cpufreq: x86: Make scaling_cur_freq behave more as expected
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82  * - enable syscall per default because its emulated by KVM
83  * - enable LME and LMA per default on 64 bit KVM
84  */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32  __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64  __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 #define KVM_NR_SHARED_MSRS 16
138
139 struct kvm_shared_msrs_global {
140         int nr;
141         u32 msrs[KVM_NR_SHARED_MSRS];
142 };
143
144 struct kvm_shared_msrs {
145         struct user_return_notifier urn;
146         bool registered;
147         struct kvm_shared_msr_values {
148                 u64 host;
149                 u64 curr;
150         } values[KVM_NR_SHARED_MSRS];
151 };
152
153 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
154 static struct kvm_shared_msrs __percpu *shared_msrs;
155
156 struct kvm_stats_debugfs_item debugfs_entries[] = {
157         { "pf_fixed", VCPU_STAT(pf_fixed) },
158         { "pf_guest", VCPU_STAT(pf_guest) },
159         { "tlb_flush", VCPU_STAT(tlb_flush) },
160         { "invlpg", VCPU_STAT(invlpg) },
161         { "exits", VCPU_STAT(exits) },
162         { "io_exits", VCPU_STAT(io_exits) },
163         { "mmio_exits", VCPU_STAT(mmio_exits) },
164         { "signal_exits", VCPU_STAT(signal_exits) },
165         { "irq_window", VCPU_STAT(irq_window_exits) },
166         { "nmi_window", VCPU_STAT(nmi_window_exits) },
167         { "halt_exits", VCPU_STAT(halt_exits) },
168         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
169         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
170         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
171         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
172         { "hypercalls", VCPU_STAT(hypercalls) },
173         { "request_irq", VCPU_STAT(request_irq_exits) },
174         { "irq_exits", VCPU_STAT(irq_exits) },
175         { "host_state_reload", VCPU_STAT(host_state_reload) },
176         { "efer_reload", VCPU_STAT(efer_reload) },
177         { "fpu_reload", VCPU_STAT(fpu_reload) },
178         { "insn_emulation", VCPU_STAT(insn_emulation) },
179         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
180         { "irq_injections", VCPU_STAT(irq_injections) },
181         { "nmi_injections", VCPU_STAT(nmi_injections) },
182         { "req_event", VCPU_STAT(req_event) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { "max_mmu_page_hash_collisions",
194                 VM_STAT(max_mmu_page_hash_collisions) },
195         { NULL }
196 };
197
198 u64 __read_mostly host_xcr0;
199
200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
201
202 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
203 {
204         int i;
205         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
206                 vcpu->arch.apf.gfns[i] = ~0;
207 }
208
209 static void kvm_on_user_return(struct user_return_notifier *urn)
210 {
211         unsigned slot;
212         struct kvm_shared_msrs *locals
213                 = container_of(urn, struct kvm_shared_msrs, urn);
214         struct kvm_shared_msr_values *values;
215         unsigned long flags;
216
217         /*
218          * Disabling irqs at this point since the following code could be
219          * interrupted and executed through kvm_arch_hardware_disable()
220          */
221         local_irq_save(flags);
222         if (locals->registered) {
223                 locals->registered = false;
224                 user_return_notifier_unregister(urn);
225         }
226         local_irq_restore(flags);
227         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
228                 values = &locals->values[slot];
229                 if (values->host != values->curr) {
230                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
231                         values->curr = values->host;
232                 }
233         }
234 }
235
236 static void shared_msr_update(unsigned slot, u32 msr)
237 {
238         u64 value;
239         unsigned int cpu = smp_processor_id();
240         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
241
242         /* only read, and nobody should modify it at this time,
243          * so don't need lock */
244         if (slot >= shared_msrs_global.nr) {
245                 printk(KERN_ERR "kvm: invalid MSR slot!");
246                 return;
247         }
248         rdmsrl_safe(msr, &value);
249         smsr->values[slot].host = value;
250         smsr->values[slot].curr = value;
251 }
252
253 void kvm_define_shared_msr(unsigned slot, u32 msr)
254 {
255         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
256         shared_msrs_global.msrs[slot] = msr;
257         if (slot >= shared_msrs_global.nr)
258                 shared_msrs_global.nr = slot + 1;
259 }
260 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
261
262 static void kvm_shared_msr_cpu_online(void)
263 {
264         unsigned i;
265
266         for (i = 0; i < shared_msrs_global.nr; ++i)
267                 shared_msr_update(i, shared_msrs_global.msrs[i]);
268 }
269
270 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
271 {
272         unsigned int cpu = smp_processor_id();
273         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274         int err;
275
276         if (((value ^ smsr->values[slot].curr) & mask) == 0)
277                 return 0;
278         smsr->values[slot].curr = value;
279         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
280         if (err)
281                 return 1;
282
283         if (!smsr->registered) {
284                 smsr->urn.on_user_return = kvm_on_user_return;
285                 user_return_notifier_register(&smsr->urn);
286                 smsr->registered = true;
287         }
288         return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
291
292 static void drop_user_return_notifiers(void)
293 {
294         unsigned int cpu = smp_processor_id();
295         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296
297         if (smsr->registered)
298                 kvm_on_user_return(&smsr->urn);
299 }
300
301 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
302 {
303         return vcpu->arch.apic_base;
304 }
305 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
306
307 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
308 {
309         u64 old_state = vcpu->arch.apic_base &
310                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311         u64 new_state = msr_info->data &
312                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
314                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
315
316         if (!msr_info->host_initiated &&
317             ((msr_info->data & reserved_bits) != 0 ||
318              new_state == X2APIC_ENABLE ||
319              (new_state == MSR_IA32_APICBASE_ENABLE &&
320               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
321              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
322               old_state == 0)))
323                 return 1;
324
325         kvm_lapic_set_base(vcpu, msr_info->data);
326         return 0;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
329
330 asmlinkage __visible void kvm_spurious_fault(void)
331 {
332         /* Fault while not rebooting.  We want the trace. */
333         BUG();
334 }
335 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
336
337 #define EXCPT_BENIGN            0
338 #define EXCPT_CONTRIBUTORY      1
339 #define EXCPT_PF                2
340
341 static int exception_class(int vector)
342 {
343         switch (vector) {
344         case PF_VECTOR:
345                 return EXCPT_PF;
346         case DE_VECTOR:
347         case TS_VECTOR:
348         case NP_VECTOR:
349         case SS_VECTOR:
350         case GP_VECTOR:
351                 return EXCPT_CONTRIBUTORY;
352         default:
353                 break;
354         }
355         return EXCPT_BENIGN;
356 }
357
358 #define EXCPT_FAULT             0
359 #define EXCPT_TRAP              1
360 #define EXCPT_ABORT             2
361 #define EXCPT_INTERRUPT         3
362
363 static int exception_type(int vector)
364 {
365         unsigned int mask;
366
367         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
368                 return EXCPT_INTERRUPT;
369
370         mask = 1 << vector;
371
372         /* #DB is trap, as instruction watchpoints are handled elsewhere */
373         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
374                 return EXCPT_TRAP;
375
376         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
377                 return EXCPT_ABORT;
378
379         /* Reserved exceptions will result in fault */
380         return EXCPT_FAULT;
381 }
382
383 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
384                 unsigned nr, bool has_error, u32 error_code,
385                 bool reinject)
386 {
387         u32 prev_nr;
388         int class1, class2;
389
390         kvm_make_request(KVM_REQ_EVENT, vcpu);
391
392         if (!vcpu->arch.exception.pending) {
393         queue:
394                 if (has_error && !is_protmode(vcpu))
395                         has_error = false;
396                 vcpu->arch.exception.pending = true;
397                 vcpu->arch.exception.has_error_code = has_error;
398                 vcpu->arch.exception.nr = nr;
399                 vcpu->arch.exception.error_code = error_code;
400                 vcpu->arch.exception.reinject = reinject;
401                 return;
402         }
403
404         /* to check exception */
405         prev_nr = vcpu->arch.exception.nr;
406         if (prev_nr == DF_VECTOR) {
407                 /* triple fault -> shutdown */
408                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
409                 return;
410         }
411         class1 = exception_class(prev_nr);
412         class2 = exception_class(nr);
413         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
414                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
415                 /* generate double fault per SDM Table 5-5 */
416                 vcpu->arch.exception.pending = true;
417                 vcpu->arch.exception.has_error_code = true;
418                 vcpu->arch.exception.nr = DF_VECTOR;
419                 vcpu->arch.exception.error_code = 0;
420         } else
421                 /* replace previous exception with a new one in a hope
422                    that instruction re-execution will regenerate lost
423                    exception */
424                 goto queue;
425 }
426
427 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
428 {
429         kvm_multiple_exception(vcpu, nr, false, 0, false);
430 }
431 EXPORT_SYMBOL_GPL(kvm_queue_exception);
432
433 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
434 {
435         kvm_multiple_exception(vcpu, nr, false, 0, true);
436 }
437 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
438
439 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
440 {
441         if (err)
442                 kvm_inject_gp(vcpu, 0);
443         else
444                 return kvm_skip_emulated_instruction(vcpu);
445
446         return 1;
447 }
448 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
449
450 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
451 {
452         ++vcpu->stat.pf_guest;
453         vcpu->arch.exception.nested_apf =
454                 is_guest_mode(vcpu) && fault->async_page_fault;
455         if (vcpu->arch.exception.nested_apf)
456                 vcpu->arch.apf.nested_apf_token = fault->address;
457         else
458                 vcpu->arch.cr2 = fault->address;
459         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
460 }
461 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
462
463 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
464 {
465         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
466                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
467         else
468                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
469
470         return fault->nested_page_fault;
471 }
472
473 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
474 {
475         atomic_inc(&vcpu->arch.nmi_queued);
476         kvm_make_request(KVM_REQ_NMI, vcpu);
477 }
478 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
479
480 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
481 {
482         kvm_multiple_exception(vcpu, nr, true, error_code, false);
483 }
484 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
485
486 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
487 {
488         kvm_multiple_exception(vcpu, nr, true, error_code, true);
489 }
490 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
491
492 /*
493  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
494  * a #GP and return false.
495  */
496 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
497 {
498         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
499                 return true;
500         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
501         return false;
502 }
503 EXPORT_SYMBOL_GPL(kvm_require_cpl);
504
505 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
506 {
507         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
508                 return true;
509
510         kvm_queue_exception(vcpu, UD_VECTOR);
511         return false;
512 }
513 EXPORT_SYMBOL_GPL(kvm_require_dr);
514
515 /*
516  * This function will be used to read from the physical memory of the currently
517  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
518  * can read from guest physical or from the guest's guest physical memory.
519  */
520 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
521                             gfn_t ngfn, void *data, int offset, int len,
522                             u32 access)
523 {
524         struct x86_exception exception;
525         gfn_t real_gfn;
526         gpa_t ngpa;
527
528         ngpa     = gfn_to_gpa(ngfn);
529         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
530         if (real_gfn == UNMAPPED_GVA)
531                 return -EFAULT;
532
533         real_gfn = gpa_to_gfn(real_gfn);
534
535         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
536 }
537 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
538
539 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
540                                void *data, int offset, int len, u32 access)
541 {
542         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
543                                        data, offset, len, access);
544 }
545
546 /*
547  * Load the pae pdptrs.  Return true is they are all valid.
548  */
549 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
550 {
551         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
552         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
553         int i;
554         int ret;
555         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
556
557         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
558                                       offset * sizeof(u64), sizeof(pdpte),
559                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
560         if (ret < 0) {
561                 ret = 0;
562                 goto out;
563         }
564         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
565                 if ((pdpte[i] & PT_PRESENT_MASK) &&
566                     (pdpte[i] &
567                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
568                         ret = 0;
569                         goto out;
570                 }
571         }
572         ret = 1;
573
574         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
575         __set_bit(VCPU_EXREG_PDPTR,
576                   (unsigned long *)&vcpu->arch.regs_avail);
577         __set_bit(VCPU_EXREG_PDPTR,
578                   (unsigned long *)&vcpu->arch.regs_dirty);
579 out:
580
581         return ret;
582 }
583 EXPORT_SYMBOL_GPL(load_pdptrs);
584
585 bool pdptrs_changed(struct kvm_vcpu *vcpu)
586 {
587         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
588         bool changed = true;
589         int offset;
590         gfn_t gfn;
591         int r;
592
593         if (is_long_mode(vcpu) || !is_pae(vcpu))
594                 return false;
595
596         if (!test_bit(VCPU_EXREG_PDPTR,
597                       (unsigned long *)&vcpu->arch.regs_avail))
598                 return true;
599
600         gfn = (kvm_read_cr3(vcpu) & ~31ul) >> PAGE_SHIFT;
601         offset = (kvm_read_cr3(vcpu) & ~31ul) & (PAGE_SIZE - 1);
602         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
603                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
604         if (r < 0)
605                 goto out;
606         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
607 out:
608
609         return changed;
610 }
611 EXPORT_SYMBOL_GPL(pdptrs_changed);
612
613 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
614 {
615         unsigned long old_cr0 = kvm_read_cr0(vcpu);
616         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
617
618         cr0 |= X86_CR0_ET;
619
620 #ifdef CONFIG_X86_64
621         if (cr0 & 0xffffffff00000000UL)
622                 return 1;
623 #endif
624
625         cr0 &= ~CR0_RESERVED_BITS;
626
627         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
628                 return 1;
629
630         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
631                 return 1;
632
633         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
634 #ifdef CONFIG_X86_64
635                 if ((vcpu->arch.efer & EFER_LME)) {
636                         int cs_db, cs_l;
637
638                         if (!is_pae(vcpu))
639                                 return 1;
640                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
641                         if (cs_l)
642                                 return 1;
643                 } else
644 #endif
645                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
646                                                  kvm_read_cr3(vcpu)))
647                         return 1;
648         }
649
650         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
651                 return 1;
652
653         kvm_x86_ops->set_cr0(vcpu, cr0);
654
655         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
656                 kvm_clear_async_pf_completion_queue(vcpu);
657                 kvm_async_pf_hash_reset(vcpu);
658         }
659
660         if ((cr0 ^ old_cr0) & update_bits)
661                 kvm_mmu_reset_context(vcpu);
662
663         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
664             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
665             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
666                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
667
668         return 0;
669 }
670 EXPORT_SYMBOL_GPL(kvm_set_cr0);
671
672 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
673 {
674         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
675 }
676 EXPORT_SYMBOL_GPL(kvm_lmsw);
677
678 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
679 {
680         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
681                         !vcpu->guest_xcr0_loaded) {
682                 /* kvm_set_xcr() also depends on this */
683                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
684                 vcpu->guest_xcr0_loaded = 1;
685         }
686 }
687
688 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
689 {
690         if (vcpu->guest_xcr0_loaded) {
691                 if (vcpu->arch.xcr0 != host_xcr0)
692                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
693                 vcpu->guest_xcr0_loaded = 0;
694         }
695 }
696
697 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699         u64 xcr0 = xcr;
700         u64 old_xcr0 = vcpu->arch.xcr0;
701         u64 valid_bits;
702
703         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
704         if (index != XCR_XFEATURE_ENABLED_MASK)
705                 return 1;
706         if (!(xcr0 & XFEATURE_MASK_FP))
707                 return 1;
708         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
709                 return 1;
710
711         /*
712          * Do not allow the guest to set bits that we do not support
713          * saving.  However, xcr0 bit 0 is always set, even if the
714          * emulated CPU does not support XSAVE (see fx_init).
715          */
716         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
717         if (xcr0 & ~valid_bits)
718                 return 1;
719
720         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
721             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
722                 return 1;
723
724         if (xcr0 & XFEATURE_MASK_AVX512) {
725                 if (!(xcr0 & XFEATURE_MASK_YMM))
726                         return 1;
727                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
728                         return 1;
729         }
730         vcpu->arch.xcr0 = xcr0;
731
732         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
733                 kvm_update_cpuid(vcpu);
734         return 0;
735 }
736
737 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
738 {
739         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
740             __kvm_set_xcr(vcpu, index, xcr)) {
741                 kvm_inject_gp(vcpu, 0);
742                 return 1;
743         }
744         return 0;
745 }
746 EXPORT_SYMBOL_GPL(kvm_set_xcr);
747
748 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
749 {
750         unsigned long old_cr4 = kvm_read_cr4(vcpu);
751         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
752                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
753
754         if (cr4 & CR4_RESERVED_BITS)
755                 return 1;
756
757         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
758                 return 1;
759
760         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
761                 return 1;
762
763         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
764                 return 1;
765
766         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
767                 return 1;
768
769         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
770                 return 1;
771
772         if (is_long_mode(vcpu)) {
773                 if (!(cr4 & X86_CR4_PAE))
774                         return 1;
775         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
776                    && ((cr4 ^ old_cr4) & pdptr_bits)
777                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
778                                    kvm_read_cr3(vcpu)))
779                 return 1;
780
781         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
782                 if (!guest_cpuid_has_pcid(vcpu))
783                         return 1;
784
785                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
786                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
787                         return 1;
788         }
789
790         if (kvm_x86_ops->set_cr4(vcpu, cr4))
791                 return 1;
792
793         if (((cr4 ^ old_cr4) & pdptr_bits) ||
794             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
795                 kvm_mmu_reset_context(vcpu);
796
797         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
798                 kvm_update_cpuid(vcpu);
799
800         return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr4);
803
804 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
805 {
806 #ifdef CONFIG_X86_64
807         cr3 &= ~CR3_PCID_INVD;
808 #endif
809
810         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
811                 kvm_mmu_sync_roots(vcpu);
812                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
813                 return 0;
814         }
815
816         if (is_long_mode(vcpu)) {
817                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
818                         return 1;
819         } else if (is_pae(vcpu) && is_paging(vcpu) &&
820                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
821                 return 1;
822
823         vcpu->arch.cr3 = cr3;
824         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
825         kvm_mmu_new_cr3(vcpu);
826         return 0;
827 }
828 EXPORT_SYMBOL_GPL(kvm_set_cr3);
829
830 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
831 {
832         if (cr8 & CR8_RESERVED_BITS)
833                 return 1;
834         if (lapic_in_kernel(vcpu))
835                 kvm_lapic_set_tpr(vcpu, cr8);
836         else
837                 vcpu->arch.cr8 = cr8;
838         return 0;
839 }
840 EXPORT_SYMBOL_GPL(kvm_set_cr8);
841
842 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
843 {
844         if (lapic_in_kernel(vcpu))
845                 return kvm_lapic_get_cr8(vcpu);
846         else
847                 return vcpu->arch.cr8;
848 }
849 EXPORT_SYMBOL_GPL(kvm_get_cr8);
850
851 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
852 {
853         int i;
854
855         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
856                 for (i = 0; i < KVM_NR_DB_REGS; i++)
857                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
858                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
859         }
860 }
861
862 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
863 {
864         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
866 }
867
868 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
869 {
870         unsigned long dr7;
871
872         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
873                 dr7 = vcpu->arch.guest_debug_dr7;
874         else
875                 dr7 = vcpu->arch.dr7;
876         kvm_x86_ops->set_dr7(vcpu, dr7);
877         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
878         if (dr7 & DR7_BP_EN_MASK)
879                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
880 }
881
882 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
883 {
884         u64 fixed = DR6_FIXED_1;
885
886         if (!guest_cpuid_has_rtm(vcpu))
887                 fixed |= DR6_RTM;
888         return fixed;
889 }
890
891 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893         switch (dr) {
894         case 0 ... 3:
895                 vcpu->arch.db[dr] = val;
896                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
897                         vcpu->arch.eff_db[dr] = val;
898                 break;
899         case 4:
900                 /* fall through */
901         case 6:
902                 if (val & 0xffffffff00000000ULL)
903                         return -1; /* #GP */
904                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
905                 kvm_update_dr6(vcpu);
906                 break;
907         case 5:
908                 /* fall through */
909         default: /* 7 */
910                 if (val & 0xffffffff00000000ULL)
911                         return -1; /* #GP */
912                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
913                 kvm_update_dr7(vcpu);
914                 break;
915         }
916
917         return 0;
918 }
919
920 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922         if (__kvm_set_dr(vcpu, dr, val)) {
923                 kvm_inject_gp(vcpu, 0);
924                 return 1;
925         }
926         return 0;
927 }
928 EXPORT_SYMBOL_GPL(kvm_set_dr);
929
930 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
931 {
932         switch (dr) {
933         case 0 ... 3:
934                 *val = vcpu->arch.db[dr];
935                 break;
936         case 4:
937                 /* fall through */
938         case 6:
939                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
940                         *val = vcpu->arch.dr6;
941                 else
942                         *val = kvm_x86_ops->get_dr6(vcpu);
943                 break;
944         case 5:
945                 /* fall through */
946         default: /* 7 */
947                 *val = vcpu->arch.dr7;
948                 break;
949         }
950         return 0;
951 }
952 EXPORT_SYMBOL_GPL(kvm_get_dr);
953
954 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
955 {
956         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
957         u64 data;
958         int err;
959
960         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
961         if (err)
962                 return err;
963         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
964         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
965         return err;
966 }
967 EXPORT_SYMBOL_GPL(kvm_rdpmc);
968
969 /*
970  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
971  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
972  *
973  * This list is modified at module load time to reflect the
974  * capabilities of the host cpu. This capabilities test skips MSRs that are
975  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
976  * may depend on host virtualization features rather than host cpu features.
977  */
978
979 static u32 msrs_to_save[] = {
980         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
981         MSR_STAR,
982 #ifdef CONFIG_X86_64
983         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
984 #endif
985         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
986         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
987 };
988
989 static unsigned num_msrs_to_save;
990
991 static u32 emulated_msrs[] = {
992         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
993         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
994         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
995         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
996         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
997         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
998         HV_X64_MSR_RESET,
999         HV_X64_MSR_VP_INDEX,
1000         HV_X64_MSR_VP_RUNTIME,
1001         HV_X64_MSR_SCONTROL,
1002         HV_X64_MSR_STIMER0_CONFIG,
1003         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1004         MSR_KVM_PV_EOI_EN,
1005
1006         MSR_IA32_TSC_ADJUST,
1007         MSR_IA32_TSCDEADLINE,
1008         MSR_IA32_MISC_ENABLE,
1009         MSR_IA32_MCG_STATUS,
1010         MSR_IA32_MCG_CTL,
1011         MSR_IA32_MCG_EXT_CTL,
1012         MSR_IA32_SMBASE,
1013         MSR_PLATFORM_INFO,
1014         MSR_MISC_FEATURES_ENABLES,
1015 };
1016
1017 static unsigned num_emulated_msrs;
1018
1019 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1020 {
1021         if (efer & efer_reserved_bits)
1022                 return false;
1023
1024         if (efer & EFER_FFXSR) {
1025                 struct kvm_cpuid_entry2 *feat;
1026
1027                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1028                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1029                         return false;
1030         }
1031
1032         if (efer & EFER_SVME) {
1033                 struct kvm_cpuid_entry2 *feat;
1034
1035                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1036                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1037                         return false;
1038         }
1039
1040         return true;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1043
1044 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1045 {
1046         u64 old_efer = vcpu->arch.efer;
1047
1048         if (!kvm_valid_efer(vcpu, efer))
1049                 return 1;
1050
1051         if (is_paging(vcpu)
1052             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1053                 return 1;
1054
1055         efer &= ~EFER_LMA;
1056         efer |= vcpu->arch.efer & EFER_LMA;
1057
1058         kvm_x86_ops->set_efer(vcpu, efer);
1059
1060         /* Update reserved bits */
1061         if ((efer ^ old_efer) & EFER_NX)
1062                 kvm_mmu_reset_context(vcpu);
1063
1064         return 0;
1065 }
1066
1067 void kvm_enable_efer_bits(u64 mask)
1068 {
1069        efer_reserved_bits &= ~mask;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1072
1073 /*
1074  * Writes msr value into into the appropriate "register".
