = fxsave->rip;
6960         fpu->last_dp = fxsave->rdp;
6961         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6962
6963         return 0;
6964 }
6965
6966 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6967 {
6968         struct i387_fxsave_struct *fxsave =
6969                         &vcpu->arch.guest_fpu.state->fxsave;
6970
6971         memcpy(fxsave->st_space, fpu->fpr, 128);
6972         fxsave->cwd = fpu->fcw;
6973         fxsave->swd = fpu->fsw;
6974         fxsave->twd = fpu->ftwx;
6975         fxsave->fop = fpu->last_opcode;
6976         fxsave->rip = fpu->last_ip;
6977         fxsave->rdp = fpu->last_dp;
6978         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6979
6980         return 0;
6981 }
6982
6983 int fx_init(struct kvm_vcpu *vcpu)
6984 {
6985         int err;
6986
6987         err = fpu_alloc(&vcpu->arch.guest_fpu);
6988         if (err)
6989                 return err;
6990
6991         fpu_finit(&vcpu->arch.guest_fpu);
6992         if (cpu_has_xsaves)
6993                 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
6994                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
6995
6996         /*
6997          * Ensure guest xcr0 is valid for loading
6998          */
6999         vcpu->arch.xcr0 = XSTATE_FP;
7000
7001         vcpu->arch.cr0 |= X86_CR0_ET;
7002
7003         return 0;
7004 }
7005 EXPORT_SYMBOL_GPL(fx_init);
7006
7007 static void fx_free(struct kvm_vcpu *vcpu)
7008 {
7009         fpu_free(&vcpu->arch.guest_fpu);
7010 }
7011
7012 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7013 {
7014         if (vcpu->guest_fpu_loaded)
7015                 return;
7016
7017         /*
7018          * Restore all possible states in the guest,
7019          * and assume host would use all available bits.
7020          * Guest xcr0 would be loaded later.
7021          */
7022         kvm_put_guest_xcr0(vcpu);
7023         vcpu->guest_fpu_loaded = 1;
7024         __kernel_fpu_begin();
7025         fpu_restore_checking(&vcpu->arch.guest_fpu);
7026         trace_kvm_fpu(1);
7027 }
7028
7029 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7030 {
7031         kvm_put_guest_xcr0(vcpu);
7032
7033         if (!vcpu->guest_fpu_loaded)
7034                 return;
7035
7036         vcpu->guest_fpu_loaded = 0;
7037         fpu_save_init(&vcpu->arch.guest_fpu);
7038         __kernel_fpu_end();
7039         ++vcpu->stat.fpu_reload;
7040         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7041         trace_kvm_fpu(0);
7042 }
7043
7044 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7045 {
7046         kvmclock_reset(vcpu);
7047
7048         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7049         fx_free(vcpu);
7050         kvm_x86_ops->vcpu_free(vcpu);
7051 }
7052
7053 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7054                                                 unsigned int id)
7055 {
7056         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7057                 printk_once(KERN_WARNING
7058                 "kvm: SMP vm created on host with unstable TSC; "
7059                 "guest TSC will not be reliable\n");
7060         return kvm_x86_ops->vcpu_create(kvm, id);
7061 }
7062
7063 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7064 {
7065         int r;
7066
7067         vcpu->arch.mtrr_state.have_fixed = 1;
7068         r = vcpu_load(vcpu);
7069         if (r)
7070                 return r;
7071         kvm_vcpu_reset(vcpu);
7072         kvm_mmu_setup(vcpu);
7073         vcpu_put(vcpu);
7074
7075         return r;
7076 }
7077
7078 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7079 {
7080         struct msr_data msr;
7081         struct kvm *kvm = vcpu->kvm;
7082
7083         if (vcpu_load(vcpu))
7084                 return;
7085         msr.data = 0x0;
7086         msr.index = MSR_IA32_TSC;
7087         msr.host_initiated = true;
7088         kvm_write_tsc(vcpu, &msr);
7089         vcpu_put(vcpu);
7090
7091         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7092                                         KVMCLOCK_SYNC_PERIOD);
7093 }
7094
7095 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7096 {
7097         int r;
7098         vcpu->arch.apf.msr_val = 0;
7099
7100         r = vcpu_load(vcpu);
7101         BUG_ON(r);
7102         kvm_mmu_unload(vcpu);
7103         vcpu_put(vcpu);
7104
7105         fx_free(vcpu);
7106         kvm_x86_ops->vcpu_free(vcpu);
