ASoC: rt5663: Change the dev getting function in rt5663_irq
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83  * - enable syscall per default because its emulated by KVM
84  * - enable LME and LMA per default on 64 bit KVM
85  */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 unsigned int min_timer_period_us = 500;
111 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
112
113 static bool __read_mostly kvmclock_periodic_sync = true;
114 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
115
116 bool __read_mostly kvm_has_tsc_control;
117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
118 u32  __read_mostly kvm_max_guest_tsc_khz;
119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
120 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
122 u64  __read_mostly kvm_max_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
124 u64 __read_mostly kvm_default_tsc_scaling_ratio;
125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
126
127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
128 static u32 __read_mostly tsc_tolerance_ppm = 250;
129 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
130
131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
132 unsigned int __read_mostly lapic_timer_advance_ns = 0;
133 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
134
135 static bool __read_mostly vector_hashing = true;
136 module_param(vector_hashing, bool, S_IRUGO);
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141         int nr;
142         u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146         struct user_return_notifier urn;
147         bool registered;
148         struct kvm_shared_msr_values {
149                 u64 host;
150                 u64 curr;
151         } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158         { "pf_fixed", VCPU_STAT(pf_fixed) },
159         { "pf_guest", VCPU_STAT(pf_guest) },
160         { "tlb_flush", VCPU_STAT(tlb_flush) },
161         { "invlpg", VCPU_STAT(invlpg) },
162         { "exits", VCPU_STAT(exits) },
163         { "io_exits", VCPU_STAT(io_exits) },
164         { "mmio_exits", VCPU_STAT(mmio_exits) },
165         { "signal_exits", VCPU_STAT(signal_exits) },
166         { "irq_window", VCPU_STAT(irq_window_exits) },
167         { "nmi_window", VCPU_STAT(nmi_window_exits) },
168         { "halt_exits", VCPU_STAT(halt_exits) },
169         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173         { "hypercalls", VCPU_STAT(hypercalls) },
174         { "request_irq", VCPU_STAT(request_irq_exits) },
175         { "irq_exits", VCPU_STAT(irq_exits) },
176         { "host_state_reload", VCPU_STAT(host_state_reload) },
177         { "efer_reload", VCPU_STAT(efer_reload) },
178         { "fpu_reload", VCPU_STAT(fpu_reload) },
179         { "insn_emulation", VCPU_STAT(insn_emulation) },
180         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181         { "irq_injections", VCPU_STAT(irq_injections) },
182         { "nmi_injections", VCPU_STAT(nmi_injections) },
183         { "req_event", VCPU_STAT(req_event) },
184         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
185         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
186         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
187         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
188         { "mmu_flooded", VM_STAT(mmu_flooded) },
189         { "mmu_recycled", VM_STAT(mmu_recycled) },
190         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
191         { "mmu_unsync", VM_STAT(mmu_unsync) },
192         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
193         { "largepages", VM_STAT(lpages) },
194         { "max_mmu_page_hash_collisions",
195                 VM_STAT(max_mmu_page_hash_collisions) },
196         { NULL }
197 };
198
199 u64 __read_mostly host_xcr0;
200
201 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
202
203 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
204 {
205         int i;
206         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
207                 vcpu->arch.apf.gfns[i] = ~0;
208 }
209
210 static void kvm_on_user_return(struct user_return_notifier *urn)
211 {
212         unsigned slot;
213         struct kvm_shared_msrs *locals
214                 = container_of(urn, struct kvm_shared_msrs, urn);
215         struct kvm_shared_msr_values *values;
216         unsigned long flags;
217
218         /*
219          * Disabling irqs at this point since the following code could be
220          * interrupted and executed through kvm_arch_hardware_disable()
221          */
222         local_irq_save(flags);
223         if (locals->registered) {
224                 locals->registered = false;
225                 user_return_notifier_unregister(urn);
226         }
227         local_irq_restore(flags);
228         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
229                 values = &locals->values[slot];
230                 if (values->host != values->curr) {
231                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
232                         values->curr = values->host;
233                 }
234         }
235 }
236
237 static void shared_msr_update(unsigned slot, u32 msr)
238 {
239         u64 value;
240         unsigned int cpu = smp_processor_id();
241         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242
243         /* only read, and nobody should modify it at this time,
244          * so don't need lock */
245         if (slot >= shared_msrs_global.nr) {
246                 printk(KERN_ERR "kvm: invalid MSR slot!");
247                 return;
248         }
249         rdmsrl_safe(msr, &value);
250         smsr->values[slot].host = value;
251         smsr->values[slot].curr = value;
252 }
253
254 void kvm_define_shared_msr(unsigned slot, u32 msr)
255 {
256         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
257         shared_msrs_global.msrs[slot] = msr;
258         if (slot >= shared_msrs_global.nr)
259                 shared_msrs_global.nr = slot + 1;
260 }
261 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
262
263 static void kvm_shared_msr_cpu_online(void)
264 {
265         unsigned i;
266
267         for (i = 0; i < shared_msrs_global.nr; ++i)
268                 shared_msr_update(i, shared_msrs_global.msrs[i]);
269 }
270
271 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
272 {
273         unsigned int cpu = smp_processor_id();
274         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
275         int err;
276
277         if (((value ^ smsr->values[slot].curr) & mask) == 0)
278                 return 0;
279         smsr->values[slot].curr = value;
280         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
281         if (err)
282                 return 1;
283
284         if (!smsr->registered) {
285                 smsr->urn.on_user_return = kvm_on_user_return;
286                 user_return_notifier_register(&smsr->urn);
287                 smsr->registered = true;
288         }
289         return 0;
290 }
291 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
292
293 static void drop_user_return_notifiers(void)
294 {
295         unsigned int cpu = smp_processor_id();
296         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
297
298         if (smsr->registered)
299                 kvm_on_user_return(&smsr->urn);
300 }
301
302 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
303 {
304         return vcpu->arch.apic_base;
305 }
306 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
307
308 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
309 {
310         u64 old_state = vcpu->arch.apic_base &
311                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
312         u64 new_state = msr_info->data &
313                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
314         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
315                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
316
317         if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
318                 return 1;
319         if (!msr_info->host_initiated &&
320             ((new_state == MSR_IA32_APICBASE_ENABLE &&
321               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
322              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
323               old_state == 0)))
324                 return 1;
325
326         kvm_lapic_set_base(vcpu, msr_info->data);
327         return 0;
328 }
329 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
330
331 asmlinkage __visible void kvm_spurious_fault(void)
332 {
333         /* Fault while not rebooting.  We want the trace. */
334         BUG();
335 }
336 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
337
338 #define EXCPT_BENIGN            0
339 #define EXCPT_CONTRIBUTORY      1
340 #define EXCPT_PF                2
341
342 static int exception_class(int vector)
343 {
344         switch (vector) {
345         case PF_VECTOR:
346                 return EXCPT_PF;
347         case DE_VECTOR:
348         case TS_VECTOR:
349         case NP_VECTOR:
350         case SS_VECTOR:
351         case GP_VECTOR:
352                 return EXCPT_CONTRIBUTORY;
353         default:
354                 break;
355         }
356         return EXCPT_BENIGN;
357 }
358
359 #define EXCPT_FAULT             0
360 #define EXCPT_TRAP              1
361 #define EXCPT_ABORT             2
362 #define EXCPT_INTERRUPT         3
363
364 static int exception_type(int vector)
365 {
366         unsigned int mask;
367
368         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
369                 return EXCPT_INTERRUPT;
370
371         mask = 1 << vector;
372
373         /* #DB is trap, as instruction watchpoints are handled elsewhere */
374         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
375                 return EXCPT_TRAP;
376
377         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
378                 return EXCPT_ABORT;
379
380         /* Reserved exceptions will result in fault */
381         return EXCPT_FAULT;
382 }
383
384 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
385                 unsigned nr, bool has_error, u32 error_code,
386                 bool reinject)
387 {
388         u32 prev_nr;
389         int class1, class2;
390
391         kvm_make_request(KVM_REQ_EVENT, vcpu);
392
393         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
394         queue:
395                 if (has_error && !is_protmode(vcpu))
396                         has_error = false;
397                 if (reinject) {
398                         /*
399                          * On vmentry, vcpu->arch.exception.pending is only
400                          * true if an event injection was blocked by
401                          * nested_run_pending.  In that case, however,
402                          * vcpu_enter_guest requests an immediate exit,
403                          * and the guest shouldn't proceed far enough to
404                          * need reinjection.
405                          */
406                         WARN_ON_ONCE(vcpu->arch.exception.pending);
407                         vcpu->arch.exception.injected = true;
408                 } else {
409                         vcpu->arch.exception.pending = true;
410                         vcpu->arch.exception.injected = false;
411                 }
412                 vcpu->arch.exception.has_error_code = has_error;
413                 vcpu->arch.exception.nr = nr;
414                 vcpu->arch.exception.error_code = error_code;
415                 return;
416         }
417
418         /* to check exception */
419         prev_nr = vcpu->arch.exception.nr;
420         if (prev_nr == DF_VECTOR) {
421                 /* triple fault -> shutdown */
422                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
423                 return;
424         }
425         class1 = exception_class(prev_nr);
426         class2 = exception_class(nr);
427         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
428                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
429                 /*
430                  * Generate double fault per SDM Table 5-5.  Set
431                  * exception.pending = true so that the double fault
432                  * can trigger a nested vmexit.
433                  */
434                 vcpu->arch.exception.pending = true;
435                 vcpu->arch.exception.injected = false;
436                 vcpu->arch.exception.has_error_code = true;
437                 vcpu->arch.exception.nr = DF_VECTOR;
438                 vcpu->arch.exception.error_code = 0;
439         } else
440                 /* replace previous exception with a new one in a hope
441                    that instruction re-execution will regenerate lost
442                    exception */
443                 goto queue;
444 }
445
446 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
447 {
448         kvm_multiple_exception(vcpu, nr, false, 0, false);
449 }
450 EXPORT_SYMBOL_GPL(kvm_queue_exception);
451
452 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
453 {
454         kvm_multiple_exception(vcpu, nr, false, 0, true);
455 }
456 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
457
458 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
459 {
460         if (err)
461                 kvm_inject_gp(vcpu, 0);
462         else
463                 return kvm_skip_emulated_instruction(vcpu);
464
465         return 1;
466 }
467 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
468
469 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
470 {
471         ++vcpu->stat.pf_guest;
472         vcpu->arch.exception.nested_apf =
473                 is_guest_mode(vcpu) && fault->async_page_fault;
474         if (vcpu->arch.exception.nested_apf)
475                 vcpu->arch.apf.nested_apf_token = fault->address;
476         else
477                 vcpu->arch.cr2 = fault->address;
478         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
479 }
480 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
481
482 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
483 {
484         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
485                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
486         else
487                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
488
489         return fault->nested_page_fault;
490 }
491
492 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
493 {
494         atomic_inc(&vcpu->arch.nmi_queued);
495         kvm_make_request(KVM_REQ_NMI, vcpu);
496 }
497 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
498
499 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
500 {
501         kvm_multiple_exception(vcpu, nr, true, error_code, false);
502 }
503 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
504
505 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
506 {
507         kvm_multiple_exception(vcpu, nr, true, error_code, true);
508 }
509 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
510
511 /*
512  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
513  * a #GP and return false.
514  */
515 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
516 {
517         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
518                 return true;
519         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
520         return false;
521 }
522 EXPORT_SYMBOL_GPL(kvm_require_cpl);
523
524 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
525 {
526         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
527                 return true;
528
529         kvm_queue_exception(vcpu, UD_VECTOR);
530         return false;
531 }
532 EXPORT_SYMBOL_GPL(kvm_require_dr);
533
534 /*
535  * This function will be used to read from the physical memory of the currently
536  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
537  * can read from guest physical or from the guest's guest physical memory.
538  */
539 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
540                             gfn_t ngfn, void *data, int offset, int len,
541                             u32 access)
542 {
543         struct x86_exception exception;
544         gfn_t real_gfn;
545         gpa_t ngpa;
546
547         ngpa     = gfn_to_gpa(ngfn);
548         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
549         if (real_gfn == UNMAPPED_GVA)
550                 return -EFAULT;
551
552         real_gfn = gpa_to_gfn(real_gfn);
553
554         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
555 }
556 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
557
558 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
559                                void *data, int offset, int len, u32 access)
560 {
561         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
562                                        data, offset, len, access);
563 }
564
565 /*
566  * Load the pae pdptrs.  Return true is they are all valid.
567  */
568 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
569 {
570         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
571         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
572         int i;
573         int ret;
574         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
575
576         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
577                                       offset * sizeof(u64), sizeof(pdpte),
578                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
579         if (ret < 0) {
580                 ret = 0;
581                 goto out;
582         }
583         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
584                 if ((pdpte[i] & PT_PRESENT_MASK) &&
585                     (pdpte[i] &
586                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
587                         ret = 0;
588                         goto out;
589                 }
590         }
591         ret = 1;
592
593         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
594         __set_bit(VCPU_EXREG_PDPTR,
595                   (unsigned long *)&vcpu->arch.regs_avail);
596         __set_bit(VCPU_EXREG_PDPTR,
597                   (unsigned long *)&vcpu->arch.regs_dirty);
598 out:
599
600         return ret;
601 }
602 EXPORT_SYMBOL_GPL(load_pdptrs);
603
604 bool pdptrs_changed(struct kvm_vcpu *vcpu)
605 {
606         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
607         bool changed = true;
608         int offset;
609         gfn_t gfn;
610         int r;
611
612         if (is_long_mode(vcpu) || !is_pae(vcpu))
613                 return false;
614
615         if (!test_bit(VCPU_EXREG_PDPTR,
616                       (unsigned long *)&vcpu->arch.regs_avail))
617                 return true;
618
619         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
620         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
621         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
622                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
623         if (r < 0)
624                 goto out;
625         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
626 out:
627
628         return changed;
629 }
630 EXPORT_SYMBOL_GPL(pdptrs_changed);
631
632 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
633 {
634         unsigned long old_cr0 = kvm_read_cr0(vcpu);
635         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
636
637         cr0 |= X86_CR0_ET;
638
639 #ifdef CONFIG_X86_64
640         if (cr0 & 0xffffffff00000000UL)
641                 return 1;
642 #endif
643
644         cr0 &= ~CR0_RESERVED_BITS;
645
646         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
647                 return 1;
648
649         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
650                 return 1;
651
652         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
653 #ifdef CONFIG_X86_64
654                 if ((vcpu->arch.efer & EFER_LME)) {
655                         int cs_db, cs_l;
656
657                         if (!is_pae(vcpu))
658                                 return 1;
659                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
660                         if (cs_l)
661                                 return 1;
662                 } else
663 #endif
664                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
665                                                  kvm_read_cr3(vcpu)))
666                         return 1;
667         }
668
669         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
670                 return 1;
671
672         kvm_x86_ops->set_cr0(vcpu, cr0);
673
674         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
675                 kvm_clear_async_pf_completion_queue(vcpu);
676                 kvm_async_pf_hash_reset(vcpu);
677         }
678
679         if ((cr0 ^ old_cr0) & update_bits)
680                 kvm_mmu_reset_context(vcpu);
681
682         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
683             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
684             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
685                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
686
687         return 0;
688 }
689 EXPORT_SYMBOL_GPL(kvm_set_cr0);
690
691 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
692 {
693         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
694 }
695 EXPORT_SYMBOL_GPL(kvm_lmsw);
696
697 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
698 {
699         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
700                         !vcpu->guest_xcr0_loaded) {
701                 /* kvm_set_xcr() also depends on this */
702                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
703                 vcpu->guest_xcr0_loaded = 1;
704         }
705 }
706
707 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
708 {
709         if (vcpu->guest_xcr0_loaded) {
710                 if (vcpu->arch.xcr0 != host_xcr0)
711                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
712                 vcpu->guest_xcr0_loaded = 0;
713         }
714 }
715
716 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
717 {
718         u64 xcr0 = xcr;
719         u64 old_xcr0 = vcpu->arch.xcr0;
720         u64 valid_bits;
721
722         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
723         if (index != XCR_XFEATURE_ENABLED_MASK)
724                 return 1;
725         if (!(xcr0 & XFEATURE_MASK_FP))
726                 return 1;
727         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
728                 return 1;
729
730         /*
731          * Do not allow the guest to set bits that we do not support
732          * saving.  However, xcr0 bit 0 is always set, even if the
733          * emulated CPU does not support XSAVE (see fx_init).
734          */
735         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
736         if (xcr0 & ~valid_bits)
737                 return 1;
738
739         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
740             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
741                 return 1;
742
743         if (xcr0 & XFEATURE_MASK_AVX512) {
744                 if (!(xcr0 & XFEATURE_MASK_YMM))
745                         return 1;
746                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
747                         return 1;
748         }
749         vcpu->arch.xcr0 = xcr0;
750
751         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
752                 kvm_update_cpuid(vcpu);
753         return 0;
754 }
755
756 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
757 {
758         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
759             __kvm_set_xcr(vcpu, index, xcr)) {
760                 kvm_inject_gp(vcpu, 0);
761                 return 1;
762         }
763         return 0;
764 }
765 EXPORT_SYMBOL_GPL(kvm_set_xcr);
766
767 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
768 {
769         unsigned long old_cr4 = kvm_read_cr4(vcpu);
770         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
771                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
772
773         if (cr4 & CR4_RESERVED_BITS)
774                 return 1;
775
776         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
777                 return 1;
778
779         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
780                 return 1;
781
782         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
783                 return 1;
784
785         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
786                 return 1;
787
788         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
789                 return 1;
790
791         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
792                 return 1;
793
794         if (is_long_mode(vcpu)) {
795                 if (!(cr4 & X86_CR4_PAE))
796                         return 1;
797         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
798                    && ((cr4 ^ old_cr4) & pdptr_bits)
799                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
800                                    kvm_read_cr3(vcpu)))
801                 return 1;
802
803         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
804                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
805                         return 1;
806
807                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
808                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
809                         return 1;
810         }
811
812         if (kvm_x86_ops->set_cr4(vcpu, cr4))
813                 return 1;
814
815         if (((cr4 ^ old_cr4) & pdptr_bits) ||
816             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
817                 kvm_mmu_reset_context(vcpu);
818
819         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
820                 kvm_update_cpuid(vcpu);
821
822         return 0;
823 }
824 EXPORT_SYMBOL_GPL(kvm_set_cr4);
825
826 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
827 {
828 #ifdef CONFIG_X86_64
829         cr3 &= ~CR3_PCID_INVD;
830 #endif
831
832         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
833                 kvm_mmu_sync_roots(vcpu);
834                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
835                 return 0;
836         }
837
838         if (is_long_mode(vcpu) &&
839             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
840                 return 1;
841         else if (is_pae(vcpu) && is_paging(vcpu) &&
842                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
843                 return 1;
844
845         vcpu->arch.cr3 = cr3;
846         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
847         kvm_mmu_new_cr3(vcpu);
848         return 0;
849 }
850 EXPORT_SYMBOL_GPL(kvm_set_cr3);
851
852 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
853 {
854         if (cr8 & CR8_RESERVED_BITS)
855                 return 1;
856         if (lapic_in_kernel(vcpu))
857                 kvm_lapic_set_tpr(vcpu, cr8);
858         else
859                 vcpu->arch.cr8 = cr8;
860         return 0;
861 }
862 EXPORT_SYMBOL_GPL(kvm_set_cr8);
863
864 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
865 {
866         if (lapic_in_kernel(vcpu))
867                 return kvm_lapic_get_cr8(vcpu);
868         else
869                 return vcpu->arch.cr8;
870 }
871 EXPORT_SYMBOL_GPL(kvm_get_cr8);
872
873 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
874 {
875         int i;
876
877         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
878                 for (i = 0; i < KVM_NR_DB_REGS; i++)
879                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
880                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
881         }
882 }
883
884 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
885 {
886         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
887                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
888 }
889
890 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
891 {
892         unsigned long dr7;
893
894         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
895                 dr7 = vcpu->arch.guest_debug_dr7;
896         else
897                 dr7 = vcpu->arch.dr7;
898         kvm_x86_ops->set_dr7(vcpu, dr7);
899         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
900         if (dr7 & DR7_BP_EN_MASK)
901                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
902 }
903
904 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
905 {
906         u64 fixed = DR6_FIXED_1;
907
908         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
909                 fixed |= DR6_RTM;
910         return fixed;
911 }
912
913 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915         switch (dr) {
916         case 0 ... 3:
917                 vcpu->arch.db[dr] = val;
918                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
919                         vcpu->arch.eff_db[dr] = val;
920                 break;
921         case 4:
922                 /* fall through */
923         case 6:
924                 if (val & 0xffffffff00000000ULL)
925                         return -1; /* #GP */
926                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
927                 kvm_update_dr6(vcpu);
928                 break;
929         case 5:
930                 /* fall through */
931         default: /* 7 */
932                 if (val & 0xffffffff00000000ULL)
933                         return -1; /* #GP */
934                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
935                 kvm_update_dr7(vcpu);
936                 break;
937         }
938
939         return 0;
940 }
941
942 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
943 {
944         if (__kvm_set_dr(vcpu, dr, val)) {
945                 kvm_inject_gp(vcpu, 0);
946                 return 1;
947         }
948         return 0;
949 }
950 EXPORT_SYMBOL_GPL(kvm_set_dr);
951
952 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
953 {
954         switch (dr) {
955         case 0 ... 3:
956                 *val = vcpu->arch.db[dr];
957                 break;
958         case 4:
959                 /* fall through */
960         case 6:
961                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
962                         *val = vcpu->arch.dr6;
963                 else
964                         *val = kvm_x86_ops->get_dr6(vcpu);
965                 break;
966         case 5:
967                 /* fall through */
968         default: /* 7 */
969                 *val = vcpu->arch.dr7;
970                 break;
971         }
972         return 0;
973 }
974 EXPORT_SYMBOL_GPL(kvm_get_dr);
975
976 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
977 {
978         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
979         u64 data;
980         int err;
981
982         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
983         if (err)
984                 return err;
985         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
986         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
987         return err;
988 }
989 EXPORT_SYMBOL_GPL(kvm_rdpmc);
990
991 /*
992  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
993  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
994  *
995  * This list is modified at module load time to reflect the
996  * capabilities of the host cpu. This capabilities test skips MSRs that are
997  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
998  * may depend on host virtualization features rather than host cpu features.
999  */
1000
1001 static u32 msrs_to_save[] = {
1002         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1003         MSR_STAR,
1004 #ifdef CONFIG_X86_64
1005         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1006 #endif
1007         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1008         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1009 };
1010
1011 static unsigned num_msrs_to_save;
1012
1013 static u32 emulated_msrs[] = {
1014         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1015         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1016         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1017         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1018         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1019         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1020         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1021         HV_X64_MSR_RESET,
1022         HV_X64_MSR_VP_INDEX,
1023         HV_X64_MSR_VP_RUNTIME,
1024         HV_X64_MSR_SCONTROL,
1025         HV_X64_MSR_STIMER0_CONFIG,
1026         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1027         MSR_KVM_PV_EOI_EN,
1028
1029         MSR_IA32_TSC_ADJUST,
1030         MSR_IA32_TSCDEADLINE,
1031         MSR_IA32_MISC_ENABLE,
1032         MSR_IA32_MCG_STATUS,
1033         MSR_IA32_MCG_CTL,
1034         MSR_IA32_MCG_EXT_CTL,
1035         MSR_IA32_SMBASE,
1036         MSR_PLATFORM_INFO,
1037         MSR_MISC_FEATURES_ENABLES,
1038 };
1039
1040 static unsigned num_emulated_msrs;
1041
1042 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1043 {
1044         if (efer & efer_reserved_bits)
1045                 return false;
1046
1047         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1048                         return false;
1049
1050         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1051                         return false;
1052
1053         return true;
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1056
1057 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1058 {
1059         u64 old_efer = vcpu->arch.efer;
1060
1061         if (!kvm_valid_efer(vcpu, efer))
1062                 return 1;
1063
1064         if (is_paging(vcpu)
1065             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1066                 return 1;
1067
1068         efer &= ~EFER_LMA;
1069         efer |= vcpu->arch.efer & EFER_LMA;
1070
1071         kvm_x86_ops->set_efer(vcpu, efer);
1072
1073         /* Update reserved bits */
1074         if ((efer ^ old_efer) & EFER_NX)
1075                 kvm_mmu_reset_context(vcpu);
1076
1077         return 0;
1078 }
1079
1080 void kvm_enable_efer_bits(u64 mask)
1081 {
1082        efer_reserved_bits &= ~mask;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1085
1086 /*
1087  * Writes msr value into into the appropriate "register".
1088  * Returns 0 on success, non-0 otherwise.
1089  * Assumes vcpu_load() was already called.
1090  */
1091 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1092 {
1093         switch (msr->index) {
1094         case MSR_FS_BASE:
1095         case MSR_GS_BASE:
1096         case MSR_KERNEL_GS_BASE:
1097         case MSR_CSTAR:
1098         case MSR_LSTAR:
1099                 if (is_noncanonical_address(msr->data, vcpu))
1100                         return 1;
1101                 break;
1102         case MSR_IA32_SYSENTER_EIP:
1103         case MSR_IA32_SYSENTER_ESP:
1104                 /*
1105                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1106                  * non-canonical address is written on Intel but not on
1107                  * AMD (which ignores the top 32-bits, because it does
1108                  * not implement 64-bit SYSENTER).
1109                  *
1110                  * 64-bit code should hence be able to write a non-canonical
1111                  * value on AMD.  Making the address canonical ensures that
1112                  * vmentry does not fail on Intel after writing a non-canonical
1113                  * value, and that something deterministic happens if the guest
1114                  * invokes 64-bit SYSENTER.
1115                  */
1116                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1117         }
1118         return kvm_x86_ops->set_msr(vcpu, msr);
1119 }
1120 EXPORT_SYMBOL_GPL(kvm_set_msr);
1121
1122 /*
1123  * Adapt set_msr() to msr_io()'s calling convention
1124  */
1125 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1126 {
1127         struct msr_data msr;
1128         int r;
1129
1130         msr.index = index;
1131         msr.host_initiated = true;
1132         r = kvm_get_msr(vcpu, &msr);
1133         if (r)
1134                 return r;
1135
1136         *data = msr.data;
1137         return 0;
1138 }
1139
1140 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1141 {
1142         struct msr_data msr;
1143
1144         msr.data = *data;
1145         msr.index = index;
1146         msr.host_initiated = true;
1147         return kvm_set_msr(vcpu, &msr);
1148 }
1149
1150 #ifdef CONFIG_X86_64
1151 struct pvclock_gtod_data {
1152         seqcount_t      seq;
1153
1154         struct { /* extract of a clocksource struct */
1155                 int vclock_mode;
1156                 u64     cycle_last;
1157                 u64     mask;
1158                 u32     mult;
1159                 u32     shift;
1160         } clock;
1161
1162         u64             boot_ns;
1163         u64             nsec_base;
1164         u64             wall_time_sec;
1165 };
1166
1167 static struct pvclock_gtod_data pvclock_gtod_data;
1168
1169 static void update_pvclock_gtod(struct timekeeper *tk)
1170 {
1171         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1172         u64 boot_ns;
1173
1174         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1175
1176         write_seqcount_begin(&vdata->seq);
1177
1178         /* copy pvclock gtod data */
1179         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1180         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1181         vdata->clock.mask               = tk->tkr_mono.mask;
1182         vdata->clock.mult               = tk->tkr_mono.mult;
1183         vdata->clock.shift              = tk->tkr_mono.shift;
1184
1185         vdata->boot_ns                  = boot_ns;
1186         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1187
1188         vdata->wall_time_sec            = tk->xtime_sec;
1189
1190         write_seqcount_end(&vdata->seq);
1191 }
1192 #endif
1193
1194 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1195 {
1196         /*
1197          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1198          * vcpu_enter_guest.  This function is only called from
1199          * the physical CPU that is running vcpu.
1200          */
1201         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1202 }
1203
1204 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1205 {
1206         int version;
1207         int r;
1208         struct pvclock_wall_clock wc;
1209         struct timespec64 boot;
1210
1211         if (!wall_clock)
1212                 return;
1213
1214         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1215         if (r)
1216                 return;
1217
1218         if (version & 1)
1219                 ++version;  /* first time write, random junk */
1220
1221         ++version;
1222
1223         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1224                 return;
1225
1226         /*
1227          * The guest calculates current wall clock time by adding
1228          * system time (updated by kvm_guest_time_update below) to the
1229          * wall clock specified here.  guest system time equals host
1230          * system time for us, thus we must fill in host boot time here.