1075  * Returns 0 on success, non-0 otherwise.
1076  * Assumes vcpu_load() was already called.
1077  */
1078 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1079 {
1080         switch (msr->index) {
1081         case MSR_FS_BASE:
1082         case MSR_GS_BASE:
1083         case MSR_KERNEL_GS_BASE:
1084         case MSR_CSTAR:
1085         case MSR_LSTAR:
1086                 if (is_noncanonical_address(msr->data))
1087                         return 1;
1088                 break;
1089         case MSR_IA32_SYSENTER_EIP:
1090         case MSR_IA32_SYSENTER_ESP:
1091                 /*
1092                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1093                  * non-canonical address is written on Intel but not on
1094                  * AMD (which ignores the top 32-bits, because it does
1095                  * not implement 64-bit SYSENTER).
1096                  *
1097                  * 64-bit code should hence be able to write a non-canonical
1098                  * value on AMD.  Making the address canonical ensures that
1099                  * vmentry does not fail on Intel after writing a non-canonical
1100                  * value, and that something deterministic happens if the guest
1101                  * invokes 64-bit SYSENTER.
1102                  */
1103                 msr->data = get_canonical(msr->data);
1104         }
1105         return kvm_x86_ops->set_msr(vcpu, msr);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_set_msr);
1108
1109 /*
1110  * Adapt set_msr() to msr_io()'s calling convention
1111  */
1112 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1113 {
1114         struct msr_data msr;
1115         int r;
1116
1117         msr.index = index;
1118         msr.host_initiated = true;
1119         r = kvm_get_msr(vcpu, &msr);
1120         if (r)
1121                 return r;
1122
1123         *data = msr.data;
1124         return 0;
1125 }
1126
1127 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1128 {
1129         struct msr_data msr;
1130
1131         msr.data = *data;
1132         msr.index = index;
1133         msr.host_initiated = true;
1134         return kvm_set_msr(vcpu, &msr);
1135 }
1136
1137 #ifdef CONFIG_X86_64
1138 struct pvclock_gtod_data {
1139         seqcount_t      seq;
1140
1141         struct { /* extract of a clocksource struct */
1142                 int vclock_mode;
1143                 u64     cycle_last;
1144                 u64     mask;
1145                 u32     mult;
1146                 u32     shift;
1147         } clock;
1148
1149         u64             boot_ns;
1150         u64             nsec_base;
1151         u64             wall_time_sec;
1152 };
1153
1154 static struct pvclock_gtod_data pvclock_gtod_data;
1155
1156 static void update_pvclock_gtod(struct timekeeper *tk)
1157 {
1158         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1159         u64 boot_ns;
1160
1161         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1162
1163         write_seqcount_begin(&vdata->seq);
1164
1165         /* copy pvclock gtod data */
1166         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1167         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1168         vdata->clock.mask               = tk->tkr_mono.mask;
1169         vdata->clock.mult               = tk->tkr_mono.mult;
1170         vdata->clock.shift              = tk->tkr_mono.shift;
1171
1172         vdata->boot_ns                  = boot_ns;
1173         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1174
1175         vdata->wall_time_sec            = tk->xtime_sec;
1176
1177         write_seqcount_end(&vdata->seq);
1178 }
1179 #endif
1180
1181 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1182 {
1183         /*
1184          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1185          * vcpu_enter_guest.  This function is only called from
1186          * the physical CPU that is running vcpu.
1187          */
1188         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1189 }
1190
1191 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1192 {
1193         int version;
1194         int r;
1195         struct pvclock_wall_clock wc;
1196         struct timespec64 boot;
1197
1198         if (!wall_clock)
1199                 return;
1200
1201         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1202         if (r)
1203                 return;
1204
1205         if (version & 1)
1206                 ++version;  /* first time write, random junk */
1207
1208         ++version;
1209
1210         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1211                 return;
1212
1213         /*
1214          * The guest calculates current wall clock time by adding
1215          * system time (updated by kvm_guest_time_update below) to the
1216          * wall clock specified here.  guest system time equals host
1217          * system time for us, thus we must fill in host boot time here.
1218          */
1219         getboottime64(&boot);
1220
1221         if (kvm->arch.kvmclock_offset) {
1222                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1223                 boot = timespec64_sub(boot, ts);
1224         }
1225         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1226         wc.nsec = boot.tv_nsec;
1227         wc.version = version;
1228
1229         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1230
1231         version++;
1232         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1233 }
1234
1235 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1236 {
1237         do_shl32_div32(dividend, divisor);
1238         return dividend;
1239 }
1240
1241 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1242                                s8 *pshift, u32 *pmultiplier)
1243 {
1244         uint64_t scaled64;
1245         int32_t  shift = 0;
1246         uint64_t tps64;
1247         uint32_t tps32;
1248
1249         tps64 = base_hz;
1250         scaled64 = scaled_hz;
1251         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1252                 tps64 >>= 1;
1253                 shift--;
1254         }
1255
1256         tps32 = (uint32_t)tps64;
1257         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1258                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1259                         scaled64 >>= 1;
1260                 else
1261                         tps32 <<= 1;
1262                 shift++;
1263         }
1264
1265         *pshift = shift;
1266         *pmultiplier = div_frac(scaled64, tps32);
1267
1268         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1269                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1270 }
1271
1272 #ifdef CONFIG_X86_64
1273 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1274 #endif
1275
1276 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1277 static unsigned long max_tsc_khz;
1278
1279 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1280 {
1281         u64 v = (u64)khz * (1000000 + ppm);
1282         do_div(v, 1000000);
1283         return v;
1284 }
1285
1286 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1287 {
1288         u64 ratio;
1289
1290         /* Guest TSC same frequency as host TSC? */
1291         if (!scale) {
1292                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1293                 return 0;
1294         }
1295
1296         /* TSC scaling supported? */
1297         if (!kvm_has_tsc_control) {
1298                 if (user_tsc_khz > tsc_khz) {
1299                         vcpu->arch.tsc_catchup = 1;
1300                         vcpu->arch.tsc_always_catchup = 1;
1301                         return 0;
1302                 } else {
1303                         WARN(1, "user requested TSC rate below hardware speed\n");
1304                         return -1;
1305                 }
1306         }
1307
1308         /* TSC scaling required  - calculate ratio */
1309         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1310                                 user_tsc_khz, tsc_khz);
1311
1312         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1313                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1314                           user_tsc_khz);
1315                 return -1;
1316         }
1317
1318         vcpu->arch.tsc_scaling_ratio = ratio;
1319         return 0;
1320 }
1321
1322 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1323 {
1324         u32 thresh_lo, thresh_hi;
1325         int use_scaling = 0;
1326
1327         /* tsc_khz can be zero if TSC calibration fails */
1328         if (user_tsc_khz == 0) {
1329                 /* set tsc_scaling_ratio to a safe value */
1330                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1331                 return -1;
1332         }
1333
1334         /* Compute a scale to convert nanoseconds in TSC cycles */
1335         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1336                            &vcpu->arch.virtual_tsc_shift,
1337                            &vcpu->arch.virtual_tsc_mult);
1338         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1339
1340         /*
1341          * Compute the variation in TSC rate which is acceptable
1342          * within the range of tolerance and decide if the
1343          * rate being applied is within that bounds of the hardware
1344          * rate.  If so, no scaling or compensation need be done.
1345          */
1346         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1347         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1348         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1349                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1350                 use_scaling = 1;
1351         }
1352         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1353 }
1354
1355 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1356 {
1357         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1358                                       vcpu->arch.virtual_tsc_mult,
1359                                       vcpu->arch.virtual_tsc_shift);
1360         tsc += vcpu->arch.this_tsc_write;
1361         return tsc;
1362 }
1363
1364 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1365 {
1366 #ifdef CONFIG_X86_64
1367         bool vcpus_matched;
1368         struct kvm_arch *ka = &vcpu->kvm->arch;
1369         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1370
1371         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1372                          atomic_read(&vcpu->kvm->online_vcpus));
1373
1374         /*
1375          * Once the masterclock is enabled, always perform request in
1376          * order to update it.
1377          *
1378          * In order to enable masterclock, the host clocksource must be TSC
1379          * and the vcpus need to have matched TSCs.  When that happens,
1380          * perform request to enable masterclock.
1381          */
1382         if (ka->use_master_clock ||
1383             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1384                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1385
1386         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1387                             atomic_read(&vcpu->kvm->online_vcpus),
1388                             ka->use_master_clock, gtod->clock.vclock_mode);
1389 #endif
1390 }
1391
1392 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1393 {
1394         u64 curr_offset = vcpu->arch.tsc_offset;
1395         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1396 }
1397
1398 /*
1399  * Multiply tsc by a fixed point number represented by ratio.
1400  *
1401  * The most significant 64-N bits (mult) of ratio represent the
1402  * integral part of the fixed point number; the remaining N bits
1403  * (frac) represent the fractional part, ie. ratio represents a fixed
1404  * point number (mult + frac * 2^(-N)).
1405  *
1406  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1407  */
1408 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1409 {
1410         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1411 }
1412
1413 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1414 {
1415         u64 _tsc = tsc;
1416         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1417
1418         if (ratio != kvm_default_tsc_scaling_ratio)
1419                 _tsc = __scale_tsc(ratio, tsc);
1420
1421         return _tsc;
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1424
1425 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1426 {
1427         u64 tsc;
1428
1429         tsc = kvm_scale_tsc(vcpu, rdtsc());
1430
1431         return target_tsc - tsc;
1432 }
1433
1434 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1435 {
1436         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1439
1440 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1441 {
1442         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1443         vcpu->arch.tsc_offset = offset;
1444 }
1445
1446 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1447 {
1448         struct kvm *kvm = vcpu->kvm;
1449         u64 offset, ns, elapsed;
1450         unsigned long flags;
1451         bool matched;
1452         bool already_matched;
1453         u64 data = msr->data;
1454         bool synchronizing = false;
1455
1456         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1457         offset = kvm_compute_tsc_offset(vcpu, data);
1458         ns = ktime_get_boot_ns();
1459         elapsed = ns - kvm->arch.last_tsc_nsec;
1460
1461         if (vcpu->arch.virtual_tsc_khz) {
1462                 if (data == 0 && msr->host_initiated) {
1463                         /*
1464                          * detection of vcpu initialization -- need to sync
1465                          * with other vCPUs. This particularly helps to keep
1466                          * kvm_clock stable after CPU hotplug
1467                          */
1468                         synchronizing = true;
1469                 } else {
1470                         u64 tsc_exp = kvm->arch.last_tsc_write +
1471                                                 nsec_to_cycles(vcpu, elapsed);
1472                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1473                         /*
1474                          * Special case: TSC write with a small delta (1 second)
1475                          * of virtual cycle time against real time is
1476                          * interpreted as an attempt to synchronize the CPU.
1477                          */
1478                         synchronizing = data < tsc_exp + tsc_hz &&
1479                                         data + tsc_hz > tsc_exp;
1480                 }
1481         }
1482
1483         /*
1484          * For a reliable TSC, we can match TSC offsets, and for an unstable
1485          * TSC, we add elapsed time in this computation.  We could let the
1486          * compensation code attempt to catch up if we fall behind, but
1487          * it's better to try to match offsets from the beginning.
1488          */
1489         if (synchronizing &&
1490             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1491                 if (!check_tsc_unstable()) {
1492                         offset = kvm->arch.cur_tsc_offset;
1493                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1494                 } else {
1495                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1496                         data += delta;
1497                         offset = kvm_compute_tsc_offset(vcpu, data);
1498                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1499                 }
1500                 matched = true;
1501                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1502         } else {
1503                 /*
1504                  * We split periods of matched TSC writes into generations.
1505                  * For each generation, we track the original measured
1506                  * nanosecond time, offset, and write, so if TSCs are in
1507                  * sync, we can match exact offset, and if not, we can match
1508                  * exact software computation in compute_guest_tsc()
1509                  *
1510                  * These values are tracked in kvm->arch.cur_xxx variables.
1511                  */
1512                 kvm->arch.cur_tsc_generation++;
1513                 kvm->arch.cur_tsc_nsec = ns;
1514                 kvm->arch.cur_tsc_write = data;
1515                 kvm->arch.cur_tsc_offset = offset;
1516                 matched = false;
1517                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1518                          kvm->arch.cur_tsc_generation, data);
1519         }
1520
1521         /*
1522          * We also track th most recent recorded KHZ, write and time to
1523          * allow the matching interval to be extended at each write.
1524          */
1525         kvm->arch.last_tsc_nsec = ns;
1526         kvm->arch.last_tsc_write = data;
1527         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1528
1529         vcpu->arch.last_guest_tsc = data;
1530
1531         /* Keep track of which generation this VCPU has synchronized to */
1532         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1533         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1534         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1535
1536         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1537                 update_ia32_tsc_adjust_msr(vcpu, offset);
1538         kvm_vcpu_write_tsc_offset(vcpu, offset);
1539         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1540
1541         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1542         if (!matched) {
1543                 kvm->arch.nr_vcpus_matched_tsc = 0;
1544         } else if (!already_matched) {
1545                 kvm->arch.nr_vcpus_matched_tsc++;
1546         }
1547
1548         kvm_track_tsc_matching(vcpu);
1549         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1550 }
1551
1552 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1553
1554 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1555                                            s64 adjustment)
1556 {
1557         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1558 }
1559
1560 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1561 {
1562         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1563                 WARN_ON(adjustment < 0);
1564         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1565         adjust_tsc_offset_guest(vcpu, adjustment);
1566 }
1567
1568 #ifdef CONFIG_X86_64
1569
1570 static u64 read_tsc(void)
1571 {
1572         u64 ret = (u64)rdtsc_ordered();
1573         u64 last = pvclock_gtod_data.clock.cycle_last;
1574
1575         if (likely(ret >= last))
1576                 return ret;
1577
1578         /*
1579          * GCC likes to generate cmov here, but this branch is extremely
1580          * predictable (it's just a function of time and the likely is
1581          * very likely) and there's a data dependence, so force GCC
1582          * to generate a branch instead.  I don't barrier() because
1583          * we don't actually need a barrier, and if this function
1584          * ever gets inlined it will generate worse code.
1585          */
1586         asm volatile ("");
1587         return last;
1588 }
1589
1590 static inline u64 vgettsc(u64 *cycle_now)
1591 {
1592         long v;
1593         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1594
1595         *cycle_now = read_tsc();
1596
1597         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1598         return v * gtod->clock.mult;
1599 }
1600
1601 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1602 {
1603         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1604         unsigned long seq;
1605         int mode;
1606         u64 ns;
1607
1608         do {
1609                 seq = read_seqcount_begin(&gtod->seq);
1610                 mode = gtod->clock.vclock_mode;
1611                 ns = gtod->nsec_base;
1612                 ns += vgettsc(cycle_now);
1613                 ns >>= gtod->clock.shift;
1614                 ns += gtod->boot_ns;
1615         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1616         *t = ns;
1617
1618         return mode;
1619 }
1620
1621 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1622 {
1623         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1624         unsigned long seq;
1625         int mode;
1626         u64 ns;
1627
1628         do {
1629                 seq = read_seqcount_begin(&gtod->seq);
1630                 mode = gtod->clock.vclock_mode;
1631                 ts->tv_sec = gtod->wall_time_sec;
1632                 ns = gtod->nsec_base;
1633                 ns += vgettsc(cycle_now);
1634                 ns >>= gtod->clock.shift;
1635         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1636
1637         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1638         ts->tv_nsec = ns;
1639
1640         return mode;
1641 }
1642
1643 /* returns true if host is using tsc clocksource */
1644 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1645 {
1646         /* checked again under seqlock below */
1647         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1648                 return false;
1649
1650         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1651 }
1652
1653 /* returns true if host is using tsc clocksource */
1654 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1655                                            u64 *cycle_now)
1656 {
1657         /* checked again under seqlock below */
1658         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1659                 return false;
1660
1661         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1662 }
1663 #endif
1664
1665 /*
1666  *
1667  * Assuming a stable TSC across physical CPUS, and a stable TSC
1668  * across virtual CPUs, the following condition is possible.
1669  * Each numbered line represents an event visible to both
1670  * CPUs at the next numbered event.
1671  *
1672  * "timespecX" represents host monotonic time. "tscX" represents
1673  * RDTSC value.
1674  *
1675  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1676  *
1677  * 1.  read timespec0,tsc0
1678  * 2.                                   | timespec1 = timespec0 + N
1679  *                                      | tsc1 = tsc0 + M
1680  * 3. transition to guest               | transition to guest
1681  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1682  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1683  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1684  *
1685  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1686  *
1687  *      - ret0 < ret1
1688  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1689  *              ...
1690  *      - 0 < N - M => M < N
1691  *
1692  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1693  * always the case (the difference between two distinct xtime instances
1694  * might be smaller then the difference between corresponding TSC reads,
1695  * when updating guest vcpus pvclock areas).
1696  *
1697  * To avoid that problem, do not allow visibility of distinct
1698  * system_timestamp/tsc_timestamp values simultaneously: use a master
1699  * copy of host monotonic time values. Update that master copy
1700  * in lockstep.
1701  *
1702  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1703  *
1704  */
1705
1706 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1707 {
1708 #ifdef CONFIG_X86_64
1709         struct kvm_arch *ka = &kvm->arch;
1710         int vclock_mode;
1711         bool host_tsc_clocksource, vcpus_matched;
1712
1713         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1714                         atomic_read(&kvm->online_vcpus));
1715
1716         /*
1717          * If the host uses TSC clock, then passthrough TSC as stable
1718          * to the guest.
1719          */
1720         host_tsc_clocksource = kvm_get_time_and_clockread(
1721                                         &ka->master_kernel_ns,
1722                                         &ka->master_cycle_now);
1723
1724         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1725                                 && !ka->backwards_tsc_observed
1726                                 && !ka->boot_vcpu_runs_old_kvmclock;
1727
1728         if (ka->use_master_clock)
1729                 atomic_set(&kvm_guest_has_master_clock, 1);
1730
1731         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1732         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1733                                         vcpus_matched);
1734 #endif
1735 }
1736
1737 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1738 {
1739         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1740 }
1741
1742 static void kvm_gen_update_masterclock(struct kvm *kvm)
1743 {
1744 #ifdef CONFIG_X86_64
1745         int i;
1746         struct kvm_vcpu *vcpu;
1747         struct kvm_arch *ka = &kvm->arch;
1748
1749         spin_lock(&ka->pvclock_gtod_sync_lock);
1750         kvm_make_mclock_inprogress_request(kvm);
1751         /* no guest entries from this point */
1752         pvclock_update_vm_gtod_copy(kvm);
1753
1754         kvm_for_each_vcpu(i, vcpu, kvm)
1755                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1756
1757         /* guest entries allowed */
1758         kvm_for_each_vcpu(i, vcpu, kvm)
1759                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1760
1761         spin_unlock(&ka->pvclock_gtod_sync_lock);
1762 #endif
1763 }
1764
1765 u64 get_kvmclock_ns(struct kvm *kvm)
1766 {
1767         struct kvm_arch *ka = &kvm->arch;
1768         struct pvclock_vcpu_time_info hv_clock;
1769         u64 ret;
1770
1771         spin_lock(&ka->pvclock_gtod_sync_lock);
1772         if (!ka->use_master_clock) {
1773                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1774                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1775         }
1776
1777         hv_clock.tsc_timestamp = ka->master_cycle_now;
1778         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1779         spin_unlock(&ka->pvclock_gtod_sync_lock);
1780
1781         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1782         get_cpu();
1783
1784         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1785                            &hv_clock.tsc_shift,
1786                            &hv_clock.tsc_to_system_mul);
1787         ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1788
1789         put_cpu();
1790
1791         return ret;
1792 }
1793
1794 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1795 {
1796         struct kvm_vcpu_arch *vcpu = &v->arch;
1797         struct pvclock_vcpu_time_info guest_hv_clock;
1798
1799         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1800                 &guest_hv_clock, sizeof(guest_hv_clock))))
1801                 return;
1802
1803         /* This VCPU is paused, but it's legal for a guest to read another
1804          * VCPU's kvmclock, so we really have to follow the specification where
1805          * it says that version is odd if data is being modified, and even after
1806          * it is consistent.
1807          *
1808          * Version field updates must be kept separate.  This is because
1809          * kvm_write_guest_cached might use a "rep movs" instruction, and
1810          * writes within a string instruction are weakly ordered.  So there
1811          * are three writes overall.
1812          *
1813          * As a small optimization, only write the version field in the first
1814          * and third write.  The vcpu->pv_time cache is still valid, because the
1815          * version field is the first in the struct.
1816          */
1817         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1818
1819         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1820         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1821                                 &vcpu->hv_clock,
1822                                 sizeof(vcpu->hv_clock.version));
1823
1824         smp_wmb();
1825
1826         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1827         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1828
1829         if (vcpu->pvclock_set_guest_stopped_request) {
1830                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1831                 vcpu->pvclock_set_guest_stopped_request = false;
1832         }
1833
1834         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1835
1836         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1837                                 &vcpu->hv_clock,
1838                                 sizeof(vcpu->hv_clock));
1839
1840         smp_wmb();
1841
1842         vcpu->hv_clock.version++;
1843         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844                                 &vcpu->hv_clock,
1845                                 sizeof(vcpu->hv_clock.version));
1846 }
1847
1848 static int kvm_guest_time_update(struct kvm_vcpu *v)
1849 {
1850         unsigned long flags, tgt_tsc_khz;
1851         struct kvm_vcpu_arch *vcpu = &v->arch;
1852         struct kvm_arch *ka = &v->kvm->arch;
1853         s64 kernel_ns;
1854         u64 tsc_timestamp, host_tsc;
1855         u8 pvclock_flags;
1856         bool use_master_clock;
1857
1858         kernel_ns = 0;
1859         host_tsc = 0;
1860
1861         /*
1862          * If the host uses TSC clock, then passthrough TSC as stable
1863          * to the guest.