7107 }
7108
7109 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7110 {
7111         atomic_set(&vcpu->arch.nmi_queued, 0);
7112         vcpu->arch.nmi_pending = 0;
7113         vcpu->arch.nmi_injected = false;
7114         kvm_clear_interrupt_queue(vcpu);
7115         kvm_clear_exception_queue(vcpu);
7116
7117         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7118         kvm_update_dr0123(vcpu);
7119         vcpu->arch.dr6 = DR6_INIT;
7120         kvm_update_dr6(vcpu);
7121         vcpu->arch.dr7 = DR7_FIXED_1;
7122         kvm_update_dr7(vcpu);
7123
7124         vcpu->arch.cr2 = 0;
7125
7126         kvm_make_request(KVM_REQ_EVENT, vcpu);
7127         vcpu->arch.apf.msr_val = 0;
7128         vcpu->arch.st.msr_val = 0;
7129
7130         kvmclock_reset(vcpu);
7131
7132         kvm_clear_async_pf_completion_queue(vcpu);
7133         kvm_async_pf_hash_reset(vcpu);
7134         vcpu->arch.apf.halted = false;
7135
7136         kvm_pmu_reset(vcpu);
7137
7138         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7139         vcpu->arch.regs_avail = ~0;
7140         vcpu->arch.regs_dirty = ~0;
7141
7142         kvm_x86_ops->vcpu_reset(vcpu);
7143 }
7144
7145 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7146 {
7147         struct kvm_segment cs;
7148
7149         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7150         cs.selector = vector << 8;
7151         cs.base = vector << 12;
7152         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7153         kvm_rip_write(vcpu, 0);
7154 }
7155
7156 int kvm_arch_hardware_enable(void)
7157 {
7158         struct kvm *kvm;
7159         struct kvm_vcpu *vcpu;
7160         int i;
7161         int ret;
7162         u64 local_tsc;
7163         u64 max_tsc = 0;
7164         bool stable, backwards_tsc = false;
7165
7166         kvm_shared_msr_cpu_online();
7167         ret = kvm_x86_ops->hardware_enable();
7168         if (ret != 0)
7169                 return ret;
7170
7171         local_tsc = native_read_tsc();
7172         stable = !check_tsc_unstable();
7173         list_for_each_entry(kvm, &vm_list, vm_list) {
7174                 kvm_for_each_vcpu(i, vcpu, kvm) {
7175                         if (!stable && vcpu->cpu == smp_processor_id())
7176                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7177                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7178                                 backwards_tsc = true;
7179                                 if (vcpu->arch.last_host_tsc > max_tsc)
7180                                         max_tsc = vcpu->arch.last_host_tsc;
7181                         }
7182                 }
7183         }
7184
7185         /*
7186          * Sometimes, even reliable TSCs go backwards.  This happens on
7187          * platforms that reset TSC during suspend or hibernate actions, but
7188          * maintain synchronization.  We must compensate.  Fortunately, we can
7189          * detect that condition here, which happens early in CPU bringup,
7190          * before any KVM threads can be running.  Unfortunately, we can't
7191          * bring the TSCs fully up to date with real time, as we aren't yet far
7192          * enough into CPU bringup that we know how much real time has actually
7193          * elapsed; our helper function, get_kernel_ns() will be using boot
7194          * variables that haven't been updated yet.
7195          *
7196          * So we simply find the maximum observed TSC above, then record the
7197          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7198          * the adjustment will be applied.  Note that we accumulate
7199          * adjustments, in case multiple suspend cycles happen before some VCPU
7200          * gets a chance to run again.  In the event that no KVM threads get a
7201          * chance to run, we will miss the entire elapsed period, as we'll have
7202          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7203          * loose cycle time.  This isn't too big a deal, since the loss will be
7204          * uniform across all VCPUs (not to mention the scenario is extremely
7205          * unlikely). It is possible that a second hibernate recovery happens
7206          * much faster than a first, causing the observed TSC here to be
7207          * smaller; this would require additional padding adjustment, which is
7208          * why we set last_host_tsc to the local tsc observed here.