1231          */
1232         getboottime64(&boot);
1233
1234         if (kvm->arch.kvmclock_offset) {
1235                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1236                 boot = timespec64_sub(boot, ts);
1237         }
1238         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1239         wc.nsec = boot.tv_nsec;
1240         wc.version = version;
1241
1242         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1243
1244         version++;
1245         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1246 }
1247
1248 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1249 {
1250         do_shl32_div32(dividend, divisor);
1251         return dividend;
1252 }
1253
1254 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1255                                s8 *pshift, u32 *pmultiplier)
1256 {
1257         uint64_t scaled64;
1258         int32_t  shift = 0;
1259         uint64_t tps64;
1260         uint32_t tps32;
1261
1262         tps64 = base_hz;
1263         scaled64 = scaled_hz;
1264         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1265                 tps64 >>= 1;
1266                 shift--;
1267         }
1268
1269         tps32 = (uint32_t)tps64;
1270         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1271                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1272                         scaled64 >>= 1;
1273                 else
1274                         tps32 <<= 1;
1275                 shift++;
1276         }
1277
1278         *pshift = shift;
1279         *pmultiplier = div_frac(scaled64, tps32);
1280
1281         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1282                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1283 }
1284
1285 #ifdef CONFIG_X86_64
1286 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1287 #endif
1288
1289 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1290 static unsigned long max_tsc_khz;
1291
1292 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1293 {
1294         u64 v = (u64)khz * (1000000 + ppm);
1295         do_div(v, 1000000);
1296         return v;
1297 }
1298
1299 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1300 {
1301         u64 ratio;
1302
1303         /* Guest TSC same frequency as host TSC? */
1304         if (!scale) {
1305                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1306                 return 0;
1307         }
1308
1309         /* TSC scaling supported? */
1310         if (!kvm_has_tsc_control) {
1311                 if (user_tsc_khz > tsc_khz) {
1312                         vcpu->arch.tsc_catchup = 1;
1313                         vcpu->arch.tsc_always_catchup = 1;
1314                         return 0;
1315                 } else {
1316                         WARN(1, "user requested TSC rate below hardware speed\n");
1317                         return -1;
1318                 }
1319         }
1320
1321         /* TSC scaling required  - calculate ratio */
1322         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1323                                 user_tsc_khz, tsc_khz);
1324
1325         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1326                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1327                           user_tsc_khz);
1328                 return -1;
1329         }
1330
1331         vcpu->arch.tsc_scaling_ratio = ratio;
1332         return 0;
1333 }
1334
1335 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1336 {
1337         u32 thresh_lo, thresh_hi;
1338         int use_scaling = 0;
1339
1340         /* tsc_khz can be zero if TSC calibration fails */
1341         if (user_tsc_khz == 0) {
1342                 /* set tsc_scaling_ratio to a safe value */
1343                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1344                 return -1;
1345         }
1346
1347         /* Compute a scale to convert nanoseconds in TSC cycles */
1348         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1349                            &vcpu->arch.virtual_tsc_shift,
1350                            &vcpu->arch.virtual_tsc_mult);
1351         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1352
1353         /*
1354          * Compute the variation in TSC rate which is acceptable
1355          * within the range of tolerance and decide if the
1356          * rate being applied is within that bounds of the hardware
1357          * rate.  If so, no scaling or compensation need be done.
1358          */
1359         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1360         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1361         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1362                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1363                 use_scaling = 1;
1364         }
1365         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1366 }
1367
1368 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1369 {
1370         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1371                                       vcpu->arch.virtual_tsc_mult,
1372                                       vcpu->arch.virtual_tsc_shift);
1373         tsc += vcpu->arch.this_tsc_write;
1374         return tsc;
1375 }
1376
1377 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1378 {
1379 #ifdef CONFIG_X86_64
1380         bool vcpus_matched;
1381         struct kvm_arch *ka = &vcpu->kvm->arch;
1382         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1383
1384         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1385                          atomic_read(&vcpu->kvm->online_vcpus));
1386
1387         /*
1388          * Once the masterclock is enabled, always perform request in
1389          * order to update it.
1390          *
1391          * In order to enable masterclock, the host clocksource must be TSC
1392          * and the vcpus need to have matched TSCs.  When that happens,
1393          * perform request to enable masterclock.
1394          */
1395         if (ka->use_master_clock ||
1396             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1397                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1398
1399         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1400                             atomic_read(&vcpu->kvm->online_vcpus),
1401                             ka->use_master_clock, gtod->clock.vclock_mode);
1402 #endif
1403 }
1404
1405 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1406 {
1407         u64 curr_offset = vcpu->arch.tsc_offset;
1408         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1409 }
1410
1411 /*
1412  * Multiply tsc by a fixed point number represented by ratio.
1413  *
1414  * The most significant 64-N bits (mult) of ratio represent the
1415  * integral part of the fixed point number; the remaining N bits
1416  * (frac) represent the fractional part, ie. ratio represents a fixed
1417  * point number (mult + frac * 2^(-N)).
1418  *
1419  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1420  */
1421 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1422 {
1423         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1424 }
1425
1426 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1427 {
1428         u64 _tsc = tsc;
1429         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1430
1431         if (ratio != kvm_default_tsc_scaling_ratio)
1432                 _tsc = __scale_tsc(ratio, tsc);
1433
1434         return _tsc;
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1437
1438 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1439 {
1440         u64 tsc;
1441
1442         tsc = kvm_scale_tsc(vcpu, rdtsc());
1443
1444         return target_tsc - tsc;
1445 }
1446
1447 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1448 {
1449         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1450 }
1451 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1452
1453 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1454 {
1455         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1456         vcpu->arch.tsc_offset = offset;
1457 }
1458
1459 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1460 {
1461         struct kvm *kvm = vcpu->kvm;
1462         u64 offset, ns, elapsed;
1463         unsigned long flags;
1464         bool matched;
1465         bool already_matched;
1466         u64 data = msr->data;
1467         bool synchronizing = false;
1468
1469         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1470         offset = kvm_compute_tsc_offset(vcpu, data);
1471         ns = ktime_get_boot_ns();
1472         elapsed = ns - kvm->arch.last_tsc_nsec;
1473
1474         if (vcpu->arch.virtual_tsc_khz) {
1475                 if (data == 0 && msr->host_initiated) {
1476                         /*
1477                          * detection of vcpu initialization -- need to sync
1478                          * with other vCPUs. This particularly helps to keep
1479                          * kvm_clock stable after CPU hotplug
1480                          */
1481                         synchronizing = true;
1482                 } else {
1483                         u64 tsc_exp = kvm->arch.last_tsc_write +
1484                                                 nsec_to_cycles(vcpu, elapsed);
1485                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1486                         /*
1487                          * Special case: TSC write with a small delta (1 second)
1488                          * of virtual cycle time against real time is
1489                          * interpreted as an attempt to synchronize the CPU.
1490                          */
1491                         synchronizing = data < tsc_exp + tsc_hz &&
1492                                         data + tsc_hz > tsc_exp;
1493                 }
1494         }
1495
1496         /*
1497          * For a reliable TSC, we can match TSC offsets, and for an unstable
1498          * TSC, we add elapsed time in this computation.  We could let the
1499          * compensation code attempt to catch up if we fall behind, but
1500          * it's better to try to match offsets from the beginning.
1501          */
1502         if (synchronizing &&
1503             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1504                 if (!check_tsc_unstable()) {
1505                         offset = kvm->arch.cur_tsc_offset;
1506                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1507                 } else {
1508                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1509                         data += delta;
1510                         offset = kvm_compute_tsc_offset(vcpu, data);
1511                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1512                 }
1513                 matched = true;
1514                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1515         } else {
1516                 /*
1517                  * We split periods of matched TSC writes into generations.
1518                  * For each generation, we track the original measured
1519                  * nanosecond time, offset, and write, so if TSCs are in
1520                  * sync, we can match exact offset, and if not, we can match
1521                  * exact software computation in compute_guest_tsc()
1522                  *
1523                  * These values are tracked in kvm->arch.cur_xxx variables.
1524                  */
1525                 kvm->arch.cur_tsc_generation++;
1526                 kvm->arch.cur_tsc_nsec = ns;
1527                 kvm->arch.cur_tsc_write = data;
1528                 kvm->arch.cur_tsc_offset = offset;
1529                 matched = false;
1530                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1531                          kvm->arch.cur_tsc_generation, data);
1532         }
1533
1534         /*
1535          * We also track th most recent recorded KHZ, write and time to
1536          * allow the matching interval to be extended at each write.
1537          */
1538         kvm->arch.last_tsc_nsec = ns;
1539         kvm->arch.last_tsc_write = data;
1540         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1541
1542         vcpu->arch.last_guest_tsc = data;
1543
1544         /* Keep track of which generation this VCPU has synchronized to */
1545         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1546         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1547         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1548
1549         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1550                 update_ia32_tsc_adjust_msr(vcpu, offset);
1551
1552         kvm_vcpu_write_tsc_offset(vcpu, offset);
1553         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1554
1555         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1556         if (!matched) {
1557                 kvm->arch.nr_vcpus_matched_tsc = 0;
1558         } else if (!already_matched) {
1559                 kvm->arch.nr_vcpus_matched_tsc++;
1560         }
1561
1562         kvm_track_tsc_matching(vcpu);
1563         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1564 }
1565
1566 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1567
1568 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1569                                            s64 adjustment)
1570 {
1571         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1572 }
1573
1574 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1575 {
1576         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1577                 WARN_ON(adjustment < 0);
1578         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1579         adjust_tsc_offset_guest(vcpu, adjustment);
1580 }
1581
1582 #ifdef CONFIG_X86_64
1583
1584 static u64 read_tsc(void)
1585 {
1586         u64 ret = (u64)rdtsc_ordered();
1587         u64 last = pvclock_gtod_data.clock.cycle_last;
1588
1589         if (likely(ret >= last))
1590                 return ret;
1591
1592         /*
1593          * GCC likes to generate cmov here, but this branch is extremely
1594          * predictable (it's just a function of time and the likely is
1595          * very likely) and there's a data dependence, so force GCC
1596          * to generate a branch instead.  I don't barrier() because
1597          * we don't actually need a barrier, and if this function
1598          * ever gets inlined it will generate worse code.
1599          */
1600         asm volatile ("");
1601         return last;
1602 }
1603
1604 static inline u64 vgettsc(u64 *cycle_now)
1605 {
1606         long v;
1607         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1608
1609         *cycle_now = read_tsc();
1610
1611         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1612         return v * gtod->clock.mult;
1613 }
1614
1615 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1616 {
1617         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1618         unsigned long seq;
1619         int mode;
1620         u64 ns;
1621
1622         do {
1623                 seq = read_seqcount_begin(&gtod->seq);
1624                 mode = gtod->clock.vclock_mode;
1625                 ns = gtod->nsec_base;
1626                 ns += vgettsc(cycle_now);
1627                 ns >>= gtod->clock.shift;
1628                 ns += gtod->boot_ns;
1629         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1630         *t = ns;
1631
1632         return mode;
1633 }
1634
1635 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1636 {
1637         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1638         unsigned long seq;
1639         int mode;
1640         u64 ns;
1641
1642         do {
1643                 seq = read_seqcount_begin(&gtod->seq);
1644                 mode = gtod->clock.vclock_mode;
1645                 ts->tv_sec = gtod->wall_time_sec;
1646                 ns = gtod->nsec_base;
1647                 ns += vgettsc(cycle_now);
1648                 ns >>= gtod->clock.shift;
1649         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1650
1651         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1652         ts->tv_nsec = ns;
1653
1654         return mode;
1655 }
1656
1657 /* returns true if host is using tsc clocksource */
1658 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1659 {
1660         /* checked again under seqlock below */
1661         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1662                 return false;
1663
1664         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1665 }
1666
1667 /* returns true if host is using tsc clocksource */
1668 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1669                                            u64 *cycle_now)
1670 {
1671         /* checked again under seqlock below */
1672         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1673                 return false;
1674
1675         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1676 }
1677 #endif
1678
1679 /*
1680  *
1681  * Assuming a stable TSC across physical CPUS, and a stable TSC
1682  * across virtual CPUs, the following condition is possible.
1683  * Each numbered line represents an event visible to both
1684  * CPUs at the next numbered event.
1685  *
1686  * "timespecX" represents host monotonic time. "tscX" represents
1687  * RDTSC value.
1688  *
1689  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1690  *
1691  * 1.  read timespec0,tsc0
1692  * 2.                                   | timespec1 = timespec0 + N
1693  *                                      | tsc1 = tsc0 + M
1694  * 3. transition to guest               | transition to guest
1695  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1696  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1697  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1698  *
1699  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1700  *
1701  *      - ret0 < ret1
1702  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1703  *              ...
1704  *      - 0 < N - M => M < N
1705  *
1706  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1707  * always the case (the difference between two distinct xtime instances
1708  * might be smaller then the difference between corresponding TSC reads,
1709  * when updating guest vcpus pvclock areas).
1710  *
1711  * To avoid that problem, do not allow visibility of distinct
1712  * system_timestamp/tsc_timestamp values simultaneously: use a master
1713  * copy of host monotonic time values. Update that master copy
1714  * in lockstep.
1715  *
1716  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1717  *
1718  */
1719
1720 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1721 {
1722 #ifdef CONFIG_X86_64
1723         struct kvm_arch *ka = &kvm->arch;
1724         int vclock_mode;
1725         bool host_tsc_clocksource, vcpus_matched;
1726
1727         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1728                         atomic_read(&kvm->online_vcpus));
1729
1730         /*
1731          * If the host uses TSC clock, then passthrough TSC as stable
1732          * to the guest.
1733          */
1734         host_tsc_clocksource = kvm_get_time_and_clockread(
1735                                         &ka->master_kernel_ns,
1736                                         &ka->master_cycle_now);
1737
1738         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1739                                 && !ka->backwards_tsc_observed
1740                                 && !ka->boot_vcpu_runs_old_kvmclock;
1741
1742         if (ka->use_master_clock)
1743                 atomic_set(&kvm_guest_has_master_clock, 1);
1744
1745         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1746         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1747                                         vcpus_matched);
1748 #endif
1749 }
1750
1751 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1752 {
1753         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1754 }
1755
1756 static void kvm_gen_update_masterclock(struct kvm *kvm)
1757 {
1758 #ifdef CONFIG_X86_64
1759         int i;
1760         struct kvm_vcpu *vcpu;
1761         struct kvm_arch *ka = &kvm->arch;
1762
1763         spin_lock(&ka->pvclock_gtod_sync_lock);
1764         kvm_make_mclock_inprogress_request(kvm);
1765         /* no guest entries from this point */
1766         pvclock_update_vm_gtod_copy(kvm);
1767
1768         kvm_for_each_vcpu(i, vcpu, kvm)
1769                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1770
1771         /* guest entries allowed */
1772         kvm_for_each_vcpu(i, vcpu, kvm)
1773                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1774
1775         spin_unlock(&ka->pvclock_gtod_sync_lock);
1776 #endif
1777 }
1778
1779 u64 get_kvmclock_ns(struct kvm *kvm)
1780 {
1781         struct kvm_arch *ka = &kvm->arch;
1782         struct pvclock_vcpu_time_info hv_clock;
1783         u64 ret;
1784
1785         spin_lock(&ka->pvclock_gtod_sync_lock);
1786         if (!ka->use_master_clock) {
1787                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1788                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1789         }
1790
1791         hv_clock.tsc_timestamp = ka->master_cycle_now;
1792         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1793         spin_unlock(&ka->pvclock_gtod_sync_lock);
1794
1795         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1796         get_cpu();
1797
1798         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1799                            &hv_clock.tsc_shift,
1800                            &hv_clock.tsc_to_system_mul);
1801         ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1802
1803         put_cpu();
1804
1805         return ret;
1806 }
1807
1808 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1809 {
1810         struct kvm_vcpu_arch *vcpu = &v->arch;
1811         struct pvclock_vcpu_time_info guest_hv_clock;
1812
1813         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1814                 &guest_hv_clock, sizeof(guest_hv_clock))))
1815                 return;
1816
1817         /* This VCPU is paused, but it's legal for a guest to read another
1818          * VCPU's kvmclock, so we really have to follow the specification where
1819          * it says that version is odd if data is being modified, and even after
1820          * it is consistent.
1821          *
1822          * Version field updates must be kept separate.  This is because
1823          * kvm_write_guest_cached might use a "rep movs" instruction, and
1824          * writes within a string instruction are weakly ordered.  So there
1825          * are three writes overall.
1826          *
1827          * As a small optimization, only write the version field in the first
1828          * and third write.  The vcpu->pv_time cache is still valid, because the
1829          * version field is the first in the struct.
1830          */
1831         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1832
1833         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1834         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1835                                 &vcpu->hv_clock,
1836                                 sizeof(vcpu->hv_clock.version));
1837
1838         smp_wmb();
1839
1840         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1841         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1842
1843         if (vcpu->pvclock_set_guest_stopped_request) {
1844                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1845                 vcpu->pvclock_set_guest_stopped_request = false;
1846         }
1847
1848         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1849
1850         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1851                                 &vcpu->hv_clock,
1852                                 sizeof(vcpu->hv_clock));
1853
1854         smp_wmb();
1855
1856         vcpu->hv_clock.version++;
1857         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1858                                 &vcpu->hv_clock,
1859                                 sizeof(vcpu->hv_clock.version));
1860 }
1861
1862 static int kvm_guest_time_update(struct kvm_vcpu *v)
1863 {
1864         unsigned long flags, tgt_tsc_khz;
1865         struct kvm_vcpu_arch *vcpu = &v->arch;
1866         struct kvm_arch *ka = &v->kvm->arch;
1867         s64 kernel_ns;
1868         u64 tsc_timestamp, host_tsc;
1869         u8 pvclock_flags;
1870         bool use_master_clock;
1871
1872         kernel_ns = 0;
1873         host_tsc = 0;
1874
1875         /*
1876          * If the host uses TSC clock, then passthrough TSC as stable
1877          * to the guest.
1878          */
1879         spin_lock(&ka->pvclock_gtod_sync_lock);
1880         use_master_clock = ka->use_master_clock;
1881         if (use_master_clock) {
1882                 host_tsc = ka->master_cycle_now;
1883                 kernel_ns = ka->master_kernel_ns;
1884         }
1885         spin_unlock(&ka->pvclock_gtod_sync_lock);
1886
1887         /* Keep irq disabled to prevent changes to the clock */
1888         local_irq_save(flags);
1889         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1890         if (unlikely(tgt_tsc_khz == 0)) {
1891                 local_irq_restore(flags);
1892                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1893                 return 1;
1894         }
1895         if (!use_master_clock) {
1896                 host_tsc = rdtsc();
1897                 kernel_ns = ktime_get_boot_ns();
1898         }
1899
1900         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1901
1902         /*
1903          * We may have to catch up the TSC to match elapsed wall clock
1904          * time for two reasons, even if kvmclock is used.
1905          *   1) CPU could have been running below the maximum TSC rate
1906          *   2) Broken TSC compensation resets the base at each VCPU
1907          *      entry to avoid unknown leaps of TSC even when running
1908          *      again on the same CPU.  This may cause apparent elapsed
1909          *      time to disappear, and the guest to stand still or run
1910          *      very slowly.
1911          */
1912         if (vcpu->tsc_catchup) {
1913                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1914                 if (tsc > tsc_timestamp) {
1915                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1916                         tsc_timestamp = tsc;
1917                 }
1918         }
1919
1920         local_irq_restore(flags);
1921
1922         /* With all the info we got, fill in the values */
1923
1924         if (kvm_has_tsc_control)
1925                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1926
1927         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1928                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1929                                    &vcpu->hv_clock.tsc_shift,
1930                                    &vcpu->hv_clock.tsc_to_system_mul);
1931                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1932         }
1933
1934         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1935         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1936         vcpu->last_guest_tsc = tsc_timestamp;
1937
1938         /* If the host uses TSC clocksource, then it is stable */
1939         pvclock_flags = 0;
1940         if (use_master_clock)
1941                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1942
1943         vcpu->hv_clock.flags = pvclock_flags;
1944
1945         if (vcpu->pv_time_enabled)
1946                 kvm_setup_pvclock_page(v);
1947         if (v == kvm_get_vcpu(v->kvm, 0))
1948                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1949         return 0;
1950 }
1951
1952 /*
1953  * kvmclock updates which are isolated to a given vcpu, such as
1954  * vcpu->cpu migration, should not allow system_timestamp from
1955  * the rest of the vcpus to remain static. Otherwise ntp frequency
1956  * correction applies to one vcpu's system_timestamp but not
1957  * the others.
1958  *
1959  * So in those cases, request a kvmclock update for all vcpus.
1960  * We need to rate-limit these requests though, as they can
1961  * considerably slow guests that have a large number of vcpus.
1962  * The time for a remote vcpu to update its kvmclock is bound
1963  * by the delay we use to rate-limit the updates.
1964  */
1965
1966 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1967
1968 static void kvmclock_update_fn(struct work_struct *work)
1969 {
1970         int i;
1971         struct delayed_work *dwork = to_delayed_work(work);
1972         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1973                                            kvmclock_update_work);
1974         struct kvm *kvm = container_of(ka, struct kvm, arch);
1975         struct kvm_vcpu *vcpu;
1976
1977         kvm_for_each_vcpu(i, vcpu, kvm) {
1978                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1979                 kvm_vcpu_kick(vcpu);
1980         }
1981 }
1982
1983 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1984 {
1985         struct kvm *kvm = v->kvm;
1986
1987         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1988         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1989                                         KVMCLOCK_UPDATE_DELAY);
1990 }
1991
1992 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1993
1994 static void kvmclock_sync_fn(struct work_struct *work)
1995 {
1996         struct delayed_work *dwork = to_delayed_work(work);
1997         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1998                                            kvmclock_sync_work);
1999         struct kvm *kvm = container_of(ka, struct kvm, arch);
2000
2001         if (!kvmclock_periodic_sync)
2002                 return;
2003
2004         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2005         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2006                                         KVMCLOCK_SYNC_PERIOD);
2007 }
2008
2009 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2010 {
2011         u64 mcg_cap = vcpu->arch.mcg_cap;
2012         unsigned bank_num = mcg_cap & 0xff;
2013
2014         switch (msr) {
2015         case MSR_IA32_MCG_STATUS:
2016                 vcpu->arch.mcg_status = data;
2017                 break;
2018         case MSR_IA32_MCG_CTL:
2019                 if (!(mcg_cap & MCG_CTL_P))
2020                         return 1;
2021                 if (data != 0 && data != ~(u64)0)
2022                         return -1;
2023                 vcpu->arch.mcg_ctl = data;
2024                 break;
2025         default:
2026                 if (msr >= MSR_IA32_MC0_CTL &&
2027                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2028                         u32 offset = msr - MSR_IA32_MC0_CTL;
2029                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2030                          * some Linux kernels though clear bit 10 in bank 4 to
2031                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2032                          * this to avoid an uncatched #GP in the guest
2033                          */
2034                         if ((offset & 0x3) == 0 &&
2035                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2036                                 return -1;
2037                         vcpu->arch.mce_banks[offset] = data;
2038                         break;
2039                 }
2040                 return 1;
2041         }
2042         return 0;
2043 }
2044
2045 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2046 {
2047         struct kvm *kvm = vcpu->kvm;
2048         int lm = is_long_mode(vcpu);
2049         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2050                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2051         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2052                 : kvm->arch.xen_hvm_config.blob_size_32;
2053         u32 page_num = data & ~PAGE_MASK;
2054         u64 page_addr = data & PAGE_MASK;
2055         u8 *page;
2056         int r;
2057
2058         r = -E2BIG;
2059         if (page_num >= blob_size)
2060                 goto out;
2061         r = -ENOMEM;
2062         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2063         if (IS_ERR(page)) {
2064                 r = PTR_ERR(page);
2065                 goto out;
2066         }
2067         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2068                 goto out_free;
2069         r = 0;
2070 out_free:
2071         kfree(page);
2072 out:
2073         return r;
2074 }
2075
2076 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2077 {
2078         gpa_t gpa = data & ~0x3f;
2079
2080         /* Bits 3:5 are reserved, Should be zero */
2081         if (data & 0x38)
2082                 return 1;
2083
2084         vcpu->arch.apf.msr_val = data;
2085
2086         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2087                 kvm_clear_async_pf_completion_queue(vcpu);
2088                 kvm_async_pf_hash_reset(vcpu);
2089                 return 0;
2090         }
2091
2092         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2093                                         sizeof(u32)))
2094                 return 1;
2095
2096         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2097         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2098         kvm_async_pf_wakeup_all(vcpu);
2099         return 0;
2100 }
2101
2102 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2103 {
2104         vcpu->arch.pv_time_enabled = false;
2105 }
2106
2107 static void record_steal_time(struct kvm_vcpu *vcpu)
2108 {
2109         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2110                 return;
2111
2112         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2113                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2114                 return;
2115
2116         vcpu->arch.st.steal.preempted = 0;
2117
2118         if (vcpu->arch.st.steal.version & 1)
2119                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2120
2121         vcpu->arch.st.steal.version += 1;
2122
2123         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2124                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2125
2126         smp_wmb();
2127
2128         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2129                 vcpu->arch.st.last_steal;
2130         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2131
2132         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2133                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2134
2135         smp_wmb();
2136
2137         vcpu->arch.st.steal.version += 1;
2138
2139         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2140                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2141 }
2142
2143 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2144 {
2145         bool pr = false;
2146         u32 msr = msr_info->index;
2147         u64 data = msr_info->data;
2148
2149         switch (msr) {
2150         case MSR_AMD64_NB_CFG:
2151         case MSR_IA32_UCODE_REV:
2152         case MSR_IA32_UCODE_WRITE:
2153         case MSR_VM_HSAVE_PA:
2154         case MSR_AMD64_PATCH_LOADER:
2155         case MSR_AMD64_BU_CFG2:
2156         case MSR_AMD64_DC_CFG:
2157                 break;
2158
2159         case MSR_EFER:
2160                 return set_efer(vcpu, data);
2161         case MSR_K7_HWCR:
2162                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2163                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2164                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2165                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2166                 if (data != 0) {
2167                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2168                                     data);
2169                         return 1;
2170                 }
2171                 break;
2172         case MSR_FAM10H_MMIO_CONF_BASE:
2173                 if (data != 0) {
2174                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2175                                     "0x%llx\n", data);
2176                         return 1;
2177                 }
2178                 break;
2179         case MSR_IA32_DEBUGCTLMSR:
2180                 if (!data) {
2181                         /* We support the non-activated case already */
2182                         break;
2183                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2184                         /* Values other than LBR and BTF are vendor-specific,
2185                            thus reserved and should throw a #GP */
2186                         return 1;
2187                 }
2188                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2189                             __func__, data);
2190                 break;
2191         case 0x200 ... 0x2ff:
2192                 return kvm_mtrr_set_msr(vcpu, msr, data);
2193         case MSR_IA32_APICBASE:
2194                 return kvm_set_apic_base(vcpu, msr_info);
2195         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2196                 return kvm_x2apic_msr_write(vcpu, msr, data);
2197         case MSR_IA32_TSCDEADLINE:
2198                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2199                 break;
2200         case MSR_IA32_TSC_ADJUST:
2201                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2202                         if (!msr_info->host_initiated) {
2203                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2204                                 adjust_tsc_offset_guest(vcpu, adj);
2205                         }
2206                         vcpu->arch.ia32_tsc_adjust_msr = data;
2207                 }
2208                 break;
2209         case MSR_IA32_MISC_ENABLE:
2210                 vcpu->arch.ia32_misc_enable_msr = data;
2211                 break;
2212         case MSR_IA32_SMBASE:
2213                 if (!msr_info->host_initiated)
2214                         return 1;
2215                 vcpu->arch.smbase = data;
2216                 break;
2217         case MSR_KVM_WALL_CLOCK_NEW:
2218         case MSR_KVM_WALL_CLOCK:
2219                 vcpu->kvm->arch.wall_clock = data;
2220                 kvm_write_wall_clock(vcpu->kvm, data);
2221                 break;
2222         case MSR_KVM_SYSTEM_TIME_NEW:
2223         case MSR_KVM_SYSTEM_TIME: {
2224                 struct kvm_arch *ka = &vcpu->kvm->arch;
2225
2226                 kvmclock_reset(vcpu);
2227
2228                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2229                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2230
2231                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2232                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2233
2234                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2235                 }
2236
2237                 vcpu->arch.time = data;
2238                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2239
2240                 /* we verify if the enable bit is set... */
2241                 if (!(data & 1))
2242                         break;
2243
2244                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2245                      &vcpu->arch.pv_time, data & ~1ULL,
2246                      sizeof(struct pvclock_vcpu_time_info)))
2247                         vcpu->arch.pv_time_enabled = false;
2248                 else
2249                         vcpu->arch.pv_time_enabled = true;
2250
2251                 break;
2252         }
2253         case MSR_KVM_ASYNC_PF_EN:
2254                 if (kvm_pv_enable_async_pf(vcpu, data))
2255                         return 1;
2256                 break;
2257         case MSR_KVM_STEAL_TIME:
2258
2259                 if (unlikely(!sched_info_on()))
2260                         return 1;
2261
2262                 if (data & KVM_STEAL_RESERVED_MASK)
2263                         return 1;
2264
2265                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2266                                                 data & KVM_STEAL_VALID_BITS,
2267                                                 sizeof(struct kvm_steal_time)))
2268                         return 1;
2269
2270                 vcpu->arch.st.msr_val = data;
2271
2272                 if (!(data & KVM_MSR_ENABLED))
2273                         break;
2274
2275                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2276
2277                 break;
2278         case MSR_KVM_PV_EOI_EN:
2279                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2280                         return 1;
2281                 break;
2282
2283         case MSR_IA32_MCG_CTL:
2284         case MSR_IA32_MCG_STATUS:
2285         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2286                 return set_msr_mce(vcpu, msr, data);
2287
2288         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2289         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2290                 pr = true; /* fall through */
2291         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2292         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2293                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2294                         return kvm_pmu_set_msr(vcpu, msr_info);
2295
2296                 if (pr || data != 0)
2297                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2298                                     "0x%x data 0x%llx\n", msr, data);
2299                 break;
2300         case MSR_K7_CLK_CTL:
2301                 /*
2302                  * Ignore all writes to this no longer documented MSR.
2303                  * Writes are only relevant for old K7 processors,
2304                  * all pre-dating SVM, but a recommended workaround from
2305                  * AMD for these chips. It is possible to specify the
2306                  * affected processor models on the command line, hence
2307                  * the need to ignore the workaround.
2308                  */
2309                 break;
2310         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2311         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2312         case HV_X64_MSR_CRASH_CTL:
2313         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2314                 return kvm_hv_set_msr_common(vcpu, msr, data,
2315                                              msr_info->host_initiated);
2316         case MSR_IA32_BBL_CR_CTL3:
2317                 /* Drop writes to this legacy MSR -- see rdmsr
2318                  * counterpart for further detail.