1864          */
1865         spin_lock(&ka->pvclock_gtod_sync_lock);
1866         use_master_clock = ka->use_master_clock;
1867         if (use_master_clock) {
1868                 host_tsc = ka->master_cycle_now;
1869                 kernel_ns = ka->master_kernel_ns;
1870         }
1871         spin_unlock(&ka->pvclock_gtod_sync_lock);
1872
1873         /* Keep irq disabled to prevent changes to the clock */
1874         local_irq_save(flags);
1875         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1876         if (unlikely(tgt_tsc_khz == 0)) {
1877                 local_irq_restore(flags);
1878                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1879                 return 1;
1880         }
1881         if (!use_master_clock) {
1882                 host_tsc = rdtsc();
1883                 kernel_ns = ktime_get_boot_ns();
1884         }
1885
1886         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1887
1888         /*
1889          * We may have to catch up the TSC to match elapsed wall clock
1890          * time for two reasons, even if kvmclock is used.
1891          *   1) CPU could have been running below the maximum TSC rate
1892          *   2) Broken TSC compensation resets the base at each VCPU
1893          *      entry to avoid unknown leaps of TSC even when running
1894          *      again on the same CPU.  This may cause apparent elapsed
1895          *      time to disappear, and the guest to stand still or run
1896          *      very slowly.
1897          */
1898         if (vcpu->tsc_catchup) {
1899                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1900                 if (tsc > tsc_timestamp) {
1901                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1902                         tsc_timestamp = tsc;
1903                 }
1904         }
1905
1906         local_irq_restore(flags);
1907
1908         /* With all the info we got, fill in the values */
1909
1910         if (kvm_has_tsc_control)
1911                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1912
1913         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1914                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1915                                    &vcpu->hv_clock.tsc_shift,
1916                                    &vcpu->hv_clock.tsc_to_system_mul);
1917                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1918         }
1919
1920         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1921         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1922         vcpu->last_guest_tsc = tsc_timestamp;
1923
1924         /* If the host uses TSC clocksource, then it is stable */
1925         pvclock_flags = 0;
1926         if (use_master_clock)
1927                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1928
1929         vcpu->hv_clock.flags = pvclock_flags;
1930
1931         if (vcpu->pv_time_enabled)
1932                 kvm_setup_pvclock_page(v);
1933         if (v == kvm_get_vcpu(v->kvm, 0))
1934                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1935         return 0;
1936 }
1937
1938 /*
1939  * kvmclock updates which are isolated to a given vcpu, such as
1940  * vcpu->cpu migration, should not allow system_timestamp from
1941  * the rest of the vcpus to remain static. Otherwise ntp frequency
1942  * correction applies to one vcpu's system_timestamp but not
1943  * the others.
1944  *
1945  * So in those cases, request a kvmclock update for all vcpus.
1946  * We need to rate-limit these requests though, as they can
1947  * considerably slow guests that have a large number of vcpus.
1948  * The time for a remote vcpu to update its kvmclock is bound
1949  * by the delay we use to rate-limit the updates.
1950  */
1951
1952 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1953
1954 static void kvmclock_update_fn(struct work_struct *work)
1955 {
1956         int i;
1957         struct delayed_work *dwork = to_delayed_work(work);
1958         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1959                                            kvmclock_update_work);
1960         struct kvm *kvm = container_of(ka, struct kvm, arch);
1961         struct kvm_vcpu *vcpu;
1962
1963         kvm_for_each_vcpu(i, vcpu, kvm) {
1964                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1965                 kvm_vcpu_kick(vcpu);
1966         }
1967 }
1968
1969 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1970 {
1971         struct kvm *kvm = v->kvm;
1972
1973         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1974         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1975                                         KVMCLOCK_UPDATE_DELAY);
1976 }
1977
1978 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1979
1980 static void kvmclock_sync_fn(struct work_struct *work)
1981 {
1982         struct delayed_work *dwork = to_delayed_work(work);
1983         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1984                                            kvmclock_sync_work);
1985         struct kvm *kvm = container_of(ka, struct kvm, arch);
1986
1987         if (!kvmclock_periodic_sync)
1988                 return;
1989
1990         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1991         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1992                                         KVMCLOCK_SYNC_PERIOD);
1993 }
1994
1995 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1996 {
1997         u64 mcg_cap = vcpu->arch.mcg_cap;
1998         unsigned bank_num = mcg_cap & 0xff;
1999
2000         switch (msr) {
2001         case MSR_IA32_MCG_STATUS:
2002                 vcpu->arch.mcg_status = data;
2003                 break;
2004         case MSR_IA32_MCG_CTL:
2005                 if (!(mcg_cap & MCG_CTL_P))
2006                         return 1;
2007                 if (data != 0 && data != ~(u64)0)
2008                         return -1;
2009                 vcpu->arch.mcg_ctl = data;
2010                 break;
2011         default:
2012                 if (msr >= MSR_IA32_MC0_CTL &&
2013                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2014                         u32 offset = msr - MSR_IA32_MC0_CTL;
2015                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2016                          * some Linux kernels though clear bit 10 in bank 4 to
2017                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2018                          * this to avoid an uncatched #GP in the guest
2019                          */
2020                         if ((offset & 0x3) == 0 &&
2021                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2022                                 return -1;
2023                         vcpu->arch.mce_banks[offset] = data;
2024                         break;
2025                 }
2026                 return 1;
2027         }
2028         return 0;
2029 }
2030
2031 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2032 {
2033         struct kvm *kvm = vcpu->kvm;
2034         int lm = is_long_mode(vcpu);
2035         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2036                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2037         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2038                 : kvm->arch.xen_hvm_config.blob_size_32;
2039         u32 page_num = data & ~PAGE_MASK;
2040         u64 page_addr = data & PAGE_MASK;
2041         u8 *page;
2042         int r;
2043
2044         r = -E2BIG;
2045         if (page_num >= blob_size)
2046                 goto out;
2047         r = -ENOMEM;
2048         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2049         if (IS_ERR(page)) {
2050                 r = PTR_ERR(page);
2051                 goto out;
2052         }
2053         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2054                 goto out_free;
2055         r = 0;
2056 out_free:
2057         kfree(page);
2058 out:
2059         return r;
2060 }
2061
2062 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2063 {
2064         gpa_t gpa = data & ~0x3f;
2065
2066         /* Bits 3:5 are reserved, Should be zero */
2067         if (data & 0x38)
2068                 return 1;
2069
2070         vcpu->arch.apf.msr_val = data;
2071
2072         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2073                 kvm_clear_async_pf_completion_queue(vcpu);
2074                 kvm_async_pf_hash_reset(vcpu);
2075                 return 0;
2076         }
2077
2078         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2079                                         sizeof(u32)))
2080                 return 1;
2081
2082         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2083         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2084         kvm_async_pf_wakeup_all(vcpu);
2085         return 0;
2086 }
2087
2088 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2089 {
2090         vcpu->arch.pv_time_enabled = false;
2091 }
2092
2093 static void record_steal_time(struct kvm_vcpu *vcpu)
2094 {
2095         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2096                 return;
2097
2098         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2099                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2100                 return;
2101
2102         vcpu->arch.st.steal.preempted = 0;
2103
2104         if (vcpu->arch.st.steal.version & 1)
2105                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2106
2107         vcpu->arch.st.steal.version += 1;
2108
2109         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2110                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2111
2112         smp_wmb();
2113
2114         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2115                 vcpu->arch.st.last_steal;
2116         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2117
2118         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2119                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2120
2121         smp_wmb();
2122
2123         vcpu->arch.st.steal.version += 1;
2124
2125         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2126                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2127 }
2128
2129 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2130 {
2131         bool pr = false;
2132         u32 msr = msr_info->index;
2133         u64 data = msr_info->data;
2134
2135         switch (msr) {
2136         case MSR_AMD64_NB_CFG:
2137         case MSR_IA32_UCODE_REV:
2138         case MSR_IA32_UCODE_WRITE:
2139         case MSR_VM_HSAVE_PA:
2140         case MSR_AMD64_PATCH_LOADER:
2141         case MSR_AMD64_BU_CFG2:
2142         case MSR_AMD64_DC_CFG:
2143                 break;
2144
2145         case MSR_EFER:
2146                 return set_efer(vcpu, data);
2147         case MSR_K7_HWCR:
2148                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2149                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2150                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2151                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2152                 if (data != 0) {
2153                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2154                                     data);
2155                         return 1;
2156                 }
2157                 break;
2158         case MSR_FAM10H_MMIO_CONF_BASE:
2159                 if (data != 0) {
2160                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2161                                     "0x%llx\n", data);
2162                         return 1;
2163                 }
2164                 break;
2165         case MSR_IA32_DEBUGCTLMSR:
2166                 if (!data) {
2167                         /* We support the non-activated case already */
2168                         break;
2169                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2170                         /* Values other than LBR and BTF are vendor-specific,
2171                            thus reserved and should throw a #GP */
2172                         return 1;
2173                 }
2174                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2175                             __func__, data);
2176                 break;
2177         case 0x200 ... 0x2ff:
2178                 return kvm_mtrr_set_msr(vcpu, msr, data);
2179         case MSR_IA32_APICBASE:
2180                 return kvm_set_apic_base(vcpu, msr_info);
2181         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2182                 return kvm_x2apic_msr_write(vcpu, msr, data);
2183         case MSR_IA32_TSCDEADLINE:
2184                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2185                 break;
2186         case MSR_IA32_TSC_ADJUST:
2187                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2188                         if (!msr_info->host_initiated) {
2189                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2190                                 adjust_tsc_offset_guest(vcpu, adj);
2191                         }
2192                         vcpu->arch.ia32_tsc_adjust_msr = data;
2193                 }
2194                 break;
2195         case MSR_IA32_MISC_ENABLE:
2196                 vcpu->arch.ia32_misc_enable_msr = data;
2197                 break;
2198         case MSR_IA32_SMBASE:
2199                 if (!msr_info->host_initiated)
2200                         return 1;
2201                 vcpu->arch.smbase = data;
2202                 break;
2203         case MSR_KVM_WALL_CLOCK_NEW:
2204         case MSR_KVM_WALL_CLOCK:
2205                 vcpu->kvm->arch.wall_clock = data;
2206                 kvm_write_wall_clock(vcpu->kvm, data);
2207                 break;
2208         case MSR_KVM_SYSTEM_TIME_NEW:
2209         case MSR_KVM_SYSTEM_TIME: {
2210                 struct kvm_arch *ka = &vcpu->kvm->arch;
2211
2212                 kvmclock_reset(vcpu);
2213
2214                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2215                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2216
2217                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2218                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2219
2220                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2221                 }
2222
2223                 vcpu->arch.time = data;
2224                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2225
2226                 /* we verify if the enable bit is set... */
2227                 if (!(data & 1))
2228                         break;
2229
2230                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2231                      &vcpu->arch.pv_time, data & ~1ULL,
2232                      sizeof(struct pvclock_vcpu_time_info)))
2233                         vcpu->arch.pv_time_enabled = false;
2234                 else
2235                         vcpu->arch.pv_time_enabled = true;
2236
2237                 break;
2238         }
2239         case MSR_KVM_ASYNC_PF_EN:
2240                 if (kvm_pv_enable_async_pf(vcpu, data))
2241                         return 1;
2242                 break;
2243         case MSR_KVM_STEAL_TIME:
2244
2245                 if (unlikely(!sched_info_on()))
2246                         return 1;
2247
2248                 if (data & KVM_STEAL_RESERVED_MASK)
2249                         return 1;
2250
2251                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2252                                                 data & KVM_STEAL_VALID_BITS,
2253                                                 sizeof(struct kvm_steal_time)))
2254                         return 1;
2255
2256                 vcpu->arch.st.msr_val = data;
2257
2258                 if (!(data & KVM_MSR_ENABLED))
2259                         break;
2260
2261                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2262
2263                 break;
2264         case MSR_KVM_PV_EOI_EN:
2265                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2266                         return 1;
2267                 break;
2268
2269         case MSR_IA32_MCG_CTL:
2270         case MSR_IA32_MCG_STATUS:
2271         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2272                 return set_msr_mce(vcpu, msr, data);
2273
2274         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2275         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2276                 pr = true; /* fall through */
2277         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2278         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2279                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2280                         return kvm_pmu_set_msr(vcpu, msr_info);
2281
2282                 if (pr || data != 0)
2283                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2284                                     "0x%x data 0x%llx\n", msr, data);
2285                 break;
2286         case MSR_K7_CLK_CTL:
2287                 /*
2288                  * Ignore all writes to this no longer documented MSR.
2289                  * Writes are only relevant for old K7 processors,
2290                  * all pre-dating SVM, but a recommended workaround from
2291                  * AMD for these chips. It is possible to specify the
2292                  * affected processor models on the command line, hence
2293                  * the need to ignore the workaround.
2294                  */
2295                 break;
2296         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2297         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2298         case HV_X64_MSR_CRASH_CTL:
2299         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2300                 return kvm_hv_set_msr_common(vcpu, msr, data,
2301                                              msr_info->host_initiated);
2302         case MSR_IA32_BBL_CR_CTL3:
2303                 /* Drop writes to this legacy MSR -- see rdmsr
2304                  * counterpart for further detail.
2305                  */
2306                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2307                 break;
2308         case MSR_AMD64_OSVW_ID_LENGTH:
2309                 if (!guest_cpuid_has_osvw(vcpu))
2310                         return 1;
2311                 vcpu->arch.osvw.length = data;
2312                 break;
2313         case MSR_AMD64_OSVW_STATUS:
2314                 if (!guest_cpuid_has_osvw(vcpu))
2315                         return 1;
2316                 vcpu->arch.osvw.status = data;
2317                 break;
2318         case MSR_PLATFORM_INFO:
2319                 if (!msr_info->host_initiated ||
2320                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2321                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2322                      cpuid_fault_enabled(vcpu)))
2323                         return 1;
2324                 vcpu->arch.msr_platform_info = data;
2325                 break;
2326         case MSR_MISC_FEATURES_ENABLES:
2327                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2328                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2329                      !supports_cpuid_fault(vcpu)))
2330                         return 1;
2331                 vcpu->arch.msr_misc_features_enables = data;
2332                 break;
2333         default:
2334                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2335                         return xen_hvm_config(vcpu, data);
2336                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2337                         return kvm_pmu_set_msr(vcpu, msr_info);
2338                 if (!ignore_msrs) {
2339                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2340                                     msr, data);
2341                         return 1;
2342                 } else {
2343                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2344                                     msr, data);
2345                         break;
2346                 }
2347         }
2348         return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2351
2352
2353 /*
2354  * Reads an msr value (of 'msr_index') into 'pdata'.
2355  * Returns 0 on success, non-0 otherwise.
2356  * Assumes vcpu_load() was already called.
2357  */
2358 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2359 {
2360         return kvm_x86_ops->get_msr(vcpu, msr);
2361 }
2362 EXPORT_SYMBOL_GPL(kvm_get_msr);
2363
2364 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2365 {
2366         u64 data;
2367         u64 mcg_cap = vcpu->arch.mcg_cap;
2368         unsigned bank_num = mcg_cap & 0xff;
2369
2370         switch (msr) {
2371         case MSR_IA32_P5_MC_ADDR:
2372         case MSR_IA32_P5_MC_TYPE:
2373                 data = 0;
2374                 break;
2375         case MSR_IA32_MCG_CAP:
2376                 data = vcpu->arch.mcg_cap;
2377                 break;
2378         case MSR_IA32_MCG_CTL:
2379                 if (!(mcg_cap & MCG_CTL_P))
2380                         return 1;
2381                 data = vcpu->arch.mcg_ctl;
2382                 break;
2383         case MSR_IA32_MCG_STATUS:
2384                 data = vcpu->arch.mcg_status;
2385                 break;
2386         default:
2387                 if (msr >= MSR_IA32_MC0_CTL &&
2388                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2389                         u32 offset = msr - MSR_IA32_MC0_CTL;
2390                         data = vcpu->arch.mce_banks[offset];
2391                         break;
2392                 }
2393                 return 1;
2394         }
2395         *pdata = data;
2396         return 0;
2397 }
2398
2399 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2400 {
2401         switch (msr_info->index) {
2402         case MSR_IA32_PLATFORM_ID:
2403         case MSR_IA32_EBL_CR_POWERON:
2404         case MSR_IA32_DEBUGCTLMSR:
2405         case MSR_IA32_LASTBRANCHFROMIP:
2406         case MSR_IA32_LASTBRANCHTOIP:
2407         case MSR_IA32_LASTINTFROMIP:
2408         case MSR_IA32_LASTINTTOIP:
2409         case MSR_K8_SYSCFG:
2410         case MSR_K8_TSEG_ADDR:
2411         case MSR_K8_TSEG_MASK:
2412         case MSR_K7_HWCR:
2413         case MSR_VM_HSAVE_PA:
2414         case MSR_K8_INT_PENDING_MSG:
2415         case MSR_AMD64_NB_CFG:
2416         case MSR_FAM10H_MMIO_CONF_BASE:
2417         case MSR_AMD64_BU_CFG2:
2418         case MSR_IA32_PERF_CTL:
2419         case MSR_AMD64_DC_CFG:
2420                 msr_info->data = 0;
2421                 break;
2422         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2423         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2424         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2425         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2426                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2427                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2428                 msr_info->data = 0;
2429                 break;
2430         case MSR_IA32_UCODE_REV:
2431                 msr_info->data = 0x100000000ULL;
2432                 break;
2433         case MSR_MTRRcap:
2434         case 0x200 ... 0x2ff:
2435                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2436         case 0xcd: /* fsb frequency */
2437                 msr_info->data = 3;
2438                 break;
2439                 /*
2440                  * MSR_EBC_FREQUENCY_ID
2441                  * Conservative value valid for even the basic CPU models.
2442                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2443                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2444                  * and 266MHz for model 3, or 4. Set Core Clock
2445                  * Frequency to System Bus Frequency Ratio to 1 (bits
2446                  * 31:24) even though these are only valid for CPU
2447                  * models > 2, however guests may end up dividing or
2448                  * multiplying by zero otherwise.
2449                  */
2450         case MSR_EBC_FREQUENCY_ID:
2451                 msr_info->data = 1 << 24;
2452                 break;
2453         case MSR_IA32_APICBASE:
2454                 msr_info->data = kvm_get_apic_base(vcpu);
2455                 break;
2456         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2457                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2458                 break;
2459         case MSR_IA32_TSCDEADLINE:
2460                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2461                 break;
2462         case MSR_IA32_TSC_ADJUST:
2463                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2464                 break;
2465         case MSR_IA32_MISC_ENABLE:
2466                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2467                 break;
2468         case MSR_IA32_SMBASE:
2469                 if (!msr_info->host_initiated)
2470                         return 1;
2471                 msr_info->data = vcpu->arch.smbase;
2472                 break;
2473         case MSR_IA32_PERF_STATUS:
2474                 /* TSC increment by tick */
2475                 msr_info->data = 1000ULL;
2476                 /* CPU multiplier */
2477                 msr_info->data |= (((uint64_t)4ULL) << 40);
2478                 break;
2479         case MSR_EFER:
2480                 msr_info->data = vcpu->arch.efer;
2481                 break;
2482         case MSR_KVM_WALL_CLOCK:
2483         case MSR_KVM_WALL_CLOCK_NEW:
2484                 msr_info->data = vcpu->kvm->arch.wall_clock;
2485                 break;
2486         case MSR_KVM_SYSTEM_TIME:
2487         case MSR_KVM_SYSTEM_TIME_NEW:
2488                 msr_info->data = vcpu->arch.time;
2489                 break;
2490         case MSR_KVM_ASYNC_PF_EN:
2491                 msr_info->data = vcpu->arch.apf.msr_val;
2492                 break;
2493         case MSR_KVM_STEAL_TIME:
2494                 msr_info->data = vcpu->arch.st.msr_val;
2495                 break;
2496         case MSR_KVM_PV_EOI_EN:
2497                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2498                 break;
2499         case MSR_IA32_P5_MC_ADDR:
2500         case MSR_IA32_P5_MC_TYPE:
2501         case MSR_IA32_MCG_CAP:
2502         case MSR_IA32_MCG_CTL:
2503         case MSR_IA32_MCG_STATUS:
2504         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2505                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2506         case MSR_K7_CLK_CTL:
2507                 /*
2508                  * Provide expected ramp-up count for K7. All other
2509                  * are set to zero, indicating minimum divisors for
2510                  * every field.
2511                  *
2512                  * This prevents guest kernels on AMD host with CPU
2513                  * type 6, model 8 and higher from exploding due to
2514                  * the rdmsr failing.
2515                  */
2516                 msr_info->data = 0x20000000;
2517                 break;
2518         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2519         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2520         case HV_X64_MSR_CRASH_CTL:
2521         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2522                 return kvm_hv_get_msr_common(vcpu,
2523                                              msr_info->index, &msr_info->data);
2524                 break;
2525         case MSR_IA32_BBL_CR_CTL3:
2526                 /* This legacy MSR exists but isn't fully documented in current
2527                  * silicon.  It is however accessed by winxp in very narrow
2528                  * scenarios where it sets bit #19, itself documented as
2529                  * a "reserved" bit.  Best effort attempt to source coherent
2530                  * read data here should the balance of the register be
2531                  * interpreted by the guest:
2532                  *
2533                  * L2 cache control register 3: 64GB range, 256KB size,
2534                  * enabled, latency 0x1, configured
2535                  */
2536                 msr_info->data = 0xbe702111;
2537                 break;
2538         case MSR_AMD64_OSVW_ID_LENGTH:
2539                 if (!guest_cpuid_has_osvw(vcpu))
2540                         return 1;
2541                 msr_info->data = vcpu->arch.osvw.length;
2542                 break;
2543         case MSR_AMD64_OSVW_STATUS:
2544                 if (!guest_cpuid_has_osvw(vcpu))
2545                         return 1;
2546                 msr_info->data = vcpu->arch.osvw.status;
2547                 break;
2548         case MSR_PLATFORM_INFO:
2549                 msr_info->data = vcpu->arch.msr_platform_info;
2550                 break;
2551         case MSR_MISC_FEATURES_ENABLES:
2552                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2553                 break;
2554         default:
2555                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2556                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2557                 if (!ignore_msrs) {
2558                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2559                                                msr_info->index);
2560                         return 1;
2561                 } else {
2562                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2563                         msr_info->data = 0;
2564                 }
2565                 break;
2566         }
2567         return 0;
2568 }
2569 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2570
2571 /*
2572  * Read or write a bunch of msrs. All parameters are kernel addresses.
2573  *
2574  * @return number of msrs set successfully.
2575  */
2576 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2577                     struct kvm_msr_entry *entries,
2578                     int (*do_msr)(struct kvm_vcpu *vcpu,
2579                                   unsigned index, u64 *data))
2580 {
2581         int i, idx;
2582
2583         idx = srcu_read_lock(&vcpu->kvm->srcu);
2584         for (i = 0; i < msrs->nmsrs; ++i)
2585                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2586                         break;
2587         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2588
2589         return i;
2590 }
2591
2592 /*
2593  * Read or write a bunch of msrs. Parameters are user addresses.