7209          *
7210          * N.B. - this code below runs only on platforms with reliable TSC,
7211          * as that is the only way backwards_tsc is set above.  Also note
7212          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7213          * have the same delta_cyc adjustment applied if backwards_tsc
7214          * is detected.  Note further, this adjustment is only done once,
7215          * as we reset last_host_tsc on all VCPUs to stop this from being
7216          * called multiple times (one for each physical CPU bringup).
7217          *
7218          * Platforms with unreliable TSCs don't have to deal with this, they
7219          * will be compensated by the logic in vcpu_load, which sets the TSC to
7220          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7221          * guarantee that they stay in perfect synchronization.
7222          */
7223         if (backwards_tsc) {
7224                 u64 delta_cyc = max_tsc - local_tsc;
7225                 backwards_tsc_observed = true;
7226                 list_for_each_entry(kvm, &vm_list, vm_list) {
7227                         kvm_for_each_vcpu(i, vcpu, kvm) {
7228                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7229                                 vcpu->arch.last_host_tsc = local_tsc;
7230                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7231                         }
7232
7233                         /*
7234                          * We have to disable TSC offset matching.. if you were
7235                          * booting a VM while issuing an S4 host suspend....
7236                          * you may have some problem.  Solving this issue is
7237                          * left as an exercise to the reader.
7238                          */
7239                         kvm->arch.last_tsc_nsec = 0;
7240                         kvm->arch.last_tsc_write = 0;
7241                 }
7242
7243         }
7244         return 0;
7245 }
7246
7247 void kvm_arch_hardware_disable(void)
7248 {
7249         kvm_x86_ops->hardware_disable();
7250         drop_user_return_notifiers();
7251 }
7252
7253 int kvm_arch_hardware_setup(void)
7254 {
7255         int r;
7256
7257         r = kvm_x86_ops->hardware_setup();
7258         if (r != 0)
7259                 return r;
7260
7261         kvm_init_msr_list();
7262         return 0;
7263 }
7264
7265 void kvm_arch_hardware_unsetup(void)
7266 {
7267         kvm_x86_ops->hardware_unsetup();
7268 }
7269
7270 void kvm_arch_check_processor_compat(void *rtn)
7271 {
7272         kvm_x86_ops->check_processor_compatibility(rtn);
7273 }
7274
7275 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7276 {
7277         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7278 }
7279
7280 struct static_key kvm_no_apic_vcpu __read_mostly;
7281
7282 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7283 {
7284         struct page *page;
7285         struct kvm *kvm;
7286         int r;
7287
7288         BUG_ON(vcpu->kvm == NULL);
7289         kvm = vcpu->kvm;
7290
7291         vcpu->arch.pv.pv_unhalted = false;
7292         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7293         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7294                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7295         else
7296                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7297
7298         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7299         if (!page) {
7300                 r = -ENOMEM;
7301                 goto fail;
7302         }
7303         vcpu->arch.pio_data = page_address(page);
7304
7305         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7306
7307         r = kvm_mmu_create(vcpu);
7308         if (r < 0)
7309                 goto fail_free_pio_data;
7310
7311         if (irqchip_in_kernel(kvm)) {
7312                 r = kvm_create_lapic(vcpu);
7313                 if (r < 0)
7314                         goto fail_mmu_destroy;
7315         } else
7316                 static_key_slow_inc(&kvm_no_apic_vcpu);
7317
7318         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7319                                        GFP_KERNEL);
7320         if (!vcpu->arch.mce_banks) {
7321                 r = -ENOMEM;
7322                 goto fail_free_lapic;
7323         }
7324         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7325