2319                  */
2320                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2321                 break;
2322         case MSR_AMD64_OSVW_ID_LENGTH:
2323                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2324                         return 1;
2325                 vcpu->arch.osvw.length = data;
2326                 break;
2327         case MSR_AMD64_OSVW_STATUS:
2328                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2329                         return 1;
2330                 vcpu->arch.osvw.status = data;
2331                 break;
2332         case MSR_PLATFORM_INFO:
2333                 if (!msr_info->host_initiated ||
2334                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2335                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2336                      cpuid_fault_enabled(vcpu)))
2337                         return 1;
2338                 vcpu->arch.msr_platform_info = data;
2339                 break;
2340         case MSR_MISC_FEATURES_ENABLES:
2341                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2342                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2343                      !supports_cpuid_fault(vcpu)))
2344                         return 1;
2345                 vcpu->arch.msr_misc_features_enables = data;
2346                 break;
2347         default:
2348                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2349                         return xen_hvm_config(vcpu, data);
2350                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2351                         return kvm_pmu_set_msr(vcpu, msr_info);
2352                 if (!ignore_msrs) {
2353                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2354                                     msr, data);
2355                         return 1;
2356                 } else {
2357                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2358                                     msr, data);
2359                         break;
2360                 }
2361         }
2362         return 0;
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2365
2366
2367 /*
2368  * Reads an msr value (of 'msr_index') into 'pdata'.
2369  * Returns 0 on success, non-0 otherwise.
2370  * Assumes vcpu_load() was already called.
2371  */
2372 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2373 {
2374         return kvm_x86_ops->get_msr(vcpu, msr);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_get_msr);
2377
2378 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2379 {
2380         u64 data;
2381         u64 mcg_cap = vcpu->arch.mcg_cap;
2382         unsigned bank_num = mcg_cap & 0xff;
2383
2384         switch (msr) {
2385         case MSR_IA32_P5_MC_ADDR:
2386         case MSR_IA32_P5_MC_TYPE:
2387                 data = 0;
2388                 break;
2389         case MSR_IA32_MCG_CAP:
2390                 data = vcpu->arch.mcg_cap;
2391                 break;
2392         case MSR_IA32_MCG_CTL:
2393                 if (!(mcg_cap & MCG_CTL_P))
2394                         return 1;
2395                 data = vcpu->arch.mcg_ctl;
2396                 break;
2397         case MSR_IA32_MCG_STATUS:
2398                 data = vcpu->arch.mcg_status;
2399                 break;
2400         default:
2401                 if (msr >= MSR_IA32_MC0_CTL &&
2402                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2403                         u32 offset = msr - MSR_IA32_MC0_CTL;
2404                         data = vcpu->arch.mce_banks[offset];
2405                         break;
2406                 }
2407                 return 1;
2408         }
2409         *pdata = data;
2410         return 0;
2411 }
2412
2413 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2414 {
2415         switch (msr_info->index) {
2416         case MSR_IA32_PLATFORM_ID:
2417         case MSR_IA32_EBL_CR_POWERON:
2418         case MSR_IA32_DEBUGCTLMSR:
2419         case MSR_IA32_LASTBRANCHFROMIP:
2420         case MSR_IA32_LASTBRANCHTOIP:
2421         case MSR_IA32_LASTINTFROMIP:
2422         case MSR_IA32_LASTINTTOIP:
2423         case MSR_K8_SYSCFG:
2424         case MSR_K8_TSEG_ADDR:
2425         case MSR_K8_TSEG_MASK:
2426         case MSR_K7_HWCR:
2427         case MSR_VM_HSAVE_PA:
2428         case MSR_K8_INT_PENDING_MSG:
2429         case MSR_AMD64_NB_CFG:
2430         case MSR_FAM10H_MMIO_CONF_BASE:
2431         case MSR_AMD64_BU_CFG2:
2432         case MSR_IA32_PERF_CTL:
2433         case MSR_AMD64_DC_CFG:
2434                 msr_info->data = 0;
2435                 break;
2436         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2437         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2438         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2439         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2440                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2441                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2442                 msr_info->data = 0;
2443                 break;
2444         case MSR_IA32_UCODE_REV:
2445                 msr_info->data = 0x100000000ULL;
2446                 break;
2447         case MSR_MTRRcap:
2448         case 0x200 ... 0x2ff:
2449                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2450         case 0xcd: /* fsb frequency */
2451                 msr_info->data = 3;
2452                 break;
2453                 /*
2454                  * MSR_EBC_FREQUENCY_ID
2455                  * Conservative value valid for even the basic CPU models.
2456                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2457                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2458                  * and 266MHz for model 3, or 4. Set Core Clock
2459                  * Frequency to System Bus Frequency Ratio to 1 (bits
2460                  * 31:24) even though these are only valid for CPU
2461                  * models > 2, however guests may end up dividing or
2462                  * multiplying by zero otherwise.
2463                  */
2464         case MSR_EBC_FREQUENCY_ID:
2465                 msr_info->data = 1 << 24;
2466                 break;
2467         case MSR_IA32_APICBASE:
2468                 msr_info->data = kvm_get_apic_base(vcpu);
2469                 break;
2470         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2471                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2472                 break;
2473         case MSR_IA32_TSCDEADLINE:
2474                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2475                 break;
2476         case MSR_IA32_TSC_ADJUST:
2477                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2478                 break;
2479         case MSR_IA32_MISC_ENABLE:
2480                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2481                 break;
2482         case MSR_IA32_SMBASE:
2483                 if (!msr_info->host_initiated)
2484                         return 1;
2485                 msr_info->data = vcpu->arch.smbase;
2486                 break;
2487         case MSR_IA32_PERF_STATUS:
2488                 /* TSC increment by tick */
2489                 msr_info->data = 1000ULL;
2490                 /* CPU multiplier */
2491                 msr_info->data |= (((uint64_t)4ULL) << 40);
2492                 break;
2493         case MSR_EFER:
2494                 msr_info->data = vcpu->arch.efer;
2495                 break;
2496         case MSR_KVM_WALL_CLOCK:
2497         case MSR_KVM_WALL_CLOCK_NEW:
2498                 msr_info->data = vcpu->kvm->arch.wall_clock;
2499                 break;
2500         case MSR_KVM_SYSTEM_TIME:
2501         case MSR_KVM_SYSTEM_TIME_NEW:
2502                 msr_info->data = vcpu->arch.time;
2503                 break;
2504         case MSR_KVM_ASYNC_PF_EN:
2505                 msr_info->data = vcpu->arch.apf.msr_val;
2506                 break;
2507         case MSR_KVM_STEAL_TIME:
2508                 msr_info->data = vcpu->arch.st.msr_val;
2509                 break;
2510         case MSR_KVM_PV_EOI_EN:
2511                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2512                 break;
2513         case MSR_IA32_P5_MC_ADDR:
2514         case MSR_IA32_P5_MC_TYPE:
2515         case MSR_IA32_MCG_CAP:
2516         case MSR_IA32_MCG_CTL:
2517         case MSR_IA32_MCG_STATUS:
2518         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2519                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2520         case MSR_K7_CLK_CTL:
2521                 /*
2522                  * Provide expected ramp-up count for K7. All other
2523                  * are set to zero, indicating minimum divisors for
2524                  * every field.
2525                  *
2526                  * This prevents guest kernels on AMD host with CPU
2527                  * type 6, model 8 and higher from exploding due to
2528                  * the rdmsr failing.
2529                  */
2530                 msr_info->data = 0x20000000;
2531                 break;
2532         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2533         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2534         case HV_X64_MSR_CRASH_CTL:
2535         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2536                 return kvm_hv_get_msr_common(vcpu,
2537                                              msr_info->index, &msr_info->data);
2538                 break;
2539         case MSR_IA32_BBL_CR_CTL3:
2540                 /* This legacy MSR exists but isn't fully documented in current
2541                  * silicon.  It is however accessed by winxp in very narrow
2542                  * scenarios where it sets bit #19, itself documented as
2543                  * a "reserved" bit.  Best effort attempt to source coherent
2544                  * read data here should the balance of the register be
2545                  * interpreted by the guest:
2546                  *
2547                  * L2 cache control register 3: 64GB range, 256KB size,
2548                  * enabled, latency 0x1, configured
2549                  */
2550                 msr_info->data = 0xbe702111;
2551                 break;
2552         case MSR_AMD64_OSVW_ID_LENGTH:
2553                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2554                         return 1;
2555                 msr_info->data = vcpu->arch.osvw.length;
2556                 break;
2557         case MSR_AMD64_OSVW_STATUS:
2558                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2559                         return 1;
2560                 msr_info->data = vcpu->arch.osvw.status;
2561                 break;
2562         case MSR_PLATFORM_INFO:
2563                 msr_info->data = vcpu->arch.msr_platform_info;
2564                 break;
2565         case MSR_MISC_FEATURES_ENABLES:
2566                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2567                 break;
2568         default:
2569                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2570                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2571                 if (!ignore_msrs) {
2572                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2573                                                msr_info->index);
2574                         return 1;
2575                 } else {
2576                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2577                         msr_info->data = 0;
2578                 }
2579                 break;
2580         }
2581         return 0;
2582 }
2583 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2584
2585 /*
2586  * Read or write a bunch of msrs. All parameters are kernel addresses.
2587  *
2588  * @return number of msrs set successfully.
2589  */
2590 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2591                     struct kvm_msr_entry *entries,
2592                     int (*do_msr)(struct kvm_vcpu *vcpu,
2593                                   unsigned index, u64 *data))
2594 {
2595         int i, idx;
2596
2597         idx = srcu_read_lock(&vcpu->kvm->srcu);
2598         for (i = 0; i < msrs->nmsrs; ++i)
2599                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2600                         break;
2601         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2602
2603         return i;
2604 }
2605
2606 /*
2607  * Read or write a bunch of msrs. Parameters are user addresses.
2608  *
2609  * @return number of msrs set successfully.
2610  */
2611 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2612                   int (*do_msr)(struct kvm_vcpu *vcpu,
2613                                 unsigned index, u64 *data),
2614                   int writeback)
2615 {
2616         struct kvm_msrs msrs;
2617         struct kvm_msr_entry *entries;
2618         int r, n;
2619         unsigned size;
2620
2621         r = -EFAULT;
2622         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2623                 goto out;
2624
2625         r = -E2BIG;
2626         if (msrs.nmsrs >= MAX_IO_MSRS)
2627                 goto out;
2628
2629         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2630         entries = memdup_user(user_msrs->entries, size);
2631         if (IS_ERR(entries)) {
2632                 r = PTR_ERR(entries);
2633                 goto out;
2634         }
2635
2636         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2637         if (r < 0)
2638                 goto out_free;
2639
2640         r = -EFAULT;
2641         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2642                 goto out_free;
2643
2644         r = n;
2645
2646 out_free:
2647         kfree(entries);
2648 out:
2649         return r;
2650 }
2651
2652 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2653 {
2654         int r;
2655
2656         switch (ext) {
2657         case KVM_CAP_IRQCHIP:
2658         case KVM_CAP_HLT:
2659         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2660         case KVM_CAP_SET_TSS_ADDR:
2661         case KVM_CAP_EXT_CPUID:
2662         case KVM_CAP_EXT_EMUL_CPUID:
2663         case KVM_CAP_CLOCKSOURCE:
2664         case KVM_CAP_PIT:
2665         case KVM_CAP_NOP_IO_DELAY:
2666         case KVM_CAP_MP_STATE:
2667         case KVM_CAP_SYNC_MMU:
2668         case KVM_CAP_USER_NMI:
2669         case KVM_CAP_REINJECT_CONTROL:
2670         case KVM_CAP_IRQ_INJECT_STATUS:
2671         case KVM_CAP_IOEVENTFD:
2672         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2673         case KVM_CAP_PIT2:
2674         case KVM_CAP_PIT_STATE2:
2675         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2676         case KVM_CAP_XEN_HVM:
2677         case KVM_CAP_VCPU_EVENTS:
2678         case KVM_CAP_HYPERV:
2679         case KVM_CAP_HYPERV_VAPIC:
2680         case KVM_CAP_HYPERV_SPIN:
2681         case KVM_CAP_HYPERV_SYNIC:
2682         case KVM_CAP_HYPERV_SYNIC2:
2683         case KVM_CAP_HYPERV_VP_INDEX:
2684         case KVM_CAP_PCI_SEGMENT:
2685         case KVM_CAP_DEBUGREGS:
2686         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2687         case KVM_CAP_XSAVE:
2688         case KVM_CAP_ASYNC_PF:
2689         case KVM_CAP_GET_TSC_KHZ:
2690         case KVM_CAP_KVMCLOCK_CTRL:
2691         case KVM_CAP_READONLY_MEM:
2692         case KVM_CAP_HYPERV_TIME:
2693         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2694         case KVM_CAP_TSC_DEADLINE_TIMER:
2695         case KVM_CAP_ENABLE_CAP_VM:
2696         case KVM_CAP_DISABLE_QUIRKS:
2697         case KVM_CAP_SET_BOOT_CPU_ID:
2698         case KVM_CAP_SPLIT_IRQCHIP:
2699         case KVM_CAP_IMMEDIATE_EXIT:
2700                 r = 1;
2701                 break;
2702         case KVM_CAP_ADJUST_CLOCK:
2703                 r = KVM_CLOCK_TSC_STABLE;
2704                 break;
2705         case KVM_CAP_X86_GUEST_MWAIT:
2706                 r = kvm_mwait_in_guest();
2707                 break;
2708         case KVM_CAP_X86_SMM:
2709                 /* SMBASE is usually relocated above 1M on modern chipsets,
2710                  * and SMM handlers might indeed rely on 4G segment limits,
2711                  * so do not report SMM to be available if real mode is
2712                  * emulated via vm86 mode.  Still, do not go to great lengths
2713                  * to avoid userspace's usage of the feature, because it is a
2714                  * fringe case that is not enabled except via specific settings
2715                  * of the module parameters.
2716                  */
2717                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2718                 break;
2719         case KVM_CAP_VAPIC:
2720                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2721                 break;
2722         case KVM_CAP_NR_VCPUS:
2723                 r = KVM_SOFT_MAX_VCPUS;
2724                 break;
2725         case KVM_CAP_MAX_VCPUS:
2726                 r = KVM_MAX_VCPUS;
2727                 break;
2728         case KVM_CAP_NR_MEMSLOTS:
2729                 r = KVM_USER_MEM_SLOTS;
2730                 break;
2731         case KVM_CAP_PV_MMU:    /* obsolete */
2732                 r = 0;
2733                 break;
2734         case KVM_CAP_MCE:
2735                 r = KVM_MAX_MCE_BANKS;
2736                 break;
2737         case KVM_CAP_XCRS:
2738                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2739                 break;
2740         case KVM_CAP_TSC_CONTROL:
2741                 r = kvm_has_tsc_control;
2742                 break;
2743         case KVM_CAP_X2APIC_API:
2744                 r = KVM_X2APIC_API_VALID_FLAGS;
2745                 break;
2746         default:
2747                 r = 0;
2748                 break;
2749         }
2750         return r;
2751
2752 }
2753
2754 long kvm_arch_dev_ioctl(struct file *filp,
2755                         unsigned int ioctl, unsigned long arg)
2756 {
2757         void __user *argp = (void __user *)arg;
2758         long r;
2759
2760         switch (ioctl) {
2761         case KVM_GET_MSR_INDEX_LIST: {
2762                 struct kvm_msr_list __user *user_msr_list = argp;
2763                 struct kvm_msr_list msr_list;
2764                 unsigned n;
2765
2766                 r = -EFAULT;
2767                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2768                         goto out;
2769                 n = msr_list.nmsrs;
2770                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2771                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2772                         goto out;
2773                 r = -E2BIG;
2774                 if (n < msr_list.nmsrs)
2775                         goto out;
2776                 r = -EFAULT;
2777                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2778                                  num_msrs_to_save * sizeof(u32)))
2779                         goto out;
2780                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2781                                  &emulated_msrs,
2782                                  num_emulated_msrs * sizeof(u32)))
2783                         goto out;
2784                 r = 0;
2785                 break;
2786         }
2787         case KVM_GET_SUPPORTED_CPUID:
2788         case KVM_GET_EMULATED_CPUID: {
2789                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2790                 struct kvm_cpuid2 cpuid;
2791
2792                 r = -EFAULT;
2793                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2794                         goto out;
2795
2796                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2797                                             ioctl);
2798                 if (r)
2799                         goto out;
2800
2801                 r = -EFAULT;
2802                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2803                         goto out;
2804                 r = 0;
2805                 break;
2806         }
2807         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2808                 r = -EFAULT;
2809                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2810                                  sizeof(kvm_mce_cap_supported)))
2811                         goto out;
2812                 r = 0;
2813                 break;
2814         }
2815         default:
2816                 r = -EINVAL;
2817         }
2818 out:
2819         return r;
2820 }
2821
2822 static void wbinvd_ipi(void *garbage)
2823 {
2824         wbinvd();
2825 }
2826
2827 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2828 {
2829         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2830 }
2831
2832 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2833 {
2834         /* Address WBINVD may be executed by guest */
2835         if (need_emulate_wbinvd(vcpu)) {
2836                 if (kvm_x86_ops->has_wbinvd_exit())
2837                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2838                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2839                         smp_call_function_single(vcpu->cpu,
2840                                         wbinvd_ipi, NULL, 1);
2841         }
2842
2843         kvm_x86_ops->vcpu_load(vcpu, cpu);
2844
2845         /* Apply any externally detected TSC adjustments (due to suspend) */
2846         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2847                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2848                 vcpu->arch.tsc_offset_adjustment = 0;
2849                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2850         }
2851
2852         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2853                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2854                                 rdtsc() - vcpu->arch.last_host_tsc;
2855                 if (tsc_delta < 0)
2856                         mark_tsc_unstable("KVM discovered backwards TSC");
2857
2858                 if (check_tsc_unstable()) {
2859                         u64 offset = kvm_compute_tsc_offset(vcpu,
2860                                                 vcpu->arch.last_guest_tsc);
2861                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2862                         vcpu->arch.tsc_catchup = 1;
2863                 }
2864
2865                 if (kvm_lapic_hv_timer_in_use(vcpu))
2866                         kvm_lapic_restart_hv_timer(vcpu);
2867
2868                 /*
2869                  * On a host with synchronized TSC, there is no need to update
2870                  * kvmclock on vcpu->cpu migration
2871                  */
2872                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2873                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2874                 if (vcpu->cpu != cpu)
2875                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2876                 vcpu->cpu = cpu;
2877         }
2878
2879         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2880 }
2881
2882 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2883 {
2884         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2885                 return;
2886
2887         vcpu->arch.st.steal.preempted = 1;
2888
2889         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2890                         &vcpu->arch.st.steal.preempted,
2891                         offsetof(struct kvm_steal_time, preempted),
2892                         sizeof(vcpu->arch.st.steal.preempted));
2893 }
2894
2895 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2896 {
2897         int idx;
2898
2899         if (vcpu->preempted)
2900                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2901
2902         /*
2903          * Disable page faults because we're in atomic context here.
2904          * kvm_write_guest_offset_cached() would call might_fault()
2905          * that relies on pagefault_disable() to tell if there's a
2906          * bug. NOTE: the write to guest memory may not go through if
2907          * during postcopy live migration or if there's heavy guest
2908          * paging.
2909          */
2910         pagefault_disable();
2911         /*
2912          * kvm_memslots() will be called by
2913          * kvm_write_guest_offset_cached() so take the srcu lock.
2914          */
2915         idx = srcu_read_lock(&vcpu->kvm->srcu);
2916         kvm_steal_time_set_preempted(vcpu);
2917         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2918         pagefault_enable();
2919         kvm_x86_ops->vcpu_put(vcpu);
2920         kvm_put_guest_fpu(vcpu);
2921         vcpu->arch.last_host_tsc = rdtsc();
2922 }
2923
2924 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2925                                     struct kvm_lapic_state *s)
2926 {
2927         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2928                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2929
2930         return kvm_apic_get_state(vcpu, s);
2931 }
2932
2933 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2934                                     struct kvm_lapic_state *s)
2935 {
2936         int r;
2937
2938         r = kvm_apic_set_state(vcpu, s);
2939         if (r)
2940                 return r;
2941         update_cr8_intercept(vcpu);
2942
2943         return 0;
2944 }
2945
2946 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2947 {
2948         return (!lapic_in_kernel(vcpu) ||
2949                 kvm_apic_accept_pic_intr(vcpu));
2950 }
2951
2952 /*
2953  * if userspace requested an interrupt window, check that the
2954  * interrupt window is open.
2955  *
2956  * No need to exit to userspace if we already have an interrupt queued.
2957  */
2958 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2959 {
2960         return kvm_arch_interrupt_allowed(vcpu) &&
2961                 !kvm_cpu_has_interrupt(vcpu) &&
2962                 !kvm_event_needs_reinjection(vcpu) &&
2963                 kvm_cpu_accept_dm_intr(vcpu);
2964 }
2965
2966 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2967                                     struct kvm_interrupt *irq)
2968 {
2969         if (irq->irq >= KVM_NR_INTERRUPTS)
2970                 return -EINVAL;
2971
2972         if (!irqchip_in_kernel(vcpu->kvm)) {
2973                 kvm_queue_interrupt(vcpu, irq->irq, false);
2974                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2975                 return 0;
2976         }
2977
2978         /*
2979          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2980          * fail for in-kernel 8259.
2981          */
2982         if (pic_in_kernel(vcpu->kvm))
2983                 return -ENXIO;
2984
2985         if (vcpu->arch.pending_external_vector != -1)
2986                 return -EEXIST;
2987
2988         vcpu->arch.pending_external_vector = irq->irq;
2989         kvm_make_request(KVM_REQ_EVENT, vcpu);
2990         return 0;
2991 }
2992
2993 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2994 {
2995         kvm_inject_nmi(vcpu);
2996
2997         return 0;
2998 }
2999
3000 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3001 {
3002         kvm_make_request(KVM_REQ_SMI, vcpu);
3003
3004         return 0;
3005 }
3006
3007 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3008                                            struct kvm_tpr_access_ctl *tac)
3009 {
3010         if (tac->flags)
3011                 return -EINVAL;
3012         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3013         return 0;
3014 }
3015
3016 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3017                                         u64 mcg_cap)
3018 {
3019         int r;
3020         unsigned bank_num = mcg_cap & 0xff, bank;
3021
3022         r = -EINVAL;
3023         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3024                 goto out;
3025         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3026                 goto out;
3027         r = 0;
3028         vcpu->arch.mcg_cap = mcg_cap;
3029         /* Init IA32_MCG_CTL to all 1s */
3030         if (mcg_cap & MCG_CTL_P)
3031                 vcpu->arch.mcg_ctl = ~(u64)0;
3032         /* Init IA32_MCi_CTL to all 1s */
3033         for (bank = 0; bank < bank_num; bank++)
3034                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3035
3036         if (kvm_x86_ops->setup_mce)
3037                 kvm_x86_ops->setup_mce(vcpu);
3038 out:
3039         return r;
3040 }
3041
3042 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3043                                       struct kvm_x86_mce *mce)
3044 {
3045         u64 mcg_cap = vcpu->arch.mcg_cap;
3046         unsigned bank_num = mcg_cap & 0xff;
3047         u64 *banks = vcpu->arch.mce_banks;
3048
3049         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3050                 return -EINVAL;
3051         /*
3052          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3053          * reporting is disabled
3054          */
3055         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3056             vcpu->arch.mcg_ctl != ~(u64)0)
3057                 return 0;
3058         banks += 4 * mce->bank;
3059         /*
3060          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3061          * reporting is disabled for the bank
3062          */
3063         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3064                 return 0;
3065         if (mce->status & MCI_STATUS_UC) {
3066                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3067                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3068                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3069                         return 0;
3070                 }
3071                 if (banks[1] & MCI_STATUS_VAL)
3072                         mce->status |= MCI_STATUS_OVER;
3073                 banks[2] = mce->addr;
3074                 banks[3] = mce->misc;
3075                 vcpu->arch.mcg_status = mce->mcg_status;
3076                 banks[1] = mce->status;
3077                 kvm_queue_exception(vcpu, MC_VECTOR);
3078         } else if (!(banks[1] & MCI_STATUS_VAL)
3079                    || !(banks[1] & MCI_STATUS_UC)) {
3080                 if (banks[1] & MCI_STATUS_VAL)
3081                         mce->status |= MCI_STATUS_OVER;
3082                 banks[2] = mce->addr;
3083                 banks[3] = mce->misc;
3084                 banks[1] = mce->status;
3085         } else
3086                 banks[1] |= MCI_STATUS_OVER;
3087         return 0;
3088 }
3089
3090 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3091                                                struct kvm_vcpu_events *events)
3092 {
3093         process_nmi(vcpu);
3094         /*
3095          * FIXME: pass injected and pending separately.  This is only
3096          * needed for nested virtualization, whose state cannot be
3097          * migrated yet.  For now we can combine them.
3098          */
3099         events->exception.injected =
3100                 (vcpu->arch.exception.pending ||
3101                  vcpu->arch.exception.injected) &&
3102                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3103         events->exception.nr = vcpu->arch.exception.nr;
3104         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3105         events->exception.pad = 0;
3106         events->exception.error_code = vcpu->arch.exception.error_code;
3107
3108         events->interrupt.injected =
3109                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3110         events->interrupt.nr = vcpu->arch.interrupt.nr;
3111         events->interrupt.soft = 0;
3112         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3113
3114         events->nmi.injected = vcpu->arch.nmi_injected;
3115         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3116         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3117         events->nmi.pad = 0;
3118
3119         events->sipi_vector = 0; /* never valid when reporting to user space */
3120
3121         events->smi.smm = is_smm(vcpu);
3122         events->smi.pending = vcpu->arch.smi_pending;
3123         events->smi.smm_inside_nmi =
3124                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3125         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3126
3127         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3128                          | KVM_VCPUEVENT_VALID_SHADOW
3129                          | KVM_VCPUEVENT_VALID_SMM);
3130         memset(&events->reserved, 0, sizeof(events->reserved));
3131 }
3132
3133 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3134
3135 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3136                                               struct kvm_vcpu_events *events)
3137 {
3138         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3139                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3140                               | KVM_VCPUEVENT_VALID_SHADOW
3141                               | KVM_VCPUEVENT_VALID_SMM))
3142                 return -EINVAL;
3143
3144         if (events->exception.injected &&
3145             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3146              is_guest_mode(vcpu)))
3147                 return -EINVAL;
3148
3149         /* INITs are latched while in SMM */
3150         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3151             (events->smi.smm || events->smi.pending) &&
3152             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3153                 return -EINVAL;
3154
3155         process_nmi(vcpu);
3156         vcpu->arch.exception.injected = false;
3157         vcpu->arch.exception.pending = events->exception.injected;
3158         vcpu->arch.exception.nr = events->exception.nr;
3159         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3160         vcpu->arch.exception.error_code = events->exception.error_code;
3161
3162         vcpu->arch.interrupt.pending = events->interrupt.injected;
3163         vcpu->arch.interrupt.nr = events->interrupt.nr;
3164         vcpu->arch.interrupt.soft = events->interrupt.soft;
3165         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3166                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3167                                                   events->interrupt.shadow);
3168
3169         vcpu->arch.nmi_injected = events->nmi.injected;
3170         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3171                 vcpu->arch.nmi_pending = events->nmi.pending;
3172         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3173
3174         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3175             lapic_in_kernel(vcpu))
3176                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3177
3178         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3179                 u32 hflags = vcpu->arch.hflags;
3180                 if (events->smi.smm)
3181                         hflags |= HF_SMM_MASK;
3182                 else
3183                         hflags &= ~HF_SMM_MASK;
3184                 kvm_set_hflags(vcpu, hflags);
3185
3186                 vcpu->arch.smi_pending = events->smi.pending;
3187
3188                 if (events->smi.smm) {
3189                         if (events->smi.smm_inside_nmi)
3190                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3191                         else
3192                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3193                         if (lapic_in_kernel(vcpu)) {
3194                                 if (events->smi.latched_init)
3195                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3196                                 else
3197                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3198                         }
3199                 }
3200         }
3201
3202         kvm_make_request(KVM_REQ_EVENT, vcpu);
3203
3204         return 0;
3205 }
3206
3207 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3208                                              struct kvm_debugregs *dbgregs)
3209 {
3210         unsigned long val;
3211
3212         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3213         kvm_get_dr(vcpu, 6, &val);
3214         dbgregs->dr6 = val;
3215         dbgregs->dr7 = vcpu->arch.dr7;
3216         dbgregs->flags = 0;
3217         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3218 }
3219
3220 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3221                                             struct kvm_debugregs *dbgregs)
3222 {
3223         if (dbgregs->flags)
3224                 return -EINVAL;
3225
3226         if (dbgregs->dr6 & ~0xffffffffull)
3227                 return -EINVAL;
3228         if (dbgregs->dr7 & ~0xffffffffull)
3229                 return -EINVAL;
3230
3231         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3232         kvm_update_dr0123(vcpu);
3233         vcpu->arch.dr6 = dbgregs->dr6;
3234         kvm_update_dr6(vcpu);
3235         vcpu->arch.dr7 = dbgregs->dr7;
3236         kvm_update_dr7(vcpu);
3237
3238         return 0;
3239 }
3240
3241 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3242
3243 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3244 {
3245         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3246         u64 xstate_bv = xsave->header.xfeatures;
3247         u64 valid;
3248
3249         /*
3250          * Copy legacy XSAVE area, to avoid complications with CPUID
3251          * leaves 0 and 1 in the loop below.
3252          */
3253         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3254
3255         /* Set XSTATE_BV */
3256         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3257         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3258
3259         /*
3260          * Copy each region from the possibly compacted offset to the
3261          * non-compacted offset.
3262          */
3263         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3264         while (valid) {
3265                 u64 feature = valid & -valid;
3266                 int index = fls64(feature) - 1;
3267                 void *src = get_xsave_addr(xsave, feature);
3268
3269                 if (src) {
3270                         u32 size, offset, ecx, edx;
3271                         cpuid_count(XSTATE_CPUID, index,
3272                                     &size, &offset, &ecx, &edx);
3273                         if (feature == XFEATURE_MASK_PKRU)
3274                                 memcpy(dest + offset, &vcpu->arch.pkru,
3275                                        sizeof(vcpu->arch.pkru));
3276                         else
3277                                 memcpy(dest + offset, src, size);
3278
3279                 }
3280
3281                 valid -= feature;
3282         }
3283 }
3284
3285 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3286 {
3287         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3288         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3289         u64 valid;
3290
3291         /*
3292          * Copy legacy XSAVE area, to avoid complications with CPUID
3293          * leaves 0 and 1 in the loop below.