2594  *
2595  * @return number of msrs set successfully.
2596  */
2597 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2598                   int (*do_msr)(struct kvm_vcpu *vcpu,
2599                                 unsigned index, u64 *data),
2600                   int writeback)
2601 {
2602         struct kvm_msrs msrs;
2603         struct kvm_msr_entry *entries;
2604         int r, n;
2605         unsigned size;
2606
2607         r = -EFAULT;
2608         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2609                 goto out;
2610
2611         r = -E2BIG;
2612         if (msrs.nmsrs >= MAX_IO_MSRS)
2613                 goto out;
2614
2615         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2616         entries = memdup_user(user_msrs->entries, size);
2617         if (IS_ERR(entries)) {
2618                 r = PTR_ERR(entries);
2619                 goto out;
2620         }
2621
2622         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2623         if (r < 0)
2624                 goto out_free;
2625
2626         r = -EFAULT;
2627         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2628                 goto out_free;
2629
2630         r = n;
2631
2632 out_free:
2633         kfree(entries);
2634 out:
2635         return r;
2636 }
2637
2638 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2639 {
2640         int r;
2641
2642         switch (ext) {
2643         case KVM_CAP_IRQCHIP:
2644         case KVM_CAP_HLT:
2645         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2646         case KVM_CAP_SET_TSS_ADDR:
2647         case KVM_CAP_EXT_CPUID:
2648         case KVM_CAP_EXT_EMUL_CPUID:
2649         case KVM_CAP_CLOCKSOURCE:
2650         case KVM_CAP_PIT:
2651         case KVM_CAP_NOP_IO_DELAY:
2652         case KVM_CAP_MP_STATE:
2653         case KVM_CAP_SYNC_MMU:
2654         case KVM_CAP_USER_NMI:
2655         case KVM_CAP_REINJECT_CONTROL:
2656         case KVM_CAP_IRQ_INJECT_STATUS:
2657         case KVM_CAP_IOEVENTFD:
2658         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2659         case KVM_CAP_PIT2:
2660         case KVM_CAP_PIT_STATE2:
2661         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2662         case KVM_CAP_XEN_HVM:
2663         case KVM_CAP_VCPU_EVENTS:
2664         case KVM_CAP_HYPERV:
2665         case KVM_CAP_HYPERV_VAPIC:
2666         case KVM_CAP_HYPERV_SPIN:
2667         case KVM_CAP_HYPERV_SYNIC:
2668         case KVM_CAP_HYPERV_SYNIC2:
2669         case KVM_CAP_HYPERV_VP_INDEX:
2670         case KVM_CAP_PCI_SEGMENT:
2671         case KVM_CAP_DEBUGREGS:
2672         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2673         case KVM_CAP_XSAVE:
2674         case KVM_CAP_ASYNC_PF:
2675         case KVM_CAP_GET_TSC_KHZ:
2676         case KVM_CAP_KVMCLOCK_CTRL:
2677         case KVM_CAP_READONLY_MEM:
2678         case KVM_CAP_HYPERV_TIME:
2679         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2680         case KVM_CAP_TSC_DEADLINE_TIMER:
2681         case KVM_CAP_ENABLE_CAP_VM:
2682         case KVM_CAP_DISABLE_QUIRKS:
2683         case KVM_CAP_SET_BOOT_CPU_ID:
2684         case KVM_CAP_SPLIT_IRQCHIP:
2685         case KVM_CAP_IMMEDIATE_EXIT:
2686                 r = 1;
2687                 break;
2688         case KVM_CAP_ADJUST_CLOCK:
2689                 r = KVM_CLOCK_TSC_STABLE;
2690                 break;
2691         case KVM_CAP_X86_GUEST_MWAIT:
2692                 r = kvm_mwait_in_guest();
2693                 break;
2694         case KVM_CAP_X86_SMM:
2695                 /* SMBASE is usually relocated above 1M on modern chipsets,
2696                  * and SMM handlers might indeed rely on 4G segment limits,
2697                  * so do not report SMM to be available if real mode is
2698                  * emulated via vm86 mode.  Still, do not go to great lengths
2699                  * to avoid userspace's usage of the feature, because it is a
2700                  * fringe case that is not enabled except via specific settings
2701                  * of the module parameters.
2702                  */
2703                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2704                 break;
2705         case KVM_CAP_VAPIC:
2706                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2707                 break;
2708         case KVM_CAP_NR_VCPUS:
2709                 r = KVM_SOFT_MAX_VCPUS;
2710                 break;
2711         case KVM_CAP_MAX_VCPUS:
2712                 r = KVM_MAX_VCPUS;
2713                 break;
2714         case KVM_CAP_NR_MEMSLOTS:
2715                 r = KVM_USER_MEM_SLOTS;
2716                 break;
2717         case KVM_CAP_PV_MMU:    /* obsolete */
2718                 r = 0;
2719                 break;
2720         case KVM_CAP_MCE:
2721                 r = KVM_MAX_MCE_BANKS;
2722                 break;
2723         case KVM_CAP_XCRS:
2724                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2725                 break;
2726         case KVM_CAP_TSC_CONTROL:
2727                 r = kvm_has_tsc_control;
2728                 break;
2729         case KVM_CAP_X2APIC_API:
2730                 r = KVM_X2APIC_API_VALID_FLAGS;
2731                 break;
2732         default:
2733                 r = 0;
2734                 break;
2735         }
2736         return r;
2737
2738 }
2739
2740 long kvm_arch_dev_ioctl(struct file *filp,
2741                         unsigned int ioctl, unsigned long arg)
2742 {
2743         void __user *argp = (void __user *)arg;
2744         long r;
2745
2746         switch (ioctl) {
2747         case KVM_GET_MSR_INDEX_LIST: {
2748                 struct kvm_msr_list __user *user_msr_list = argp;
2749                 struct kvm_msr_list msr_list;
2750                 unsigned n;
2751
2752                 r = -EFAULT;
2753                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2754                         goto out;
2755                 n = msr_list.nmsrs;
2756                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2757                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2758                         goto out;
2759                 r = -E2BIG;
2760                 if (n < msr_list.nmsrs)
2761                         goto out;
2762                 r = -EFAULT;
2763                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2764                                  num_msrs_to_save * sizeof(u32)))
2765                         goto out;
2766                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2767                                  &emulated_msrs,
2768                                  num_emulated_msrs * sizeof(u32)))
2769                         goto out;
2770                 r = 0;
2771                 break;
2772         }
2773         case KVM_GET_SUPPORTED_CPUID:
2774         case KVM_GET_EMULATED_CPUID: {
2775                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2776                 struct kvm_cpuid2 cpuid;
2777
2778                 r = -EFAULT;
2779                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2780                         goto out;
2781
2782                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2783                                             ioctl);
2784                 if (r)
2785                         goto out;
2786
2787                 r = -EFAULT;
2788                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2789                         goto out;
2790                 r = 0;
2791                 break;
2792         }
2793         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2794                 r = -EFAULT;
2795                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2796                                  sizeof(kvm_mce_cap_supported)))
2797                         goto out;
2798                 r = 0;
2799                 break;
2800         }
2801         default:
2802                 r = -EINVAL;
2803         }
2804 out:
2805         return r;
2806 }
2807
2808 static void wbinvd_ipi(void *garbage)
2809 {
2810         wbinvd();
2811 }
2812
2813 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2814 {
2815         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2816 }
2817
2818 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2819 {
2820         /* Address WBINVD may be executed by guest */
2821         if (need_emulate_wbinvd(vcpu)) {
2822                 if (kvm_x86_ops->has_wbinvd_exit())
2823                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2824                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2825                         smp_call_function_single(vcpu->cpu,
2826                                         wbinvd_ipi, NULL, 1);
2827         }
2828
2829         kvm_x86_ops->vcpu_load(vcpu, cpu);
2830
2831         /* Apply any externally detected TSC adjustments (due to suspend) */
2832         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2833                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2834                 vcpu->arch.tsc_offset_adjustment = 0;
2835                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2836         }
2837
2838         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2839                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2840                                 rdtsc() - vcpu->arch.last_host_tsc;
2841                 if (tsc_delta < 0)
2842                         mark_tsc_unstable("KVM discovered backwards TSC");
2843
2844                 if (check_tsc_unstable()) {
2845                         u64 offset = kvm_compute_tsc_offset(vcpu,
2846                                                 vcpu->arch.last_guest_tsc);
2847                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2848                         vcpu->arch.tsc_catchup = 1;
2849                 }
2850
2851                 if (kvm_lapic_hv_timer_in_use(vcpu))
2852                         kvm_lapic_restart_hv_timer(vcpu);
2853
2854                 /*
2855                  * On a host with synchronized TSC, there is no need to update
2856                  * kvmclock on vcpu->cpu migration
2857                  */
2858                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2859                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2860                 if (vcpu->cpu != cpu)
2861                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2862                 vcpu->cpu = cpu;
2863         }
2864
2865         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2866 }
2867
2868 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2869 {
2870         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2871                 return;
2872
2873         vcpu->arch.st.steal.preempted = 1;
2874
2875         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2876                         &vcpu->arch.st.steal.preempted,
2877                         offsetof(struct kvm_steal_time, preempted),
2878                         sizeof(vcpu->arch.st.steal.preempted));
2879 }
2880
2881 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2882 {
2883         int idx;
2884         /*
2885          * Disable page faults because we're in atomic context here.
2886          * kvm_write_guest_offset_cached() would call might_fault()
2887          * that relies on pagefault_disable() to tell if there's a
2888          * bug. NOTE: the write to guest memory may not go through if
2889          * during postcopy live migration or if there's heavy guest
2890          * paging.
2891          */
2892         pagefault_disable();
2893         /*
2894          * kvm_memslots() will be called by
2895          * kvm_write_guest_offset_cached() so take the srcu lock.
2896          */
2897         idx = srcu_read_lock(&vcpu->kvm->srcu);
2898         kvm_steal_time_set_preempted(vcpu);
2899         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2900         pagefault_enable();
2901         kvm_x86_ops->vcpu_put(vcpu);
2902         kvm_put_guest_fpu(vcpu);
2903         vcpu->arch.last_host_tsc = rdtsc();
2904 }
2905
2906 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2907                                     struct kvm_lapic_state *s)
2908 {
2909         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2910                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2911
2912         return kvm_apic_get_state(vcpu, s);
2913 }
2914
2915 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2916                                     struct kvm_lapic_state *s)
2917 {
2918         int r;
2919
2920         r = kvm_apic_set_state(vcpu, s);
2921         if (r)
2922                 return r;
2923         update_cr8_intercept(vcpu);
2924
2925         return 0;
2926 }
2927
2928 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2929 {
2930         return (!lapic_in_kernel(vcpu) ||
2931                 kvm_apic_accept_pic_intr(vcpu));
2932 }
2933
2934 /*
2935  * if userspace requested an interrupt window, check that the
2936  * interrupt window is open.
2937  *
2938  * No need to exit to userspace if we already have an interrupt queued.
2939  */
2940 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2941 {
2942         return kvm_arch_interrupt_allowed(vcpu) &&
2943                 !kvm_cpu_has_interrupt(vcpu) &&
2944                 !kvm_event_needs_reinjection(vcpu) &&
2945                 kvm_cpu_accept_dm_intr(vcpu);
2946 }
2947
2948 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2949                                     struct kvm_interrupt *irq)
2950 {
2951         if (irq->irq >= KVM_NR_INTERRUPTS)
2952                 return -EINVAL;
2953
2954         if (!irqchip_in_kernel(vcpu->kvm)) {
2955                 kvm_queue_interrupt(vcpu, irq->irq, false);
2956                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2957                 return 0;
2958         }
2959
2960         /*
2961          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2962          * fail for in-kernel 8259.
2963          */
2964         if (pic_in_kernel(vcpu->kvm))
2965                 return -ENXIO;
2966
2967         if (vcpu->arch.pending_external_vector != -1)
2968                 return -EEXIST;
2969
2970         vcpu->arch.pending_external_vector = irq->irq;
2971         kvm_make_request(KVM_REQ_EVENT, vcpu);
2972         return 0;
2973 }
2974
2975 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2976 {
2977         kvm_inject_nmi(vcpu);
2978
2979         return 0;
2980 }
2981
2982 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2983 {
2984         kvm_make_request(KVM_REQ_SMI, vcpu);
2985
2986         return 0;
2987 }
2988
2989 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2990                                            struct kvm_tpr_access_ctl *tac)
2991 {
2992         if (tac->flags)
2993                 return -EINVAL;
2994         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2995         return 0;
2996 }
2997
2998 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2999                                         u64 mcg_cap)
3000 {
3001         int r;
3002         unsigned bank_num = mcg_cap & 0xff, bank;
3003
3004         r = -EINVAL;
3005         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3006                 goto out;
3007         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3008                 goto out;
3009         r = 0;
3010         vcpu->arch.mcg_cap = mcg_cap;
3011         /* Init IA32_MCG_CTL to all 1s */
3012         if (mcg_cap & MCG_CTL_P)
3013                 vcpu->arch.mcg_ctl = ~(u64)0;
3014         /* Init IA32_MCi_CTL to all 1s */
3015         for (bank = 0; bank < bank_num; bank++)
3016                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3017
3018         if (kvm_x86_ops->setup_mce)
3019                 kvm_x86_ops->setup_mce(vcpu);
3020 out:
3021         return r;
3022 }
3023
3024 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3025                                       struct kvm_x86_mce *mce)
3026 {
3027         u64 mcg_cap = vcpu->arch.mcg_cap;
3028         unsigned bank_num = mcg_cap & 0xff;
3029         u64 *banks = vcpu->arch.mce_banks;
3030
3031         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3032                 return -EINVAL;
3033         /*
3034          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3035          * reporting is disabled
3036          */
3037         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3038             vcpu->arch.mcg_ctl != ~(u64)0)
3039                 return 0;
3040         banks += 4 * mce->bank;
3041         /*
3042          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3043          * reporting is disabled for the bank
3044          */
3045         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3046                 return 0;
3047         if (mce->status & MCI_STATUS_UC) {
3048                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3049                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3050                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3051                         return 0;
3052                 }
3053                 if (banks[1] & MCI_STATUS_VAL)
3054                         mce->status |= MCI_STATUS_OVER;
3055                 banks[2] = mce->addr;
3056                 banks[3] = mce->misc;
3057                 vcpu->arch.mcg_status = mce->mcg_status;
3058                 banks[1] = mce->status;
3059                 kvm_queue_exception(vcpu, MC_VECTOR);
3060         } else if (!(banks[1] & MCI_STATUS_VAL)
3061                    || !(banks[1] & MCI_STATUS_UC)) {
3062                 if (banks[1] & MCI_STATUS_VAL)
3063                         mce->status |= MCI_STATUS_OVER;
3064                 banks[2] = mce->addr;
3065                 banks[3] = mce->misc;
3066                 banks[1] = mce->status;
3067         } else
3068                 banks[1] |= MCI_STATUS_OVER;
3069         return 0;
3070 }
3071
3072 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3073                                                struct kvm_vcpu_events *events)
3074 {
3075         process_nmi(vcpu);
3076         events->exception.injected =
3077                 vcpu->arch.exception.pending &&
3078                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3079         events->exception.nr = vcpu->arch.exception.nr;
3080         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3081         events->exception.pad = 0;
3082         events->exception.error_code = vcpu->arch.exception.error_code;
3083
3084         events->interrupt.injected =
3085                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3086         events->interrupt.nr = vcpu->arch.interrupt.nr;
3087         events->interrupt.soft = 0;
3088         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3089
3090         events->nmi.injected = vcpu->arch.nmi_injected;
3091         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3092         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3093         events->nmi.pad = 0;
3094
3095         events->sipi_vector = 0; /* never valid when reporting to user space */
3096
3097         events->smi.smm = is_smm(vcpu);
3098         events->smi.pending = vcpu->arch.smi_pending;
3099         events->smi.smm_inside_nmi =
3100                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3101         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3102
3103         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3104                          | KVM_VCPUEVENT_VALID_SHADOW
3105                          | KVM_VCPUEVENT_VALID_SMM);
3106         memset(&events->reserved, 0, sizeof(events->reserved));
3107 }
3108
3109 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3110
3111 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3112                                               struct kvm_vcpu_events *events)
3113 {
3114         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3115                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3116                               | KVM_VCPUEVENT_VALID_SHADOW
3117                               | KVM_VCPUEVENT_VALID_SMM))
3118                 return -EINVAL;
3119
3120         if (events->exception.injected &&
3121             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3122              is_guest_mode(vcpu)))
3123                 return -EINVAL;
3124
3125         /* INITs are latched while in SMM */
3126         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3127             (events->smi.smm || events->smi.pending) &&
3128             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3129                 return -EINVAL;
3130
3131         process_nmi(vcpu);
3132         vcpu->arch.exception.pending = events->exception.injected;
3133         vcpu->arch.exception.nr = events->exception.nr;
3134         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3135         vcpu->arch.exception.error_code = events->exception.error_code;
3136
3137         vcpu->arch.interrupt.pending = events->interrupt.injected;
3138         vcpu->arch.interrupt.nr = events->interrupt.nr;
3139         vcpu->arch.interrupt.soft = events->interrupt.soft;
3140         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3141                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3142                                                   events->interrupt.shadow);
3143
3144         vcpu->arch.nmi_injected = events->nmi.injected;
3145         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3146                 vcpu->arch.nmi_pending = events->nmi.pending;
3147         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3148
3149         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3150             lapic_in_kernel(vcpu))
3151                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3152
3153         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3154                 u32 hflags = vcpu->arch.hflags;
3155                 if (events->smi.smm)
3156                         hflags |= HF_SMM_MASK;
3157                 else
3158                         hflags &= ~HF_SMM_MASK;
3159                 kvm_set_hflags(vcpu, hflags);
3160
3161                 vcpu->arch.smi_pending = events->smi.pending;
3162                 if (events->smi.smm_inside_nmi)
3163                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3164                 else
3165                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3166                 if (lapic_in_kernel(vcpu)) {
3167                         if (events->smi.latched_init)
3168                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3169                         else
3170                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3171                 }
3172         }
3173
3174         kvm_make_request(KVM_REQ_EVENT, vcpu);
3175
3176         return 0;
3177 }
3178
3179 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3180                                              struct kvm_debugregs *dbgregs)
3181 {
3182         unsigned long val;
3183
3184         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3185         kvm_get_dr(vcpu, 6, &val);
3186         dbgregs->dr6 = val;
3187         dbgregs->dr7 = vcpu->arch.dr7;
3188         dbgregs->flags = 0;
3189         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3190 }
3191
3192 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3193                                             struct kvm_debugregs *dbgregs)
3194 {
3195         if (dbgregs->flags)
3196                 return -EINVAL;
3197
3198         if (dbgregs->dr6 & ~0xffffffffull)
3199                 return -EINVAL;
3200         if (dbgregs->dr7 & ~0xffffffffull)
3201                 return -EINVAL;
3202
3203         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3204         kvm_update_dr0123(vcpu);
3205         vcpu->arch.dr6 = dbgregs->dr6;
3206         kvm_update_dr6(vcpu);
3207         vcpu->arch.dr7 = dbgregs->dr7;
3208         kvm_update_dr7(vcpu);
3209
3210         return 0;
3211 }
3212
3213 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3214
3215 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3216 {
3217         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3218         u64 xstate_bv = xsave->header.xfeatures;
3219         u64 valid;
3220
3221         /*
3222          * Copy legacy XSAVE area, to avoid complications with CPUID
3223          * leaves 0 and 1 in the loop below.
3224          */
3225         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3226
3227         /* Set XSTATE_BV */
3228         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3229         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3230
3231         /*
3232          * Copy each region from the possibly compacted offset to the
3233          * non-compacted offset.
3234          */
3235         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3236         while (valid) {
3237                 u64 feature = valid & -valid;
3238                 int index = fls64(feature) - 1;
3239                 void *src = get_xsave_addr(xsave, feature);
3240
3241                 if (src) {
3242                         u32 size, offset, ecx, edx;
3243                         cpuid_count(XSTATE_CPUID, index,
3244                                     &size, &offset, &ecx, &edx);
3245                         memcpy(dest + offset, src, size);
3246                 }
3247
3248                 valid -= feature;
3249         }
3250 }
3251
3252 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3253 {
3254         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3255         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3256         u64 valid;
3257
3258         /*
3259          * Copy legacy XSAVE area, to avoid complications with CPUID
3260          * leaves 0 and 1 in the loop below.
3261          */
3262         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3263
3264         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3265         xsave->header.xfeatures = xstate_bv;
3266         if (boot_cpu_has(X86_FEATURE_XSAVES))
3267                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3268
3269         /*
3270          * Copy each region from the non-compacted offset to the
3271          * possibly compacted offset.
3272          */
3273         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3274         while (valid) {
3275                 u64 feature = valid & -valid;
3276                 int index = fls64(feature) - 1;
3277                 void *dest = get_xsave_addr(xsave, feature);
3278
3279                 if (dest) {
3280                         u32 size, offset, ecx, edx;
3281                         cpuid_count(XSTATE_CPUID, index,
3282                                     &size, &offset, &ecx, &edx);
3283                         memcpy(dest, src + offset, size);
3284                 }
3285
3286                 valid -= feature;
3287         }
3288 }
3289
3290 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3291                                          struct kvm_xsave *guest_xsave)
3292 {
3293         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3294                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3295                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3296         } else {
3297                 memcpy(guest_xsave->region,
3298                         &vcpu->arch.guest_fpu.state.fxsave,
3299                         sizeof(struct fxregs_state));
3300                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3301                         XFEATURE_MASK_FPSSE;
3302         }
3303 }
3304
3305 #define XSAVE_MXCSR_OFFSET 24
3306
3307 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3308                                         struct kvm_xsave *guest_xsave)
3309 {
3310         u64 xstate_bv =
3311                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3312         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3313
3314         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3315                 /*
3316                  * Here we allow setting states that are not present in
3317                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3318                  * with old userspace.
3319                  */
3320                 if (xstate_bv & ~kvm_supported_xcr0() ||
3321                         mxcsr & ~mxcsr_feature_mask)
3322                         return -EINVAL;
3323                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3324         } else {
3325                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3326                         mxcsr & ~mxcsr_feature_mask)
3327                         return -EINVAL;
3328                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3329                         guest_xsave->region, sizeof(struct fxregs_state));
3330         }
3331         return 0;
3332 }
3333
3334 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3335                                         struct kvm_xcrs *guest_xcrs)
3336 {
3337         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3338                 guest_xcrs->nr_xcrs = 0;
3339                 return;
3340         }
3341
3342         guest_xcrs->nr_xcrs = 1;
3343         guest_xcrs->flags = 0;
3344         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3345         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3346 }
3347
3348 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3349                                        struct kvm_xcrs *guest_xcrs)
3350 {
3351         int i, r = 0;
3352
3353         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3354                 return -EINVAL;
3355
3356         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3357                 return -EINVAL;
3358
3359         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3360                 /* Only support XCR0 currently */
3361                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3362                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3363                                 guest_xcrs->xcrs[i].value);
3364                         break;
3365                 }
3366         if (r)
3367                 r = -EINVAL;
3368         return r;
3369 }
3370
3371 /*
3372  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3373  * stopped by the hypervisor.  This function will be called from the host only.