7326         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7327                 r = -ENOMEM;
7328                 goto fail_free_mce_banks;
7329         }
7330
7331         r = fx_init(vcpu);
7332         if (r)
7333                 goto fail_free_wbinvd_dirty_mask;
7334
7335         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7336         vcpu->arch.pv_time_enabled = false;
7337
7338         vcpu->arch.guest_supported_xcr0 = 0;
7339         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7340
7341         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7342
7343         kvm_async_pf_hash_reset(vcpu);
7344         kvm_pmu_init(vcpu);
7345
7346         return 0;
7347 fail_free_wbinvd_dirty_mask:
7348         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7349 fail_free_mce_banks:
7350         kfree(vcpu->arch.mce_banks);
7351 fail_free_lapic:
7352         kvm_free_lapic(vcpu);
7353 fail_mmu_destroy:
7354         kvm_mmu_destroy(vcpu);
7355 fail_free_pio_data:
7356         free_page((unsigned long)vcpu->arch.pio_data);
7357 fail:
7358         return r;
7359 }
7360
7361 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7362 {
7363         int idx;
7364
7365         kvm_pmu_destroy(vcpu);
7366         kfree(vcpu->arch.mce_banks);
7367         kvm_free_lapic(vcpu);
7368         idx = srcu_read_lock(&vcpu->kvm->srcu);
7369         kvm_mmu_destroy(vcpu);
7370         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7371         free_page((unsigned long)vcpu->arch.pio_data);
7372         if (!irqchip_in_kernel(vcpu->kvm))
7373                 static_key_slow_dec(&kvm_no_apic_vcpu);
7374 }
7375
7376 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7377 {
7378         kvm_x86_ops->sched_in(vcpu, cpu);
7379 }
7380
7381 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7382 {
7383         if (type)
7384                 return -EINVAL;
7385
7386         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7387         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7388         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7389         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7390         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7391
7392         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7393         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7394         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7395         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7396                 &kvm->arch.irq_sources_bitmap);
7397
7398         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7399         mutex_init(&kvm->arch.apic_map_lock);
7400         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7401
7402         pvclock_update_vm_gtod_copy(kvm);
7403
7404         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7405         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7406
7407         return 0;
7408 }
7409
7410 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7411 {
7412         int r;
7413         r = vcpu_load(vcpu);
7414         BUG_ON(r);
7415         kvm_mmu_unload(vcpu);
7416         vcpu_put(vcpu);
7417 }
7418
7419 static void kvm_free_vcpus(struct kvm *kvm)
7420 {
7421         unsigned int i;
7422         struct kvm_vcpu *vcpu;
7423
7424         /*
7425          * Unpin any mmu pages first.
7426          */
7427         kvm_for_each_vcpu(i, vcpu, kvm) {
7428                 kvm_clear_async_pf_completion_queue(vcpu);
7429                 kvm_unload_vcpu_mmu(vcpu);
7430         }
7431         kvm_for_each_vcpu(i, vcpu, kvm)
7432                 kvm_arch_vcpu_free(vcpu);
7433
7434         mutex_lock(&kvm->lock);
7435         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7436                 kvm->vcpus[i] = NULL;
7437
7438         atomic_set(&kvm->online_vcpus, 0);
7439         mutex_unlock(&kvm->lock);
7440 }
7441
7442 void kvm_arch_sync_events(struct kvm *kvm)
7443 {
7444         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7445         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7446         kvm_free_all_assigned_devices(kvm);
7447         kvm_free_pit(kvm);
7448 }
7449
7450 void kvm_arch_destroy_vm(struct kvm *kvm)
7451 {
7452         if (current->mm == kvm->mm) {
7453                 /*
7454                  * Free memory regions allocated on behalf of userspace,
7455                  * unless the the memory map has changed due to process exit
7456                  * or fd copying.