3294          */
3295         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3296
3297         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3298         xsave->header.xfeatures = xstate_bv;
3299         if (boot_cpu_has(X86_FEATURE_XSAVES))
3300                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3301
3302         /*
3303          * Copy each region from the non-compacted offset to the
3304          * possibly compacted offset.
3305          */
3306         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3307         while (valid) {
3308                 u64 feature = valid & -valid;
3309                 int index = fls64(feature) - 1;
3310                 void *dest = get_xsave_addr(xsave, feature);
3311
3312                 if (dest) {
3313                         u32 size, offset, ecx, edx;
3314                         cpuid_count(XSTATE_CPUID, index,
3315                                     &size, &offset, &ecx, &edx);
3316                         if (feature == XFEATURE_MASK_PKRU)
3317                                 memcpy(&vcpu->arch.pkru, src + offset,
3318                                        sizeof(vcpu->arch.pkru));
3319                         else
3320                                 memcpy(dest, src + offset, size);
3321                 }
3322
3323                 valid -= feature;
3324         }
3325 }
3326
3327 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3328                                          struct kvm_xsave *guest_xsave)
3329 {
3330         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3331                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3332                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3333         } else {
3334                 memcpy(guest_xsave->region,
3335                         &vcpu->arch.guest_fpu.state.fxsave,
3336                         sizeof(struct fxregs_state));
3337                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3338                         XFEATURE_MASK_FPSSE;
3339         }
3340 }
3341
3342 #define XSAVE_MXCSR_OFFSET 24
3343
3344 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3345                                         struct kvm_xsave *guest_xsave)
3346 {
3347         u64 xstate_bv =
3348                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3349         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3350
3351         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3352                 /*
3353                  * Here we allow setting states that are not present in
3354                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3355                  * with old userspace.
3356                  */
3357                 if (xstate_bv & ~kvm_supported_xcr0() ||
3358                         mxcsr & ~mxcsr_feature_mask)
3359                         return -EINVAL;
3360                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3361         } else {
3362                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3363                         mxcsr & ~mxcsr_feature_mask)
3364                         return -EINVAL;
3365                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3366                         guest_xsave->region, sizeof(struct fxregs_state));
3367         }
3368         return 0;
3369 }
3370
3371 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3372                                         struct kvm_xcrs *guest_xcrs)
3373 {
3374         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3375                 guest_xcrs->nr_xcrs = 0;
3376                 return;
3377         }
3378
3379         guest_xcrs->nr_xcrs = 1;
3380         guest_xcrs->flags = 0;
3381         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3382         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3383 }
3384
3385 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3386                                        struct kvm_xcrs *guest_xcrs)
3387 {
3388         int i, r = 0;
3389
3390         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3391                 return -EINVAL;
3392
3393         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3394                 return -EINVAL;
3395
3396         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3397                 /* Only support XCR0 currently */
3398                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3399                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3400                                 guest_xcrs->xcrs[i].value);
3401                         break;
3402                 }
3403         if (r)
3404                 r = -EINVAL;
3405         return r;
3406 }
3407
3408 /*
3409  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3410  * stopped by the hypervisor.  This function will be called from the host only.
3411  * EINVAL is returned when the host attempts to set the flag for a guest that
3412  * does not support pv clocks.
3413  */
3414 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3415 {
3416         if (!vcpu->arch.pv_time_enabled)
3417                 return -EINVAL;
3418         vcpu->arch.pvclock_set_guest_stopped_request = true;
3419         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3420         return 0;
3421 }
3422
3423 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3424                                      struct kvm_enable_cap *cap)
3425 {
3426         if (cap->flags)
3427                 return -EINVAL;
3428
3429         switch (cap->cap) {
3430         case KVM_CAP_HYPERV_SYNIC2:
3431                 if (cap->args[0])
3432                         return -EINVAL;
3433         case KVM_CAP_HYPERV_SYNIC:
3434                 if (!irqchip_in_kernel(vcpu->kvm))
3435                         return -EINVAL;
3436                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3437                                              KVM_CAP_HYPERV_SYNIC2);
3438         default:
3439                 return -EINVAL;
3440         }
3441 }
3442
3443 long kvm_arch_vcpu_ioctl(struct file *filp,
3444                          unsigned int ioctl, unsigned long arg)
3445 {
3446         struct kvm_vcpu *vcpu = filp->private_data;
3447         void __user *argp = (void __user *)arg;
3448         int r;
3449         union {
3450                 struct kvm_lapic_state *lapic;
3451                 struct kvm_xsave *xsave;
3452                 struct kvm_xcrs *xcrs;
3453                 void *buffer;
3454         } u;
3455
3456         u.buffer = NULL;
3457         switch (ioctl) {
3458         case KVM_GET_LAPIC: {
3459                 r = -EINVAL;
3460                 if (!lapic_in_kernel(vcpu))
3461                         goto out;
3462                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3463
3464                 r = -ENOMEM;
3465                 if (!u.lapic)
3466                         goto out;
3467                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3468                 if (r)
3469                         goto out;
3470                 r = -EFAULT;
3471                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3472                         goto out;
3473                 r = 0;
3474                 break;
3475         }
3476         case KVM_SET_LAPIC: {
3477                 r = -EINVAL;
3478                 if (!lapic_in_kernel(vcpu))
3479                         goto out;
3480                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3481                 if (IS_ERR(u.lapic))
3482                         return PTR_ERR(u.lapic);
3483
3484                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3485                 break;
3486         }
3487         case KVM_INTERRUPT: {
3488                 struct kvm_interrupt irq;
3489
3490                 r = -EFAULT;
3491                 if (copy_from_user(&irq, argp, sizeof irq))
3492                         goto out;
3493                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3494                 break;
3495         }
3496         case KVM_NMI: {
3497                 r = kvm_vcpu_ioctl_nmi(vcpu);
3498                 break;
3499         }
3500         case KVM_SMI: {
3501                 r = kvm_vcpu_ioctl_smi(vcpu);
3502                 break;
3503         }
3504         case KVM_SET_CPUID: {
3505                 struct kvm_cpuid __user *cpuid_arg = argp;
3506                 struct kvm_cpuid cpuid;
3507
3508                 r = -EFAULT;
3509                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3510                         goto out;
3511                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3512                 break;
3513         }
3514         case KVM_SET_CPUID2: {
3515                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3516                 struct kvm_cpuid2 cpuid;
3517
3518                 r = -EFAULT;
3519                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3520                         goto out;
3521                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3522                                               cpuid_arg->entries);
3523                 break;
3524         }
3525         case KVM_GET_CPUID2: {
3526                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3527                 struct kvm_cpuid2 cpuid;
3528
3529                 r = -EFAULT;
3530                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3531                         goto out;
3532                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3533                                               cpuid_arg->entries);
3534                 if (r)
3535                         goto out;
3536                 r = -EFAULT;
3537                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3538                         goto out;
3539                 r = 0;
3540                 break;
3541         }
3542         case KVM_GET_MSRS:
3543                 r = msr_io(vcpu, argp, do_get_msr, 1);
3544                 break;
3545         case KVM_SET_MSRS:
3546                 r = msr_io(vcpu, argp, do_set_msr, 0);
3547                 break;
3548         case KVM_TPR_ACCESS_REPORTING: {
3549                 struct kvm_tpr_access_ctl tac;
3550
3551                 r = -EFAULT;
3552                 if (copy_from_user(&tac, argp, sizeof tac))
3553                         goto out;
3554                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3555                 if (r)
3556                         goto out;
3557                 r = -EFAULT;
3558                 if (copy_to_user(argp, &tac, sizeof tac))
3559                         goto out;
3560                 r = 0;
3561                 break;
3562         };
3563         case KVM_SET_VAPIC_ADDR: {
3564                 struct kvm_vapic_addr va;
3565                 int idx;
3566
3567                 r = -EINVAL;
3568                 if (!lapic_in_kernel(vcpu))
3569                         goto out;
3570                 r = -EFAULT;
3571                 if (copy_from_user(&va, argp, sizeof va))
3572                         goto out;
3573                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3574                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3575                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3576                 break;
3577         }
3578         case KVM_X86_SETUP_MCE: {
3579                 u64 mcg_cap;
3580
3581                 r = -EFAULT;
3582                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3583                         goto out;
3584                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3585                 break;
3586         }
3587         case KVM_X86_SET_MCE: {
3588                 struct kvm_x86_mce mce;
3589
3590                 r = -EFAULT;
3591                 if (copy_from_user(&mce, argp, sizeof mce))
3592                         goto out;
3593                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3594                 break;
3595         }
3596         case KVM_GET_VCPU_EVENTS: {
3597                 struct kvm_vcpu_events events;
3598
3599                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3600
3601                 r = -EFAULT;
3602                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3603                         break;
3604                 r = 0;
3605                 break;
3606         }
3607         case KVM_SET_VCPU_EVENTS: {
3608                 struct kvm_vcpu_events events;
3609
3610                 r = -EFAULT;
3611                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3612                         break;
3613
3614                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3615                 break;
3616         }
3617         case KVM_GET_DEBUGREGS: {
3618                 struct kvm_debugregs dbgregs;
3619
3620                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3621
3622                 r = -EFAULT;
3623                 if (copy_to_user(argp, &dbgregs,
3624                                  sizeof(struct kvm_debugregs)))
3625                         break;
3626                 r = 0;
3627                 break;
3628         }
3629         case KVM_SET_DEBUGREGS: {
3630                 struct kvm_debugregs dbgregs;
3631
3632                 r = -EFAULT;
3633                 if (copy_from_user(&dbgregs, argp,
3634                                    sizeof(struct kvm_debugregs)))
3635                         break;
3636
3637                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3638                 break;
3639         }
3640         case KVM_GET_XSAVE: {
3641                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3642                 r = -ENOMEM;
3643                 if (!u.xsave)
3644                         break;
3645
3646                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3647
3648                 r = -EFAULT;
3649                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3650                         break;
3651                 r = 0;
3652                 break;
3653         }
3654         case KVM_SET_XSAVE: {
3655                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3656                 if (IS_ERR(u.xsave))
3657                         return PTR_ERR(u.xsave);
3658
3659                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3660                 break;
3661         }
3662         case KVM_GET_XCRS: {
3663                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3664                 r = -ENOMEM;
3665                 if (!u.xcrs)
3666                         break;
3667
3668                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3669
3670                 r = -EFAULT;
3671                 if (copy_to_user(argp, u.xcrs,
3672                                  sizeof(struct kvm_xcrs)))
3673                         break;
3674                 r = 0;
3675                 break;
3676         }
3677         case KVM_SET_XCRS: {
3678                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3679                 if (IS_ERR(u.xcrs))
3680                         return PTR_ERR(u.xcrs);
3681
3682                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3683                 break;
3684         }
3685         case KVM_SET_TSC_KHZ: {
3686                 u32 user_tsc_khz;
3687
3688                 r = -EINVAL;
3689                 user_tsc_khz = (u32)arg;
3690
3691                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3692                         goto out;
3693
3694                 if (user_tsc_khz == 0)
3695                         user_tsc_khz = tsc_khz;
3696
3697                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3698                         r = 0;
3699
3700                 goto out;
3701         }
3702         case KVM_GET_TSC_KHZ: {
3703                 r = vcpu->arch.virtual_tsc_khz;
3704                 goto out;
3705         }
3706         case KVM_KVMCLOCK_CTRL: {
3707                 r = kvm_set_guest_paused(vcpu);
3708                 goto out;
3709         }
3710         case KVM_ENABLE_CAP: {
3711                 struct kvm_enable_cap cap;
3712
3713                 r = -EFAULT;
3714                 if (copy_from_user(&cap, argp, sizeof(cap)))
3715                         goto out;
3716                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3717                 break;
3718         }
3719         default:
3720                 r = -EINVAL;
3721         }
3722 out:
3723         kfree(u.buffer);
3724         return r;
3725 }
3726
3727 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3728 {
3729         return VM_FAULT_SIGBUS;
3730 }
3731
3732 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3733 {
3734         int ret;
3735
3736         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3737                 return -EINVAL;
3738         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3739         return ret;
3740 }
3741
3742 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3743                                               u64 ident_addr)
3744 {
3745         kvm->arch.ept_identity_map_addr = ident_addr;
3746         return 0;
3747 }
3748
3749 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3750                                           u32 kvm_nr_mmu_pages)
3751 {
3752         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3753                 return -EINVAL;
3754
3755         mutex_lock(&kvm->slots_lock);
3756
3757         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3758         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3759
3760         mutex_unlock(&kvm->slots_lock);
3761         return 0;
3762 }
3763
3764 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3765 {
3766         return kvm->arch.n_max_mmu_pages;
3767 }
3768
3769 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3770 {
3771         struct kvm_pic *pic = kvm->arch.vpic;
3772         int r;
3773
3774         r = 0;
3775         switch (chip->chip_id) {
3776         case KVM_IRQCHIP_PIC_MASTER:
3777                 memcpy(&chip->chip.pic, &pic->pics[0],
3778                         sizeof(struct kvm_pic_state));
3779                 break;
3780         case KVM_IRQCHIP_PIC_SLAVE:
3781                 memcpy(&chip->chip.pic, &pic->pics[1],
3782                         sizeof(struct kvm_pic_state));
3783                 break;
3784         case KVM_IRQCHIP_IOAPIC:
3785                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3786                 break;
3787         default:
3788                 r = -EINVAL;
3789                 break;
3790         }
3791         return r;
3792 }
3793
3794 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3795 {
3796         struct kvm_pic *pic = kvm->arch.vpic;
3797         int r;
3798
3799         r = 0;
3800         switch (chip->chip_id) {
3801         case KVM_IRQCHIP_PIC_MASTER:
3802                 spin_lock(&pic->lock);
3803                 memcpy(&pic->pics[0], &chip->chip.pic,
3804                         sizeof(struct kvm_pic_state));
3805                 spin_unlock(&pic->lock);
3806                 break;
3807         case KVM_IRQCHIP_PIC_SLAVE:
3808                 spin_lock(&pic->lock);
3809                 memcpy(&pic->pics[1], &chip->chip.pic,
3810                         sizeof(struct kvm_pic_state));
3811                 spin_unlock(&pic->lock);
3812                 break;
3813         case KVM_IRQCHIP_IOAPIC:
3814                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3815                 break;
3816         default:
3817                 r = -EINVAL;
3818                 break;
3819         }
3820         kvm_pic_update_irq(pic);
3821         return r;
3822 }
3823
3824 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3825 {
3826         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3827
3828         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3829
3830         mutex_lock(&kps->lock);
3831         memcpy(ps, &kps->channels, sizeof(*ps));
3832         mutex_unlock(&kps->lock);
3833         return 0;
3834 }
3835
3836 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3837 {
3838         int i;
3839         struct kvm_pit *pit = kvm->arch.vpit;
3840
3841         mutex_lock(&pit->pit_state.lock);
3842         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3843         for (i = 0; i < 3; i++)
3844                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3845         mutex_unlock(&pit->pit_state.lock);
3846         return 0;
3847 }
3848
3849 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3850 {
3851         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3852         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3853                 sizeof(ps->channels));
3854         ps->flags = kvm->arch.vpit->pit_state.flags;
3855         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3856         memset(&ps->reserved, 0, sizeof(ps->reserved));
3857         return 0;
3858 }
3859
3860 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3861 {
3862         int start = 0;
3863         int i;
3864         u32 prev_legacy, cur_legacy;
3865         struct kvm_pit *pit = kvm->arch.vpit;
3866
3867         mutex_lock(&pit->pit_state.lock);
3868         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3869         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3870         if (!prev_legacy && cur_legacy)
3871                 start = 1;
3872         memcpy(&pit->pit_state.channels, &ps->channels,
3873                sizeof(pit->pit_state.channels));
3874         pit->pit_state.flags = ps->flags;
3875         for (i = 0; i < 3; i++)
3876                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3877                                    start && i == 0);
3878         mutex_unlock(&pit->pit_state.lock);
3879         return 0;
3880 }
3881
3882 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3883                                  struct kvm_reinject_control *control)
3884 {
3885         struct kvm_pit *pit = kvm->arch.vpit;
3886
3887         if (!pit)
3888                 return -ENXIO;
3889
3890         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3891          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3892          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3893          */
3894         mutex_lock(&pit->pit_state.lock);
3895         kvm_pit_set_reinject(pit, control->pit_reinject);
3896         mutex_unlock(&pit->pit_state.lock);
3897
3898         return 0;
3899 }
3900
3901 /**
3902  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3903  * @kvm: kvm instance
3904  * @log: slot id and address to which we copy the log
3905  *
3906  * Steps 1-4 below provide general overview of dirty page logging. See
3907  * kvm_get_dirty_log_protect() function description for additional details.
3908  *
3909  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3910  * always flush the TLB (step 4) even if previous step failed  and the dirty
3911  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3912  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3913  * writes will be marked dirty for next log read.
3914  *
3915  *   1. Take a snapshot of the bit and clear it if needed.
3916  *   2. Write protect the corresponding page.
3917  *   3. Copy the snapshot to the userspace.
3918  *   4. Flush TLB's if needed.
3919  */
3920 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3921 {
3922         bool is_dirty = false;
3923         int r;
3924
3925         mutex_lock(&kvm->slots_lock);
3926
3927         /*
3928          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3929          */
3930         if (kvm_x86_ops->flush_log_dirty)
3931                 kvm_x86_ops->flush_log_dirty(kvm);
3932
3933         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3934
3935         /*
3936          * All the TLBs can be flushed out of mmu lock, see the comments in
3937          * kvm_mmu_slot_remove_write_access().
3938          */
3939         lockdep_assert_held(&kvm->slots_lock);
3940         if (is_dirty)
3941                 kvm_flush_remote_tlbs(kvm);
3942
3943         mutex_unlock(&kvm->slots_lock);
3944         return r;
3945 }
3946
3947 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3948                         bool line_status)
3949 {
3950         if (!irqchip_in_kernel(kvm))
3951                 return -ENXIO;
3952
3953         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3954                                         irq_event->irq, irq_event->level,
3955                                         line_status);
3956         return 0;
3957 }
3958
3959 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3960                                    struct kvm_enable_cap *cap)
3961 {
3962         int r;
3963
3964         if (cap->flags)
3965                 return -EINVAL;
3966
3967         switch (cap->cap) {
3968         case KVM_CAP_DISABLE_QUIRKS:
3969                 kvm->arch.disabled_quirks = cap->args[0];
3970                 r = 0;
3971                 break;
3972         case KVM_CAP_SPLIT_IRQCHIP: {
3973                 mutex_lock(&kvm->lock);
3974                 r = -EINVAL;
3975                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3976                         goto split_irqchip_unlock;
3977                 r = -EEXIST;
3978                 if (irqchip_in_kernel(kvm))
3979                         goto split_irqchip_unlock;
3980                 if (kvm->created_vcpus)
3981                         goto split_irqchip_unlock;
3982                 r = kvm_setup_empty_irq_routing(kvm);
3983                 if (r)
3984                         goto split_irqchip_unlock;
3985                 /* Pairs with irqchip_in_kernel. */
3986                 smp_wmb();
3987                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3988                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3989                 r = 0;
3990 split_irqchip_unlock:
3991                 mutex_unlock(&kvm->lock);
3992                 break;
3993         }
3994         case KVM_CAP_X2APIC_API:
3995                 r = -EINVAL;
3996                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3997                         break;
3998
3999                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4000                         kvm->arch.x2apic_format = true;
4001                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4002                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4003
4004                 r = 0;
4005                 break;
4006         default:
4007                 r = -EINVAL;
4008                 break;
4009         }
4010         return r;
4011 }
4012
4013 long kvm_arch_vm_ioctl(struct file *filp,
4014                        unsigned int ioctl, unsigned long arg)
4015 {
4016         struct kvm *kvm = filp->private_data;
4017         void __user *argp = (void __user *)arg;
4018         int r = -ENOTTY;
4019         /*
4020          * This union makes it completely explicit to gcc-3.x
4021          * that these two variables' stack usage should be
4022          * combined, not added together.
4023          */
4024         union {
4025                 struct kvm_pit_state ps;
4026                 struct kvm_pit_state2 ps2;
4027                 struct kvm_pit_config pit_config;
4028         } u;
4029
4030         switch (ioctl) {
4031         case KVM_SET_TSS_ADDR:
4032                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4033                 break;
4034         case KVM_SET_IDENTITY_MAP_ADDR: {
4035                 u64 ident_addr;
4036
4037                 r = -EFAULT;
4038                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4039                         goto out;
4040                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4041                 break;
4042         }
4043         case KVM_SET_NR_MMU_PAGES:
4044                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4045                 break;
4046         case KVM_GET_NR_MMU_PAGES:
4047                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4048                 break;
4049         case KVM_CREATE_IRQCHIP: {
4050                 mutex_lock(&kvm->lock);
4051
4052                 r = -EEXIST;
4053                 if (irqchip_in_kernel(kvm))
4054                         goto create_irqchip_unlock;
4055
4056                 r = -EINVAL;
4057                 if (kvm->created_vcpus)
4058                         goto create_irqchip_unlock;
4059
4060                 r = kvm_pic_init(kvm);
4061                 if (r)
4062                         goto create_irqchip_unlock;
4063
4064                 r = kvm_ioapic_init(kvm);
4065                 if (r) {
4066                         kvm_pic_destroy(kvm);
4067                         goto create_irqchip_unlock;
4068                 }
4069
4070                 r = kvm_setup_default_irq_routing(kvm);
4071                 if (r) {
4072                         kvm_ioapic_destroy(kvm);
4073                         kvm_pic_destroy(kvm);
4074                         goto create_irqchip_unlock;
4075                 }
4076                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4077                 smp_wmb();
4078                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4079         create_irqchip_unlock:
4080                 mutex_unlock(&kvm->lock);
4081                 break;
4082         }
4083         case KVM_CREATE_PIT:
4084                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4085                 goto create_pit;
4086         case KVM_CREATE_PIT2:
4087                 r = -EFAULT;
4088                 if (copy_from_user(&u.pit_config, argp,
4089                                    sizeof(struct kvm_pit_config)))
4090                         goto out;
4091         create_pit:
4092                 mutex_lock(&kvm->lock);
4093                 r = -EEXIST;
4094                 if (kvm->arch.vpit)
4095                         goto create_pit_unlock;
4096                 r = -ENOMEM;
4097                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4098                 if (kvm->arch.vpit)
4099                         r = 0;
4100         create_pit_unlock:
4101                 mutex_unlock(&kvm->lock);
4102                 break;
4103         case KVM_GET_IRQCHIP: {
4104                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4105                 struct kvm_irqchip *chip;
4106
4107                 chip = memdup_user(argp, sizeof(*chip));
4108                 if (IS_ERR(chip)) {
4109                         r = PTR_ERR(chip);
4110                         goto out;
4111                 }
4112
4113                 r = -ENXIO;
4114                 if (!irqchip_kernel(kvm))
4115                         goto get_irqchip_out;
4116                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4117                 if (r)
4118                         goto get_irqchip_out;
4119                 r = -EFAULT;
4120                 if (copy_to_user(argp, chip, sizeof *chip))
4121                         goto get_irqchip_out;
4122                 r = 0;
4123         get_irqchip_out:
4124                 kfree(chip);
4125                 break;
4126         }
4127         case KVM_SET_IRQCHIP: {
4128                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4129                 struct kvm_irqchip *chip;
4130
4131                 chip = memdup_user(argp, sizeof(*chip));
4132                 if (IS_ERR(chip)) {
4133                         r = PTR_ERR(chip);
4134                         goto out;
4135                 }
4136
4137                 r = -ENXIO;
4138                 if (!irqchip_kernel(kvm))
4139                         goto set_irqchip_out;
4140                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4141                 if (r)
4142                         goto set_irqchip_out;
4143                 r = 0;
4144         set_irqchip_out:
4145                 kfree(chip);
4146                 break;
4147         }
4148         case KVM_GET_PIT: {
4149                 r = -EFAULT;
4150                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4151                         goto out;
4152                 r = -ENXIO;
4153                 if (!kvm->arch.vpit)
4154                         goto out;
4155                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4156                 if (r)
4157                         goto out;
4158                 r = -EFAULT;
4159                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4160                         goto out;
4161                 r = 0;
4162                 break;
4163         }
4164         case KVM_SET_PIT: {
4165                 r = -EFAULT;
4166                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4167                         goto out;
4168                 r = -ENXIO;
4169                 if (!kvm->arch.vpit)
4170                         goto out;
4171                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4172                 break;
4173         }
4174         case KVM_GET_PIT2: {
4175                 r = -ENXIO;
4176                 if (!kvm->arch.vpit)
4177                         goto out;
4178                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4179                 if (r)
4180                         goto out;
4181                 r = -EFAULT;
4182                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4183                         goto out;
4184                 r = 0;
4185                 break;
4186         }
4187         case KVM_SET_PIT2: {
4188                 r = -EFAULT;
4189                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4190                         goto out;
4191                 r = -ENXIO;
4192                 if (!kvm->arch.vpit)
4193                         goto out;
4194                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4195                 break;
4196         }
4197         case KVM_REINJECT_CONTROL: {
4198                 struct kvm_reinject_control control;
4199                 r =  -EFAULT;
4200                 if (copy_from_user(&control, argp, sizeof(control)))
4201                         goto out;
4202                 r = kvm_vm_ioctl_reinject(kvm, &control);
4203                 break;
4204         }
4205         case KVM_SET_BOOT_CPU_ID:
4206                 r = 0;
4207                 mutex_lock(&kvm->lock);
4208                 if (kvm->created_vcpus)
4209                         r = -EBUSY;
4210                 else
4211                         kvm->arch.bsp_vcpu_id = arg;
4212                 mutex_unlock(&kvm->lock);
4213                 break;
4214         case KVM_XEN_HVM_CONFIG: {
4215                 r = -EFAULT;
4216                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4217                                    sizeof(struct kvm_xen_hvm_config)))
4218                         goto out;
4219                 r = -EINVAL;
4220                 if (kvm->arch.xen_hvm_config.flags)
4221                         goto out;
4222                 r = 0;
4223                 break;
4224         }
4225         case KVM_SET_CLOCK: {
4226                 struct kvm_clock_data user_ns;
4227                 u64 now_ns;
4228
4229                 r = -EFAULT;
4230                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4231                         goto out;
4232
4233                 r = -EINVAL;
4234                 if (user_ns.flags)
4235                         goto out;
4236
4237                 r = 0;
4238                 /*
4239                  * TODO: userspace has to take care of races with VCPU_RUN, so
4240                  * kvm_gen_update_masterclock() can be cut down to locked
4241                  * pvclock_update_vm_gtod_copy().
4242                  */
4243                 kvm_gen_update_masterclock(kvm);
4244                 now_ns = get_kvmclock_ns(kvm);
4245                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4246                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4247                 break;
4248         }
4249         case KVM_GET_CLOCK: {
4250                 struct kvm_clock_data user_ns;
4251                 u64 now_ns;
4252
4253                 now_ns = get_kvmclock_ns(kvm);
4254                 user_ns.clock = now_ns;
4255                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4256                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4257
4258                 r = -EFAULT;
4259                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4260                         goto out;
4261                 r = 0;
4262                 break;
4263         }
4264         case KVM_ENABLE_CAP: {
4265                 struct kvm_enable_cap cap;
4266
4267                 r = -EFAULT;
4268                 if (copy_from_user(&cap, argp, sizeof(cap)))
4269                         goto out;
4270                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4271                 break;
4272         }
4273         default:
4274                 r = -ENOTTY;
4275         }
4276 out:
4277         return r;
4278 }
4279
4280 static void kvm_init_msr_list(void)
4281 {
4282         u32 dummy[2];
4283         unsigned i, j;
4284
4285         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4286                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4287                         continue;
4288
4289                 /*
4290                  * Even MSRs that are valid in the host may not be exposed
4291                  * to the guests in some cases.