3374  * EINVAL is returned when the host attempts to set the flag for a guest that
3375  * does not support pv clocks.
3376  */
3377 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3378 {
3379         if (!vcpu->arch.pv_time_enabled)
3380                 return -EINVAL;
3381         vcpu->arch.pvclock_set_guest_stopped_request = true;
3382         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3383         return 0;
3384 }
3385
3386 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3387                                      struct kvm_enable_cap *cap)
3388 {
3389         if (cap->flags)
3390                 return -EINVAL;
3391
3392         switch (cap->cap) {
3393         case KVM_CAP_HYPERV_SYNIC2:
3394                 if (cap->args[0])
3395                         return -EINVAL;
3396         case KVM_CAP_HYPERV_SYNIC:
3397                 if (!irqchip_in_kernel(vcpu->kvm))
3398                         return -EINVAL;
3399                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3400                                              KVM_CAP_HYPERV_SYNIC2);
3401         default:
3402                 return -EINVAL;
3403         }
3404 }
3405
3406 long kvm_arch_vcpu_ioctl(struct file *filp,
3407                          unsigned int ioctl, unsigned long arg)
3408 {
3409         struct kvm_vcpu *vcpu = filp->private_data;
3410         void __user *argp = (void __user *)arg;
3411         int r;
3412         union {
3413                 struct kvm_lapic_state *lapic;
3414                 struct kvm_xsave *xsave;
3415                 struct kvm_xcrs *xcrs;
3416                 void *buffer;
3417         } u;
3418
3419         u.buffer = NULL;
3420         switch (ioctl) {
3421         case KVM_GET_LAPIC: {
3422                 r = -EINVAL;
3423                 if (!lapic_in_kernel(vcpu))
3424                         goto out;
3425                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3426
3427                 r = -ENOMEM;
3428                 if (!u.lapic)
3429                         goto out;
3430                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3431                 if (r)
3432                         goto out;
3433                 r = -EFAULT;
3434                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3435                         goto out;
3436                 r = 0;
3437                 break;
3438         }
3439         case KVM_SET_LAPIC: {
3440                 r = -EINVAL;
3441                 if (!lapic_in_kernel(vcpu))
3442                         goto out;
3443                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3444                 if (IS_ERR(u.lapic))
3445                         return PTR_ERR(u.lapic);
3446
3447                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3448                 break;
3449         }
3450         case KVM_INTERRUPT: {
3451                 struct kvm_interrupt irq;
3452
3453                 r = -EFAULT;
3454                 if (copy_from_user(&irq, argp, sizeof irq))
3455                         goto out;
3456                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3457                 break;
3458         }
3459         case KVM_NMI: {
3460                 r = kvm_vcpu_ioctl_nmi(vcpu);
3461                 break;
3462         }
3463         case KVM_SMI: {
3464                 r = kvm_vcpu_ioctl_smi(vcpu);
3465                 break;
3466         }
3467         case KVM_SET_CPUID: {
3468                 struct kvm_cpuid __user *cpuid_arg = argp;
3469                 struct kvm_cpuid cpuid;
3470
3471                 r = -EFAULT;
3472                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3473                         goto out;
3474                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3475                 break;
3476         }
3477         case KVM_SET_CPUID2: {
3478                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3479                 struct kvm_cpuid2 cpuid;
3480
3481                 r = -EFAULT;
3482                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3483                         goto out;
3484                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3485                                               cpuid_arg->entries);
3486                 break;
3487         }
3488         case KVM_GET_CPUID2: {
3489                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3490                 struct kvm_cpuid2 cpuid;
3491
3492                 r = -EFAULT;
3493                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3494                         goto out;
3495                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3496                                               cpuid_arg->entries);
3497                 if (r)
3498                         goto out;
3499                 r = -EFAULT;
3500                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3501                         goto out;
3502                 r = 0;
3503                 break;
3504         }
3505         case KVM_GET_MSRS:
3506                 r = msr_io(vcpu, argp, do_get_msr, 1);
3507                 break;
3508         case KVM_SET_MSRS:
3509                 r = msr_io(vcpu, argp, do_set_msr, 0);
3510                 break;
3511         case KVM_TPR_ACCESS_REPORTING: {
3512                 struct kvm_tpr_access_ctl tac;
3513
3514                 r = -EFAULT;
3515                 if (copy_from_user(&tac, argp, sizeof tac))
3516                         goto out;
3517                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3518                 if (r)
3519                         goto out;
3520                 r = -EFAULT;
3521                 if (copy_to_user(argp, &tac, sizeof tac))
3522                         goto out;
3523                 r = 0;
3524                 break;
3525         };
3526         case KVM_SET_VAPIC_ADDR: {
3527                 struct kvm_vapic_addr va;
3528                 int idx;
3529
3530                 r = -EINVAL;
3531                 if (!lapic_in_kernel(vcpu))
3532                         goto out;
3533                 r = -EFAULT;
3534                 if (copy_from_user(&va, argp, sizeof va))
3535                         goto out;
3536                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3537                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3538                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3539                 break;
3540         }
3541         case KVM_X86_SETUP_MCE: {
3542                 u64 mcg_cap;
3543
3544                 r = -EFAULT;
3545                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3546                         goto out;
3547                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3548                 break;
3549         }
3550         case KVM_X86_SET_MCE: {
3551                 struct kvm_x86_mce mce;
3552
3553                 r = -EFAULT;
3554                 if (copy_from_user(&mce, argp, sizeof mce))
3555                         goto out;
3556                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3557                 break;
3558         }
3559         case KVM_GET_VCPU_EVENTS: {
3560                 struct kvm_vcpu_events events;
3561
3562                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3563
3564                 r = -EFAULT;
3565                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3566                         break;
3567                 r = 0;
3568                 break;
3569         }
3570         case KVM_SET_VCPU_EVENTS: {
3571                 struct kvm_vcpu_events events;
3572
3573                 r = -EFAULT;
3574                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3575                         break;
3576
3577                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3578                 break;
3579         }
3580         case KVM_GET_DEBUGREGS: {
3581                 struct kvm_debugregs dbgregs;
3582
3583                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3584
3585                 r = -EFAULT;
3586                 if (copy_to_user(argp, &dbgregs,
3587                                  sizeof(struct kvm_debugregs)))
3588                         break;
3589                 r = 0;
3590                 break;
3591         }
3592         case KVM_SET_DEBUGREGS: {
3593                 struct kvm_debugregs dbgregs;
3594
3595                 r = -EFAULT;
3596                 if (copy_from_user(&dbgregs, argp,
3597                                    sizeof(struct kvm_debugregs)))
3598                         break;
3599
3600                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3601                 break;
3602         }
3603         case KVM_GET_XSAVE: {
3604                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3605                 r = -ENOMEM;
3606                 if (!u.xsave)
3607                         break;
3608
3609                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3610
3611                 r = -EFAULT;
3612                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3613                         break;
3614                 r = 0;
3615                 break;
3616         }
3617         case KVM_SET_XSAVE: {
3618                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3619                 if (IS_ERR(u.xsave))
3620                         return PTR_ERR(u.xsave);
3621
3622                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3623                 break;
3624         }
3625         case KVM_GET_XCRS: {
3626                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3627                 r = -ENOMEM;
3628                 if (!u.xcrs)
3629                         break;
3630
3631                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3632
3633                 r = -EFAULT;
3634                 if (copy_to_user(argp, u.xcrs,
3635                                  sizeof(struct kvm_xcrs)))
3636                         break;
3637                 r = 0;
3638                 break;
3639         }
3640         case KVM_SET_XCRS: {
3641                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3642                 if (IS_ERR(u.xcrs))
3643                         return PTR_ERR(u.xcrs);
3644
3645                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3646                 break;
3647         }
3648         case KVM_SET_TSC_KHZ: {
3649                 u32 user_tsc_khz;
3650
3651                 r = -EINVAL;
3652                 user_tsc_khz = (u32)arg;
3653
3654                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3655                         goto out;
3656
3657                 if (user_tsc_khz == 0)
3658                         user_tsc_khz = tsc_khz;
3659
3660                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3661                         r = 0;
3662
3663                 goto out;
3664         }
3665         case KVM_GET_TSC_KHZ: {
3666                 r = vcpu->arch.virtual_tsc_khz;
3667                 goto out;
3668         }
3669         case KVM_KVMCLOCK_CTRL: {
3670                 r = kvm_set_guest_paused(vcpu);
3671                 goto out;
3672         }
3673         case KVM_ENABLE_CAP: {
3674                 struct kvm_enable_cap cap;
3675
3676                 r = -EFAULT;
3677                 if (copy_from_user(&cap, argp, sizeof(cap)))
3678                         goto out;
3679                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3680                 break;
3681         }
3682         default:
3683                 r = -EINVAL;
3684         }
3685 out:
3686         kfree(u.buffer);
3687         return r;
3688 }
3689
3690 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3691 {
3692         return VM_FAULT_SIGBUS;
3693 }
3694
3695 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3696 {
3697         int ret;
3698
3699         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3700                 return -EINVAL;
3701         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3702         return ret;
3703 }
3704
3705 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3706                                               u64 ident_addr)
3707 {
3708         kvm->arch.ept_identity_map_addr = ident_addr;
3709         return 0;
3710 }
3711
3712 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3713                                           u32 kvm_nr_mmu_pages)
3714 {
3715         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3716                 return -EINVAL;
3717
3718         mutex_lock(&kvm->slots_lock);
3719
3720         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3721         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3722
3723         mutex_unlock(&kvm->slots_lock);
3724         return 0;
3725 }
3726
3727 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3728 {
3729         return kvm->arch.n_max_mmu_pages;
3730 }
3731
3732 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3733 {
3734         struct kvm_pic *pic = kvm->arch.vpic;
3735         int r;
3736
3737         r = 0;
3738         switch (chip->chip_id) {
3739         case KVM_IRQCHIP_PIC_MASTER:
3740                 memcpy(&chip->chip.pic, &pic->pics[0],
3741                         sizeof(struct kvm_pic_state));
3742                 break;
3743         case KVM_IRQCHIP_PIC_SLAVE:
3744                 memcpy(&chip->chip.pic, &pic->pics[1],
3745                         sizeof(struct kvm_pic_state));
3746                 break;
3747         case KVM_IRQCHIP_IOAPIC:
3748                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3749                 break;
3750         default:
3751                 r = -EINVAL;
3752                 break;
3753         }
3754         return r;
3755 }
3756
3757 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3758 {
3759         struct kvm_pic *pic = kvm->arch.vpic;
3760         int r;
3761
3762         r = 0;
3763         switch (chip->chip_id) {
3764         case KVM_IRQCHIP_PIC_MASTER:
3765                 spin_lock(&pic->lock);
3766                 memcpy(&pic->pics[0], &chip->chip.pic,
3767                         sizeof(struct kvm_pic_state));
3768                 spin_unlock(&pic->lock);
3769                 break;
3770         case KVM_IRQCHIP_PIC_SLAVE:
3771                 spin_lock(&pic->lock);
3772                 memcpy(&pic->pics[1], &chip->chip.pic,
3773                         sizeof(struct kvm_pic_state));
3774                 spin_unlock(&pic->lock);
3775                 break;
3776         case KVM_IRQCHIP_IOAPIC:
3777                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3778                 break;
3779         default:
3780                 r = -EINVAL;
3781                 break;
3782         }
3783         kvm_pic_update_irq(pic);
3784         return r;
3785 }
3786
3787 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3788 {
3789         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3790
3791         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3792
3793         mutex_lock(&kps->lock);
3794         memcpy(ps, &kps->channels, sizeof(*ps));
3795         mutex_unlock(&kps->lock);
3796         return 0;
3797 }
3798
3799 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3800 {
3801         int i;
3802         struct kvm_pit *pit = kvm->arch.vpit;
3803
3804         mutex_lock(&pit->pit_state.lock);
3805         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3806         for (i = 0; i < 3; i++)
3807                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3808         mutex_unlock(&pit->pit_state.lock);
3809         return 0;
3810 }
3811
3812 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3813 {
3814         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3815         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3816                 sizeof(ps->channels));
3817         ps->flags = kvm->arch.vpit->pit_state.flags;
3818         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3819         memset(&ps->reserved, 0, sizeof(ps->reserved));
3820         return 0;
3821 }
3822
3823 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3824 {
3825         int start = 0;
3826         int i;
3827         u32 prev_legacy, cur_legacy;
3828         struct kvm_pit *pit = kvm->arch.vpit;
3829
3830         mutex_lock(&pit->pit_state.lock);
3831         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3832         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3833         if (!prev_legacy && cur_legacy)
3834                 start = 1;
3835         memcpy(&pit->pit_state.channels, &ps->channels,
3836                sizeof(pit->pit_state.channels));
3837         pit->pit_state.flags = ps->flags;
3838         for (i = 0; i < 3; i++)
3839                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3840                                    start && i == 0);
3841         mutex_unlock(&pit->pit_state.lock);
3842         return 0;
3843 }
3844
3845 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3846                                  struct kvm_reinject_control *control)
3847 {
3848         struct kvm_pit *pit = kvm->arch.vpit;
3849
3850         if (!pit)
3851                 return -ENXIO;
3852
3853         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3854          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3855          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3856          */
3857         mutex_lock(&pit->pit_state.lock);
3858         kvm_pit_set_reinject(pit, control->pit_reinject);
3859         mutex_unlock(&pit->pit_state.lock);
3860
3861         return 0;
3862 }
3863
3864 /**
3865  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3866  * @kvm: kvm instance
3867  * @log: slot id and address to which we copy the log
3868  *
3869  * Steps 1-4 below provide general overview of dirty page logging. See
3870  * kvm_get_dirty_log_protect() function description for additional details.
3871  *
3872  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3873  * always flush the TLB (step 4) even if previous step failed  and the dirty
3874  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3875  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3876  * writes will be marked dirty for next log read.
3877  *
3878  *   1. Take a snapshot of the bit and clear it if needed.
3879  *   2. Write protect the corresponding page.
3880  *   3. Copy the snapshot to the userspace.
3881  *   4. Flush TLB's if needed.
3882  */
3883 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3884 {
3885         bool is_dirty = false;
3886         int r;
3887
3888         mutex_lock(&kvm->slots_lock);
3889
3890         /*
3891          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3892          */
3893         if (kvm_x86_ops->flush_log_dirty)
3894                 kvm_x86_ops->flush_log_dirty(kvm);
3895
3896         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3897
3898         /*
3899          * All the TLBs can be flushed out of mmu lock, see the comments in
3900          * kvm_mmu_slot_remove_write_access().
3901          */
3902         lockdep_assert_held(&kvm->slots_lock);
3903         if (is_dirty)
3904                 kvm_flush_remote_tlbs(kvm);
3905
3906         mutex_unlock(&kvm->slots_lock);
3907         return r;
3908 }
3909
3910 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3911                         bool line_status)
3912 {
3913         if (!irqchip_in_kernel(kvm))
3914                 return -ENXIO;
3915
3916         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3917                                         irq_event->irq, irq_event->level,
3918                                         line_status);
3919         return 0;
3920 }
3921
3922 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3923                                    struct kvm_enable_cap *cap)
3924 {
3925         int r;
3926
3927         if (cap->flags)
3928                 return -EINVAL;
3929
3930         switch (cap->cap) {
3931         case KVM_CAP_DISABLE_QUIRKS:
3932                 kvm->arch.disabled_quirks = cap->args[0];
3933                 r = 0;
3934                 break;
3935         case KVM_CAP_SPLIT_IRQCHIP: {
3936                 mutex_lock(&kvm->lock);
3937                 r = -EINVAL;
3938                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3939                         goto split_irqchip_unlock;
3940                 r = -EEXIST;
3941                 if (irqchip_in_kernel(kvm))
3942                         goto split_irqchip_unlock;
3943                 if (kvm->created_vcpus)
3944                         goto split_irqchip_unlock;
3945                 r = kvm_setup_empty_irq_routing(kvm);
3946                 if (r)
3947                         goto split_irqchip_unlock;
3948                 /* Pairs with irqchip_in_kernel. */
3949                 smp_wmb();
3950                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3951                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3952                 r = 0;
3953 split_irqchip_unlock:
3954                 mutex_unlock(&kvm->lock);
3955                 break;
3956         }
3957         case KVM_CAP_X2APIC_API:
3958                 r = -EINVAL;
3959                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3960                         break;
3961
3962                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3963                         kvm->arch.x2apic_format = true;
3964                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3965                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3966
3967                 r = 0;
3968                 break;
3969         default:
3970                 r = -EINVAL;
3971                 break;
3972         }
3973         return r;
3974 }
3975
3976 long kvm_arch_vm_ioctl(struct file *filp,
3977                        unsigned int ioctl, unsigned long arg)
3978 {
3979         struct kvm *kvm = filp->private_data;
3980         void __user *argp = (void __user *)arg;
3981         int r = -ENOTTY;
3982         /*
3983          * This union makes it completely explicit to gcc-3.x
3984          * that these two variables' stack usage should be
3985          * combined, not added together.
3986          */
3987         union {
3988                 struct kvm_pit_state ps;
3989                 struct kvm_pit_state2 ps2;
3990                 struct kvm_pit_config pit_config;
3991         } u;
3992
3993         switch (ioctl) {
3994         case KVM_SET_TSS_ADDR:
3995                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3996                 break;
3997         case KVM_SET_IDENTITY_MAP_ADDR: {
3998                 u64 ident_addr;
3999
4000                 r = -EFAULT;
4001                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4002                         goto out;
4003                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4004                 break;
4005         }
4006         case KVM_SET_NR_MMU_PAGES:
4007                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4008                 break;
4009         case KVM_GET_NR_MMU_PAGES:
4010                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4011                 break;
4012         case KVM_CREATE_IRQCHIP: {
4013                 mutex_lock(&kvm->lock);
4014
4015                 r = -EEXIST;
4016                 if (irqchip_in_kernel(kvm))
4017                         goto create_irqchip_unlock;
4018
4019                 r = -EINVAL;
4020                 if (kvm->created_vcpus)
4021                         goto create_irqchip_unlock;
4022
4023                 r = kvm_pic_init(kvm);
4024                 if (r)
4025                         goto create_irqchip_unlock;
4026
4027                 r = kvm_ioapic_init(kvm);
4028                 if (r) {
4029                         kvm_pic_destroy(kvm);
4030                         goto create_irqchip_unlock;
4031                 }
4032
4033                 r = kvm_setup_default_irq_routing(kvm);
4034                 if (r) {
4035                         kvm_ioapic_destroy(kvm);
4036                         kvm_pic_destroy(kvm);
4037                         goto create_irqchip_unlock;
4038                 }
4039                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4040                 smp_wmb();
4041                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4042         create_irqchip_unlock:
4043                 mutex_unlock(&kvm->lock);
4044                 break;
4045         }
4046         case KVM_CREATE_PIT:
4047                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4048                 goto create_pit;
4049         case KVM_CREATE_PIT2:
4050                 r = -EFAULT;
4051                 if (copy_from_user(&u.pit_config, argp,
4052                                    sizeof(struct kvm_pit_config)))
4053                         goto out;
4054         create_pit:
4055                 mutex_lock(&kvm->lock);
4056                 r = -EEXIST;
4057                 if (kvm->arch.vpit)
4058                         goto create_pit_unlock;
4059                 r = -ENOMEM;
4060                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4061                 if (kvm->arch.vpit)
4062                         r = 0;
4063         create_pit_unlock:
4064                 mutex_unlock(&kvm->lock);
4065                 break;
4066         case KVM_GET_IRQCHIP: {
4067                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4068                 struct kvm_irqchip *chip;
4069
4070                 chip = memdup_user(argp, sizeof(*chip));
4071                 if (IS_ERR(chip)) {
4072                         r = PTR_ERR(chip);
4073                         goto out;
4074                 }
4075
4076                 r = -ENXIO;
4077                 if (!irqchip_kernel(kvm))
4078                         goto get_irqchip_out;
4079                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4080                 if (r)
4081                         goto get_irqchip_out;
4082                 r = -EFAULT;
4083                 if (copy_to_user(argp, chip, sizeof *chip))
4084                         goto get_irqchip_out;
4085                 r = 0;
4086         get_irqchip_out:
4087                 kfree(chip);
4088                 break;
4089         }
4090         case KVM_SET_IRQCHIP: {
4091                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4092                 struct kvm_irqchip *chip;
4093
4094                 chip = memdup_user(argp, sizeof(*chip));
4095                 if (IS_ERR(chip)) {
4096                         r = PTR_ERR(chip);
4097                         goto out;
4098                 }
4099
4100                 r = -ENXIO;
4101                 if (!irqchip_kernel(kvm))
4102                         goto set_irqchip_out;
4103                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4104                 if (r)
4105                         goto set_irqchip_out;
4106                 r = 0;
4107         set_irqchip_out:
4108                 kfree(chip);
4109                 break;
4110         }
4111         case KVM_GET_PIT: {
4112                 r = -EFAULT;
4113                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4114                         goto out;
4115                 r = -ENXIO;
4116                 if (!kvm->arch.vpit)
4117                         goto out;
4118                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4119                 if (r)
4120                         goto out;
4121                 r = -EFAULT;
4122                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4123                         goto out;
4124                 r = 0;
4125                 break;
4126         }
4127         case KVM_SET_PIT: {
4128                 r = -EFAULT;
4129                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4130                         goto out;
4131                 r = -ENXIO;
4132                 if (!kvm->arch.vpit)
4133                         goto out;
4134                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4135                 break;
4136         }
4137         case KVM_GET_PIT2: {
4138                 r = -ENXIO;
4139                 if (!kvm->arch.vpit)
4140                         goto out;
4141                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4142                 if (r)
4143                         goto out;
4144                 r = -EFAULT;
4145                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4146                         goto out;
4147                 r = 0;
4148                 break;
4149         }
4150         case KVM_SET_PIT2: {
4151                 r = -EFAULT;
4152                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4153                         goto out;
4154                 r = -ENXIO;
4155                 if (!kvm->arch.vpit)
4156                         goto out;
4157                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4158                 break;
4159         }
4160         case KVM_REINJECT_CONTROL: {
4161                 struct kvm_reinject_control control;
4162                 r =  -EFAULT;
4163                 if (copy_from_user(&control, argp, sizeof(control)))
4164                         goto out;
4165                 r = kvm_vm_ioctl_reinject(kvm, &control);
4166                 break;
4167         }
4168         case KVM_SET_BOOT_CPU_ID:
4169                 r = 0;
4170                 mutex_lock(&kvm->lock);
4171                 if (kvm->created_vcpus)
4172                         r = -EBUSY;
4173                 else
4174                         kvm->arch.bsp_vcpu_id = arg;
4175                 mutex_unlock(&kvm->lock);
4176                 break;
4177         case KVM_XEN_HVM_CONFIG: {
4178                 r = -EFAULT;
4179                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4180                                    sizeof(struct kvm_xen_hvm_config)))
4181                         goto out;
4182                 r = -EINVAL;
4183                 if (kvm->arch.xen_hvm_config.flags)
4184                         goto out;
4185                 r = 0;
4186                 break;
4187         }
4188         case KVM_SET_CLOCK: {
4189                 struct kvm_clock_data user_ns;
4190                 u64 now_ns;
4191
4192                 r = -EFAULT;
4193                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4194                         goto out;
4195
4196                 r = -EINVAL;
4197                 if (user_ns.flags)
4198                         goto out;
4199
4200                 r = 0;
4201                 /*
4202                  * TODO: userspace has to take care of races with VCPU_RUN, so
4203                  * kvm_gen_update_masterclock() can be cut down to locked
4204                  * pvclock_update_vm_gtod_copy().