7457                  */
7458                 struct kvm_userspace_memory_region mem;
7459                 memset(&mem, 0, sizeof(mem));
7460                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7461                 kvm_set_memory_region(kvm, &mem);
7462
7463                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7464                 kvm_set_memory_region(kvm, &mem);
7465
7466                 mem.slot = TSS_PRIVATE_MEMSLOT;
7467                 kvm_set_memory_region(kvm, &mem);
7468         }
7469         kvm_iommu_unmap_guest(kvm);
7470         kfree(kvm->arch.vpic);
7471         kfree(kvm->arch.vioapic);
7472         kvm_free_vcpus(kvm);
7473         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7474 }
7475
7476 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7477                            struct kvm_memory_slot *dont)
7478 {
7479         int i;
7480
7481         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7482                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7483                         kvfree(free->arch.rmap[i]);
7484                         free->arch.rmap[i] = NULL;
7485                 }
7486                 if (i == 0)
7487                         continue;
7488
7489                 if (!dont || free->arch.lpage_info[i - 1] !=
7490                              dont->arch.lpage_info[i - 1]) {
7491                         kvfree(free->arch.lpage_info[i - 1]);
7492                         free->arch.lpage_info[i - 1] = NULL;
7493                 }
7494         }
7495 }
7496
7497 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7498                             unsigned long npages)
7499 {
7500         int i;
7501
7502         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7503                 unsigned long ugfn;
7504                 int lpages;
7505                 int level = i + 1;
7506
7507                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7508                                       slot->base_gfn, level) + 1;
7509
7510                 slot->arch.rmap[i] =
7511                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7512                 if (!slot->arch.rmap[i])
7513                         goto out_free;
7514                 if (i == 0)
7515                         continue;
7516
7517                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7518                                         sizeof(*slot->arch.lpage_info[i - 1]));
7519                 if (!slot->arch.lpage_info[i - 1])
7520                         goto out_free;
7521
7522                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7523                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7524                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7525                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7526                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7527                 /*
7528                  * If the gfn and userspace address are not aligned wrt each
7529                  * other, or if explicitly asked to, disable large page
7530                  * support for this slot
7531                  */
7532                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7533                     !kvm_largepages_enabled()) {
7534                         unsigned long j;
7535
7536                         for (j = 0; j < lpages; ++j)
7537                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7538                 }
7539         }
7540
7541         return 0;
7542
7543 out_free:
7544         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7545                 kvfree(slot->arch.rmap[i]);
7546                 slot->arch.rmap[i] = NULL;
7547                 if (i == 0)
7548                         continue;
7549
7550                 kvfree(slot->arch.lpage_info[i - 1]);
7551                 slot->arch.lpage_info[i - 1] = NULL;
7552         }
7553         return -ENOMEM;
7554 }
7555
7556 void kvm_arch_memslots_updated(struct kvm *kvm)
7557 {
7558         /*
7559          * memslots->generation has been incremented.
7560          * mmio generation may have reached its maximum value.
7561          */
7562         kvm_mmu_invalidate_mmio_sptes(kvm);
7563 }
7564
7565 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7566                                 struct kvm_memory_slot *memslot,
7567                                 struct kvm_userspace_memory_region *mem,
7568                                 enum kvm_mr_change change)
7569 {
7570         /*
7571          * Only private memory slots need to be mapped here since
7572          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7573          */
7574         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7575                 unsigned long userspace_addr;
7576
7577                 /*
7578                  * MAP_SHARED to prevent internal slot pages from being moved
7579                  * by fork()/COW.
7580                  */
7581                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7582                                          PROT_READ | PROT_WRITE,
7583                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7584
7585                 if (IS_ERR((void *)userspace_addr))
7586                         return PTR_ERR((void *)userspace_addr);
7587
7588                 memslot->userspace_addr = userspace_addr;
7589         }
7590
7591         return 0;
7592 }
7593
7594 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7595                                      struct kvm_memory_slot *new)
7596 {
7597         /* Still write protect RO slot */
7598         if (new->flags & KVM_MEM_READONLY) {
7599                 kvm_mmu_slot_remove_write_access(kvm, new);
7600                 return;
7601         }
7602
7603         /*
7604          * Call kvm_x86_ops dirty logging hooks when they are valid.
7605          *
7606          * kvm_x86_ops->slot_disable_log_dirty is called when:
7607          *
7608          *  - KVM_MR_CREATE with dirty logging is disabled
7609          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7610          *
7611          * The reason is, in case of PML, we need to set D-bit for any slots
7612          * with dirty logging disabled in order to eliminate unnecessary GPA
7613          * logging in PML buffer (and potential PML buffer full VMEXT). This
7614          * guarantees leaving PML enabled during guest's lifetime won't have
7615          * any additonal overhead from PML when guest is running with dirty
7616          * logging disabled for memory slots.
7617          *
7618          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7619          * to dirty logging mode.
7620          *
7621          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7622          *
7623          * In case of write protect:
7624          *
7625          * Write protect all pages for dirty logging.
7626          *
7627          * All the sptes including the large sptes which point to this
7628          * slot are set to readonly. We can not create any new large
7629          * spte on this slot until the end of the logging.