4292                  */
4293                 switch (msrs_to_save[i]) {
4294                 case MSR_IA32_BNDCFGS:
4295                         if (!kvm_x86_ops->mpx_supported())
4296                                 continue;
4297                         break;
4298                 case MSR_TSC_AUX:
4299                         if (!kvm_x86_ops->rdtscp_supported())
4300                                 continue;
4301                         break;
4302                 default:
4303                         break;
4304                 }
4305
4306                 if (j < i)
4307                         msrs_to_save[j] = msrs_to_save[i];
4308                 j++;
4309         }
4310         num_msrs_to_save = j;
4311
4312         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4313                 switch (emulated_msrs[i]) {
4314                 case MSR_IA32_SMBASE:
4315                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4316                                 continue;
4317                         break;
4318                 default:
4319                         break;
4320                 }
4321
4322                 if (j < i)
4323                         emulated_msrs[j] = emulated_msrs[i];
4324                 j++;
4325         }
4326         num_emulated_msrs = j;
4327 }
4328
4329 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4330                            const void *v)
4331 {
4332         int handled = 0;
4333         int n;
4334
4335         do {
4336                 n = min(len, 8);
4337                 if (!(lapic_in_kernel(vcpu) &&
4338                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4339                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4340                         break;
4341                 handled += n;
4342                 addr += n;
4343                 len -= n;
4344                 v += n;
4345         } while (len);
4346
4347         return handled;
4348 }
4349
4350 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4351 {
4352         int handled = 0;
4353         int n;
4354
4355         do {
4356                 n = min(len, 8);
4357                 if (!(lapic_in_kernel(vcpu) &&
4358                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4359                                          addr, n, v))
4360                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4361                         break;
4362                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4363                 handled += n;
4364                 addr += n;
4365                 len -= n;
4366                 v += n;
4367         } while (len);
4368
4369         return handled;
4370 }
4371
4372 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4373                         struct kvm_segment *var, int seg)
4374 {
4375         kvm_x86_ops->set_segment(vcpu, var, seg);
4376 }
4377
4378 void kvm_get_segment(struct kvm_vcpu *vcpu,
4379                      struct kvm_segment *var, int seg)
4380 {
4381         kvm_x86_ops->get_segment(vcpu, var, seg);
4382 }
4383
4384 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4385                            struct x86_exception *exception)
4386 {
4387         gpa_t t_gpa;
4388
4389         BUG_ON(!mmu_is_nested(vcpu));
4390
4391         /* NPT walks are always user-walks */
4392         access |= PFERR_USER_MASK;
4393         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4394
4395         return t_gpa;
4396 }
4397
4398 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4399                               struct x86_exception *exception)
4400 {
4401         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4402         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4403 }
4404
4405  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4406                                 struct x86_exception *exception)
4407 {
4408         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4409         access |= PFERR_FETCH_MASK;
4410         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4411 }
4412
4413 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4414                                struct x86_exception *exception)
4415 {
4416         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4417         access |= PFERR_WRITE_MASK;
4418         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4419 }
4420
4421 /* uses this to access any guest's mapped memory without checking CPL */
4422 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4423                                 struct x86_exception *exception)
4424 {
4425         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4426 }
4427
4428 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4429                                       struct kvm_vcpu *vcpu, u32 access,
4430                                       struct x86_exception *exception)
4431 {
4432         void *data = val;
4433         int r = X86EMUL_CONTINUE;
4434
4435         while (bytes) {
4436                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4437                                                             exception);
4438                 unsigned offset = addr & (PAGE_SIZE-1);
4439                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4440                 int ret;
4441
4442                 if (gpa == UNMAPPED_GVA)
4443                         return X86EMUL_PROPAGATE_FAULT;
4444                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4445                                                offset, toread);
4446                 if (ret < 0) {
4447                         r = X86EMUL_IO_NEEDED;
4448                         goto out;
4449                 }
4450
4451                 bytes -= toread;
4452                 data += toread;
4453                 addr += toread;
4454         }
4455 out:
4456         return r;
4457 }
4458
4459 /* used for instruction fetching */
4460 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4461                                 gva_t addr, void *val, unsigned int bytes,
4462                                 struct x86_exception *exception)
4463 {
4464         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4465         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4466         unsigned offset;
4467         int ret;
4468
4469         /* Inline kvm_read_guest_virt_helper for speed.  */
4470         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4471                                                     exception);
4472         if (unlikely(gpa == UNMAPPED_GVA))
4473                 return X86EMUL_PROPAGATE_FAULT;
4474
4475         offset = addr & (PAGE_SIZE-1);
4476         if (WARN_ON(offset + bytes > PAGE_SIZE))
4477                 bytes = (unsigned)PAGE_SIZE - offset;
4478         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4479                                        offset, bytes);
4480         if (unlikely(ret < 0))
4481                 return X86EMUL_IO_NEEDED;
4482
4483         return X86EMUL_CONTINUE;
4484 }
4485
4486 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4487                                gva_t addr, void *val, unsigned int bytes,
4488                                struct x86_exception *exception)
4489 {
4490         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4491         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4492
4493         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4494                                           exception);
4495 }
4496 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4497
4498 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4499                                       gva_t addr, void *val, unsigned int bytes,
4500                                       struct x86_exception *exception)
4501 {
4502         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4503         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4504 }
4505
4506 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4507                 unsigned long addr, void *val, unsigned int bytes)
4508 {
4509         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4510         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4511
4512         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4513 }
4514
4515 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4516                                        gva_t addr, void *val,
4517                                        unsigned int bytes,
4518                                        struct x86_exception *exception)
4519 {
4520         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4521         void *data = val;
4522         int r = X86EMUL_CONTINUE;
4523
4524         while (bytes) {
4525                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4526                                                              PFERR_WRITE_MASK,
4527                                                              exception);
4528                 unsigned offset = addr & (PAGE_SIZE-1);
4529                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4530                 int ret;
4531
4532                 if (gpa == UNMAPPED_GVA)
4533                         return X86EMUL_PROPAGATE_FAULT;
4534                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4535                 if (ret < 0) {
4536                         r = X86EMUL_IO_NEEDED;
4537                         goto out;
4538                 }
4539
4540                 bytes -= towrite;
4541                 data += towrite;
4542                 addr += towrite;
4543         }
4544 out:
4545         return r;
4546 }
4547 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4548
4549 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4550                             gpa_t gpa, bool write)
4551 {
4552         /* For APIC access vmexit */
4553         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4554                 return 1;
4555
4556         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4557                 trace_vcpu_match_mmio(gva, gpa, write, true);
4558                 return 1;
4559         }
4560
4561         return 0;
4562 }
4563
4564 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4565                                 gpa_t *gpa, struct x86_exception *exception,
4566                                 bool write)
4567 {
4568         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4569                 | (write ? PFERR_WRITE_MASK : 0);
4570
4571         /*
4572          * currently PKRU is only applied to ept enabled guest so
4573          * there is no pkey in EPT page table for L1 guest or EPT
4574          * shadow page table for L2 guest.
4575          */
4576         if (vcpu_match_mmio_gva(vcpu, gva)
4577             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4578                                  vcpu->arch.access, 0, access)) {
4579                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4580                                         (gva & (PAGE_SIZE - 1));
4581                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4582                 return 1;
4583         }
4584
4585         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4586
4587         if (*gpa == UNMAPPED_GVA)
4588                 return -1;
4589
4590         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4591 }
4592
4593 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4594                         const void *val, int bytes)
4595 {
4596         int ret;
4597
4598         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4599         if (ret < 0)
4600                 return 0;
4601         kvm_page_track_write(vcpu, gpa, val, bytes);
4602         return 1;
4603 }
4604
4605 struct read_write_emulator_ops {
4606         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4607                                   int bytes);
4608         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4609                                   void *val, int bytes);
4610         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4611                                int bytes, void *val);
4612         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4613                                     void *val, int bytes);
4614         bool write;
4615 };
4616
4617 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4618 {
4619         if (vcpu->mmio_read_completed) {
4620                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4621                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4622                 vcpu->mmio_read_completed = 0;
4623                 return 1;
4624         }
4625
4626         return 0;
4627 }
4628
4629 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4630                         void *val, int bytes)
4631 {
4632         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4633 }
4634
4635 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4636                          void *val, int bytes)
4637 {
4638         return emulator_write_phys(vcpu, gpa, val, bytes);
4639 }
4640
4641 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4642 {
4643         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4644         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4645 }
4646
4647 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4648                           void *val, int bytes)
4649 {
4650         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4651         return X86EMUL_IO_NEEDED;
4652 }
4653
4654 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4655                            void *val, int bytes)
4656 {
4657         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4658
4659         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4660         return X86EMUL_CONTINUE;
4661 }
4662
4663 static const struct read_write_emulator_ops read_emultor = {
4664         .read_write_prepare = read_prepare,
4665         .read_write_emulate = read_emulate,
4666         .read_write_mmio = vcpu_mmio_read,
4667         .read_write_exit_mmio = read_exit_mmio,
4668 };
4669
4670 static const struct read_write_emulator_ops write_emultor = {
4671         .read_write_emulate = write_emulate,
4672         .read_write_mmio = write_mmio,
4673         .read_write_exit_mmio = write_exit_mmio,
4674         .write = true,
4675 };
4676
4677 static int emulator_read_write_onepage(unsigned long addr, void *val,
4678                                        unsigned int bytes,
4679                                        struct x86_exception *exception,
4680                                        struct kvm_vcpu *vcpu,
4681                                        const struct read_write_emulator_ops *ops)
4682 {
4683         gpa_t gpa;
4684         int handled, ret;
4685         bool write = ops->write;
4686         struct kvm_mmio_fragment *frag;
4687         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4688
4689         /*
4690          * If the exit was due to a NPF we may already have a GPA.
4691          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4692          * Note, this cannot be used on string operations since string
4693          * operation using rep will only have the initial GPA from the NPF
4694          * occurred.
4695          */
4696         if (vcpu->arch.gpa_available &&
4697             emulator_can_use_gpa(ctxt) &&
4698             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4699                 gpa = vcpu->arch.gpa_val;
4700                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4701         } else {
4702                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4703                 if (ret < 0)
4704                         return X86EMUL_PROPAGATE_FAULT;
4705         }
4706
4707         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4708                 return X86EMUL_CONTINUE;
4709
4710         /*
4711          * Is this MMIO handled locally?
4712          */
4713         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4714         if (handled == bytes)
4715                 return X86EMUL_CONTINUE;
4716
4717         gpa += handled;
4718         bytes -= handled;
4719         val += handled;
4720
4721         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4722         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4723         frag->gpa = gpa;
4724         frag->data = val;
4725         frag->len = bytes;
4726         return X86EMUL_CONTINUE;
4727 }
4728
4729 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4730                         unsigned long addr,
4731                         void *val, unsigned int bytes,
4732                         struct x86_exception *exception,
4733                         const struct read_write_emulator_ops *ops)
4734 {
4735         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4736         gpa_t gpa;
4737         int rc;
4738
4739         if (ops->read_write_prepare &&
4740                   ops->read_write_prepare(vcpu, val, bytes))
4741                 return X86EMUL_CONTINUE;
4742
4743         vcpu->mmio_nr_fragments = 0;
4744
4745         /* Crossing a page boundary? */
4746         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4747                 int now;
4748
4749                 now = -addr & ~PAGE_MASK;
4750                 rc = emulator_read_write_onepage(addr, val, now, exception,
4751                                                  vcpu, ops);
4752
4753                 if (rc != X86EMUL_CONTINUE)
4754                         return rc;
4755                 addr += now;
4756                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4757                         addr = (u32)addr;
4758                 val += now;
4759                 bytes -= now;
4760         }
4761
4762         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4763                                          vcpu, ops);
4764         if (rc != X86EMUL_CONTINUE)
4765                 return rc;
4766
4767         if (!vcpu->mmio_nr_fragments)
4768                 return rc;
4769
4770         gpa = vcpu->mmio_fragments[0].gpa;
4771
4772         vcpu->mmio_needed = 1;
4773         vcpu->mmio_cur_fragment = 0;
4774
4775         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4776         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4777         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4778         vcpu->run->mmio.phys_addr = gpa;
4779
4780         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4781 }
4782
4783 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4784                                   unsigned long addr,
4785                                   void *val,
4786                                   unsigned int bytes,
4787                                   struct x86_exception *exception)
4788 {
4789         return emulator_read_write(ctxt, addr, val, bytes,
4790                                    exception, &read_emultor);
4791 }
4792
4793 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4794                             unsigned long addr,
4795                             const void *val,
4796                             unsigned int bytes,
4797                             struct x86_exception *exception)
4798 {
4799         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4800                                    exception, &write_emultor);
4801 }
4802
4803 #define CMPXCHG_TYPE(t, ptr, old, new) \
4804         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4805
4806 #ifdef CONFIG_X86_64
4807 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4808 #else
4809 #  define CMPXCHG64(ptr, old, new) \
4810         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4811 #endif
4812
4813 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4814                                      unsigned long addr,
4815                                      const void *old,
4816                                      const void *new,
4817                                      unsigned int bytes,
4818                                      struct x86_exception *exception)
4819 {
4820         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4821         gpa_t gpa;
4822         struct page *page;
4823         char *kaddr;
4824         bool exchanged;
4825
4826         /* guests cmpxchg8b have to be emulated atomically */
4827         if (bytes > 8 || (bytes & (bytes - 1)))
4828                 goto emul_write;
4829
4830         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4831
4832         if (gpa == UNMAPPED_GVA ||
4833             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4834                 goto emul_write;
4835
4836         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4837                 goto emul_write;
4838
4839         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4840         if (is_error_page(page))
4841                 goto emul_write;
4842
4843         kaddr = kmap_atomic(page);
4844         kaddr += offset_in_page(gpa);
4845         switch (bytes) {
4846         case 1:
4847                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4848                 break;
4849         case 2:
4850                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4851                 break;
4852         case 4:
4853                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4854                 break;
4855         case 8:
4856                 exchanged = CMPXCHG64(kaddr, old, new);
4857                 break;
4858         default:
4859                 BUG();
4860         }
4861         kunmap_atomic(kaddr);
4862         kvm_release_page_dirty(page);
4863
4864         if (!exchanged)
4865                 return X86EMUL_CMPXCHG_FAILED;
4866
4867         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4868         kvm_page_track_write(vcpu, gpa, new, bytes);
4869
4870         return X86EMUL_CONTINUE;
4871
4872 emul_write:
4873         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4874
4875         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4876 }
4877
4878 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4879 {
4880         int r = 0, i;
4881
4882         for (i = 0; i < vcpu->arch.pio.count; i++) {
4883                 if (vcpu->arch.pio.in)
4884                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4885                                             vcpu->arch.pio.size, pd);
4886                 else
4887                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4888                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
4889                                              pd);
4890                 if (r)
4891                         break;
4892                 pd += vcpu->arch.pio.size;
4893         }
4894         return r;
4895 }
4896
4897 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4898                                unsigned short port, void *val,
4899                                unsigned int count, bool in)
4900 {
4901         vcpu->arch.pio.port = port;
4902         vcpu->arch.pio.in = in;
4903         vcpu->arch.pio.count  = count;
4904         vcpu->arch.pio.size = size;
4905
4906         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4907                 vcpu->arch.pio.count = 0;
4908                 return 1;
4909         }
4910
4911         vcpu->run->exit_reason = KVM_EXIT_IO;
4912         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4913         vcpu->run->io.size = size;
4914         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4915         vcpu->run->io.count = count;
4916         vcpu->run->io.port = port;
4917
4918         return 0;
4919 }
4920
4921 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4922                                     int size, unsigned short port, void *val,
4923                                     unsigned int count)
4924 {
4925         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4926         int ret;
4927
4928         if (vcpu->arch.pio.count)
4929                 goto data_avail;
4930
4931         memset(vcpu->arch.pio_data, 0, size * count);
4932
4933         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4934         if (ret) {
4935 data_avail:
4936                 memcpy(val, vcpu->arch.pio_data, size * count);
4937                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4938                 vcpu->arch.pio.count = 0;
4939                 return 1;
4940         }
4941
4942         return 0;
4943 }
4944
4945 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4946                                      int size, unsigned short port,
4947                                      const void *val, unsigned int count)
4948 {
4949         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4950
4951         memcpy(vcpu->arch.pio_data, val, size * count);
4952         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4953         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4954 }
4955
4956 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4957 {
4958         return kvm_x86_ops->get_segment_base(vcpu, seg);
4959 }
4960
4961 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4962 {
4963         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4964 }
4965
4966 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4967 {
4968         if (!need_emulate_wbinvd(vcpu))
4969                 return X86EMUL_CONTINUE;
4970
4971         if (kvm_x86_ops->has_wbinvd_exit()) {
4972                 int cpu = get_cpu();
4973
4974                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4975                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4976                                 wbinvd_ipi, NULL, 1);
4977                 put_cpu();
4978                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4979         } else
4980                 wbinvd();
4981         return X86EMUL_CONTINUE;
4982 }
4983
4984 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4985 {
4986         kvm_emulate_wbinvd_noskip(vcpu);
4987         return kvm_skip_emulated_instruction(vcpu);
4988 }
4989 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4990
4991
4992
4993 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4994 {
4995         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4996 }
4997
4998 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4999                            unsigned long *dest)
5000 {
5001         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5002 }
5003
5004 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5005                            unsigned long value)
5006 {
5007
5008         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5009 }
5010
5011 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5012 {
5013         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5014 }
5015
5016 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5017 {
5018         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5019         unsigned long value;
5020
5021         switch (cr) {
5022         case 0:
5023                 value = kvm_read_cr0(vcpu);
5024                 break;
5025         case 2:
5026                 value = vcpu->arch.cr2;
5027                 break;
5028         case 3:
5029                 value = kvm_read_cr3(vcpu);
5030                 break;
5031         case 4:
5032                 value = kvm_read_cr4(vcpu);
5033                 break;
5034         case 8:
5035                 value = kvm_get_cr8(vcpu);
5036                 break;
5037         default:
5038                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5039                 return 0;
5040         }
5041
5042         return value;
5043 }
5044
5045 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5046 {
5047         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5048         int res = 0;
5049
5050         switch (cr) {
5051         case 0:
5052                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5053                 break;
5054         case 2:
5055                 vcpu->arch.cr2 = val;
5056                 break;
5057         case 3:
5058                 res = kvm_set_cr3(vcpu, val);
5059                 break;
5060         case 4:
5061                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5062                 break;
5063         case 8:
5064                 res = kvm_set_cr8(vcpu, val);
5065                 break;
5066         default:
5067                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5068                 res = -1;
5069         }
5070
5071         return res;
5072 }
5073
5074 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5075 {
5076         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5077 }
5078
5079 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5080 {
5081         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5082 }
5083
5084 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5085 {
5086         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5087 }
5088
5089 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5090 {
5091         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5092 }
5093
5094 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5095 {
5096         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5097 }
5098
5099 static unsigned long emulator_get_cached_segment_base(
5100         struct x86_emulate_ctxt *ctxt, int seg)
5101 {
5102         return get_segment_base(emul_to_vcpu(ctxt), seg);
5103 }
5104
5105 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5106                                  struct desc_struct *desc, u32 *base3,
5107                                  int seg)
5108 {
5109         struct kvm_segment var;
5110
5111         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5112         *selector = var.selector;
5113
5114         if (var.unusable) {
5115                 memset(desc, 0, sizeof(*desc));
5116                 if (base3)
5117                         *base3 = 0;
5118                 return false;
5119         }
5120
5121         if (var.g)
5122                 var.limit >>= 12;
5123         set_desc_limit(desc, var.limit);
5124         set_desc_base(desc, (unsigned long)var.base);
5125 #ifdef CONFIG_X86_64
5126         if (base3)
5127                 *base3 = var.base >> 32;
5128 #endif
5129         desc->type = var.type;
5130         desc->s = var.s;
5131         desc->dpl = var.dpl;
5132         desc->p = var.present;
5133         desc->avl = var.avl;
5134         desc->l = var.l;
5135         desc->d = var.db;
5136         desc->g = var.g;
5137
5138         return true;
5139 }
5140
5141 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5142                                  struct desc_struct *desc, u32 base3,
5143                                  int seg)
5144 {
5145         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5146         struct kvm_segment var;
5147
5148         var.selector = selector;
5149         var.base = get_desc_base(desc);
5150 #ifdef CONFIG_X86_64
5151         var.base |= ((u64)base3) << 32;
5152 #endif
5153         var.limit = get_desc_limit(desc);
5154         if (desc->g)
5155                 var.limit = (var.limit << 12) | 0xfff;
5156         var.type = desc->type;
5157         var.dpl = desc->dpl;
5158         var.db = desc->d;
5159         var.s = desc->s;
5160         var.l = desc->l;
5161         var.g = desc->g;
5162         var.avl = desc->avl;
5163         var.present = desc->p;
5164         var.unusable = !var.present;
5165         var.padding = 0;
5166
5167         kvm_set_segment(vcpu, &var, seg);
5168         return;
5169 }
5170
5171 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5172                             u32 msr_index, u64 *pdata)
5173 {
5174         struct msr_data msr;
5175         int r;
5176
5177         msr.index = msr_index;
5178         msr.host_initiated = false;
5179         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5180         if (r)
5181                 return r;
5182
5183         *pdata = msr.data;
5184         return 0;
5185 }
5186
5187 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5188                             u32 msr_index, u64 data)
5189 {
5190         struct msr_data msr;
5191
5192         msr.data = data;
5193         msr.index = msr_index;
5194         msr.host_initiated = false;
5195         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5196 }
5197
5198 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5199 {
5200         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5201
5202         return vcpu->arch.smbase;
5203 }
5204
5205 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5206 {
5207         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5208
5209         vcpu->arch.smbase = smbase;
5210 }
5211
5212 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5213                               u32 pmc)
5214 {
5215         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5216 }
5217
5218 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5219                              u32 pmc, u64 *pdata)
5220 {
5221         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5222 }
5223
5224 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5225 {
5226         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5227 }
5228
5229 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5230 {
5231         preempt_disable();
5232         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5233 }
5234
5235 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5236 {
5237         preempt_enable();
5238 }
5239
5240 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5241                               struct x86_instruction_info *info,
5242                               enum x86_intercept_stage stage)
5243 {
5244         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5245 }
5246
5247 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5248                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5249 {
5250         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5251 }
5252
5253 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5254 {
5255         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5256 }
5257
5258 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5259 {
5260         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5261 }
5262
5263 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5264 {
5265         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5266 }
5267
5268 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5269 {
5270         return emul_to_vcpu(ctxt)->arch.hflags;
5271 }
5272
5273 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5274 {
5275         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5276 }
5277
5278 static const struct x86_emulate_ops emulate_ops = {
5279         .read_gpr            = emulator_read_gpr,
5280         .write_gpr           = emulator_write_gpr,
5281         .read_std            = kvm_read_guest_virt_system,
5282         .write_std           = kvm_write_guest_virt_system,
5283         .read_phys           = kvm_read_guest_phys_system,
5284         .fetch               = kvm_fetch_guest_virt,
5285         .read_emulated       = emulator_read_emulated,
5286         .write_emulated      = emulator_write_emulated,
5287         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5288         .invlpg              = emulator_invlpg,
5289         .pio_in_emulated     = emulator_pio_in_emulated,
5290         .pio_out_emulated    = emulator_pio_out_emulated,
5291         .get_segment         = emulator_get_segment,
5292         .set_segment         = emulator_set_segment,
5293         .get_cached_segment_base = emulator_get_cached_segment_base,
5294         .get_gdt             = emulator_get_gdt,
5295         .get_idt             = emulator_get_idt,
5296         .set_gdt             = emulator_set_gdt,
5297         .set_idt             = emulator_set_idt,
5298         .get_cr              = emulator_get_cr,
5299         .set_cr              = emulator_set_cr,
5300         .cpl                 = emulator_get_cpl,
5301         .get_dr              = emulator_get_dr,
5302         .set_dr              = emulator_set_dr,
5303         .get_smbase          = emulator_get_smbase,
5304         .set_smbase          = emulator_set_smbase,
5305         .set_msr             = emulator_set_msr,
5306         .get_msr             = emulator_get_msr,
5307         .check_pmc           = emulator_check_pmc,
5308         .read_pmc            = emulator_read_pmc,
5309         .halt                = emulator_halt,
5310         .wbinvd              = emulator_wbinvd,
5311         .fix_hypercall       = emulator_fix_hypercall,
5312         .get_fpu             = emulator_get_fpu,
5313         .put_fpu             = emulator_put_fpu,
5314         .intercept           = emulator_intercept,
5315         .get_cpuid           = emulator_get_cpuid,
5316         .set_nmi_mask        = emulator_set_nmi_mask,
5317         .get_hflags          = emulator_get_hflags,
5318         .set_hflags          = emulator_set_hflags,
5319 };
5320
5321 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5322 {
5323         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5324         /*
5325          * an sti; sti; sequence only disable interrupts for the first
5326          * instruction. So, if the last instruction, be it emulated or
5327          * not, left the system with the INT_STI flag enabled, it
5328          * means that the last instruction is an sti. We should not
5329          * leave the flag on in this case. The same goes for mov ss
5330          */
5331         if (int_shadow & mask)
5332                 mask = 0;
5333         if (unlikely(int_shadow || mask)) {
5334                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5335                 if (!mask)
5336                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5337         }
5338 }
5339
5340 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5341 {
5342         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5343         if (ctxt->exception.vector == PF_VECTOR)
5344                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5345
5346         if (ctxt->exception.error_code_valid)
5347                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5348                                       ctxt->exception.error_code);
5349         else
5350                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5351         return false;
5352 }
5353
5354 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5355 {
5356         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5357         int cs_db, cs_l;
5358
5359         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5360
5361         ctxt->eflags = kvm_get_rflags(vcpu);
5362         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5363
5364         ctxt->eip = kvm_rip_read(vcpu);
5365         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5366                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5367                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5368                      cs_db                              ? X86EMUL_MODE_PROT32 :
5369                                                           X86EMUL_MODE_PROT16;
5370         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5371         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5372         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5373
5374         init_decode_cache(ctxt);
5375         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5376 }
5377
5378 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5379 {
5380         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5381         int ret;
5382
5383         init_emulate_ctxt(vcpu);
5384
5385         ctxt->op_bytes = 2;
5386         ctxt->ad_bytes = 2;
5387         ctxt->_eip = ctxt->eip + inc_eip;
5388         ret = emulate_int_real(ctxt, irq);
5389
5390         if (ret != X86EMUL_CONTINUE)
5391                 return EMULATE_FAIL;
5392
5393         ctxt->eip = ctxt->_eip;
5394         kvm_rip_write(vcpu, ctxt->eip);
5395         kvm_set_rflags(vcpu, ctxt->eflags);
5396
5397         if (irq == NMI_VECTOR)
5398                 vcpu->arch.nmi_pending = 0;
5399         else
5400                 vcpu->arch.interrupt.pending = false;
5401
5402         return EMULATE_DONE;
5403 }
5404 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5405
5406 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5407 {
5408         int r = EMULATE_DONE;
5409
5410         ++vcpu->stat.insn_emulation_fail;
5411         trace_kvm_emulate_insn_failed(vcpu);
5412         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5413                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5414                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5415                 vcpu->run->internal.ndata = 0;
5416                 r = EMULATE_FAIL;
5417         }
5418         kvm_queue_exception(vcpu, UD_VECTOR);
5419
5420         return r;
5421 }
5422
5423 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5424                                   bool write_fault_to_shadow_pgtable,
5425                                   int emulation_type)
5426 {
5427         gpa_t gpa = cr2;
5428         kvm_pfn_t pfn;
5429
5430         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5431                 return false;
5432
5433         if (!vcpu->arch.mmu.direct_map) {
5434                 /*
5435                  * Write permission should be allowed since only
5436                  * write access need to be emulated.
5437                  */
5438                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5439
5440                 /*
5441                  * If the mapping is invalid in guest, let cpu retry
5442                  * it to generate fault.
5443                  */
5444                 if (gpa == UNMAPPED_GVA)
5445                         return true;
5446         }
5447
5448         /*
5449          * Do not retry the unhandleable instruction if it faults on the
5450          * readonly host memory, otherwise it will goto a infinite loop:
5451          * retry instruction -> write #PF -> emulation fail -> retry
5452          * instruction -> ...
5453          */
5454         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5455
5456         /*
5457          * If the instruction failed on the error pfn, it can not be fixed,
5458          * report the error to userspace.
5459          */
5460         if (is_error_noslot_pfn(pfn))
5461                 return false;
5462
5463         kvm_release_pfn_clean(pfn);
5464
5465         /* The instructions are well-emulated on direct mmu. */
5466         if (vcpu->arch.mmu.direct_map) {
5467                 unsigned int indirect_shadow_pages;
5468
5469                 spin_lock(&vcpu->kvm->mmu_lock);
5470                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5471                 spin_unlock(&vcpu->kvm->mmu_lock);
5472
5473                 if (indirect_shadow_pages)
5474                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5475
5476                 return true;
5477         }
5478
5479         /*
5480          * if emulation was due to access to shadowed page table
5481          * and it failed try to unshadow page and re-enter the
5482          * guest to let CPU execute the instruction.
5483          */
5484         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5485
5486         /*
5487          * If the access faults on its page table, it can not
5488          * be fixed by unprotecting shadow page and it should
5489          * be reported to userspace.
5490          */
5491         return !write_fault_to_shadow_pgtable;
5492 }
5493
5494 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5495                               unsigned long cr2,  int emulation_type)
5496 {
5497         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5498         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5499
5500         last_retry_eip = vcpu->arch.last_retry_eip;
5501         last_retry_addr = vcpu->arch.last_retry_addr;
5502
5503         /*
5504          * If the emulation is caused by #PF and it is non-page_table
5505          * writing instruction, it means the VM-EXIT is caused by shadow
5506          * page protected, we can zap the shadow page and retry this
5507          * instruction directly.
5508          *
5509          * Note: if the guest uses a non-page-table modifying instruction
5510          * on the PDE that points to the instruction, then we will unmap
5511          * the instruction and go to an infinite loop. So, we cache the
5512          * last retried eip and the last fault address, if we meet the eip
5513          * and the address again, we can break out of the potential infinite
5514          * loop.
5515          */
5516         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5517
5518         if (!(emulation_type & EMULTYPE_RETRY))
5519                 return false;
5520
5521         if (x86_page_table_writing_insn(ctxt))
5522                 return false;
5523
5524         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5525                 return false;
5526
5527         vcpu->arch.last_retry_eip = ctxt->eip;
5528         vcpu->arch.last_retry_addr = cr2;
5529
5530         if (!vcpu->arch.mmu.direct_map)
5531                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5532
5533         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5534
5535         return true;
5536 }
5537
5538 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5539 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5540
5541 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5542 {
5543         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5544                 /* This is a good place to trace that we are exiting SMM.  */
5545                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5546
5547                 /* Process a latched INIT or SMI, if any.  */
5548                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5549         }
5550
5551         kvm_mmu_reset_context(vcpu);
5552 }
5553
5554 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5555 {
5556         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5557
5558         vcpu->arch.hflags = emul_flags;
5559
5560         if (changed & HF_SMM_MASK)
5561                 kvm_smm_changed(vcpu);
5562 }
5563
5564 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5565                                 unsigned long *db)
5566 {
5567         u32 dr6 = 0;
5568         int i;
5569         u32 enable, rwlen;
5570
5571         enable = dr7;
5572         rwlen = dr7 >> 16;
5573         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5574                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5575                         dr6 |= (1 << i);
5576         return dr6;
5577 }
5578
5579 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5580 {
5581         struct kvm_run *kvm_run = vcpu->run;
5582
5583         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5584                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5585                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5586                 kvm_run->debug.arch.exception = DB_VECTOR;
5587                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5588                 *r = EMULATE_USER_EXIT;
5589         } else {
5590                 /*
5591                  * "Certain debug exceptions may clear bit 0-3.  The
5592                  * remaining contents of the DR6 register are never
5593                  * cleared by the processor".