4205                  */
4206                 kvm_gen_update_masterclock(kvm);
4207                 now_ns = get_kvmclock_ns(kvm);
4208                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4209                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4210                 break;
4211         }
4212         case KVM_GET_CLOCK: {
4213                 struct kvm_clock_data user_ns;
4214                 u64 now_ns;
4215
4216                 now_ns = get_kvmclock_ns(kvm);
4217                 user_ns.clock = now_ns;
4218                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4219                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4220
4221                 r = -EFAULT;
4222                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4223                         goto out;
4224                 r = 0;
4225                 break;
4226         }
4227         case KVM_ENABLE_CAP: {
4228                 struct kvm_enable_cap cap;
4229
4230                 r = -EFAULT;
4231                 if (copy_from_user(&cap, argp, sizeof(cap)))
4232                         goto out;
4233                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4234                 break;
4235         }
4236         default:
4237                 r = -ENOTTY;
4238         }
4239 out:
4240         return r;
4241 }
4242
4243 static void kvm_init_msr_list(void)
4244 {
4245         u32 dummy[2];
4246         unsigned i, j;
4247
4248         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4249                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4250                         continue;
4251
4252                 /*
4253                  * Even MSRs that are valid in the host may not be exposed
4254                  * to the guests in some cases.
4255                  */
4256                 switch (msrs_to_save[i]) {
4257                 case MSR_IA32_BNDCFGS:
4258                         if (!kvm_x86_ops->mpx_supported())
4259                                 continue;
4260                         break;
4261                 case MSR_TSC_AUX:
4262                         if (!kvm_x86_ops->rdtscp_supported())
4263                                 continue;
4264                         break;
4265                 default:
4266                         break;
4267                 }
4268
4269                 if (j < i)
4270                         msrs_to_save[j] = msrs_to_save[i];
4271                 j++;
4272         }
4273         num_msrs_to_save = j;
4274
4275         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4276                 switch (emulated_msrs[i]) {
4277                 case MSR_IA32_SMBASE:
4278                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4279                                 continue;
4280                         break;
4281                 default:
4282                         break;
4283                 }
4284
4285                 if (j < i)
4286                         emulated_msrs[j] = emulated_msrs[i];
4287                 j++;
4288         }
4289         num_emulated_msrs = j;
4290 }
4291
4292 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4293                            const void *v)
4294 {
4295         int handled = 0;
4296         int n;
4297
4298         do {
4299                 n = min(len, 8);
4300                 if (!(lapic_in_kernel(vcpu) &&
4301                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4302                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4303                         break;
4304                 handled += n;
4305                 addr += n;
4306                 len -= n;
4307                 v += n;
4308         } while (len);
4309
4310         return handled;
4311 }
4312
4313 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4314 {
4315         int handled = 0;
4316         int n;
4317
4318         do {
4319                 n = min(len, 8);
4320                 if (!(lapic_in_kernel(vcpu) &&
4321                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4322                                          addr, n, v))
4323                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4324                         break;
4325                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4326                 handled += n;
4327                 addr += n;
4328                 len -= n;
4329                 v += n;
4330         } while (len);
4331
4332         return handled;
4333 }
4334
4335 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4336                         struct kvm_segment *var, int seg)
4337 {
4338         kvm_x86_ops->set_segment(vcpu, var, seg);
4339 }
4340
4341 void kvm_get_segment(struct kvm_vcpu *vcpu,
4342                      struct kvm_segment *var, int seg)
4343 {
4344         kvm_x86_ops->get_segment(vcpu, var, seg);
4345 }
4346
4347 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4348                            struct x86_exception *exception)
4349 {
4350         gpa_t t_gpa;
4351
4352         BUG_ON(!mmu_is_nested(vcpu));
4353
4354         /* NPT walks are always user-walks */
4355         access |= PFERR_USER_MASK;
4356         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4357
4358         return t_gpa;
4359 }
4360
4361 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4362                               struct x86_exception *exception)
4363 {
4364         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4365         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4366 }
4367
4368  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4369                                 struct x86_exception *exception)
4370 {
4371         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4372         access |= PFERR_FETCH_MASK;
4373         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4374 }
4375
4376 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4377                                struct x86_exception *exception)
4378 {
4379         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4380         access |= PFERR_WRITE_MASK;
4381         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4382 }
4383
4384 /* uses this to access any guest's mapped memory without checking CPL */
4385 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4386                                 struct x86_exception *exception)
4387 {
4388         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4389 }
4390
4391 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4392                                       struct kvm_vcpu *vcpu, u32 access,
4393                                       struct x86_exception *exception)
4394 {
4395         void *data = val;
4396         int r = X86EMUL_CONTINUE;
4397
4398         while (bytes) {
4399                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4400                                                             exception);
4401                 unsigned offset = addr & (PAGE_SIZE-1);
4402                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4403                 int ret;
4404
4405                 if (gpa == UNMAPPED_GVA)
4406                         return X86EMUL_PROPAGATE_FAULT;
4407                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4408                                                offset, toread);
4409                 if (ret < 0) {
4410                         r = X86EMUL_IO_NEEDED;
4411                         goto out;
4412                 }
4413
4414                 bytes -= toread;
4415                 data += toread;
4416                 addr += toread;
4417         }
4418 out:
4419         return r;
4420 }
4421
4422 /* used for instruction fetching */
4423 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4424                                 gva_t addr, void *val, unsigned int bytes,
4425                                 struct x86_exception *exception)
4426 {
4427         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4428         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4429         unsigned offset;
4430         int ret;
4431
4432         /* Inline kvm_read_guest_virt_helper for speed.  */
4433         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4434                                                     exception);
4435         if (unlikely(gpa == UNMAPPED_GVA))
4436                 return X86EMUL_PROPAGATE_FAULT;
4437
4438         offset = addr & (PAGE_SIZE-1);
4439         if (WARN_ON(offset + bytes > PAGE_SIZE))
4440                 bytes = (unsigned)PAGE_SIZE - offset;
4441         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4442                                        offset, bytes);
4443         if (unlikely(ret < 0))
4444                 return X86EMUL_IO_NEEDED;
4445
4446         return X86EMUL_CONTINUE;
4447 }
4448
4449 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4450                                gva_t addr, void *val, unsigned int bytes,
4451                                struct x86_exception *exception)
4452 {
4453         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4454         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4455
4456         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4457                                           exception);
4458 }
4459 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4460
4461 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4462                                       gva_t addr, void *val, unsigned int bytes,
4463                                       struct x86_exception *exception)
4464 {
4465         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4466         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4467 }
4468
4469 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4470                 unsigned long addr, void *val, unsigned int bytes)
4471 {
4472         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4473         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4474
4475         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4476 }
4477
4478 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4479                                        gva_t addr, void *val,
4480                                        unsigned int bytes,
4481                                        struct x86_exception *exception)
4482 {
4483         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4484         void *data = val;
4485         int r = X86EMUL_CONTINUE;
4486
4487         while (bytes) {
4488                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4489                                                              PFERR_WRITE_MASK,
4490                                                              exception);
4491                 unsigned offset = addr & (PAGE_SIZE-1);
4492                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4493                 int ret;
4494
4495                 if (gpa == UNMAPPED_GVA)
4496                         return X86EMUL_PROPAGATE_FAULT;
4497                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4498                 if (ret < 0) {
4499                         r = X86EMUL_IO_NEEDED;
4500                         goto out;
4501                 }
4502
4503                 bytes -= towrite;
4504                 data += towrite;
4505                 addr += towrite;
4506         }
4507 out:
4508         return r;
4509 }
4510 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4511
4512 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4513                             gpa_t gpa, bool write)
4514 {
4515         /* For APIC access vmexit */
4516         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4517                 return 1;
4518
4519         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4520                 trace_vcpu_match_mmio(gva, gpa, write, true);
4521                 return 1;
4522         }
4523
4524         return 0;
4525 }
4526
4527 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4528                                 gpa_t *gpa, struct x86_exception *exception,
4529                                 bool write)
4530 {
4531         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4532                 | (write ? PFERR_WRITE_MASK : 0);
4533
4534         /*
4535          * currently PKRU is only applied to ept enabled guest so
4536          * there is no pkey in EPT page table for L1 guest or EPT
4537          * shadow page table for L2 guest.
4538          */
4539         if (vcpu_match_mmio_gva(vcpu, gva)
4540             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4541                                  vcpu->arch.access, 0, access)) {
4542                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4543                                         (gva & (PAGE_SIZE - 1));
4544                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4545                 return 1;
4546         }
4547
4548         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4549
4550         if (*gpa == UNMAPPED_GVA)
4551                 return -1;
4552
4553         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4554 }
4555
4556 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4557                         const void *val, int bytes)
4558 {
4559         int ret;
4560
4561         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4562         if (ret < 0)
4563                 return 0;
4564         kvm_page_track_write(vcpu, gpa, val, bytes);
4565         return 1;
4566 }
4567
4568 struct read_write_emulator_ops {
4569         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4570                                   int bytes);
4571         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4572                                   void *val, int bytes);
4573         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4574                                int bytes, void *val);
4575         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4576                                     void *val, int bytes);
4577         bool write;
4578 };
4579
4580 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4581 {
4582         if (vcpu->mmio_read_completed) {
4583                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4584                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4585                 vcpu->mmio_read_completed = 0;
4586                 return 1;
4587         }
4588
4589         return 0;
4590 }
4591
4592 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4593                         void *val, int bytes)
4594 {
4595         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4596 }
4597
4598 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4599                          void *val, int bytes)
4600 {
4601         return emulator_write_phys(vcpu, gpa, val, bytes);
4602 }
4603
4604 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4605 {
4606         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4607         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4608 }
4609
4610 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4611                           void *val, int bytes)
4612 {
4613         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4614         return X86EMUL_IO_NEEDED;
4615 }
4616
4617 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4618                            void *val, int bytes)
4619 {
4620         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4621
4622         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4623         return X86EMUL_CONTINUE;
4624 }
4625
4626 static const struct read_write_emulator_ops read_emultor = {
4627         .read_write_prepare = read_prepare,
4628         .read_write_emulate = read_emulate,
4629         .read_write_mmio = vcpu_mmio_read,
4630         .read_write_exit_mmio = read_exit_mmio,
4631 };
4632
4633 static const struct read_write_emulator_ops write_emultor = {
4634         .read_write_emulate = write_emulate,
4635         .read_write_mmio = write_mmio,
4636         .read_write_exit_mmio = write_exit_mmio,
4637         .write = true,
4638 };
4639
4640 static int emulator_read_write_onepage(unsigned long addr, void *val,
4641                                        unsigned int bytes,
4642                                        struct x86_exception *exception,
4643                                        struct kvm_vcpu *vcpu,
4644                                        const struct read_write_emulator_ops *ops)
4645 {
4646         gpa_t gpa;
4647         int handled, ret;
4648         bool write = ops->write;
4649         struct kvm_mmio_fragment *frag;
4650         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4651
4652         /*
4653          * If the exit was due to a NPF we may already have a GPA.
4654          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4655          * Note, this cannot be used on string operations since string
4656          * operation using rep will only have the initial GPA from the NPF
4657          * occurred.
4658          */
4659         if (vcpu->arch.gpa_available &&
4660             emulator_can_use_gpa(ctxt) &&
4661             vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4662             (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4663                 gpa = exception->address;
4664                 goto mmio;
4665         }
4666
4667         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4668
4669         if (ret < 0)
4670                 return X86EMUL_PROPAGATE_FAULT;
4671
4672         /* For APIC access vmexit */
4673         if (ret)
4674                 goto mmio;
4675
4676         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4677                 return X86EMUL_CONTINUE;
4678
4679 mmio:
4680         /*
4681          * Is this MMIO handled locally?
4682          */
4683         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4684         if (handled == bytes)
4685                 return X86EMUL_CONTINUE;
4686
4687         gpa += handled;
4688         bytes -= handled;
4689         val += handled;
4690
4691         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4692         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4693         frag->gpa = gpa;
4694         frag->data = val;
4695         frag->len = bytes;
4696         return X86EMUL_CONTINUE;
4697 }
4698
4699 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4700                         unsigned long addr,
4701                         void *val, unsigned int bytes,
4702                         struct x86_exception *exception,
4703                         const struct read_write_emulator_ops *ops)
4704 {
4705         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4706         gpa_t gpa;
4707         int rc;
4708
4709         if (ops->read_write_prepare &&
4710                   ops->read_write_prepare(vcpu, val, bytes))
4711                 return X86EMUL_CONTINUE;
4712
4713         vcpu->mmio_nr_fragments = 0;
4714
4715         /* Crossing a page boundary? */
4716         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4717                 int now;
4718
4719                 now = -addr & ~PAGE_MASK;
4720                 rc = emulator_read_write_onepage(addr, val, now, exception,
4721                                                  vcpu, ops);
4722
4723                 if (rc != X86EMUL_CONTINUE)
4724                         return rc;
4725                 addr += now;
4726                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4727                         addr = (u32)addr;
4728                 val += now;
4729                 bytes -= now;
4730         }
4731
4732         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4733                                          vcpu, ops);
4734         if (rc != X86EMUL_CONTINUE)
4735                 return rc;
4736
4737         if (!vcpu->mmio_nr_fragments)
4738                 return rc;
4739
4740         gpa = vcpu->mmio_fragments[0].gpa;
4741
4742         vcpu->mmio_needed = 1;
4743         vcpu->mmio_cur_fragment = 0;
4744
4745         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4746         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4747         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4748         vcpu->run->mmio.phys_addr = gpa;
4749
4750         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4751 }
4752
4753 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4754                                   unsigned long addr,
4755                                   void *val,
4756                                   unsigned int bytes,
4757                                   struct x86_exception *exception)
4758 {
4759         return emulator_read_write(ctxt, addr, val, bytes,
4760                                    exception, &read_emultor);
4761 }
4762
4763 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4764                             unsigned long addr,
4765                             const void *val,
4766                             unsigned int bytes,
4767                             struct x86_exception *exception)
4768 {
4769         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4770                                    exception, &write_emultor);
4771 }
4772
4773 #define CMPXCHG_TYPE(t, ptr, old, new) \
4774         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4775
4776 #ifdef CONFIG_X86_64
4777 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4778 #else
4779 #  define CMPXCHG64(ptr, old, new) \
4780         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4781 #endif
4782
4783 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4784                                      unsigned long addr,
4785                                      const void *old,
4786                                      const void *new,
4787                                      unsigned int bytes,
4788                                      struct x86_exception *exception)
4789 {
4790         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4791         gpa_t gpa;
4792         struct page *page;
4793         char *kaddr;
4794         bool exchanged;
4795
4796         /* guests cmpxchg8b have to be emulated atomically */
4797         if (bytes > 8 || (bytes & (bytes - 1)))
4798                 goto emul_write;
4799
4800         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4801
4802         if (gpa == UNMAPPED_GVA ||
4803             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4804                 goto emul_write;
4805
4806         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4807                 goto emul_write;
4808
4809         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4810         if (is_error_page(page))
4811                 goto emul_write;
4812
4813         kaddr = kmap_atomic(page);
4814         kaddr += offset_in_page(gpa);
4815         switch (bytes) {
4816         case 1:
4817                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4818                 break;
4819         case 2:
4820                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4821                 break;
4822         case 4:
4823                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4824                 break;
4825         case 8:
4826                 exchanged = CMPXCHG64(kaddr, old, new);
4827                 break;
4828         default:
4829                 BUG();
4830         }
4831         kunmap_atomic(kaddr);
4832         kvm_release_page_dirty(page);
4833
4834         if (!exchanged)
4835                 return X86EMUL_CMPXCHG_FAILED;
4836
4837         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4838         kvm_page_track_write(vcpu, gpa, new, bytes);
4839
4840         return X86EMUL_CONTINUE;
4841
4842 emul_write:
4843         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4844
4845         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4846 }
4847
4848 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4849 {
4850         int r = 0, i;
4851
4852         for (i = 0; i < vcpu->arch.pio.count; i++) {
4853                 if (vcpu->arch.pio.in)
4854                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4855                                             vcpu->arch.pio.size, pd);
4856                 else
4857                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4858                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
4859                                              pd);
4860                 if (r)
4861                         break;
4862                 pd += vcpu->arch.pio.size;
4863         }
4864         return r;
4865 }
4866
4867 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4868                                unsigned short port, void *val,
4869                                unsigned int count, bool in)
4870 {
4871         vcpu->arch.pio.port = port;
4872         vcpu->arch.pio.in = in;
4873         vcpu->arch.pio.count  = count;
4874         vcpu->arch.pio.size = size;
4875
4876         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4877                 vcpu->arch.pio.count = 0;
4878                 return 1;
4879         }
4880
4881         vcpu->run->exit_reason = KVM_EXIT_IO;
4882         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4883         vcpu->run->io.size = size;
4884         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4885         vcpu->run->io.count = count;
4886         vcpu->run->io.port = port;
4887
4888         return 0;
4889 }
4890
4891 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4892                                     int size, unsigned short port, void *val,
4893                                     unsigned int count)
4894 {
4895         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4896         int ret;
4897
4898         if (vcpu->arch.pio.count)
4899                 goto data_avail;
4900
4901         memset(vcpu->arch.pio_data, 0, size * count);
4902
4903         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4904         if (ret) {
4905 data_avail:
4906                 memcpy(val, vcpu->arch.pio_data, size * count);
4907                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4908                 vcpu->arch.pio.count = 0;
4909                 return 1;
4910         }
4911
4912         return 0;
4913 }
4914
4915 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4916                                      int size, unsigned short port,
4917                                      const void *val, unsigned int count)
4918 {
4919         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4920
4921         memcpy(vcpu->arch.pio_data, val, size * count);
4922         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4923         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4924 }
4925
4926 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4927 {
4928         return kvm_x86_ops->get_segment_base(vcpu, seg);
4929 }
4930
4931 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4932 {
4933         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4934 }
4935
4936 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4937 {
4938         if (!need_emulate_wbinvd(vcpu))
4939                 return X86EMUL_CONTINUE;
4940
4941         if (kvm_x86_ops->has_wbinvd_exit()) {
4942                 int cpu = get_cpu();
4943
4944                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4945                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4946                                 wbinvd_ipi, NULL, 1);
4947                 put_cpu();
4948                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4949         } else
4950                 wbinvd();
4951         return X86EMUL_CONTINUE;
4952 }
4953
4954 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4955 {
4956         kvm_emulate_wbinvd_noskip(vcpu);
4957         return kvm_skip_emulated_instruction(vcpu);
4958 }
4959 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4960
4961
4962
4963 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4964 {
4965         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4966 }
4967
4968 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4969                            unsigned long *dest)
4970 {
4971         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4972 }
4973
4974 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4975                            unsigned long value)
4976 {
4977
4978         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4979 }
4980
4981 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4982 {
4983         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4984 }
4985
4986 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4987 {
4988         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4989         unsigned long value;
4990
4991         switch (cr) {
4992         case 0:
4993                 value = kvm_read_cr0(vcpu);
4994                 break;
4995         case 2:
4996                 value = vcpu->arch.cr2;
4997                 break;
4998         case 3:
4999                 value = kvm_read_cr3(vcpu);
5000                 break;
5001         case 4:
5002                 value = kvm_read_cr4(vcpu);
5003                 break;
5004         case 8:
5005                 value = kvm_get_cr8(vcpu);
5006                 break;
5007         default:
5008                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5009                 return 0;
5010         }
5011
5012         return value;
5013 }
5014
5015 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5016 {
5017         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5018         int res = 0;
5019
5020         switch (cr) {
5021         case 0:
5022                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5023                 break;
5024         case 2:
5025                 vcpu->arch.cr2 = val;
5026                 break;
5027         case 3:
5028                 res = kvm_set_cr3(vcpu, val);
5029                 break;
5030         case 4:
5031                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5032                 break;
5033         case 8:
5034                 res = kvm_set_cr8(vcpu, val);
5035                 break;
5036         default:
5037                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5038                 res = -1;
5039         }
5040
5041         return res;
5042 }
5043
5044 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5045 {
5046         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5047 }
5048
5049 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5050 {
5051         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5052 }
5053
5054 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5055 {
5056         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5057 }
5058
5059 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5060 {
5061         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5062 }
5063
5064 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5065 {
5066         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5067 }
5068
5069 static unsigned long emulator_get_cached_segment_base(
5070         struct x86_emulate_ctxt *ctxt, int seg)
5071 {
5072         return get_segment_base(emul_to_vcpu(ctxt), seg);
5073 }
5074
5075 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5076                                  struct desc_struct *desc, u32 *base3,
5077                                  int seg)
5078 {
5079         struct kvm_segment var;
5080
5081         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5082         *selector = var.selector;
5083
5084         if (var.unusable) {
5085                 memset(desc, 0, sizeof(*desc));
5086                 if (base3)
5087                         *base3 = 0;
5088                 return false;
5089         }
5090
5091         if (var.g)
5092                 var.limit >>= 12;
5093         set_desc_limit(desc, var.limit);
5094         set_desc_base(desc, (unsigned long)var.base);
5095 #ifdef CONFIG_X86_64
5096         if (base3)
5097                 *base3 = var.base >> 32;
5098 #endif
5099         desc->type = var.type;
5100         desc->s = var.s;
5101         desc->dpl = var.dpl;
5102         desc->p = var.present;
5103         desc->avl = var.avl;
5104         desc->l = var.l;
5105         desc->d = var.db;
5106         desc->g = var.g;
5107
5108         return true;
5109 }
5110