7630          *
7631          * See the comments in fast_page_fault().
7632          */
7633         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7634                 if (kvm_x86_ops->slot_enable_log_dirty)
7635                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7636                 else
7637                         kvm_mmu_slot_remove_write_access(kvm, new);
7638         } else {
7639                 if (kvm_x86_ops->slot_disable_log_dirty)
7640                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7641         }
7642 }
7643
7644 void kvm_arch_commit_memory_region(struct kvm *kvm,
7645                                 struct kvm_userspace_memory_region *mem,
7646                                 const struct kvm_memory_slot *old,
7647                                 enum kvm_mr_change change)
7648 {
7649         struct kvm_memory_slot *new;
7650         int nr_mmu_pages = 0;
7651
7652         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7653                 int ret;
7654
7655                 ret = vm_munmap(old->userspace_addr,
7656                                 old->npages * PAGE_SIZE);
7657                 if (ret < 0)
7658                         printk(KERN_WARNING
7659                                "kvm_vm_ioctl_set_memory_region: "
7660                                "failed to munmap memory\n");
7661         }
7662
7663         if (!kvm->arch.n_requested_mmu_pages)
7664                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7665
7666         if (nr_mmu_pages)
7667                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7668
7669         /* It's OK to get 'new' slot here as it has already been installed */
7670         new = id_to_memslot(kvm->memslots, mem->slot);
7671
7672         /*
7673          * Dirty logging tracks sptes in 4k granularity, meaning that large
7674          * sptes have to be split.  If live migration is successful, the guest
7675          * in the source machine will be destroyed and large sptes will be
7676          * created in the destination. However, if the guest continues to run
7677          * in the source machine (for example if live migration fails), small
7678          * sptes will remain around and cause bad performance.
7679          *
7680          * Scan sptes if dirty logging has been stopped, dropping those
7681          * which can be collapsed into a single large-page spte.  Later
7682          * page faults will create the large-page sptes.
7683          */
7684         if ((change != KVM_MR_DELETE) &&
7685                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7686                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7687                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7688
7689         /*
7690          * Set up write protection and/or dirty logging for the new slot.
7691          *
7692          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7693          * been zapped so no dirty logging staff is needed for old slot. For
7694          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7695          * new and it's also covered when dealing with the new slot.
7696          */
7697         if (change != KVM_MR_DELETE)
7698                 kvm_mmu_slot_apply_flags(kvm, new);
7699 }
7700
7701 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7702 {
7703         kvm_mmu_invalidate_zap_all_pages(kvm);
7704 }
7705
7706 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7707                                    struct kvm_memory_slot *slot)
7708 {
7709         kvm_mmu_invalidate_zap_all_pages(kvm);
7710 }
7711
7712 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7713 {
7714         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7715                 kvm_x86_ops->check_nested_events(vcpu, false);
7716
7717         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7718                 !vcpu->arch.apf.halted)
7719                 || !list_empty_careful(&vcpu->async_pf.done)
7720                 || kvm_apic_has_events(vcpu)
7721                 || vcpu->arch.pv.pv_unhalted
7722                 || atomic_read(&vcpu->arch.nmi_queued) ||
7723                 (kvm_arch_interrupt_allowed(vcpu) &&
7724                  kvm_cpu_has_interrupt(vcpu));
7725 }
7726
7727 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7728 {
7729         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7730 }
7731
7732 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7733 {
7734         return kvm_x86_ops->interrupt_allowed(vcpu);
7735 }
7736
7737 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7738 {
7739         if (is_64_bit_mode(vcpu))
7740                 return kvm_rip_read(vcpu);
7741         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7742                      kvm_rip_read(vcpu));
7743 }
7744 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7745
7746 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7747 {
7748         return kvm_get_linear_rip(vcpu) == linear_rip;
7749 }
7750 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7751
7752 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7753 {
7754         unsigned long rflags;
7755
7756         rflags = kvm_x86_ops->get_rflags(vcpu);
7757         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7758                 rflags &= ~X86_EFLAGS_TF;
7759         return rflags;
7760 }
7761 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7762
7763 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7764 {
7765         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7766             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7767                 rflags |= X86_EFLAGS_TF;
7768         kvm_x86_ops->set_rflags(vcpu, rflags);
7769 }
7770
7771 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7772 {
7773         __kvm_set_rflags(vcpu, rflags);
7774         kvm_make_request(KVM_REQ_EVENT, vcpu);
7775 }
7776 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7777
7778 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7779 {
7780         int r;
7781
7782         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7783               work->wakeup_all)