5594                  */
5595                 vcpu->arch.dr6 &= ~15;
5596                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5597                 kvm_queue_exception(vcpu, DB_VECTOR);
5598         }
5599 }
5600
5601 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5602 {
5603         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5604         int r = EMULATE_DONE;
5605
5606         kvm_x86_ops->skip_emulated_instruction(vcpu);
5607
5608         /*
5609          * rflags is the old, "raw" value of the flags.  The new value has
5610          * not been saved yet.
5611          *
5612          * This is correct even for TF set by the guest, because "the
5613          * processor will not generate this exception after the instruction
5614          * that sets the TF flag".
5615          */
5616         if (unlikely(rflags & X86_EFLAGS_TF))
5617                 kvm_vcpu_do_singlestep(vcpu, &r);
5618         return r == EMULATE_DONE;
5619 }
5620 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5621
5622 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5623 {
5624         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5625             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5626                 struct kvm_run *kvm_run = vcpu->run;
5627                 unsigned long eip = kvm_get_linear_rip(vcpu);
5628                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5629                                            vcpu->arch.guest_debug_dr7,
5630                                            vcpu->arch.eff_db);
5631
5632                 if (dr6 != 0) {
5633                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5634                         kvm_run->debug.arch.pc = eip;
5635                         kvm_run->debug.arch.exception = DB_VECTOR;
5636                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5637                         *r = EMULATE_USER_EXIT;
5638                         return true;
5639                 }
5640         }
5641
5642         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5643             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5644                 unsigned long eip = kvm_get_linear_rip(vcpu);
5645                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5646                                            vcpu->arch.dr7,
5647                                            vcpu->arch.db);
5648
5649                 if (dr6 != 0) {
5650                         vcpu->arch.dr6 &= ~15;
5651                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5652                         kvm_queue_exception(vcpu, DB_VECTOR);
5653                         *r = EMULATE_DONE;
5654                         return true;
5655                 }
5656         }
5657
5658         return false;
5659 }
5660
5661 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5662                             unsigned long cr2,
5663                             int emulation_type,
5664                             void *insn,
5665                             int insn_len)
5666 {
5667         int r;
5668         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5669         bool writeback = true;
5670         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5671
5672         /*
5673          * Clear write_fault_to_shadow_pgtable here to ensure it is
5674          * never reused.
5675          */
5676         vcpu->arch.write_fault_to_shadow_pgtable = false;
5677         kvm_clear_exception_queue(vcpu);
5678
5679         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5680                 init_emulate_ctxt(vcpu);
5681
5682                 /*
5683                  * We will reenter on the same instruction since
5684                  * we do not set complete_userspace_io.  This does not
5685                  * handle watchpoints yet, those would be handled in
5686                  * the emulate_ops.
5687                  */
5688                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5689                         return r;
5690
5691                 ctxt->interruptibility = 0;
5692                 ctxt->have_exception = false;
5693                 ctxt->exception.vector = -1;
5694                 ctxt->perm_ok = false;
5695
5696                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5697
5698                 r = x86_decode_insn(ctxt, insn, insn_len);
5699
5700                 trace_kvm_emulate_insn_start(vcpu);
5701                 ++vcpu->stat.insn_emulation;
5702                 if (r != EMULATION_OK)  {
5703                         if (emulation_type & EMULTYPE_TRAP_UD)
5704                                 return EMULATE_FAIL;
5705                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5706                                                 emulation_type))
5707                                 return EMULATE_DONE;
5708                         if (emulation_type & EMULTYPE_SKIP)
5709                                 return EMULATE_FAIL;
5710                         return handle_emulation_failure(vcpu);
5711                 }
5712         }
5713
5714         if (emulation_type & EMULTYPE_SKIP) {
5715                 kvm_rip_write(vcpu, ctxt->_eip);
5716                 if (ctxt->eflags & X86_EFLAGS_RF)
5717                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5718                 return EMULATE_DONE;
5719         }
5720
5721         if (retry_instruction(ctxt, cr2, emulation_type))
5722                 return EMULATE_DONE;
5723
5724         /* this is needed for vmware backdoor interface to work since it
5725            changes registers values  during IO operation */
5726         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5727                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5728                 emulator_invalidate_register_cache(ctxt);
5729         }
5730
5731 restart:
5732         /* Save the faulting GPA (cr2) in the address field */
5733         ctxt->exception.address = cr2;
5734
5735         r = x86_emulate_insn(ctxt);
5736
5737         if (r == EMULATION_INTERCEPTED)
5738                 return EMULATE_DONE;
5739
5740         if (r == EMULATION_FAILED) {
5741                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5742                                         emulation_type))
5743                         return EMULATE_DONE;
5744
5745                 return handle_emulation_failure(vcpu);
5746         }
5747
5748         if (ctxt->have_exception) {
5749                 r = EMULATE_DONE;
5750                 if (inject_emulated_exception(vcpu))
5751                         return r;
5752         } else if (vcpu->arch.pio.count) {
5753                 if (!vcpu->arch.pio.in) {
5754                         /* FIXME: return into emulator if single-stepping.  */
5755                         vcpu->arch.pio.count = 0;
5756                 } else {
5757                         writeback = false;
5758                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5759                 }
5760                 r = EMULATE_USER_EXIT;
5761         } else if (vcpu->mmio_needed) {
5762                 if (!vcpu->mmio_is_write)
5763                         writeback = false;
5764                 r = EMULATE_USER_EXIT;
5765                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5766         } else if (r == EMULATION_RESTART)
5767                 goto restart;
5768         else
5769                 r = EMULATE_DONE;
5770
5771         if (writeback) {
5772                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5773                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5774                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5775                 kvm_rip_write(vcpu, ctxt->eip);
5776                 if (r == EMULATE_DONE &&
5777                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5778                         kvm_vcpu_do_singlestep(vcpu, &r);
5779                 if (!ctxt->have_exception ||
5780                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5781                         __kvm_set_rflags(vcpu, ctxt->eflags);
5782
5783                 /*
5784                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5785                  * do nothing, and it will be requested again as soon as
5786                  * the shadow expires.  But we still need to check here,
5787                  * because POPF has no interrupt shadow.
5788                  */
5789                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5790                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5791         } else
5792                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5793
5794         return r;
5795 }
5796 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5797
5798 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5799 {
5800         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5801         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5802                                             size, port, &val, 1);
5803         /* do not return to emulator after return from userspace */
5804         vcpu->arch.pio.count = 0;
5805         return ret;
5806 }
5807 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5808
5809 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5810 {
5811         unsigned long val;
5812
5813         /* We should only ever be called with arch.pio.count equal to 1 */
5814         BUG_ON(vcpu->arch.pio.count != 1);
5815
5816         /* For size less than 4 we merge, else we zero extend */
5817         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5818                                         : 0;
5819
5820         /*
5821          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5822          * the copy and tracing
5823          */
5824         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5825                                  vcpu->arch.pio.port, &val, 1);
5826         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5827
5828         return 1;
5829 }
5830
5831 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5832 {
5833         unsigned long val;
5834         int ret;
5835
5836         /* For size less than 4 we merge, else we zero extend */
5837         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5838
5839         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5840                                        &val, 1);
5841         if (ret) {
5842                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5843                 return ret;
5844         }
5845
5846         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5847
5848         return 0;
5849 }
5850 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5851
5852 static int kvmclock_cpu_down_prep(unsigned int cpu)
5853 {
5854         __this_cpu_write(cpu_tsc_khz, 0);
5855         return 0;
5856 }
5857
5858 static void tsc_khz_changed(void *data)
5859 {
5860         struct cpufreq_freqs *freq = data;
5861         unsigned long khz = 0;
5862
5863         if (data)
5864                 khz = freq->new;
5865         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5866                 khz = cpufreq_quick_get(raw_smp_processor_id());
5867         if (!khz)
5868                 khz = tsc_khz;
5869         __this_cpu_write(cpu_tsc_khz, khz);
5870 }
5871
5872 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5873                                      void *data)
5874 {
5875         struct cpufreq_freqs *freq = data;
5876         struct kvm *kvm;
5877         struct kvm_vcpu *vcpu;
5878         int i, send_ipi = 0;
5879
5880         /*
5881          * We allow guests to temporarily run on slowing clocks,
5882          * provided we notify them after, or to run on accelerating
5883          * clocks, provided we notify them before.  Thus time never
5884          * goes backwards.
5885          *
5886          * However, we have a problem.  We can't atomically update
5887          * the frequency of a given CPU from this function; it is
5888          * merely a notifier, which can be called from any CPU.
5889          * Changing the TSC frequency at arbitrary points in time
5890          * requires a recomputation of local variables related to
5891          * the TSC for each VCPU.  We must flag these local variables
5892          * to be updated and be sure the update takes place with the
5893          * new frequency before any guests proceed.
5894          *
5895          * Unfortunately, the combination of hotplug CPU and frequency
5896          * change creates an intractable locking scenario; the order
5897          * of when these callouts happen is undefined with respect to
5898          * CPU hotplug, and they can race with each other.  As such,
5899          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5900          * undefined; you can actually have a CPU frequency change take
5901          * place in between the computation of X and the setting of the
5902          * variable.  To protect against this problem, all updates of
5903          * the per_cpu tsc_khz variable are done in an interrupt
5904          * protected IPI, and all callers wishing to update the value
5905          * must wait for a synchronous IPI to complete (which is trivial
5906          * if the caller is on the CPU already).  This establishes the
5907          * necessary total order on variable updates.
5908          *
5909          * Note that because a guest time update may take place
5910          * anytime after the setting of the VCPU's request bit, the
5911          * correct TSC value must be set before the request.  However,
5912          * to ensure the update actually makes it to any guest which
5913          * starts running in hardware virtualization between the set
5914          * and the acquisition of the spinlock, we must also ping the
5915          * CPU after setting the request bit.
5916          *
5917          */
5918
5919         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5920                 return 0;
5921         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5922                 return 0;
5923
5924         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5925
5926         spin_lock(&kvm_lock);
5927         list_for_each_entry(kvm, &vm_list, vm_list) {
5928                 kvm_for_each_vcpu(i, vcpu, kvm) {
5929                         if (vcpu->cpu != freq->cpu)
5930                                 continue;
5931                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5932                         if (vcpu->cpu != smp_processor_id())
5933                                 send_ipi = 1;
5934                 }
5935         }
5936         spin_unlock(&kvm_lock);
5937
5938         if (freq->old < freq->new && send_ipi) {
5939                 /*
5940                  * We upscale the frequency.  Must make the guest
5941                  * doesn't see old kvmclock values while running with
5942                  * the new frequency, otherwise we risk the guest sees
5943                  * time go backwards.
5944                  *
5945                  * In case we update the frequency for another cpu
5946                  * (which might be in guest context) send an interrupt
5947                  * to kick the cpu out of guest context.  Next time
5948                  * guest context is entered kvmclock will be updated,
5949                  * so the guest will not see stale values.
5950                  */
5951                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5952         }
5953         return 0;
5954 }
5955
5956 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5957         .notifier_call  = kvmclock_cpufreq_notifier
5958 };
5959
5960 static int kvmclock_cpu_online(unsigned int cpu)
5961 {
5962         tsc_khz_changed(NULL);
5963         return 0;
5964 }
5965
5966 static void kvm_timer_init(void)
5967 {
5968         max_tsc_khz = tsc_khz;
5969
5970         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5971 #ifdef CONFIG_CPU_FREQ
5972                 struct cpufreq_policy policy;
5973                 int cpu;
5974
5975                 memset(&policy, 0, sizeof(policy));
5976                 cpu = get_cpu();
5977                 cpufreq_get_policy(&policy, cpu);
5978                 if (policy.cpuinfo.max_freq)
5979                         max_tsc_khz = policy.cpuinfo.max_freq;
5980                 put_cpu();
5981 #endif
5982                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5983                                           CPUFREQ_TRANSITION_NOTIFIER);
5984         }
5985         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5986
5987         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5988                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5989 }
5990
5991 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5992
5993 int kvm_is_in_guest(void)
5994 {
5995         return __this_cpu_read(current_vcpu) != NULL;
5996 }
5997
5998 static int kvm_is_user_mode(void)
5999 {
6000         int user_mode = 3;
6001
6002         if (__this_cpu_read(current_vcpu))
6003                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6004
6005         return user_mode != 0;
6006 }
6007
6008 static unsigned long kvm_get_guest_ip(void)
6009 {
6010         unsigned long ip = 0;
6011
6012         if (__this_cpu_read(current_vcpu))
6013                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6014
6015         return ip;
6016 }
6017
6018 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6019         .is_in_guest            = kvm_is_in_guest,
6020         .is_user_mode           = kvm_is_user_mode,
6021         .get_guest_ip           = kvm_get_guest_ip,
6022 };
6023
6024 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6025 {
6026         __this_cpu_write(current_vcpu, vcpu);
6027 }
6028 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6029
6030 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6031 {
6032         __this_cpu_write(current_vcpu, NULL);
6033 }
6034 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6035
6036 static void kvm_set_mmio_spte_mask(void)
6037 {
6038         u64 mask;
6039         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6040
6041         /*
6042          * Set the reserved bits and the present bit of an paging-structure
6043          * entry to generate page fault with PFER.RSV = 1.
6044          */
6045          /* Mask the reserved physical address bits. */
6046         mask = rsvd_bits(maxphyaddr, 51);
6047
6048         /* Set the present bit. */
6049         mask |= 1ull;
6050
6051 #ifdef CONFIG_X86_64
6052         /*
6053          * If reserved bit is not supported, clear the present bit to disable
6054          * mmio page fault.
6055          */
6056         if (maxphyaddr == 52)
6057                 mask &= ~1ull;
6058 #endif
6059
6060         kvm_mmu_set_mmio_spte_mask(mask, mask);
6061 }
6062
6063 #ifdef CONFIG_X86_64
6064 static void pvclock_gtod_update_fn(struct work_struct *work)
6065 {
6066         struct kvm *kvm;
6067
6068         struct kvm_vcpu *vcpu;
6069         int i;
6070
6071         spin_lock(&kvm_lock);
6072         list_for_each_entry(kvm, &vm_list, vm_list)
6073                 kvm_for_each_vcpu(i, vcpu, kvm)
6074                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6075         atomic_set(&kvm_guest_has_master_clock, 0);
6076         spin_unlock(&kvm_lock);
6077 }
6078
6079 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6080
6081 /*
6082  * Notification about pvclock gtod data update.
6083  */
6084 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6085                                void *priv)
6086 {
6087         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6088         struct timekeeper *tk = priv;
6089
6090         update_pvclock_gtod(tk);
6091
6092         /* disable master clock if host does not trust, or does not
6093          * use, TSC clocksource
6094          */
6095         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6096             atomic_read(&kvm_guest_has_master_clock) != 0)
6097                 queue_work(system_long_wq, &pvclock_gtod_work);
6098
6099         return 0;
6100 }
6101
6102 static struct notifier_block pvclock_gtod_notifier = {
6103         .notifier_call = pvclock_gtod_notify,
6104 };
6105 #endif
6106
6107 int kvm_arch_init(void *opaque)
6108 {
6109         int r;
6110         struct kvm_x86_ops *ops = opaque;
6111
6112         if (kvm_x86_ops) {
6113                 printk(KERN_ERR "kvm: already loaded the other module\n");
6114                 r = -EEXIST;
6115                 goto out;
6116         }
6117
6118         if (!ops->cpu_has_kvm_support()) {
6119                 printk(KERN_ERR "kvm: no hardware support\n");
6120                 r = -EOPNOTSUPP;
6121                 goto out;
6122         }
6123         if (ops->disabled_by_bios()) {
6124                 printk(KERN_ERR "kvm: disabled by bios\n");
6125                 r = -EOPNOTSUPP;
6126                 goto out;
6127         }
6128
6129         r = -ENOMEM;
6130         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6131         if (!shared_msrs) {
6132                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6133                 goto out;
6134         }
6135
6136         r = kvm_mmu_module_init();
6137         if (r)
6138                 goto out_free_percpu;
6139
6140         kvm_set_mmio_spte_mask();
6141
6142         kvm_x86_ops = ops;
6143
6144         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6145                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6146                         PT_PRESENT_MASK, 0, sme_me_mask);
6147         kvm_timer_init();
6148
6149         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6150
6151         if (boot_cpu_has(X86_FEATURE_XSAVE))
6152                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6153
6154         kvm_lapic_init();
6155 #ifdef CONFIG_X86_64
6156         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6157 #endif
6158
6159         return 0;
6160
6161 out_free_percpu:
6162         free_percpu(shared_msrs);
6163 out:
6164         return r;
6165 }
6166
6167 void kvm_arch_exit(void)
6168 {
6169         kvm_lapic_exit();
6170         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6171
6172         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6173                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6174                                             CPUFREQ_TRANSITION_NOTIFIER);
6175         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6176 #ifdef CONFIG_X86_64
6177         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6178 #endif
6179         kvm_x86_ops = NULL;
6180         kvm_mmu_module_exit();
6181         free_percpu(shared_msrs);
6182 }
6183
6184 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6185 {
6186         ++vcpu->stat.halt_exits;
6187         if (lapic_in_kernel(vcpu)) {
6188                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6189                 return 1;
6190         } else {
6191                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6192                 return 0;
6193         }
6194 }
6195 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6196
6197 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6198 {
6199         int ret = kvm_skip_emulated_instruction(vcpu);
6200         /*
6201          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6202          * KVM_EXIT_DEBUG here.
6203          */
6204         return kvm_vcpu_halt(vcpu) && ret;
6205 }
6206 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6207
6208 #ifdef CONFIG_X86_64
6209 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6210                                 unsigned long clock_type)
6211 {
6212         struct kvm_clock_pairing clock_pairing;
6213         struct timespec ts;
6214         u64 cycle;
6215         int ret;
6216
6217         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6218                 return -KVM_EOPNOTSUPP;
6219
6220         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6221                 return -KVM_EOPNOTSUPP;
6222
6223         clock_pairing.sec = ts.tv_sec;
6224         clock_pairing.nsec = ts.tv_nsec;
6225         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6226         clock_pairing.flags = 0;
6227
6228         ret = 0;
6229         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6230                             sizeof(struct kvm_clock_pairing)))
6231                 ret = -KVM_EFAULT;
6232
6233         return ret;
6234 }
6235 #endif
6236
6237 /*
6238  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6239  *
6240  * @apicid - apicid of vcpu to be kicked.
6241  */
6242 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6243 {
6244         struct kvm_lapic_irq lapic_irq;
6245
6246         lapic_irq.shorthand = 0;
6247         lapic_irq.dest_mode = 0;
6248         lapic_irq.level = 0;
6249         lapic_irq.dest_id = apicid;
6250         lapic_irq.msi_redir_hint = false;
6251
6252         lapic_irq.delivery_mode = APIC_DM_REMRD;
6253         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6254 }
6255
6256 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6257 {
6258         vcpu->arch.apicv_active = false;
6259         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6260 }
6261
6262 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6263 {
6264         unsigned long nr, a0, a1, a2, a3, ret;
6265         int op_64_bit, r;
6266
6267         r = kvm_skip_emulated_instruction(vcpu);
6268
6269         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6270                 return kvm_hv_hypercall(vcpu);
6271
6272         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6273         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6274         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6275         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6276         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6277
6278         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6279
6280         op_64_bit = is_64_bit_mode(vcpu);
6281         if (!op_64_bit) {
6282                 nr &= 0xFFFFFFFF;
6283                 a0 &= 0xFFFFFFFF;
6284                 a1 &= 0xFFFFFFFF;
6285                 a2 &= 0xFFFFFFFF;
6286                 a3 &= 0xFFFFFFFF;
6287         }
6288
6289         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6290                 ret = -KVM_EPERM;
6291                 goto out;
6292         }
6293
6294         switch (nr) {
6295         case KVM_HC_VAPIC_POLL_IRQ:
6296                 ret = 0;
6297                 break;
6298         case KVM_HC_KICK_CPU:
6299                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6300                 ret = 0;
6301                 break;
6302 #ifdef CONFIG_X86_64
6303         case KVM_HC_CLOCK_PAIRING:
6304                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6305                 break;
6306 #endif
6307         default:
6308                 ret = -KVM_ENOSYS;
6309                 break;
6310         }
6311 out:
6312         if (!op_64_bit)
6313                 ret = (u32)ret;
6314         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6315         ++vcpu->stat.hypercalls;
6316         return r;
6317 }
6318 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6319
6320 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6321 {
6322         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6323         char instruction[3];
6324         unsigned long rip = kvm_rip_read(vcpu);
6325
6326         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6327
6328         return emulator_write_emulated(ctxt, rip, instruction, 3,
6329                 &ctxt->exception);
6330 }
6331
6332 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6333 {
6334         return vcpu->run->request_interrupt_window &&
6335                 likely(!pic_in_kernel(vcpu->kvm));
6336 }
6337
6338 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6339 {
6340         struct kvm_run *kvm_run = vcpu->run;
6341
6342         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6343         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6344         kvm_run->cr8 = kvm_get_cr8(vcpu);
6345         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6346         kvm_run->ready_for_interrupt_injection =
6347                 pic_in_kernel(vcpu->kvm) ||
6348                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6349 }
6350
6351 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6352 {
6353         int max_irr, tpr;
6354
6355         if (!kvm_x86_ops->update_cr8_intercept)
6356                 return;
6357
6358         if (!lapic_in_kernel(vcpu))
6359                 return;
6360
6361         if (vcpu->arch.apicv_active)
6362                 return;
6363
6364         if (!vcpu->arch.apic->vapic_addr)
6365                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6366         else
6367                 max_irr = -1;
6368
6369         if (max_irr != -1)
6370                 max_irr >>= 4;
6371
6372         tpr = kvm_lapic_get_cr8(vcpu);
6373
6374         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6375 }
6376
6377 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6378 {
6379         int r;
6380
6381         /* try to reinject previous events if any */
6382         if (vcpu->arch.exception.injected) {
6383                 kvm_x86_ops->queue_exception(vcpu);
6384                 return 0;
6385         }
6386
6387         /*
6388          * Exceptions must be injected immediately, or the exception
6389          * frame will have the address of the NMI or interrupt handler.
6390          */
6391         if (!vcpu->arch.exception.pending) {
6392                 if (vcpu->arch.nmi_injected) {
6393                         kvm_x86_ops->set_nmi(vcpu);
6394                         return 0;
6395                 }
6396
6397                 if (vcpu->arch.interrupt.pending) {
6398                         kvm_x86_ops->set_irq(vcpu);
6399                         return 0;
6400                 }
6401         }
6402
6403         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6404                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6405                 if (r != 0)
6406                         return r;
6407         }
6408
6409         /* try to inject new event if pending */
6410         if (vcpu->arch.exception.pending) {
6411                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6412                                         vcpu->arch.exception.has_error_code,
6413                                         vcpu->arch.exception.error_code);
6414
6415                 vcpu->arch.exception.pending = false;
6416                 vcpu->arch.exception.injected = true;
6417
6418                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6419                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6420                                              X86_EFLAGS_RF);
6421
6422                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6423                     (vcpu->arch.dr7 & DR7_GD)) {
6424                         vcpu->arch.dr7 &= ~DR7_GD;
6425                         kvm_update_dr7(vcpu);
6426                 }
6427
6428                 kvm_x86_ops->queue_exception(vcpu);
6429         } else if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6430                 vcpu->arch.smi_pending = false;
6431                 enter_smm(vcpu);
6432         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6433                 --vcpu->arch.nmi_pending;
6434                 vcpu->arch.nmi_injected = true;
6435                 kvm_x86_ops->set_nmi(vcpu);
6436         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6437                 /*
6438                  * Because interrupts can be injected asynchronously, we are
6439                  * calling check_nested_events again here to avoid a race condition.
6440                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6441                  * proposal and current concerns.  Perhaps we should be setting
6442                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6443                  */
6444                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6445                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6446                         if (r != 0)
6447                                 return r;
6448                 }
6449                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6450                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6451                                             false);
6452                         kvm_x86_ops->set_irq(vcpu);
6453                 }
6454         }
6455
6456         return 0;
6457 }
6458
6459 static void process_nmi(struct kvm_vcpu *vcpu)
6460 {
6461         unsigned limit = 2;
6462
6463         /*
6464          * x86 is limited to one NMI running, and one NMI pending after it.
6465          * If an NMI is already in progress, limit further NMIs to just one.
6466          * Otherwise, allow two (and we'll inject the first one immediately).
6467          */
6468         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6469                 limit = 1;
6470
6471         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6472         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6473         kvm_make_request(KVM_REQ_EVENT, vcpu);
6474 }
6475
6476 #define put_smstate(type, buf, offset, val)                       \
6477         *(type *)((buf) + (offset) - 0x7e00) = val
6478
6479 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6480 {
6481         u32 flags = 0;
6482         flags |= seg->g       << 23;
6483         flags |= seg->db      << 22;
6484         flags |= seg->l       << 21;
6485         flags |= seg->avl     << 20;
6486         flags |= seg->present << 15;
6487         flags |= seg->dpl     << 13;
6488         flags |= seg->s       << 12;
6489         flags |= seg->type    << 8;
6490         return flags;
6491 }
6492
6493 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6494 {
6495         struct kvm_segment seg;
6496         int offset;
6497
6498         kvm_get_segment(vcpu, &seg, n);
6499         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6500
6501         if (n < 3)
6502                 offset = 0x7f84 + n * 12;
6503         else
6504                 offset = 0x7f2c + (n - 3) * 12;
6505
6506         put_smstate(u32, buf, offset + 8, seg.base);
6507         put_smstate(u32, buf, offset + 4, seg.limit);
6508         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6509 }
6510
6511 #ifdef CONFIG_X86_64
6512 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6513 {
6514         struct kvm_segment seg;
6515         int offset;
6516         u16 flags;
6517
6518         kvm_get_segment(vcpu, &seg, n);
6519         offset = 0x7e00 + n * 16;
6520
6521         flags = enter_smm_get_segment_flags(&seg) >> 8;
6522         put_smstate(u16, buf, offset, seg.selector);
6523         put_smstate(u16, buf, offset + 2, flags);
6524         put_smstate(u32, buf, offset + 4, seg.limit);
6525         put_smstate(u64, buf, offset + 8, seg.base);
6526 }
6527 #endif
6528
6529 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6530 {
6531         struct desc_ptr dt;
6532         struct kvm_segment seg;
6533         unsigned long val;
6534         int i;
6535
6536         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6537         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6538         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6539         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6540
6541         for (i = 0; i < 8; i++)
6542                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6543
6544         kvm_get_dr(vcpu, 6, &val);
6545         put_smstate(u32, buf, 0x7fcc, (u32)val);
6546         kvm_get_dr(vcpu, 7, &val);
6547         put_smstate(u32, buf, 0x7fc8, (u32)val);
6548
6549         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6550         put_smstate(u32, buf, 0x7fc4, seg.selector);
6551         put_smstate(u32, buf, 0x7f64, seg.base);
6552         put_smstate(u32, buf, 0x7f60, seg.limit);
6553         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6554
6555         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6556         put_smstate(u32, buf, 0x7fc0, seg.selector);
6557         put_smstate(u32, buf, 0x7f80, seg.base);
6558         put_smstate(u32, buf, 0x7f7c, seg.limit);
6559         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6560
6561         kvm_x86_ops->get_gdt(vcpu, &dt);
6562         put_smstate(u32, buf, 0x7f74, dt.address);
6563         put_smstate(u32, buf, 0x7f70, dt.size);
6564
6565         kvm_x86_ops->get_idt(vcpu, &dt);
6566         put_smstate(u32, buf, 0x7f58, dt.address);
6567         put_smstate(u32, buf, 0x7f54, dt.size);
6568
6569         for (i = 0; i < 6; i++)
6570                 enter_smm_save_seg_32(vcpu, buf, i);
6571
6572         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6573
6574         /* revision id */
6575         put_smstate(u32, buf, 0x7efc, 0x00020000);
6576         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6577 }
6578
6579 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6580 {
6581 #ifdef CONFIG_X86_64
6582         struct desc_ptr dt;
6583         struct kvm_segment seg;
6584         unsigned long val;
6585         int i;
6586
6587         for (i = 0; i < 16; i++)
6588                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6589
6590         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6591         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6592
6593         kvm_get_dr(vcpu, 6, &val);
6594         put_smstate(u64, buf, 0x7f68, val);
6595         kvm_get_dr(vcpu, 7, &val);
6596         put_smstate(u64, buf, 0x7f60, val);
6597
6598         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6599         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6600         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6601
6602         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6603
6604         /* revision id */
6605         put_smstate(u32, buf, 0x7efc, 0x00020064);
6606
6607         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6608
6609         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6610         put_smstate(u16, buf, 0x7e90, seg.selector);
6611         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6612         put_smstate(u32, buf, 0x7e94, seg.limit);
6613         put_smstate(u64, buf, 0x7e98, seg.base);
6614
6615         kvm_x86_ops->get_idt(vcpu, &dt);
6616         put_smstate(u32, buf, 0x7e84, dt.size);
6617         put_smstate(u64, buf, 0x7e88, dt.address);
6618
6619         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6620         put_smstate(u16, buf, 0x7e70, seg.selector);
6621         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6622         put_smstate(u32, buf, 0x7e74, seg.limit);
6623         put_smstate(u64, buf, 0x7e78, seg.base);
6624
6625         kvm_x86_ops->get_gdt(vcpu, &dt);
6626         put_smstate(u32, buf, 0x7e64, dt.size);
6627         put_smstate(u64, buf, 0x7e68, dt.address);
6628
6629         for (i = 0; i < 6; i++)
6630                 enter_smm_save_seg_64(vcpu, buf, i);
6631 #else
6632         WARN_ON_ONCE(1);
6633 #endif
6634 }
6635
6636 static void enter_smm(struct kvm_vcpu *vcpu)
6637 {
6638         struct kvm_segment cs, ds;
6639         struct desc_ptr dt;
6640         char buf[512];
6641         u32 cr0;
6642
6643         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6644         vcpu->arch.hflags |= HF_SMM_MASK;
6645         memset(buf, 0, 512);
6646         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6647                 enter_smm_save_state_64(vcpu, buf);
6648         else
6649                 enter_smm_save_state_32(vcpu, buf);
6650
6651         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6652
6653         if (kvm_x86_ops->get_nmi_mask(vcpu))
6654                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6655         else
6656                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6657
6658         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6659         kvm_rip_write(vcpu, 0x8000);
6660
6661         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6662         kvm_x86_ops->set_cr0(vcpu, cr0);
6663         vcpu->arch.cr0 = cr0;
6664
6665         kvm_x86_ops->set_cr4(vcpu, 0);
6666
6667         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6668         dt.address = dt.size = 0;
6669         kvm_x86_ops->set_idt(vcpu, &dt);
6670
6671         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6672
6673         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6674         cs.base = vcpu->arch.smbase;
6675
6676         ds.selector = 0;
6677         ds.base = 0;
6678
6679         cs.limit    = ds.limit = 0xffffffff;
6680         cs.type     = ds.type = 0x3;
6681         cs.dpl      = ds.dpl = 0;
6682         cs.db       = ds.db = 0;
6683         cs.s        = ds.s = 1;
6684         cs.l        = ds.l = 0;
6685         cs.g        = ds.g = 1;
6686         cs.avl      = ds.avl = 0;
6687         cs.present  = ds.present = 1;
6688         cs.unusable = ds.unusable = 0;
6689         cs.padding  = ds.padding = 0;
6690
6691         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6692         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6693         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6694         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6695         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6696         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6697
6698         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6699                 kvm_x86_ops->set_efer(vcpu, 0);
6700
6701         kvm_update_cpuid(vcpu);
6702         kvm_mmu_reset_context(vcpu);
6703 }
6704
6705 static void process_smi(struct kvm_vcpu *vcpu)
6706 {
6707         vcpu->arch.smi_pending = true;
6708         kvm_make_request(KVM_REQ_EVENT, vcpu);
6709 }
6710
6711 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6712 {
6713         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6714 }
6715
6716 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6717 {
6718         u64 eoi_exit_bitmap[4];
6719
6720         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6721                 return;
6722
6723         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6724
6725         if (irqchip_split(vcpu->kvm))
6726                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6727         else {
6728                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6729                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6730                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6731         }
6732         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6733                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6734         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6735 }
6736
6737 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6738 {
6739         ++vcpu->stat.tlb_flush;
6740         kvm_x86_ops->tlb_flush(vcpu);
6741 }
6742
6743 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6744 {
6745         struct page *page = NULL;
6746
6747         if (!lapic_in_kernel(vcpu))
6748                 return;
6749
6750         if (!kvm_x86_ops->set_apic_access_page_addr)
6751                 return;
6752
6753         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6754         if (is_error_page(page))
6755                 return;
6756         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6757
6758         /*
6759          * Do not pin apic access page in memory, the MMU notifier
6760          * will call us again if it is migrated or swapped out.