5111 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5112                                  struct desc_struct *desc, u32 base3,
5113                                  int seg)
5114 {
5115         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5116         struct kvm_segment var;
5117
5118         var.selector = selector;
5119         var.base = get_desc_base(desc);
5120 #ifdef CONFIG_X86_64
5121         var.base |= ((u64)base3) << 32;
5122 #endif
5123         var.limit = get_desc_limit(desc);
5124         if (desc->g)
5125                 var.limit = (var.limit << 12) | 0xfff;
5126         var.type = desc->type;
5127         var.dpl = desc->dpl;
5128         var.db = desc->d;
5129         var.s = desc->s;
5130         var.l = desc->l;
5131         var.g = desc->g;
5132         var.avl = desc->avl;
5133         var.present = desc->p;
5134         var.unusable = !var.present;
5135         var.padding = 0;
5136
5137         kvm_set_segment(vcpu, &var, seg);
5138         return;
5139 }
5140
5141 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5142                             u32 msr_index, u64 *pdata)
5143 {
5144         struct msr_data msr;
5145         int r;
5146
5147         msr.index = msr_index;
5148         msr.host_initiated = false;
5149         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5150         if (r)
5151                 return r;
5152
5153         *pdata = msr.data;
5154         return 0;
5155 }
5156
5157 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5158                             u32 msr_index, u64 data)
5159 {
5160         struct msr_data msr;
5161
5162         msr.data = data;
5163         msr.index = msr_index;
5164         msr.host_initiated = false;
5165         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5166 }
5167
5168 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5169 {
5170         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5171
5172         return vcpu->arch.smbase;
5173 }
5174
5175 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5176 {
5177         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5178
5179         vcpu->arch.smbase = smbase;
5180 }
5181
5182 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5183                               u32 pmc)
5184 {
5185         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5186 }
5187
5188 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5189                              u32 pmc, u64 *pdata)
5190 {
5191         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5192 }
5193
5194 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5195 {
5196         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5197 }
5198
5199 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5200 {
5201         preempt_disable();
5202         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5203 }
5204
5205 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5206 {
5207         preempt_enable();
5208 }
5209
5210 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5211                               struct x86_instruction_info *info,
5212                               enum x86_intercept_stage stage)
5213 {
5214         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5215 }
5216
5217 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5218                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5219 {
5220         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5221 }
5222
5223 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5224 {
5225         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5226 }
5227
5228 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5229 {
5230         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5231 }
5232
5233 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5234 {
5235         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5236 }
5237
5238 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5239 {
5240         return emul_to_vcpu(ctxt)->arch.hflags;
5241 }
5242
5243 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5244 {
5245         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5246 }
5247
5248 static const struct x86_emulate_ops emulate_ops = {
5249         .read_gpr            = emulator_read_gpr,
5250         .write_gpr           = emulator_write_gpr,
5251         .read_std            = kvm_read_guest_virt_system,
5252         .write_std           = kvm_write_guest_virt_system,
5253         .read_phys           = kvm_read_guest_phys_system,
5254         .fetch               = kvm_fetch_guest_virt,
5255         .read_emulated       = emulator_read_emulated,
5256         .write_emulated      = emulator_write_emulated,
5257         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5258         .invlpg              = emulator_invlpg,
5259         .pio_in_emulated     = emulator_pio_in_emulated,
5260         .pio_out_emulated    = emulator_pio_out_emulated,
5261         .get_segment         = emulator_get_segment,
5262         .set_segment         = emulator_set_segment,
5263         .get_cached_segment_base = emulator_get_cached_segment_base,
5264         .get_gdt             = emulator_get_gdt,
5265         .get_idt             = emulator_get_idt,
5266         .set_gdt             = emulator_set_gdt,
5267         .set_idt             = emulator_set_idt,
5268         .get_cr              = emulator_get_cr,
5269         .set_cr              = emulator_set_cr,
5270         .cpl                 = emulator_get_cpl,
5271         .get_dr              = emulator_get_dr,
5272         .set_dr              = emulator_set_dr,
5273         .get_smbase          = emulator_get_smbase,
5274         .set_smbase          = emulator_set_smbase,
5275         .set_msr             = emulator_set_msr,
5276         .get_msr             = emulator_get_msr,
5277         .check_pmc           = emulator_check_pmc,
5278         .read_pmc            = emulator_read_pmc,
5279         .halt                = emulator_halt,
5280         .wbinvd              = emulator_wbinvd,
5281         .fix_hypercall       = emulator_fix_hypercall,
5282         .get_fpu             = emulator_get_fpu,
5283         .put_fpu             = emulator_put_fpu,
5284         .intercept           = emulator_intercept,
5285         .get_cpuid           = emulator_get_cpuid,
5286         .set_nmi_mask        = emulator_set_nmi_mask,
5287         .get_hflags          = emulator_get_hflags,
5288         .set_hflags          = emulator_set_hflags,
5289 };
5290
5291 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5292 {
5293         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5294         /*
5295          * an sti; sti; sequence only disable interrupts for the first
5296          * instruction. So, if the last instruction, be it emulated or
5297          * not, left the system with the INT_STI flag enabled, it
5298          * means that the last instruction is an sti. We should not
5299          * leave the flag on in this case. The same goes for mov ss
5300          */
5301         if (int_shadow & mask)
5302                 mask = 0;
5303         if (unlikely(int_shadow || mask)) {
5304                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5305                 if (!mask)
5306                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5307         }
5308 }
5309
5310 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5311 {
5312         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5313         if (ctxt->exception.vector == PF_VECTOR)
5314                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5315
5316         if (ctxt->exception.error_code_valid)
5317                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5318                                       ctxt->exception.error_code);
5319         else
5320                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5321         return false;
5322 }
5323
5324 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5325 {
5326         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5327         int cs_db, cs_l;
5328
5329         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5330
5331         ctxt->eflags = kvm_get_rflags(vcpu);
5332         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5333
5334         ctxt->eip = kvm_rip_read(vcpu);
5335         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5336                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5337                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5338                      cs_db                              ? X86EMUL_MODE_PROT32 :
5339                                                           X86EMUL_MODE_PROT16;
5340         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5341         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5342         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5343
5344         init_decode_cache(ctxt);
5345         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5346 }
5347
5348 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5349 {
5350         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5351         int ret;
5352
5353         init_emulate_ctxt(vcpu);
5354
5355         ctxt->op_bytes = 2;
5356         ctxt->ad_bytes = 2;
5357         ctxt->_eip = ctxt->eip + inc_eip;
5358         ret = emulate_int_real(ctxt, irq);
5359
5360         if (ret != X86EMUL_CONTINUE)
5361                 return EMULATE_FAIL;
5362
5363         ctxt->eip = ctxt->_eip;
5364         kvm_rip_write(vcpu, ctxt->eip);
5365         kvm_set_rflags(vcpu, ctxt->eflags);
5366
5367         if (irq == NMI_VECTOR)
5368                 vcpu->arch.nmi_pending = 0;
5369         else
5370                 vcpu->arch.interrupt.pending = false;
5371
5372         return EMULATE_DONE;
5373 }
5374 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5375
5376 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5377 {
5378         int r = EMULATE_DONE;
5379
5380         ++vcpu->stat.insn_emulation_fail;
5381         trace_kvm_emulate_insn_failed(vcpu);
5382         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5383                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5384                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5385                 vcpu->run->internal.ndata = 0;
5386                 r = EMULATE_FAIL;
5387         }
5388         kvm_queue_exception(vcpu, UD_VECTOR);
5389
5390         return r;
5391 }
5392
5393 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5394                                   bool write_fault_to_shadow_pgtable,
5395                                   int emulation_type)
5396 {
5397         gpa_t gpa = cr2;
5398         kvm_pfn_t pfn;
5399
5400         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5401                 return false;
5402
5403         if (!vcpu->arch.mmu.direct_map) {
5404                 /*
5405                  * Write permission should be allowed since only
5406                  * write access need to be emulated.
5407                  */
5408                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5409
5410                 /*
5411                  * If the mapping is invalid in guest, let cpu retry
5412                  * it to generate fault.
5413                  */
5414                 if (gpa == UNMAPPED_GVA)
5415                         return true;
5416         }
5417
5418         /*
5419          * Do not retry the unhandleable instruction if it faults on the
5420          * readonly host memory, otherwise it will goto a infinite loop:
5421          * retry instruction -> write #PF -> emulation fail -> retry
5422          * instruction -> ...
5423          */
5424         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5425
5426         /*
5427          * If the instruction failed on the error pfn, it can not be fixed,
5428          * report the error to userspace.
5429          */
5430         if (is_error_noslot_pfn(pfn))
5431                 return false;
5432
5433         kvm_release_pfn_clean(pfn);
5434
5435         /* The instructions are well-emulated on direct mmu. */
5436         if (vcpu->arch.mmu.direct_map) {
5437                 unsigned int indirect_shadow_pages;
5438
5439                 spin_lock(&vcpu->kvm->mmu_lock);
5440                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5441                 spin_unlock(&vcpu->kvm->mmu_lock);
5442
5443                 if (indirect_shadow_pages)
5444                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5445
5446                 return true;
5447         }
5448
5449         /*
5450          * if emulation was due to access to shadowed page table
5451          * and it failed try to unshadow page and re-enter the
5452          * guest to let CPU execute the instruction.
5453          */
5454         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5455
5456         /*
5457          * If the access faults on its page table, it can not
5458          * be fixed by unprotecting shadow page and it should
5459          * be reported to userspace.
5460          */
5461         return !write_fault_to_shadow_pgtable;
5462 }
5463
5464 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5465                               unsigned long cr2,  int emulation_type)
5466 {
5467         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5468         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5469
5470         last_retry_eip = vcpu->arch.last_retry_eip;
5471         last_retry_addr = vcpu->arch.last_retry_addr;
5472
5473         /*
5474          * If the emulation is caused by #PF and it is non-page_table
5475          * writing instruction, it means the VM-EXIT is caused by shadow
5476          * page protected, we can zap the shadow page and retry this
5477          * instruction directly.
5478          *
5479          * Note: if the guest uses a non-page-table modifying instruction
5480          * on the PDE that points to the instruction, then we will unmap
5481          * the instruction and go to an infinite loop. So, we cache the
5482          * last retried eip and the last fault address, if we meet the eip
5483          * and the address again, we can break out of the potential infinite
5484          * loop.
5485          */
5486         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5487
5488         if (!(emulation_type & EMULTYPE_RETRY))
5489                 return false;
5490
5491         if (x86_page_table_writing_insn(ctxt))
5492                 return false;
5493
5494         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5495                 return false;
5496
5497         vcpu->arch.last_retry_eip = ctxt->eip;
5498         vcpu->arch.last_retry_addr = cr2;
5499
5500         if (!vcpu->arch.mmu.direct_map)
5501                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5502
5503         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5504
5505         return true;
5506 }
5507
5508 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5509 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5510
5511 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5512 {
5513         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5514                 /* This is a good place to trace that we are exiting SMM.  */
5515                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5516
5517                 /* Process a latched INIT or SMI, if any.  */
5518                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5519         }
5520
5521         kvm_mmu_reset_context(vcpu);
5522 }
5523
5524 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5525 {
5526         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5527
5528         vcpu->arch.hflags = emul_flags;
5529
5530         if (changed & HF_SMM_MASK)
5531                 kvm_smm_changed(vcpu);
5532 }
5533
5534 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5535                                 unsigned long *db)
5536 {
5537         u32 dr6 = 0;
5538         int i;
5539         u32 enable, rwlen;
5540
5541         enable = dr7;
5542         rwlen = dr7 >> 16;
5543         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5544                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5545                         dr6 |= (1 << i);
5546         return dr6;
5547 }
5548
5549 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5550 {
5551         struct kvm_run *kvm_run = vcpu->run;
5552
5553         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5554                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5555                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5556                 kvm_run->debug.arch.exception = DB_VECTOR;
5557                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5558                 *r = EMULATE_USER_EXIT;
5559         } else {
5560                 /*
5561                  * "Certain debug exceptions may clear bit 0-3.  The
5562                  * remaining contents of the DR6 register are never
5563                  * cleared by the processor".
5564                  */
5565                 vcpu->arch.dr6 &= ~15;
5566                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5567                 kvm_queue_exception(vcpu, DB_VECTOR);
5568         }
5569 }
5570
5571 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5572 {
5573         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5574         int r = EMULATE_DONE;
5575
5576         kvm_x86_ops->skip_emulated_instruction(vcpu);
5577
5578         /*
5579          * rflags is the old, "raw" value of the flags.  The new value has
5580          * not been saved yet.
5581          *
5582          * This is correct even for TF set by the guest, because "the
5583          * processor will not generate this exception after the instruction
5584          * that sets the TF flag".
5585          */
5586         if (unlikely(rflags & X86_EFLAGS_TF))
5587                 kvm_vcpu_do_singlestep(vcpu, &r);
5588         return r == EMULATE_DONE;
5589 }
5590 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5591
5592 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5593 {
5594         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5595             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5596                 struct kvm_run *kvm_run = vcpu->run;
5597                 unsigned long eip = kvm_get_linear_rip(vcpu);
5598                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5599                                            vcpu->arch.guest_debug_dr7,
5600                                            vcpu->arch.eff_db);
5601
5602                 if (dr6 != 0) {
5603                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5604                         kvm_run->debug.arch.pc = eip;
5605                         kvm_run->debug.arch.exception = DB_VECTOR;
5606                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5607                         *r = EMULATE_USER_EXIT;
5608                         return true;
5609                 }
5610         }
5611
5612         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5613             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5614                 unsigned long eip = kvm_get_linear_rip(vcpu);
5615                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5616                                            vcpu->arch.dr7,
5617                                            vcpu->arch.db);
5618
5619                 if (dr6 != 0) {
5620                         vcpu->arch.dr6 &= ~15;
5621                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5622                         kvm_queue_exception(vcpu, DB_VECTOR);
5623                         *r = EMULATE_DONE;
5624                         return true;
5625                 }
5626         }
5627
5628         return false;
5629 }
5630
5631 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5632                             unsigned long cr2,
5633                             int emulation_type,
5634                             void *insn,
5635                             int insn_len)
5636 {
5637         int r;
5638         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5639         bool writeback = true;
5640         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5641
5642         /*
5643          * Clear write_fault_to_shadow_pgtable here to ensure it is
5644          * never reused.
5645          */
5646         vcpu->arch.write_fault_to_shadow_pgtable = false;
5647         kvm_clear_exception_queue(vcpu);
5648
5649         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5650                 init_emulate_ctxt(vcpu);
5651
5652                 /*
5653                  * We will reenter on the same instruction since
5654                  * we do not set complete_userspace_io.  This does not
5655                  * handle watchpoints yet, those would be handled in
5656                  * the emulate_ops.
5657                  */
5658                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5659                         return r;
5660
5661                 ctxt->interruptibility = 0;
5662                 ctxt->have_exception = false;
5663                 ctxt->exception.vector = -1;
5664                 ctxt->perm_ok = false;
5665
5666                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5667
5668                 r = x86_decode_insn(ctxt, insn, insn_len);
5669
5670                 trace_kvm_emulate_insn_start(vcpu);
5671                 ++vcpu->stat.insn_emulation;
5672                 if (r != EMULATION_OK)  {
5673                         if (emulation_type & EMULTYPE_TRAP_UD)
5674                                 return EMULATE_FAIL;
5675                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5676                                                 emulation_type))
5677                                 return EMULATE_DONE;
5678                         if (emulation_type & EMULTYPE_SKIP)
5679                                 return EMULATE_FAIL;
5680                         return handle_emulation_failure(vcpu);
5681                 }
5682         }
5683
5684         if (emulation_type & EMULTYPE_SKIP) {
5685                 kvm_rip_write(vcpu, ctxt->_eip);
5686                 if (ctxt->eflags & X86_EFLAGS_RF)
5687                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5688                 return EMULATE_DONE;
5689         }
5690
5691         if (retry_instruction(ctxt, cr2, emulation_type))
5692                 return EMULATE_DONE;
5693
5694         /* this is needed for vmware backdoor interface to work since it
5695            changes registers values  during IO operation */
5696         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5697                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5698                 emulator_invalidate_register_cache(ctxt);
5699         }
5700
5701 restart:
5702         /* Save the faulting GPA (cr2) in the address field */
5703         ctxt->exception.address = cr2;
5704
5705         r = x86_emulate_insn(ctxt);
5706
5707         if (r == EMULATION_INTERCEPTED)
5708                 return EMULATE_DONE;
5709
5710         if (r == EMULATION_FAILED) {
5711                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5712                                         emulation_type))
5713                         return EMULATE_DONE;
5714
5715                 return handle_emulation_failure(vcpu);
5716         }
5717
5718         if (ctxt->have_exception) {
5719                 r = EMULATE_DONE;
5720                 if (inject_emulated_exception(vcpu))
5721                         return r;
5722         } else if (vcpu->arch.pio.count) {
5723                 if (!vcpu->arch.pio.in) {
5724                         /* FIXME: return into emulator if single-stepping.  */
5725                         vcpu->arch.pio.count = 0;
5726                 } else {
5727                         writeback = false;
5728                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5729                 }
5730                 r = EMULATE_USER_EXIT;
5731         } else if (vcpu->mmio_needed) {
5732                 if (!vcpu->mmio_is_write)
5733                         writeback = false;
5734                 r = EMULATE_USER_EXIT;
5735                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5736         } else if (r == EMULATION_RESTART)
5737                 goto restart;
5738         else
5739                 r = EMULATE_DONE;
5740
5741         if (writeback) {
5742                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5743                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5744                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5745                 kvm_rip_write(vcpu, ctxt->eip);
5746                 if (r == EMULATE_DONE &&
5747                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5748                         kvm_vcpu_do_singlestep(vcpu, &r);
5749                 if (!ctxt->have_exception ||
5750                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5751                         __kvm_set_rflags(vcpu, ctxt->eflags);
5752
5753                 /*
5754                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5755                  * do nothing, and it will be requested again as soon as
5756                  * the shadow expires.  But we still need to check here,
5757                  * because POPF has no interrupt shadow.
5758                  */
5759                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5760                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5761         } else
5762                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5763
5764         return r;
5765 }
5766 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5767
5768 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5769 {
5770         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5771         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5772                                             size, port, &val, 1);
5773         /* do not return to emulator after return from userspace */
5774         vcpu->arch.pio.count = 0;
5775         return ret;
5776 }
5777 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5778
5779 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5780 {
5781         unsigned long val;
5782
5783         /* We should only ever be called with arch.pio.count equal to 1 */
5784         BUG_ON(vcpu->arch.pio.count != 1);
5785
5786         /* For size less than 4 we merge, else we zero extend */
5787         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5788                                         : 0;
5789
5790         /*
5791          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5792          * the copy and tracing
5793          */
5794         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5795                                  vcpu->arch.pio.port, &val, 1);
5796         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5797
5798         return 1;
5799 }
5800
5801 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5802 {
5803         unsigned long val;
5804         int ret;
5805
5806         /* For size less than 4 we merge, else we zero extend */
5807         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5808
5809         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5810                                        &val, 1);
5811         if (ret) {
5812                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5813                 return ret;
5814         }
5815
5816         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5817
5818         return 0;
5819 }
5820 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5821
5822 static int kvmclock_cpu_down_prep(unsigned int cpu)
5823 {
5824         __this_cpu_write(cpu_tsc_khz, 0);
5825         return 0;
5826 }
5827
5828 static void tsc_khz_changed(void *data)
5829 {
5830         struct cpufreq_freqs *freq = data;
5831         unsigned long khz = 0;
5832
5833         if (data)
5834                 khz = freq->new;
5835         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5836                 khz = cpufreq_quick_get(raw_smp_processor_id());
5837         if (!khz)
5838                 khz = tsc_khz;
5839         __this_cpu_write(cpu_tsc_khz, khz);
5840 }
5841
5842 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5843                                      void *data)
5844 {
5845         struct cpufreq_freqs *freq = data;
5846         struct kvm *kvm;
5847         struct kvm_vcpu *vcpu;
5848         int i, send_ipi = 0;
5849
5850         /*
5851          * We allow guests to temporarily run on slowing clocks,
5852          * provided we notify them after, or to run on accelerating
5853          * clocks, provided we notify them before.  Thus time never
5854          * goes backwards.
5855          *
5856          * However, we have a problem.  We can't atomically update
5857          * the frequency of a given CPU from this function; it is
5858          * merely a notifier, which can be called from any CPU.
5859          * Changing the TSC frequency at arbitrary points in time
5860          * requires a recomputation of local variables related to
5861          * the TSC for each VCPU.  We must flag these local variables
5862          * to be updated and be sure the update takes place with the
5863          * new frequency before any guests proceed.
5864          *
5865          * Unfortunately, the combination of hotplug CPU and frequency
5866          * change creates an intractable locking scenario; the order
5867          * of when these callouts happen is undefined with respect to
5868          * CPU hotplug, and they can race with each other.  As such,
5869          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5870          * undefined; you can actually have a CPU frequency change take
5871          * place in between the computation of X and the setting of the
5872          * variable.  To protect against this problem, all updates of
5873          * the per_cpu tsc_khz variable are done in an interrupt
5874          * protected IPI, and all callers wishing to update the value
5875          * must wait for a synchronous IPI to complete (which is trivial
5876          * if the caller is on the CPU already).  This establishes the
5877          * necessary total order on variable updates.
5878          *
5879          * Note that because a guest time update may take place
5880          * anytime after the setting of the VCPU's request bit, the
5881          * correct TSC value must be set before the request.  However,
5882          * to ensure the update actually makes it to any guest which
5883          * starts running in hardware virtualization between the set
5884          * and the acquisition of the spinlock, we must also ping the
5885          * CPU after setting the request bit.
5886          *
5887          */
5888
5889         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5890                 return 0;
5891         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5892                 return 0;
5893
5894         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5895
5896         spin_lock(&kvm_lock);
5897         list_for_each_entry(kvm, &vm_list, vm_list) {
5898                 kvm_for_each_vcpu(i, vcpu, kvm) {
5899                         if (vcpu->cpu != freq->cpu)
5900                                 continue;
5901                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5902                         if (vcpu->cpu != smp_processor_id())
5903                                 send_ipi = 1;
5904                 }
5905         }
5906         spin_unlock(&kvm_lock);
5907
5908         if (freq->old < freq->new && send_ipi) {
5909                 /*
5910                  * We upscale the frequency.  Must make the guest
5911                  * doesn't see old kvmclock values while running with
5912                  * the new frequency, otherwise we risk the guest sees
5913                  * time go backwards.
5914                  *
5915                  * In case we update the frequency for another cpu
5916                  * (which might be in guest context) send an interrupt
5917                  * to kick the cpu out of guest context.  Next time
5918                  * guest context is entered kvmclock will be updated,
5919                  * so the guest will not see stale values.