7784                 return;
7785
7786         r = kvm_mmu_reload(vcpu);
7787         if (unlikely(r))
7788                 return;
7789
7790         if (!vcpu->arch.mmu.direct_map &&
7791               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7792                 return;
7793
7794         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7795 }
7796
7797 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7798 {
7799         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7800 }
7801
7802 static inline u32 kvm_async_pf_next_probe(u32 key)
7803 {
7804         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7805 }
7806
7807 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7808 {
7809         u32 key = kvm_async_pf_hash_fn(gfn);
7810
7811         while (vcpu->arch.apf.gfns[key] != ~0)
7812                 key = kvm_async_pf_next_probe(key);
7813
7814         vcpu->arch.apf.gfns[key] = gfn;
7815 }
7816
7817 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7818 {
7819         int i;
7820         u32 key = kvm_async_pf_hash_fn(gfn);
7821
7822         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7823                      (vcpu->arch.apf.gfns[key] != gfn &&
7824                       vcpu->arch.apf.gfns[key] != ~0); i++)
7825                 key = kvm_async_pf_next_probe(key);
7826
7827         return key;
7828 }
7829
7830 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7831 {
7832         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7833 }
7834
7835 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7836 {
7837         u32 i, j, k;
7838
7839         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7840         while (true) {
7841                 vcpu->arch.apf.gfns[i] = ~0;
7842                 do {
7843                         j = kvm_async_pf_next_probe(j);
7844                         if (vcpu->arch.apf.gfns[j] == ~0)
7845                                 return;
7846                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7847                         /*
7848                          * k lies cyclically in ]i,j]
7849                          * |    i.k.j |
7850                          * |....j i.k.| or  |.k..j i...|
7851                          */
7852                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7853                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7854                 i = j;
7855         }
7856 }
7857
7858 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7859 {
7860
7861         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7862                                       sizeof(val));
7863 }
7864
7865 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7866                                      struct kvm_async_pf *work)
7867 {
7868         struct x86_exception fault;
7869
7870         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7871         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7872
7873         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7874             (vcpu->arch.apf.send_user_only &&
7875              kvm_x86_ops->get_cpl(vcpu) == 0))
7876                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7877         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7878                 fault.vector = PF_VECTOR;
7879                 fault.error_code_valid = true;
7880                 fault.error_code = 0;
7881                 fault.nested_page_fault = false;
7882                 fault.address = work->arch.token;
7883                 kvm_inject_page_fault(vcpu, &fault);
7884         }
7885 }
7886
7887 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7888                                  struct kvm_async_pf *work)
7889 {
7890         struct x86_exception fault;
7891
7892         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7893         if (work->wakeup_all)
7894                 work->arch.token = ~0; /* broadcast wakeup */
7895         else
7896                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7897
7898         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7899             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7900                 fault.vector = PF_VECTOR;
7901                 fault.error_code_valid = true;
7902                 fault.error_code = 0;
7903                 fault.nested_page_fault = false;
7904                 fault.address = work->arch.token;
7905                 kvm_inject_page_fault(vcpu, &fault);
7906         }
7907         vcpu->arch.apf.halted = false;
7908         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7909 }
7910
7911 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7912 {
7913         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7914                 return true;
7915         else
7916                 return !kvm_event_needs_reinjection(vcpu) &&
7917                         kvm_x86_ops->interrupt_allowed(vcpu);
7918 }
7919
7920 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7921 {
7922         atomic_inc(&kvm->arch.noncoherent_dma_count);
7923 }
7924 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7925
7926 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7927 {
7928         atomic_dec(&kvm->arch.noncoherent_dma_count);
7929 }
7930 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7931
7932 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7933 {
7934         return atomic_read(&kvm->arch.noncoherent_dma_count);
7935 }
7936 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7937
7938 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7939 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7940 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7941 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7942 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7943 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7944 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7945 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7946 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7947 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7948 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);