6761          */
6762         put_page(page);
6763 }
6764 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6765
6766 /*
6767  * Returns 1 to let vcpu_run() continue the guest execution loop without
6768  * exiting to the userspace.  Otherwise, the value will be returned to the
6769  * userspace.
6770  */
6771 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6772 {
6773         int r;
6774         bool req_int_win =
6775                 dm_request_for_irq_injection(vcpu) &&
6776                 kvm_cpu_accept_dm_intr(vcpu);
6777
6778         bool req_immediate_exit = false;
6779
6780         if (kvm_request_pending(vcpu)) {
6781                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6782                         kvm_mmu_unload(vcpu);
6783                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6784                         __kvm_migrate_timers(vcpu);
6785                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6786                         kvm_gen_update_masterclock(vcpu->kvm);
6787                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6788                         kvm_gen_kvmclock_update(vcpu);
6789                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6790                         r = kvm_guest_time_update(vcpu);
6791                         if (unlikely(r))
6792                                 goto out;
6793                 }
6794                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6795                         kvm_mmu_sync_roots(vcpu);
6796                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6797                         kvm_vcpu_flush_tlb(vcpu);
6798                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6799                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6800                         r = 0;
6801                         goto out;
6802                 }
6803                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6804                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6805                         vcpu->mmio_needed = 0;
6806                         r = 0;
6807                         goto out;
6808                 }
6809                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6810                         /* Page is swapped out. Do synthetic halt */
6811                         vcpu->arch.apf.halted = true;
6812                         r = 1;
6813                         goto out;
6814                 }
6815                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6816                         record_steal_time(vcpu);
6817                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6818                         process_smi(vcpu);
6819                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6820                         process_nmi(vcpu);
6821                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6822                         kvm_pmu_handle_event(vcpu);
6823                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6824                         kvm_pmu_deliver_pmi(vcpu);
6825                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6826                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6827                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6828                                      vcpu->arch.ioapic_handled_vectors)) {
6829                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6830                                 vcpu->run->eoi.vector =
6831                                                 vcpu->arch.pending_ioapic_eoi;
6832                                 r = 0;
6833                                 goto out;
6834                         }
6835                 }
6836                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6837                         vcpu_scan_ioapic(vcpu);
6838                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6839                         kvm_vcpu_reload_apic_access_page(vcpu);
6840                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6841                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6842                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6843                         r = 0;
6844                         goto out;
6845                 }
6846                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6847                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6848                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6849                         r = 0;
6850                         goto out;
6851                 }
6852                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6853                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6854                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6855                         r = 0;
6856                         goto out;
6857                 }
6858
6859                 /*
6860                  * KVM_REQ_HV_STIMER has to be processed after
6861                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6862                  * depend on the guest clock being up-to-date
6863                  */
6864                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6865                         kvm_hv_process_stimers(vcpu);
6866         }
6867
6868         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6869                 ++vcpu->stat.req_event;
6870                 kvm_apic_accept_events(vcpu);
6871                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6872                         r = 1;
6873                         goto out;
6874                 }
6875
6876                 if (inject_pending_event(vcpu, req_int_win) != 0)
6877                         req_immediate_exit = true;
6878                 else {
6879                         /* Enable NMI/IRQ window open exits if needed.
6880                          *
6881                          * SMIs have two cases: 1) they can be nested, and
6882                          * then there is nothing to do here because RSM will
6883                          * cause a vmexit anyway; 2) or the SMI can be pending
6884                          * because inject_pending_event has completed the
6885                          * injection of an IRQ or NMI from the previous vmexit,
6886                          * and then we request an immediate exit to inject the SMI.
6887                          */
6888                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6889                                 req_immediate_exit = true;
6890                         if (vcpu->arch.nmi_pending)
6891                                 kvm_x86_ops->enable_nmi_window(vcpu);
6892                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6893                                 kvm_x86_ops->enable_irq_window(vcpu);
6894                         WARN_ON(vcpu->arch.exception.pending);
6895                 }
6896
6897                 if (kvm_lapic_enabled(vcpu)) {
6898                         update_cr8_intercept(vcpu);
6899                         kvm_lapic_sync_to_vapic(vcpu);
6900                 }
6901         }
6902
6903         r = kvm_mmu_reload(vcpu);
6904         if (unlikely(r)) {
6905                 goto cancel_injection;
6906         }
6907
6908         preempt_disable();
6909
6910         kvm_x86_ops->prepare_guest_switch(vcpu);
6911         kvm_load_guest_fpu(vcpu);
6912
6913         /*
6914          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6915          * IPI are then delayed after guest entry, which ensures that they
6916          * result in virtual interrupt delivery.
6917          */
6918         local_irq_disable();
6919         vcpu->mode = IN_GUEST_MODE;
6920
6921         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6922
6923         /*
6924          * 1) We should set ->mode before checking ->requests.  Please see
6925          * the comment in kvm_vcpu_exiting_guest_mode().
6926          *
6927          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6928          * pairs with the memory barrier implicit in pi_test_and_set_on
6929          * (see vmx_deliver_posted_interrupt).
6930          *
6931          * 3) This also orders the write to mode from any reads to the page
6932          * tables done while the VCPU is running.  Please see the comment
6933          * in kvm_flush_remote_tlbs.
6934          */
6935         smp_mb__after_srcu_read_unlock();
6936
6937         /*
6938          * This handles the case where a posted interrupt was
6939          * notified with kvm_vcpu_kick.
6940          */
6941         if (kvm_lapic_enabled(vcpu)) {
6942                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6943                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6944         }
6945
6946         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6947             || need_resched() || signal_pending(current)) {
6948                 vcpu->mode = OUTSIDE_GUEST_MODE;
6949                 smp_wmb();
6950                 local_irq_enable();
6951                 preempt_enable();
6952                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6953                 r = 1;
6954                 goto cancel_injection;
6955         }
6956
6957         kvm_load_guest_xcr0(vcpu);
6958
6959         if (req_immediate_exit) {
6960                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6961                 smp_send_reschedule(vcpu->cpu);
6962         }
6963
6964         trace_kvm_entry(vcpu->vcpu_id);
6965         wait_lapic_expire(vcpu);
6966         guest_enter_irqoff();
6967
6968         if (unlikely(vcpu->arch.switch_db_regs)) {
6969                 set_debugreg(0, 7);
6970                 set_debugreg(vcpu->arch.eff_db[0], 0);
6971                 set_debugreg(vcpu->arch.eff_db[1], 1);
6972                 set_debugreg(vcpu->arch.eff_db[2], 2);
6973                 set_debugreg(vcpu->arch.eff_db[3], 3);
6974                 set_debugreg(vcpu->arch.dr6, 6);
6975                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6976         }
6977
6978         kvm_x86_ops->run(vcpu);
6979
6980         /*
6981          * Do this here before restoring debug registers on the host.  And
6982          * since we do this before handling the vmexit, a DR access vmexit
6983          * can (a) read the correct value of the debug registers, (b) set
6984          * KVM_DEBUGREG_WONT_EXIT again.
6985          */
6986         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6987                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6988                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6989                 kvm_update_dr0123(vcpu);
6990                 kvm_update_dr6(vcpu);
6991                 kvm_update_dr7(vcpu);
6992                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6993         }
6994
6995         /*
6996          * If the guest has used debug registers, at least dr7
6997          * will be disabled while returning to the host.
6998          * If we don't have active breakpoints in the host, we don't
6999          * care about the messed up debug address registers. But if
7000          * we have some of them active, restore the old state.
7001          */
7002         if (hw_breakpoint_active())
7003                 hw_breakpoint_restore();
7004
7005         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7006
7007         vcpu->mode = OUTSIDE_GUEST_MODE;
7008         smp_wmb();
7009
7010         kvm_put_guest_xcr0(vcpu);
7011
7012         kvm_x86_ops->handle_external_intr(vcpu);
7013
7014         ++vcpu->stat.exits;
7015
7016         guest_exit_irqoff();
7017
7018         local_irq_enable();
7019         preempt_enable();
7020
7021         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7022
7023         /*
7024          * Profile KVM exit RIPs:
7025          */
7026         if (unlikely(prof_on == KVM_PROFILING)) {
7027                 unsigned long rip = kvm_rip_read(vcpu);
7028                 profile_hit(KVM_PROFILING, (void *)rip);
7029         }
7030
7031         if (unlikely(vcpu->arch.tsc_always_catchup))
7032                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7033
7034         if (vcpu->arch.apic_attention)
7035                 kvm_lapic_sync_from_vapic(vcpu);
7036
7037         vcpu->arch.gpa_available = false;
7038         r = kvm_x86_ops->handle_exit(vcpu);
7039         return r;
7040
7041 cancel_injection:
7042         kvm_x86_ops->cancel_injection(vcpu);
7043         if (unlikely(vcpu->arch.apic_attention))
7044                 kvm_lapic_sync_from_vapic(vcpu);
7045 out:
7046         return r;
7047 }
7048
7049 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7050 {
7051         if (!kvm_arch_vcpu_runnable(vcpu) &&
7052             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7053                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7054                 kvm_vcpu_block(vcpu);
7055                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7056
7057                 if (kvm_x86_ops->post_block)
7058                         kvm_x86_ops->post_block(vcpu);
7059
7060                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7061                         return 1;
7062         }
7063
7064         kvm_apic_accept_events(vcpu);
7065         switch(vcpu->arch.mp_state) {
7066         case KVM_MP_STATE_HALTED:
7067                 vcpu->arch.pv.pv_unhalted = false;
7068                 vcpu->arch.mp_state =
7069                         KVM_MP_STATE_RUNNABLE;
7070         case KVM_MP_STATE_RUNNABLE:
7071                 vcpu->arch.apf.halted = false;
7072                 break;
7073         case KVM_MP_STATE_INIT_RECEIVED:
7074                 break;
7075         default:
7076                 return -EINTR;
7077                 break;
7078         }
7079         return 1;
7080 }
7081
7082 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7083 {
7084         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7085                 kvm_x86_ops->check_nested_events(vcpu, false);
7086
7087         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7088                 !vcpu->arch.apf.halted);
7089 }
7090
7091 static int vcpu_run(struct kvm_vcpu *vcpu)
7092 {
7093         int r;
7094         struct kvm *kvm = vcpu->kvm;
7095
7096         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7097
7098         for (;;) {
7099                 if (kvm_vcpu_running(vcpu)) {
7100                         r = vcpu_enter_guest(vcpu);
7101                 } else {
7102                         r = vcpu_block(kvm, vcpu);
7103                 }
7104
7105                 if (r <= 0)
7106                         break;
7107
7108                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7109                 if (kvm_cpu_has_pending_timer(vcpu))
7110                         kvm_inject_pending_timer_irqs(vcpu);
7111
7112                 if (dm_request_for_irq_injection(vcpu) &&
7113                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7114                         r = 0;
7115                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7116                         ++vcpu->stat.request_irq_exits;
7117                         break;
7118                 }
7119
7120                 kvm_check_async_pf_completion(vcpu);
7121
7122                 if (signal_pending(current)) {
7123                         r = -EINTR;
7124                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7125                         ++vcpu->stat.signal_exits;
7126                         break;
7127                 }
7128                 if (need_resched()) {
7129                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7130                         cond_resched();
7131                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7132                 }
7133         }
7134
7135         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7136
7137         return r;
7138 }
7139
7140 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7141 {
7142         int r;
7143         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7144         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7145         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7146         if (r != EMULATE_DONE)
7147                 return 0;
7148         return 1;
7149 }
7150
7151 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7152 {
7153         BUG_ON(!vcpu->arch.pio.count);
7154
7155         return complete_emulated_io(vcpu);
7156 }
7157
7158 /*
7159  * Implements the following, as a state machine:
7160  *
7161  * read:
7162  *   for each fragment
7163  *     for each mmio piece in the fragment
7164  *       write gpa, len
7165  *       exit
7166  *       copy data
7167  *   execute insn
7168  *
7169  * write:
7170  *   for each fragment
7171  *     for each mmio piece in the fragment
7172  *       write gpa, len
7173  *       copy data
7174  *       exit
7175  */
7176 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7177 {
7178         struct kvm_run *run = vcpu->run;
7179         struct kvm_mmio_fragment *frag;
7180         unsigned len;
7181
7182         BUG_ON(!vcpu->mmio_needed);
7183
7184         /* Complete previous fragment */
7185         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7186         len = min(8u, frag->len);
7187         if (!vcpu->mmio_is_write)
7188                 memcpy(frag->data, run->mmio.data, len);
7189
7190         if (frag->len <= 8) {
7191                 /* Switch to the next fragment. */
7192                 frag++;
7193                 vcpu->mmio_cur_fragment++;
7194         } else {
7195                 /* Go forward to the next mmio piece. */
7196                 frag->data += len;
7197                 frag->gpa += len;
7198                 frag->len -= len;
7199         }
7200
7201         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7202                 vcpu->mmio_needed = 0;
7203
7204                 /* FIXME: return into emulator if single-stepping.  */
7205                 if (vcpu->mmio_is_write)
7206                         return 1;
7207                 vcpu->mmio_read_completed = 1;
7208                 return complete_emulated_io(vcpu);
7209         }
7210
7211         run->exit_reason = KVM_EXIT_MMIO;
7212         run->mmio.phys_addr = frag->gpa;
7213         if (vcpu->mmio_is_write)
7214                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7215         run->mmio.len = min(8u, frag->len);
7216         run->mmio.is_write = vcpu->mmio_is_write;
7217         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7218         return 0;
7219 }
7220
7221
7222 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7223 {
7224         struct fpu *fpu = &current->thread.fpu;
7225         int r;
7226         sigset_t sigsaved;
7227
7228         fpu__activate_curr(fpu);
7229
7230         if (vcpu->sigset_active)
7231                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7232
7233         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7234                 if (kvm_run->immediate_exit) {
7235                         r = -EINTR;
7236                         goto out;
7237                 }
7238                 kvm_vcpu_block(vcpu);
7239                 kvm_apic_accept_events(vcpu);
7240                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7241                 r = -EAGAIN;
7242                 if (signal_pending(current)) {
7243                         r = -EINTR;
7244                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7245                         ++vcpu->stat.signal_exits;
7246                 }
7247                 goto out;
7248         }
7249
7250         /* re-sync apic's tpr */
7251         if (!lapic_in_kernel(vcpu)) {
7252                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7253                         r = -EINVAL;
7254                         goto out;
7255                 }
7256         }
7257
7258         if (unlikely(vcpu->arch.complete_userspace_io)) {
7259                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7260                 vcpu->arch.complete_userspace_io = NULL;
7261                 r = cui(vcpu);
7262                 if (r <= 0)
7263                         goto out;
7264         } else
7265                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7266
7267         if (kvm_run->immediate_exit)
7268                 r = -EINTR;
7269         else
7270                 r = vcpu_run(vcpu);
7271
7272 out:
7273         post_kvm_run_save(vcpu);
7274         if (vcpu->sigset_active)
7275                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7276
7277         return r;
7278 }
7279
7280 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7281 {
7282         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7283                 /*
7284                  * We are here if userspace calls get_regs() in the middle of
7285                  * instruction emulation. Registers state needs to be copied
7286                  * back from emulation context to vcpu. Userspace shouldn't do
7287                  * that usually, but some bad designed PV devices (vmware
7288                  * backdoor interface) need this to work
7289                  */
7290                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7291                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7292         }
7293         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7294         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7295         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7296         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7297         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7298         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7299         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7300         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7301 #ifdef CONFIG_X86_64
7302         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7303         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7304         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7305         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7306         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7307         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7308         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7309         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7310 #endif
7311
7312         regs->rip = kvm_rip_read(vcpu);
7313         regs->rflags = kvm_get_rflags(vcpu);
7314
7315         return 0;
7316 }
7317
7318 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7319 {
7320         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7321         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7322
7323         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7324         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7325         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7326         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7327         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7328         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7329         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7330         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7331 #ifdef CONFIG_X86_64
7332         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7333         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7334         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7335         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7336         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7337         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7338         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7339         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7340 #endif
7341
7342         kvm_rip_write(vcpu, regs->rip);
7343         kvm_set_rflags(vcpu, regs->rflags);
7344
7345         vcpu->arch.exception.pending = false;
7346
7347         kvm_make_request(KVM_REQ_EVENT, vcpu);
7348
7349         return 0;
7350 }
7351
7352 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7353 {
7354         struct kvm_segment cs;
7355
7356         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7357         *db = cs.db;
7358         *l = cs.l;
7359 }
7360 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7361
7362 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7363                                   struct kvm_sregs *sregs)
7364 {
7365         struct desc_ptr dt;
7366
7367         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7368         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7369         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7370         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7371         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7372         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7373
7374         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7375         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7376
7377         kvm_x86_ops->get_idt(vcpu, &dt);
7378         sregs->idt.limit = dt.size;
7379         sregs->idt.base = dt.address;
7380         kvm_x86_ops->get_gdt(vcpu, &dt);
7381         sregs->gdt.limit = dt.size;
7382         sregs->gdt.base = dt.address;
7383
7384         sregs->cr0 = kvm_read_cr0(vcpu);
7385         sregs->cr2 = vcpu->arch.cr2;
7386         sregs->cr3 = kvm_read_cr3(vcpu);
7387         sregs->cr4 = kvm_read_cr4(vcpu);
7388         sregs->cr8 = kvm_get_cr8(vcpu);
7389         sregs->efer = vcpu->arch.efer;
7390         sregs->apic_base = kvm_get_apic_base(vcpu);
7391
7392         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7393
7394         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7395                 set_bit(vcpu->arch.interrupt.nr,
7396                         (unsigned long *)sregs->interrupt_bitmap);
7397
7398         return 0;
7399 }
7400
7401 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7402                                     struct kvm_mp_state *mp_state)
7403 {
7404         kvm_apic_accept_events(vcpu);
7405         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7406                                         vcpu->arch.pv.pv_unhalted)
7407                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7408         else
7409                 mp_state->mp_state = vcpu->arch.mp_state;
7410
7411         return 0;
7412 }
7413
7414 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7415                                     struct kvm_mp_state *mp_state)
7416 {
7417         if (!lapic_in_kernel(vcpu) &&
7418             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7419                 return -EINVAL;
7420
7421         /* INITs are latched while in SMM */
7422         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7423             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7424              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7425                 return -EINVAL;
7426
7427         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7428                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7429                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7430         } else
7431                 vcpu->arch.mp_state = mp_state->mp_state;
7432         kvm_make_request(KVM_REQ_EVENT, vcpu);
7433         return 0;
7434 }
7435
7436 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7437                     int reason, bool has_error_code, u32 error_code)
7438 {
7439         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7440         int ret;
7441
7442         init_emulate_ctxt(vcpu);
7443
7444         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7445                                    has_error_code, error_code);
7446
7447         if (ret)
7448                 return EMULATE_FAIL;
7449
7450         kvm_rip_write(vcpu, ctxt->eip);
7451         kvm_set_rflags(vcpu, ctxt->eflags);
7452         kvm_make_request(KVM_REQ_EVENT, vcpu);
7453         return EMULATE_DONE;
7454 }
7455 EXPORT_SYMBOL_GPL(kvm_task_switch);
7456
7457 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7458                                   struct kvm_sregs *sregs)
7459 {
7460         struct msr_data apic_base_msr;
7461         int mmu_reset_needed = 0;
7462         int pending_vec, max_bits, idx;
7463         struct desc_ptr dt;
7464
7465         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7466                         (sregs->cr4 & X86_CR4_OSXSAVE))
7467                 return -EINVAL;
7468
7469         apic_base_msr.data = sregs->apic_base;
7470         apic_base_msr.host_initiated = true;
7471         if (kvm_set_apic_base(vcpu, &apic_base_msr))
7472                 return -EINVAL;
7473
7474         dt.size = sregs->idt.limit;
7475         dt.address = sregs->idt.base;
7476         kvm_x86_ops->set_idt(vcpu, &dt);
7477         dt.size = sregs->gdt.limit;
7478         dt.address = sregs->gdt.base;
7479         kvm_x86_ops->set_gdt(vcpu, &dt);
7480
7481         vcpu->arch.cr2 = sregs->cr2;
7482         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7483         vcpu->arch.cr3 = sregs->cr3;
7484         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7485
7486         kvm_set_cr8(vcpu, sregs->cr8);
7487
7488         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7489         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7490
7491         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7492         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7493         vcpu->arch.cr0 = sregs->cr0;
7494
7495         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7496         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7497         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7498                 kvm_update_cpuid(vcpu);
7499
7500         idx = srcu_read_lock(&vcpu->kvm->srcu);
7501         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7502                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7503                 mmu_reset_needed = 1;
7504         }
7505         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7506
7507         if (mmu_reset_needed)
7508                 kvm_mmu_reset_context(vcpu);
7509
7510         max_bits = KVM_NR_INTERRUPTS;
7511         pending_vec = find_first_bit(
7512                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7513         if (pending_vec < max_bits) {
7514                 kvm_queue_interrupt(vcpu, pending_vec, false);
7515                 pr_debug("Set back pending irq %d\n", pending_vec);
7516         }
7517
7518         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7519         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7520         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7521         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7522         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7523         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7524
7525         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7526         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7527
7528         update_cr8_intercept(vcpu);
7529
7530         /* Older userspace won't unhalt the vcpu on reset. */
7531         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7532             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7533             !is_protmode(vcpu))
7534                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7535
7536         kvm_make_request(KVM_REQ_EVENT, vcpu);
7537
7538         return 0;
7539 }
7540
7541 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7542                                         struct kvm_guest_debug *dbg)
7543 {
7544         unsigned long rflags;
7545         int i, r;
7546
7547         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7548                 r = -EBUSY;
7549                 if (vcpu->arch.exception.pending)
7550                         goto out;
7551                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7552                         kvm_queue_exception(vcpu, DB_VECTOR);
7553                 else
7554                         kvm_queue_exception(vcpu, BP_VECTOR);
7555         }
7556
7557         /*
7558          * Read rflags as long as potentially injected trace flags are still
7559          * filtered out.
7560          */
7561         rflags = kvm_get_rflags(vcpu);
7562
7563         vcpu->guest_debug = dbg->control;
7564         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7565                 vcpu->guest_debug = 0;
7566
7567         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7568                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7569                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7570                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7571         } else {
7572                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7573                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7574         }
7575         kvm_update_dr7(vcpu);
7576
7577         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7578                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7579                         get_segment_base(vcpu, VCPU_SREG_CS);
7580
7581         /*
7582          * Trigger an rflags update that will inject or remove the trace
7583          * flags.
7584          */
7585         kvm_set_rflags(vcpu, rflags);
7586
7587         kvm_x86_ops->update_bp_intercept(vcpu);
7588
7589         r = 0;
7590
7591 out:
7592
7593         return r;
7594 }
7595
7596 /*
7597  * Translate a guest virtual address to a guest physical address.
7598  */
7599 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7600                                     struct kvm_translation *tr)
7601 {
7602         unsigned long vaddr = tr->linear_address;
7603         gpa_t gpa;
7604         int idx;
7605
7606         idx = srcu_read_lock(&vcpu->kvm->srcu);
7607         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7608         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7609         tr->physical_address = gpa;
7610         tr->valid = gpa != UNMAPPED_GVA;
7611         tr->writeable = 1;
7612         tr->usermode = 0;
7613
7614         return 0;
7615 }
7616
7617 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7618 {
7619         struct fxregs_state *fxsave =
7620                         &vcpu->arch.guest_fpu.state.fxsave;
7621
7622         memcpy(fpu->fpr, fxsave->st_space, 128);
7623         fpu->fcw = fxsave->cwd;
7624         fpu->fsw = fxsave->swd;
7625         fpu->ftwx = fxsave->twd;
7626         fpu->last_opcode = fxsave->fop;
7627         fpu->last_ip = fxsave->rip;
7628         fpu->last_dp = fxsave->rdp;
7629         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7630
7631         return 0;
7632 }
7633
7634 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7635 {
7636         struct fxregs_state *fxsave =
7637                         &vcpu->arch.guest_fpu.state.fxsave;
7638
7639         memcpy(fxsave->st_space, fpu->fpr, 128);
7640         fxsave->cwd = fpu->fcw;
7641         fxsave->swd = fpu->fsw;
7642         fxsave->twd = fpu->ftwx;
7643         fxsave->fop = fpu->last_opcode;
7644         fxsave->rip = fpu->last_ip;
7645         fxsave->rdp = fpu->last_dp;
7646         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7647
7648         return 0;
7649 }
7650
7651 static void fx_init(struct kvm_vcpu *vcpu)
7652 {
7653         fpstate_init(&vcpu->arch.guest_fpu.state);
7654         if (boot_cpu_has(X86_FEATURE_XSAVES))
7655                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7656                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7657
7658         /*
7659          * Ensure guest xcr0 is valid for loading
7660          */
7661         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7662
7663         vcpu->arch.cr0 |= X86_CR0_ET;
7664 }
7665
7666 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7667 {
7668         if (vcpu->guest_fpu_loaded)
7669                 return;
7670
7671         /*
7672          * Restore all possible states in the guest,
7673          * and assume host would use all available bits.
7674          * Guest xcr0 would be loaded later.
7675          */
7676         vcpu->guest_fpu_loaded = 1;
7677         __kernel_fpu_begin();
7678         /* PKRU is separately restored in kvm_x86_ops->run.  */
7679         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7680                                 ~XFEATURE_MASK_PKRU);
7681         trace_kvm_fpu(1);
7682 }
7683
7684 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7685 {
7686         if (!vcpu->guest_fpu_loaded)
7687                 return;
7688
7689         vcpu->guest_fpu_loaded = 0;
7690         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7691         __kernel_fpu_end();
7692         ++vcpu->stat.fpu_reload;
7693         trace_kvm_fpu(0);
7694 }
7695
7696 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7697 {
7698         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7699
7700         kvmclock_reset(vcpu);
7701
7702         kvm_x86_ops->vcpu_free(vcpu);
7703         free_cpumask_var(wbinvd_dirty_mask);
7704 }
7705
7706 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7707                                                 unsigned int id)
7708 {
7709         struct kvm_vcpu *vcpu;
7710
7711         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7712                 printk_once(KERN_WARNING
7713                 "kvm: SMP vm created on host with unstable TSC; "
7714                 "guest TSC will not be reliable\n");
7715
7716         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7717
7718         return vcpu;
7719 }
7720
7721 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7722 {
7723         int r;
7724
7725         kvm_vcpu_mtrr_init(vcpu);
7726         r = vcpu_load(vcpu);
7727         if (r)
7728                 return r;
7729         kvm_vcpu_reset(vcpu, false);
7730         kvm_mmu_setup(vcpu);
7731         vcpu_put(vcpu);
7732         return r;
7733 }
7734
7735 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7736 {
7737         struct msr_data msr;
7738         struct kvm *kvm = vcpu->kvm;
7739
7740         kvm_hv_vcpu_postcreate(vcpu);
7741
7742         if (vcpu_load(vcpu))
7743                 return;
7744         msr.data = 0x0;
7745         msr.index = MSR_IA32_TSC;
7746         msr.host_initiated = true;
7747         kvm_write_tsc(vcpu, &msr);
7748         vcpu_put(vcpu);
7749
7750         if (!kvmclock_periodic_sync)
7751                 return;
7752
7753         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7754                                         KVMCLOCK_SYNC_PERIOD);
7755 }
7756
7757 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7758 {
7759         int r;
7760         vcpu->arch.apf.msr_val = 0;
7761
7762         r = vcpu_load(vcpu);
7763         BUG_ON(r);
7764         kvm_mmu_unload(vcpu);
7765         vcpu_put(vcpu);
7766
7767         kvm_x86_ops->vcpu_free(vcpu);
7768 }
7769
7770 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7771 {
7772         vcpu->arch.hflags = 0;
7773
7774         vcpu->arch.smi_pending = 0;
7775         atomic_set(&vcpu->arch.nmi_queued, 0);
7776         vcpu->arch.nmi_pending = 0;
7777         vcpu->arch.nmi_injected = false;
7778         kvm_clear_interrupt_queue(vcpu);
7779         kvm_clear_exception_queue(vcpu);
7780         vcpu->arch.exception.pending = false;
7781
7782         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7783         kvm_update_dr0123(vcpu);
7784         vcpu->arch.dr6 = DR6_INIT;
7785         kvm_update_dr6(vcpu);
7786         vcpu->arch.dr7 = DR7_FIXED_1;
7787         kvm_update_dr7(vcpu);
7788
7789         vcpu->arch.cr2 = 0;
7790
7791         kvm_make_request(KVM_REQ_EVENT, vcpu);
7792         vcpu->arch.apf.msr_val = 0;
7793         vcpu->arch.st.msr_val = 0;
7794
7795         kvmclock_reset(vcpu);
7796
7797         kvm_clear_async_pf_completion_queue(vcpu);
7798         kvm_async_pf_hash_reset(vcpu);
7799         vcpu->arch.apf.halted = false;
7800
7801         if (!init_event) {
7802                 kvm_pmu_reset(vcpu);
7803                 vcpu->arch.smbase = 0x30000;
7804
7805                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7806                 vcpu->arch.msr_misc_features_enables = 0;
7807         }
7808
7809         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7810         vcpu->arch.regs_avail = ~0;
7811         vcpu->arch.regs_dirty = ~0;
7812
7813         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7814 }
7815
7816 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7817 {
7818         struct kvm_segment cs;
7819
7820         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7821         cs.selector = vector << 8;
7822         cs.base = vector << 12;
7823         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7824         kvm_rip_write(vcpu, 0);
7825 }
7826
7827 int kvm_arch_hardware_enable(void)
7828 {
7829         struct kvm *kvm;
7830         struct kvm_vcpu *vcpu;
7831         int i;
7832         int ret;
7833         u64 local_tsc;
7834         u64 max_tsc = 0;
7835         bool stable, backwards_tsc = false;
7836
7837         kvm_shared_msr_cpu_online();
7838         ret = kvm_x86_ops->hardware_enable();
7839         if (ret != 0)
7840                 return ret;
7841
7842         local_tsc = rdtsc();
7843         stable = !check_tsc_unstable();
7844         list_for_each_entry(kvm, &vm_list, vm_list) {
7845                 kvm_for_each_vcpu(i, vcpu, kvm) {
7846                         if (!stable && vcpu->cpu == smp_processor_id())
7847                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7848                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7849                                 backwards_tsc = true;
7850                                 if (vcpu->arch.last_host_tsc > max_tsc)
7851                                         max_tsc = vcpu->arch.last_host_tsc;
7852                         }
7853                 }
7854         }
7855
7856         /*
7857          * Sometimes, even reliable TSCs go backwards.  This happens on
7858          * platforms that reset TSC during suspend or hibernate actions, but
7859          * maintain synchronization.  We must compensate.  Fortunately, we can
7860          * detect that condition here, which happens early in CPU bringup,
7861          * before any KVM threads can be running.  Unfortunately, we can't
7862          * bring the TSCs fully up to date with real time, as we aren't yet far
7863          * enough into CPU bringup that we know how much real time has actually
7864          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7865          * variables that haven't been updated yet.
7866          *
7867          * So we simply find the maximum observed TSC above, then record the
7868          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7869          * the adjustment will be applied.  Note that we accumulate
7870          * adjustments, in case multiple suspend cycles happen before some VCPU
7871          * gets a chance to run again.  In the event that no KVM threads get a
7872          * chance to run, we will miss the entire elapsed period, as we'll have
7873          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7874          * loose cycle time.  This isn't too big a deal, since the loss will be
7875          * uniform across all VCPUs (not to mention the scenario is extremely
7876          * unlikely). It is possible that a second hibernate recovery happens
7877          * much faster than a first, causing the observed TSC here to be
7878          * smaller; this would require additional padding adjustment, which is
7879          * why we set last_host_tsc to the local tsc observed here.
7880          *
7881          * N.B. - this code below runs only on platforms with reliable TSC,
7882          * as that is the only way backwards_tsc is set above.  Also note
7883          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7884          * have the same delta_cyc adjustment applied if backwards_tsc
7885          * is detected.  Note further, this adjustment is only done once,
7886          * as we reset last_host_tsc on all VCPUs to stop this from being
7887          * called multiple times (one for each physical CPU bringup).
7888          *
7889          * Platforms with unreliable TSCs don't have to deal with this, they
7890          * will be compensated by the logic in vcpu_load, which sets the TSC to
7891          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7892          * guarantee that they stay in perfect synchronization.
7893          */
7894         if (backwards_tsc) {
7895                 u64 delta_cyc = max_tsc - local_tsc;
7896                 list_for_each_entry(kvm, &vm_list, vm_list) {
7897                         kvm->arch.backwards_tsc_observed = true;
7898                         kvm_for_each_vcpu(i, vcpu, kvm) {
7899                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7900                                 vcpu->arch.last_host_tsc = local_tsc;
7901                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7902                         }
7903
7904                         /*
7905                          * We have to disable TSC offset matching.. if you were
7906                          * booting a VM while issuing an S4 host suspend....
7907                          * you may have some problem.  Solving this issue is
7908                          * left as an exercise to the reader.
7909                          */
7910                         kvm->arch.last_tsc_nsec = 0;
7911                         kvm->arch.last_tsc_write = 0;
7912                 }
7913
7914         }
7915         return 0;
7916 }
7917
7918 void kvm_arch_hardware_disable(void)
7919 {
7920         kvm_x86_ops->hardware_disable();
7921         drop_user_return_notifiers();
7922 }
7923
7924 int kvm_arch_hardware_setup(void)
7925 {
7926         int r;
7927
7928         r = kvm_x86_ops->hardware_setup();
7929         if (r != 0)
7930                 return r;
7931
7932         if (kvm_has_tsc_control) {
7933                 /*
7934                  * Make sure the user can only configure tsc_khz values that
7935                  * fit into a signed integer.
7936                  * A min value is not calculated needed because it will always
7937                  * be 1 on all machines.
7938                  */
7939                 u64 max = min(0x7fffffffULL,
7940                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7941                 kvm_max_guest_tsc_khz = max;
7942
7943                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7944         }
7945
7946         kvm_init_msr_list();
7947         return 0;
7948 }
7949
7950 void kvm_arch_hardware_unsetup(void)
7951 {
7952         kvm_x86_ops->hardware_unsetup();
7953 }
7954
7955 void kvm_arch_check_processor_compat(void *rtn)
7956 {
7957         kvm_x86_ops->check_processor_compatibility(rtn);
7958 }
7959
7960 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7961 {
7962         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7963 }
7964 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7965
7966 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7967 {
7968         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7969 }
7970
7971 struct static_key kvm_no_apic_vcpu __read_mostly;
7972 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7973
7974 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7975 {
7976         struct page *page;
7977         struct kvm *kvm;
7978         int r;
7979
7980         BUG_ON(vcpu->kvm == NULL);
7981         kvm = vcpu->kvm;
7982
7983         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
7984         vcpu->arch.pv.pv_unhalted = false;
7985         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7986         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7987                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7988         else
7989                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7990
7991         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7992         if (!page) {
7993                 r = -ENOMEM;
7994                 goto fail;
7995         }
7996         vcpu->arch.pio_data = page_address(page);
7997
7998         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7999
8000         r = kvm_mmu_create(vcpu);
8001         if (r < 0)
8002                 goto fail_free_pio_data;
8003
8004         if (irqchip_in_kernel(kvm)) {
8005                 r = kvm_create_lapic(vcpu);
8006                 if (r < 0)
8007                         goto fail_mmu_destroy;
8008         } else
8009                 static_key_slow_inc(&kvm_no_apic_vcpu);
8010
8011         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8012                                        GFP_KERNEL);
8013         if (!vcpu->arch.mce_banks) {
8014                 r = -ENOMEM;
8015                 goto fail_free_lapic;
8016         }
8017         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8018
8019         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8020                 r = -ENOMEM;
8021                 goto fail_free_mce_banks;
8022         }
8023
8024         fx_init(vcpu);
8025
8026         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
8027         vcpu->arch.pv_time_enabled = false;
8028
8029         vcpu->arch.guest_supported_xcr0 = 0;
8030         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8031
8032         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8033
8034         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8035
8036         kvm_async_pf_hash_reset(vcpu);
8037         kvm_pmu_init(vcpu);
8038
8039         vcpu->arch.pending_external_vector = -1;
8040         vcpu->arch.preempted_in_kernel = false;
8041
8042         kvm_hv_vcpu_init(vcpu);
8043
8044         return 0;
8045
8046 fail_free_mce_banks:
8047         kfree(vcpu->arch.mce_banks);
8048 fail_free_lapic:
8049         kvm_free_lapic(vcpu);
8050 fail_mmu_destroy:
8051         kvm_mmu_destroy(vcpu);
8052 fail_free_pio_data:
8053         free_page((unsigned long)vcpu->arch.pio_data);
8054 fail:
8055         return r;
8056 }
8057
8058 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8059 {
8060         int idx;
8061
8062         kvm_hv_vcpu_uninit(vcpu);
8063         kvm_pmu_destroy(vcpu);
8064         kfree(vcpu->arch.mce_banks);
8065         kvm_free_lapic(vcpu);
8066         idx = srcu_read_lock(&vcpu->kvm->srcu);
8067         kvm_mmu_destroy(vcpu);
8068         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8069         free_page((unsigned long)vcpu->arch.pio_data);
8070         if (!lapic_in_kernel(vcpu))
8071                 static_key_slow_dec(&kvm_no_apic_vcpu);
8072 }
8073
8074 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8075 {
8076         kvm_x86_ops->sched_in(vcpu, cpu);
8077 }
8078
8079 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8080 {
8081         if (type)
8082                 return -EINVAL;
8083
8084         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8085         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8086         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8087         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8088         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8089
8090         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8091         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8092         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8093         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8094                 &kvm->arch.irq_sources_bitmap);
8095
8096         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8097         mutex_init(&kvm->arch.apic_map_lock);
8098         mutex_init(&kvm->arch.hyperv.hv_lock);
8099         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8100
8101         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8102         pvclock_update_vm_gtod_copy(kvm);
8103
8104         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8105         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8106
8107         kvm_page_track_init(kvm);
8108         kvm_mmu_init_vm(kvm);
8109
8110         if (kvm_x86_ops->vm_init)
8111                 return kvm_x86_ops->vm_init(kvm);
8112
8113         return 0;
8114 }
8115
8116 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8117 {
8118         int r;
8119         r = vcpu_load(vcpu);
8120         BUG_ON(r);
8121         kvm_mmu_unload(vcpu);
8122         vcpu_put(vcpu);
8123 }
8124
8125 static void kvm_free_vcpus(struct kvm *kvm)
8126 {
8127         unsigned int i;
8128         struct kvm_vcpu *vcpu;
8129
8130         /*
8131          * Unpin any mmu pages first.
8132          */
8133         kvm_for_each_vcpu(i, vcpu, kvm) {
8134                 kvm_clear_async_pf_completion_queue(vcpu);
8135                 kvm_unload_vcpu_mmu(vcpu);
8136         }
8137         kvm_for_each_vcpu(i, vcpu, kvm)
8138                 kvm_arch_vcpu_free(vcpu);
8139
8140         mutex_lock(&kvm->lock);
8141         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8142                 kvm->vcpus[i] = NULL;
8143
8144         atomic_set(&kvm->online_vcpus, 0);
8145         mutex_unlock(&kvm->lock);
8146 }
8147
8148 void kvm_arch_sync_events(struct kvm *kvm)
8149 {
8150         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8151         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8152         kvm_free_pit(kvm);
8153 }
8154
8155 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8156 {
8157         int i, r;
8158         unsigned long hva;
8159         struct kvm_memslots *slots = kvm_memslots(kvm);
8160         struct kvm_memory_slot *slot, old;
8161
8162         /* Called with kvm->slots_lock held.  */
8163         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8164                 return -EINVAL;
8165
8166         slot = id_to_memslot(slots, id);
8167         if (size) {
8168                 if (slot->npages)
8169                         return -EEXIST;
8170
8171                 /*
8172                  * MAP_SHARED to prevent internal slot pages from being moved
8173                  * by fork()/COW.
8174                  */
8175                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8176                               MAP_SHARED | MAP_ANONYMOUS, 0);
8177                 if (IS_ERR((void *)hva))
8178                         return PTR_ERR((void *)hva);
8179         } else {
8180                 if (!slot->npages)
8181                         return 0;
8182
8183                 hva = 0;
8184         }
8185
8186         old = *slot;
8187         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8188                 struct kvm_userspace_memory_region m;
8189
8190                 m.slot = id | (i << 16);
8191                 m.flags = 0;
8192                 m.guest_phys_addr = gpa;
8193                 m.userspace_addr = hva;
8194                 m.memory_size = size;
8195                 r = __kvm_set_memory_region(kvm, &m);
8196                 if (r < 0)
8197                         return r;
8198         }
8199
8200         if (!size) {
8201                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8202                 WARN_ON(r < 0);
8203         }
8204
8205         return 0;
8206 }
8207 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8208
8209 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8210 {
8211         int r;
8212
8213         mutex_lock(&kvm->slots_lock);
8214         r = __x86_set_memory_region(kvm, id, gpa, size);
8215         mutex_unlock(&kvm->slots_lock);
8216
8217         return r;
8218 }
8219 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8220
8221 void kvm_arch_destroy_vm(struct kvm *kvm)
8222 {
8223         if (current->mm == kvm->mm) {
8224                 /*
8225                  * Free memory regions allocated on behalf of userspace,
8226                  * unless the the memory map has changed due to process exit
8227                  * or fd copying.
8228                  */
8229                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8230                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8231                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8232         }
8233         if (kvm_x86_ops->vm_destroy)
8234                 kvm_x86_ops->vm_destroy(kvm);
8235         kvm_pic_destroy(kvm);
8236         kvm_ioapic_destroy(kvm);
8237         kvm_free_vcpus(kvm);
8238         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8239         kvm_mmu_uninit_vm(kvm);
8240         kvm_page_track_cleanup(kvm);
8241 }
8242
8243 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8244                            struct kvm_memory_slot *dont)
8245 {
8246         int i;
8247
8248         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8249                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8250                         kvfree(free->arch.rmap[i]);
8251                         free->arch.rmap[i] = NULL;
8252                 }
8253                 if (i == 0)
8254                         continue;
8255
8256                 if (!dont || free->arch.lpage_info[i - 1] !=
8257                              dont->arch.lpage_info[i - 1]) {
8258                         kvfree(free->arch.lpage_info[i - 1]);
8259                         free->arch.lpage_info[i - 1] = NULL;
8260                 }
8261         }
8262
8263         kvm_page_track_free_memslot(free, dont);
8264 }
8265
8266 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8267                             unsigned long npages)
8268 {
8269         int i;
8270
8271         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8272                 struct kvm_lpage_info *linfo;
8273                 unsigned long ugfn;
8274                 int lpages;
8275                 int level = i + 1;
8276
8277                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8278                                       slot->base_gfn, level) + 1;
8279
8280                 slot->arch.rmap[i] =
8281                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8282                 if (!slot->arch.rmap[i])
8283                         goto out_free;
8284                 if (i == 0)
8285                         continue;
8286
8287                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8288                 if (!linfo)
8289                         goto out_free;
8290
8291                 slot->arch.lpage_info[i - 1] = linfo;
8292
8293                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8294                         linfo[0].disallow_lpage = 1;
8295                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8296                         linfo[lpages - 1].disallow_lpage = 1;
8297                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8298                 /*
8299                  * If the gfn and userspace address are not aligned wrt each
8300                  * other, or if explicitly asked to, disable large page
8301                  * support for this slot
8302                  */
8303                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8304                     !kvm_largepages_enabled()) {
8305                         unsigned long j;
8306
8307                         for (j = 0; j < lpages; ++j)
8308                                 linfo[j].disallow_lpage = 1;
8309                 }
8310         }
8311
8312         if (kvm_page_track_create_memslot(slot, npages))
8313                 goto out_free;
8314
8315         return 0;
8316
8317 out_free:
8318         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8319                 kvfree(slot->arch.rmap[i]);
8320                 slot->arch.rmap[i] = NULL;
8321                 if (i == 0)
8322                         continue;
8323
8324                 kvfree(slot->arch.lpage_info[i - 1]);
8325                 slot->arch.lpage_info[i - 1] = NULL;
8326         }
8327         return -ENOMEM;
8328 }
8329
8330 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8331 {
8332         /*
8333          * memslots->generation has been incremented.
8334          * mmio generation may have reached its maximum value.
8335          */
8336         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8337 }
8338
8339 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8340                                 struct kvm_memory_slot *memslot,
8341                                 const struct kvm_userspace_memory_region *mem,
8342                                 enum kvm_mr_change change)
8343 {
8344         return 0;
8345 }
8346
8347 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8348                                      struct kvm_memory_slot *new)
8349 {
8350         /* Still write protect RO slot */
8351         if (new->flags & KVM_MEM_READONLY) {
8352                 kvm_mmu_slot_remove_write_access(kvm, new);
8353                 return;
8354         }
8355
8356         /*
8357          * Call kvm_x86_ops dirty logging hooks when they are valid.
8358          *
8359          * kvm_x86_ops->slot_disable_log_dirty is called when:
8360          *
8361          *  - KVM_MR_CREATE with dirty logging is disabled
8362          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8363          *
8364          * The reason is, in case of PML, we need to set D-bit for any slots
8365          * with dirty logging disabled in order to eliminate unnecessary GPA
8366          * logging in PML buffer (and potential PML buffer full VMEXT). This
8367          * guarantees leaving PML enabled during guest's lifetime won't have
8368          * any additonal overhead from PML when guest is running with dirty
8369          * logging disabled for memory slots.
8370          *
8371          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8372          * to dirty logging mode.
8373          *
8374          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8375          *
8376          * In case of write protect:
8377          *
8378          * Write protect all pages for dirty logging.
8379          *
8380          * All the sptes including the large sptes which point to this
8381          * slot are set to readonly. We can not create any new large
8382          * spte on this slot until the end of the logging.
8383          *
8384          * See the comments in fast_page_fault().
8385          */
8386         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8387                 if (kvm_x86_ops->slot_enable_log_dirty)
8388                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8389                 else
8390                         kvm_mmu_slot_remove_write_access(kvm, new);
8391         } else {
8392                 if (kvm_x86_ops->slot_disable_log_dirty)
8393                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8394         }
8395 }
8396
8397 void kvm_arch_commit_memory_region(struct kvm *kvm,
8398                                 const struct kvm_userspace_memory_region *mem,
8399                                 const struct kvm_memory_slot *old,
8400                                 const struct kvm_memory_slot *new,
8401                                 enum kvm_mr_change change)
8402 {
8403         int nr_mmu_pages = 0;
8404
8405         if (!kvm->arch.n_requested_mmu_pages)
8406                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8407
8408         if (nr_mmu_pages)
8409                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8410
8411         /*
8412          * Dirty logging tracks sptes in 4k granularity, meaning that large
8413          * sptes have to be split.  If live migration is successful, the guest
8414          * in the source machine will be destroyed and large sptes will be
8415          * created in the destination. However, if the guest continues to run
8416          * in the source machine (for example if live migration fails), small
8417          * sptes will remain around and cause bad performance.
8418          *
8419          * Scan sptes if dirty logging has been stopped, dropping those
8420          * which can be collapsed into a single large-page spte.  Later
8421          * page faults will create the large-page sptes.
8422          */
8423         if ((change != KVM_MR_DELETE) &&
8424                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8425                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8426                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8427
8428         /*
8429          * Set up write protection and/or dirty logging for the new slot.
8430          *
8431          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8432          * been zapped so no dirty logging staff is needed for old slot. For
8433          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8434          * new and it's also covered when dealing with the new slot.
8435          *
8436          * FIXME: const-ify all uses of struct kvm_memory_slot.
8437          */
8438         if (change != KVM_MR_DELETE)
8439                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8440 }
8441
8442 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8443 {
8444         kvm_mmu_invalidate_zap_all_pages(kvm);
8445 }
8446
8447 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8448                                    struct kvm_memory_slot *slot)
8449 {
8450         kvm_page_track_flush_slot(kvm, slot);
8451 }
8452
8453 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8454 {
8455         if (!list_empty_careful(&vcpu->async_pf.done))
8456                 return true;
8457
8458         if (kvm_apic_has_events(vcpu))
8459                 return true;
8460
8461         if (vcpu->arch.pv.pv_unhalted)
8462                 return true;
8463
8464         if (vcpu->arch.exception.pending)
8465                 return true;
8466
8467         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8468             (vcpu->arch.nmi_pending &&
8469              kvm_x86_ops->nmi_allowed(vcpu)))
8470                 return true;
8471
8472         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8473             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8474                 return true;
8475
8476         if (kvm_arch_interrupt_allowed(vcpu) &&
8477             kvm_cpu_has_interrupt(vcpu))
8478                 return true;
8479
8480         if (kvm_hv_has_stimer_pending(vcpu))
8481                 return true;
8482
8483         return false;
8484 }
8485
8486 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8487 {
8488         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8489 }
8490
8491 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8492 {
8493         return vcpu->arch.preempted_in_kernel;
8494 }
8495
8496 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8497 {
8498         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8499 }
8500
8501 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8502 {
8503         return kvm_x86_ops->interrupt_allowed(vcpu);
8504 }
8505
8506 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8507 {
8508         if (is_64_bit_mode(vcpu))
8509                 return kvm_rip_read(vcpu);
8510         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8511                      kvm_rip_read(vcpu));
8512 }
8513 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8514
8515 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8516 {
8517         return kvm_get_linear_rip(vcpu) == linear_rip;
8518 }
8519 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8520
8521 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8522 {
8523         unsigned long rflags;
8524
8525         rflags = kvm_x86_ops->get_rflags(vcpu);
8526         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8527                 rflags &= ~X86_EFLAGS_TF;
8528         return rflags;
8529 }
8530 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8531
8532 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8533 {
8534         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8535             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8536                 rflags |= X86_EFLAGS_TF;
8537         kvm_x86_ops->set_rflags(vcpu, rflags);
8538 }
8539
8540 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8541 {
8542         __kvm_set_rflags(vcpu, rflags);
8543         kvm_make_request(KVM_REQ_EVENT, vcpu);
8544 }
8545 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8546
8547 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8548 {
8549         int r;
8550
8551         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8552               work->wakeup_all)
8553                 return;
8554
8555         r = kvm_mmu_reload(vcpu);
8556         if (unlikely(r))
8557                 return;
8558
8559         if (!vcpu->arch.mmu.direct_map &&
8560               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8561                 return;
8562
8563         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8564 }
8565
8566 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8567 {
8568         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8569 }
8570
8571 static inline u32 kvm_async_pf_next_probe(u32 key)
8572 {
8573         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8574 }
8575
8576 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8577 {
8578         u32 key = kvm_async_pf_hash_fn(gfn);
8579
8580         while (vcpu->arch.apf.gfns[key] != ~0)
8581                 key = kvm_async_pf_next_probe(key);
8582
8583         vcpu->arch.apf.gfns[key] = gfn;
8584 }
8585
8586 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8587 {
8588         int i;
8589         u32 key = kvm_async_pf_hash_fn(gfn);
8590
8591         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8592                      (vcpu->arch.apf.gfns[key] != gfn &&
8593                       vcpu->arch.apf.gfns[key] != ~0); i++)
8594                 key = kvm_async_pf_next_probe(key);
8595
8596         return key;
8597 }
8598
8599 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8600 {
8601         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8602 }
8603
8604 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8605 {
8606         u32 i, j, k;
8607
8608         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8609         while (true) {
8610                 vcpu->arch.apf.gfns[i] = ~0;
8611                 do {
8612                         j = kvm_async_pf_next_probe(j);
8613                         if (vcpu->arch.apf.gfns[j] == ~0)
8614                                 return;
8615                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8616                         /*
8617                          * k lies cyclically in ]i,j]
8618                          * |    i.k.j |
8619                          * |....j i.k.| or  |.k..j i...|
8620                          */
8621                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8622                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8623                 i = j;
8624         }
8625 }
8626
8627 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8628 {
8629
8630         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8631                                       sizeof(val));
8632 }
8633
8634 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8635 {
8636
8637         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8638                                       sizeof(u32));
8639 }
8640
8641 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8642                                      struct kvm_async_pf *work)
8643 {
8644         struct x86_exception fault;
8645
8646         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8647         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8648
8649         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8650             (vcpu->arch.apf.send_user_only &&
8651              kvm_x86_ops->get_cpl(vcpu) == 0))
8652                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8653         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8654                 fault.vector = PF_VECTOR;
8655                 fault.error_code_valid = true;
8656                 fault.error_code = 0;
8657                 fault.nested_page_fault = false;
8658                 fault.address = work->arch.token;
8659                 fault.async_page_fault = true;
8660                 kvm_inject_page_fault(vcpu, &fault);
8661         }
8662 }
8663
8664 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8665                                  struct kvm_async_pf *work)
8666 {
8667         struct x86_exception fault;
8668         u32 val;
8669
8670         if (work->wakeup_all)
8671                 work->arch.token = ~0; /* broadcast wakeup */
8672         else
8673                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8674         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8675
8676         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8677             !apf_get_user(vcpu, &val)) {
8678                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8679                     vcpu->arch.exception.pending &&
8680                     vcpu->arch.exception.nr == PF_VECTOR &&
8681                     !apf_put_user(vcpu, 0)) {
8682                         vcpu->arch.exception.injected = false;
8683                         vcpu->arch.exception.pending = false;
8684                         vcpu->arch.exception.nr = 0;
8685                         vcpu->arch.exception.has_error_code = false;
8686                         vcpu->arch.exception.error_code = 0;
8687                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8688                         fault.vector = PF_VECTOR;
8689                         fault.error_code_valid = true;
8690                         fault.error_code = 0;
8691                         fault.nested_page_fault = false;
8692                         fault.address = work->arch.token;
8693                         fault.async_page_fault = true;
8694                         kvm_inject_page_fault(vcpu, &fault);
8695                 }
8696         }
8697         vcpu->arch.apf.halted = false;
8698         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8699 }
8700
8701 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8702 {
8703         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8704                 return true;
8705         else
8706                 return kvm_can_do_async_pf(vcpu);
8707 }
8708
8709 void kvm_arch_start_assignment(struct kvm *kvm)
8710 {
8711         atomic_inc(&kvm->arch.assigned_device_count);
8712 }
8713 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8714
8715 void kvm_arch_end_assignment(struct kvm *kvm)
8716 {
8717         atomic_dec(&kvm->arch.assigned_device_count);
8718 }
8719 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8720
8721 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8722 {
8723         return atomic_read(&kvm->arch.assigned_device_count);
8724 }
8725 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8726
8727 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8728 {
8729         atomic_inc(&kvm->arch.noncoherent_dma_count);
8730 }
8731 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8732
8733 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8734 {
8735         atomic_dec(&kvm->arch.noncoherent_dma_count);
8736 }
8737 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8738
8739 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8740 {
8741         return atomic_read(&kvm->arch.noncoherent_dma_count);
8742 }
8743 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8744
8745 bool kvm_arch_has_irq_bypass(void)
8746 {
8747         return kvm_x86_ops->update_pi_irte != NULL;
8748 }
8749
8750 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8751                                       struct irq_bypass_producer *prod)
8752 {
8753         struct kvm_kernel_irqfd *irqfd =
8754                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8755
8756         irqfd->producer = prod;
8757
8758         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8759                                            prod->irq, irqfd->gsi, 1);
8760 }
8761
8762 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8763                                       struct irq_bypass_producer *prod)
8764 {
8765         int ret;
8766         struct kvm_kernel_irqfd *irqfd =
8767                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8768
8769         WARN_ON(irqfd->producer != prod);
8770         irqfd->producer = NULL;
8771
8772         /*
8773          * When producer of consumer is unregistered, we change back to
8774          * remapped mode, so we can re-use the current implementation
8775          * when the irq is masked/disabled or the consumer side (KVM
8776          * int this case doesn't want to receive the interrupts.
8777         */
8778         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8779         if (ret)
8780                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8781                        " fails: %d\n", irqfd->consumer.token, ret);
8782 }
8783
8784 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8785                                    uint32_t guest_irq, bool set)
8786 {
8787         if (!kvm_x86_ops->update_pi_irte)
8788                 return -EINVAL;
8789
8790         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8791 }
8792
8793 bool kvm_vector_hashing_enabled(void)
8794 {
8795         return vector_hashing;
8796 }
8797 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8798
8799 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8800 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8801 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8802 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8803 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8804 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8805 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8806 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8807 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8808 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8809 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8810 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8811 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8812 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8813 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8814 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8815 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8816 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8817 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);