5920                  */
5921                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5922         }
5923         return 0;
5924 }
5925
5926 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5927         .notifier_call  = kvmclock_cpufreq_notifier
5928 };
5929
5930 static int kvmclock_cpu_online(unsigned int cpu)
5931 {
5932         tsc_khz_changed(NULL);
5933         return 0;
5934 }
5935
5936 static void kvm_timer_init(void)
5937 {
5938         max_tsc_khz = tsc_khz;
5939
5940         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5941 #ifdef CONFIG_CPU_FREQ
5942                 struct cpufreq_policy policy;
5943                 int cpu;
5944
5945                 memset(&policy, 0, sizeof(policy));
5946                 cpu = get_cpu();
5947                 cpufreq_get_policy(&policy, cpu);
5948                 if (policy.cpuinfo.max_freq)
5949                         max_tsc_khz = policy.cpuinfo.max_freq;
5950                 put_cpu();
5951 #endif
5952                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5953                                           CPUFREQ_TRANSITION_NOTIFIER);
5954         }
5955         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5956
5957         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5958                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5959 }
5960
5961 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5962
5963 int kvm_is_in_guest(void)
5964 {
5965         return __this_cpu_read(current_vcpu) != NULL;
5966 }
5967
5968 static int kvm_is_user_mode(void)
5969 {
5970         int user_mode = 3;
5971
5972         if (__this_cpu_read(current_vcpu))
5973                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5974
5975         return user_mode != 0;
5976 }
5977
5978 static unsigned long kvm_get_guest_ip(void)
5979 {
5980         unsigned long ip = 0;
5981
5982         if (__this_cpu_read(current_vcpu))
5983                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5984
5985         return ip;
5986 }
5987
5988 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5989         .is_in_guest            = kvm_is_in_guest,
5990         .is_user_mode           = kvm_is_user_mode,
5991         .get_guest_ip           = kvm_get_guest_ip,
5992 };
5993
5994 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5995 {
5996         __this_cpu_write(current_vcpu, vcpu);
5997 }
5998 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5999
6000 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6001 {
6002         __this_cpu_write(current_vcpu, NULL);
6003 }
6004 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6005
6006 static void kvm_set_mmio_spte_mask(void)
6007 {
6008         u64 mask;
6009         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6010
6011         /*
6012          * Set the reserved bits and the present bit of an paging-structure
6013          * entry to generate page fault with PFER.RSV = 1.
6014          */
6015          /* Mask the reserved physical address bits. */
6016         mask = rsvd_bits(maxphyaddr, 51);
6017
6018         /* Set the present bit. */
6019         mask |= 1ull;
6020
6021 #ifdef CONFIG_X86_64
6022         /*
6023          * If reserved bit is not supported, clear the present bit to disable
6024          * mmio page fault.
6025          */
6026         if (maxphyaddr == 52)
6027                 mask &= ~1ull;
6028 #endif
6029
6030         kvm_mmu_set_mmio_spte_mask(mask, mask);
6031 }
6032
6033 #ifdef CONFIG_X86_64
6034 static void pvclock_gtod_update_fn(struct work_struct *work)
6035 {
6036         struct kvm *kvm;
6037
6038         struct kvm_vcpu *vcpu;
6039         int i;
6040
6041         spin_lock(&kvm_lock);
6042         list_for_each_entry(kvm, &vm_list, vm_list)
6043                 kvm_for_each_vcpu(i, vcpu, kvm)
6044                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6045         atomic_set(&kvm_guest_has_master_clock, 0);
6046         spin_unlock(&kvm_lock);
6047 }
6048
6049 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6050
6051 /*
6052  * Notification about pvclock gtod data update.
6053  */
6054 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6055                                void *priv)
6056 {
6057         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6058         struct timekeeper *tk = priv;
6059
6060         update_pvclock_gtod(tk);
6061
6062         /* disable master clock if host does not trust, or does not
6063          * use, TSC clocksource
6064          */
6065         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6066             atomic_read(&kvm_guest_has_master_clock) != 0)
6067                 queue_work(system_long_wq, &pvclock_gtod_work);
6068
6069         return 0;
6070 }
6071
6072 static struct notifier_block pvclock_gtod_notifier = {
6073         .notifier_call = pvclock_gtod_notify,
6074 };
6075 #endif
6076
6077 int kvm_arch_init(void *opaque)
6078 {
6079         int r;
6080         struct kvm_x86_ops *ops = opaque;
6081
6082         if (kvm_x86_ops) {
6083                 printk(KERN_ERR "kvm: already loaded the other module\n");
6084                 r = -EEXIST;
6085                 goto out;
6086         }
6087
6088         if (!ops->cpu_has_kvm_support()) {
6089                 printk(KERN_ERR "kvm: no hardware support\n");
6090                 r = -EOPNOTSUPP;
6091                 goto out;
6092         }
6093         if (ops->disabled_by_bios()) {
6094                 printk(KERN_ERR "kvm: disabled by bios\n");
6095                 r = -EOPNOTSUPP;
6096                 goto out;
6097         }
6098
6099         r = -ENOMEM;
6100         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6101         if (!shared_msrs) {
6102                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6103                 goto out;
6104         }
6105
6106         r = kvm_mmu_module_init();
6107         if (r)
6108                 goto out_free_percpu;
6109
6110         kvm_set_mmio_spte_mask();
6111
6112         kvm_x86_ops = ops;
6113
6114         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6115                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6116                         PT_PRESENT_MASK, 0);
6117         kvm_timer_init();
6118
6119         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6120
6121         if (boot_cpu_has(X86_FEATURE_XSAVE))
6122                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6123
6124         kvm_lapic_init();
6125 #ifdef CONFIG_X86_64
6126         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6127 #endif
6128
6129         return 0;
6130
6131 out_free_percpu:
6132         free_percpu(shared_msrs);
6133 out:
6134         return r;
6135 }
6136
6137 void kvm_arch_exit(void)
6138 {
6139         kvm_lapic_exit();
6140         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6141
6142         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6143                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6144                                             CPUFREQ_TRANSITION_NOTIFIER);
6145         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6146 #ifdef CONFIG_X86_64
6147         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6148 #endif
6149         kvm_x86_ops = NULL;
6150         kvm_mmu_module_exit();
6151         free_percpu(shared_msrs);
6152 }
6153
6154 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6155 {
6156         ++vcpu->stat.halt_exits;
6157         if (lapic_in_kernel(vcpu)) {
6158                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6159                 return 1;
6160         } else {
6161                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6162                 return 0;
6163         }
6164 }
6165 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6166
6167 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6168 {
6169         int ret = kvm_skip_emulated_instruction(vcpu);
6170         /*
6171          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6172          * KVM_EXIT_DEBUG here.
6173          */
6174         return kvm_vcpu_halt(vcpu) && ret;
6175 }
6176 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6177
6178 #ifdef CONFIG_X86_64
6179 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6180                                 unsigned long clock_type)
6181 {
6182         struct kvm_clock_pairing clock_pairing;
6183         struct timespec ts;
6184         u64 cycle;
6185         int ret;
6186
6187         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6188                 return -KVM_EOPNOTSUPP;
6189
6190         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6191                 return -KVM_EOPNOTSUPP;
6192
6193         clock_pairing.sec = ts.tv_sec;
6194         clock_pairing.nsec = ts.tv_nsec;
6195         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6196         clock_pairing.flags = 0;
6197
6198         ret = 0;
6199         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6200                             sizeof(struct kvm_clock_pairing)))
6201                 ret = -KVM_EFAULT;
6202
6203         return ret;
6204 }
6205 #endif
6206
6207 /*
6208  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6209  *
6210  * @apicid - apicid of vcpu to be kicked.
6211  */
6212 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6213 {
6214         struct kvm_lapic_irq lapic_irq;
6215
6216         lapic_irq.shorthand = 0;
6217         lapic_irq.dest_mode = 0;
6218         lapic_irq.dest_id = apicid;
6219         lapic_irq.msi_redir_hint = false;
6220
6221         lapic_irq.delivery_mode = APIC_DM_REMRD;
6222         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6223 }
6224
6225 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6226 {
6227         vcpu->arch.apicv_active = false;
6228         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6229 }
6230
6231 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6232 {
6233         unsigned long nr, a0, a1, a2, a3, ret;
6234         int op_64_bit, r;
6235
6236         r = kvm_skip_emulated_instruction(vcpu);
6237
6238         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6239                 return kvm_hv_hypercall(vcpu);
6240
6241         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6242         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6243         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6244         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6245         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6246
6247         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6248
6249         op_64_bit = is_64_bit_mode(vcpu);
6250         if (!op_64_bit) {
6251                 nr &= 0xFFFFFFFF;
6252                 a0 &= 0xFFFFFFFF;
6253                 a1 &= 0xFFFFFFFF;
6254                 a2 &= 0xFFFFFFFF;
6255                 a3 &= 0xFFFFFFFF;
6256         }
6257
6258         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6259                 ret = -KVM_EPERM;
6260                 goto out;
6261         }
6262
6263         switch (nr) {
6264         case KVM_HC_VAPIC_POLL_IRQ:
6265                 ret = 0;
6266                 break;
6267         case KVM_HC_KICK_CPU:
6268                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6269                 ret = 0;
6270                 break;
6271 #ifdef CONFIG_X86_64
6272         case KVM_HC_CLOCK_PAIRING:
6273                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6274                 break;
6275 #endif
6276         default:
6277                 ret = -KVM_ENOSYS;
6278                 break;
6279         }
6280 out:
6281         if (!op_64_bit)
6282                 ret = (u32)ret;
6283         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6284         ++vcpu->stat.hypercalls;
6285         return r;
6286 }
6287 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6288
6289 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6290 {
6291         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6292         char instruction[3];
6293         unsigned long rip = kvm_rip_read(vcpu);
6294
6295         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6296
6297         return emulator_write_emulated(ctxt, rip, instruction, 3,
6298                 &ctxt->exception);
6299 }
6300
6301 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6302 {
6303         return vcpu->run->request_interrupt_window &&
6304                 likely(!pic_in_kernel(vcpu->kvm));
6305 }
6306
6307 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6308 {
6309         struct kvm_run *kvm_run = vcpu->run;
6310
6311         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6312         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6313         kvm_run->cr8 = kvm_get_cr8(vcpu);
6314         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6315         kvm_run->ready_for_interrupt_injection =
6316                 pic_in_kernel(vcpu->kvm) ||
6317                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6318 }
6319
6320 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6321 {
6322         int max_irr, tpr;
6323
6324         if (!kvm_x86_ops->update_cr8_intercept)
6325                 return;
6326
6327         if (!lapic_in_kernel(vcpu))
6328                 return;
6329
6330         if (vcpu->arch.apicv_active)
6331                 return;
6332
6333         if (!vcpu->arch.apic->vapic_addr)
6334                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6335         else
6336                 max_irr = -1;
6337
6338         if (max_irr != -1)
6339                 max_irr >>= 4;
6340
6341         tpr = kvm_lapic_get_cr8(vcpu);
6342
6343         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6344 }
6345
6346 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6347 {
6348         int r;
6349
6350         /* try to reinject previous events if any */
6351         if (vcpu->arch.exception.pending) {
6352                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6353                                         vcpu->arch.exception.has_error_code,
6354                                         vcpu->arch.exception.error_code);
6355
6356                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6357                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6358                                              X86_EFLAGS_RF);
6359
6360                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6361                     (vcpu->arch.dr7 & DR7_GD)) {
6362                         vcpu->arch.dr7 &= ~DR7_GD;
6363                         kvm_update_dr7(vcpu);
6364                 }
6365
6366                 kvm_x86_ops->queue_exception(vcpu);
6367                 return 0;
6368         }
6369
6370         if (vcpu->arch.nmi_injected) {
6371                 kvm_x86_ops->set_nmi(vcpu);
6372                 return 0;
6373         }
6374
6375         if (vcpu->arch.interrupt.pending) {
6376                 kvm_x86_ops->set_irq(vcpu);
6377                 return 0;
6378         }
6379
6380         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6381                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6382                 if (r != 0)
6383                         return r;
6384         }
6385
6386         /* try to inject new event if pending */
6387         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6388                 vcpu->arch.smi_pending = false;
6389                 enter_smm(vcpu);
6390         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6391                 --vcpu->arch.nmi_pending;
6392                 vcpu->arch.nmi_injected = true;
6393                 kvm_x86_ops->set_nmi(vcpu);
6394         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6395                 /*
6396                  * Because interrupts can be injected asynchronously, we are
6397                  * calling check_nested_events again here to avoid a race condition.
6398                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6399                  * proposal and current concerns.  Perhaps we should be setting
6400                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6401                  */
6402                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6403                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6404                         if (r != 0)
6405                                 return r;
6406                 }
6407                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6408                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6409                                             false);
6410                         kvm_x86_ops->set_irq(vcpu);
6411                 }
6412         }
6413
6414         return 0;
6415 }
6416
6417 static void process_nmi(struct kvm_vcpu *vcpu)
6418 {
6419         unsigned limit = 2;
6420
6421         /*
6422          * x86 is limited to one NMI running, and one NMI pending after it.
6423          * If an NMI is already in progress, limit further NMIs to just one.
6424          * Otherwise, allow two (and we'll inject the first one immediately).
6425          */
6426         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6427                 limit = 1;
6428
6429         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6430         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6431         kvm_make_request(KVM_REQ_EVENT, vcpu);
6432 }
6433
6434 #define put_smstate(type, buf, offset, val)                       \
6435         *(type *)((buf) + (offset) - 0x7e00) = val
6436
6437 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6438 {
6439         u32 flags = 0;
6440         flags |= seg->g       << 23;
6441         flags |= seg->db      << 22;
6442         flags |= seg->l       << 21;
6443         flags |= seg->avl     << 20;
6444         flags |= seg->present << 15;
6445         flags |= seg->dpl     << 13;
6446         flags |= seg->s       << 12;
6447         flags |= seg->type    << 8;
6448         return flags;
6449 }
6450
6451 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6452 {
6453         struct kvm_segment seg;
6454         int offset;
6455
6456         kvm_get_segment(vcpu, &seg, n);
6457         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6458
6459         if (n < 3)
6460                 offset = 0x7f84 + n * 12;
6461         else
6462                 offset = 0x7f2c + (n - 3) * 12;
6463
6464         put_smstate(u32, buf, offset + 8, seg.base);
6465         put_smstate(u32, buf, offset + 4, seg.limit);
6466         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6467 }
6468
6469 #ifdef CONFIG_X86_64
6470 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6471 {
6472         struct kvm_segment seg;
6473         int offset;
6474         u16 flags;
6475
6476         kvm_get_segment(vcpu, &seg, n);
6477         offset = 0x7e00 + n * 16;
6478
6479         flags = enter_smm_get_segment_flags(&seg) >> 8;
6480         put_smstate(u16, buf, offset, seg.selector);
6481         put_smstate(u16, buf, offset + 2, flags);
6482         put_smstate(u32, buf, offset + 4, seg.limit);
6483         put_smstate(u64, buf, offset + 8, seg.base);
6484 }
6485 #endif
6486
6487 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6488 {
6489         struct desc_ptr dt;
6490         struct kvm_segment seg;
6491         unsigned long val;
6492         int i;
6493
6494         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6495         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6496         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6497         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6498
6499         for (i = 0; i < 8; i++)
6500                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6501
6502         kvm_get_dr(vcpu, 6, &val);
6503         put_smstate(u32, buf, 0x7fcc, (u32)val);
6504         kvm_get_dr(vcpu, 7, &val);
6505         put_smstate(u32, buf, 0x7fc8, (u32)val);
6506
6507         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6508         put_smstate(u32, buf, 0x7fc4, seg.selector);
6509         put_smstate(u32, buf, 0x7f64, seg.base);
6510         put_smstate(u32, buf, 0x7f60, seg.limit);
6511         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6512
6513         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6514         put_smstate(u32, buf, 0x7fc0, seg.selector);
6515         put_smstate(u32, buf, 0x7f80, seg.base);
6516         put_smstate(u32, buf, 0x7f7c, seg.limit);
6517         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6518
6519         kvm_x86_ops->get_gdt(vcpu, &dt);
6520         put_smstate(u32, buf, 0x7f74, dt.address);
6521         put_smstate(u32, buf, 0x7f70, dt.size);
6522
6523         kvm_x86_ops->get_idt(vcpu, &dt);
6524         put_smstate(u32, buf, 0x7f58, dt.address);
6525         put_smstate(u32, buf, 0x7f54, dt.size);
6526
6527         for (i = 0; i < 6; i++)
6528                 enter_smm_save_seg_32(vcpu, buf, i);
6529
6530         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6531
6532         /* revision id */
6533         put_smstate(u32, buf, 0x7efc, 0x00020000);
6534         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6535 }
6536
6537 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6538 {
6539 #ifdef CONFIG_X86_64
6540         struct desc_ptr dt;
6541         struct kvm_segment seg;
6542         unsigned long val;
6543         int i;
6544
6545         for (i = 0; i < 16; i++)
6546                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6547
6548         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6549         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6550
6551         kvm_get_dr(vcpu, 6, &val);
6552         put_smstate(u64, buf, 0x7f68, val);
6553         kvm_get_dr(vcpu, 7, &val);
6554         put_smstate(u64, buf, 0x7f60, val);
6555
6556         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6557         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6558         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6559
6560         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6561
6562         /* revision id */
6563         put_smstate(u32, buf, 0x7efc, 0x00020064);
6564
6565         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6566
6567         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6568         put_smstate(u16, buf, 0x7e90, seg.selector);
6569         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6570         put_smstate(u32, buf, 0x7e94, seg.limit);
6571         put_smstate(u64, buf, 0x7e98, seg.base);
6572
6573         kvm_x86_ops->get_idt(vcpu, &dt);
6574         put_smstate(u32, buf, 0x7e84, dt.size);
6575         put_smstate(u64, buf, 0x7e88, dt.address);
6576
6577         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6578         put_smstate(u16, buf, 0x7e70, seg.selector);
6579         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6580         put_smstate(u32, buf, 0x7e74, seg.limit);
6581         put_smstate(u64, buf, 0x7e78, seg.base);
6582
6583         kvm_x86_ops->get_gdt(vcpu, &dt);
6584         put_smstate(u32, buf, 0x7e64, dt.size);
6585         put_smstate(u64, buf, 0x7e68, dt.address);
6586
6587         for (i = 0; i < 6; i++)
6588                 enter_smm_save_seg_64(vcpu, buf, i);
6589 #else
6590         WARN_ON_ONCE(1);
6591 #endif
6592 }
6593
6594 static void enter_smm(struct kvm_vcpu *vcpu)
6595 {
6596         struct kvm_segment cs, ds;
6597         struct desc_ptr dt;
6598         char buf[512];
6599         u32 cr0;
6600
6601         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6602         vcpu->arch.hflags |= HF_SMM_MASK;
6603         memset(buf, 0, 512);
6604         if (guest_cpuid_has_longmode(vcpu))
6605                 enter_smm_save_state_64(vcpu, buf);
6606         else
6607                 enter_smm_save_state_32(vcpu, buf);
6608
6609         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6610
6611         if (kvm_x86_ops->get_nmi_mask(vcpu))
6612                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6613         else
6614                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6615
6616         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6617         kvm_rip_write(vcpu, 0x8000);
6618
6619         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6620         kvm_x86_ops->set_cr0(vcpu, cr0);
6621         vcpu->arch.cr0 = cr0;
6622
6623         kvm_x86_ops->set_cr4(vcpu, 0);
6624
6625         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6626         dt.address = dt.size = 0;
6627         kvm_x86_ops->set_idt(vcpu, &dt);
6628
6629         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6630
6631         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6632         cs.base = vcpu->arch.smbase;
6633
6634         ds.selector = 0;
6635         ds.base = 0;
6636
6637         cs.limit    = ds.limit = 0xffffffff;
6638         cs.type     = ds.type = 0x3;
6639         cs.dpl      = ds.dpl = 0;
6640         cs.db       = ds.db = 0;
6641         cs.s        = ds.s = 1;
6642         cs.l        = ds.l = 0;
6643         cs.g        = ds.g = 1;
6644         cs.avl      = ds.avl = 0;
6645         cs.present  = ds.present = 1;
6646         cs.unusable = ds.unusable = 0;
6647         cs.padding  = ds.padding = 0;
6648
6649         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6650         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6651         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6652         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6653         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6654         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6655
6656         if (guest_cpuid_has_longmode(vcpu))
6657                 kvm_x86_ops->set_efer(vcpu, 0);
6658
6659         kvm_update_cpuid(vcpu);
6660         kvm_mmu_reset_context(vcpu);
6661 }
6662
6663 static void process_smi(struct kvm_vcpu *vcpu)
6664 {
6665         vcpu->arch.smi_pending = true;
6666         kvm_make_request(KVM_REQ_EVENT, vcpu);
6667 }
6668
6669 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6670 {
6671         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6672 }
6673
6674 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6675 {
6676         u64 eoi_exit_bitmap[4];
6677
6678         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6679                 return;
6680
6681         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6682
6683         if (irqchip_split(vcpu->kvm))
6684                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6685         else {
6686                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6687                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6688                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6689         }
6690         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6691                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6692         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6693 }
6694
6695 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6696 {
6697         ++vcpu->stat.tlb_flush;
6698         kvm_x86_ops->tlb_flush(vcpu);
6699 }
6700
6701 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6702 {
6703         struct page *page = NULL;
6704
6705         if (!lapic_in_kernel(vcpu))
6706                 return;
6707
6708         if (!kvm_x86_ops->set_apic_access_page_addr)
6709                 return;
6710
6711         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6712         if (is_error_page(page))
6713                 return;
6714         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6715
6716         /*
6717          * Do not pin apic access page in memory, the MMU notifier
6718          * will call us again if it is migrated or swapped out.
6719          */
6720         put_page(page);
6721 }
6722 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6723
6724 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6725                                            unsigned long address)
6726 {
6727         /*
6728          * The physical address of apic access page is stored in the VMCS.
6729          * Update it when it becomes invalid.
6730          */
6731         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6732                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6733 }
6734
6735 /*
6736  * Returns 1 to let vcpu_run() continue the guest execution loop without
6737  * exiting to the userspace.  Otherwise, the value will be returned to the
6738  * userspace.
6739  */
6740 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6741 {
6742         int r;
6743         bool req_int_win =
6744                 dm_request_for_irq_injection(vcpu) &&
6745                 kvm_cpu_accept_dm_intr(vcpu);
6746
6747         bool req_immediate_exit = false;
6748
6749         if (kvm_request_pending(vcpu)) {
6750                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6751                         kvm_mmu_unload(vcpu);
6752                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6753                         __kvm_migrate_timers(vcpu);
6754                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6755                         kvm_gen_update_masterclock(vcpu->kvm);
6756                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6757                         kvm_gen_kvmclock_update(vcpu);
6758                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6759                         r = kvm_guest_time_update(vcpu);
6760                         if (unlikely(r))
6761                                 goto out;
6762                 }
6763                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6764                         kvm_mmu_sync_roots(vcpu);
6765                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6766                         kvm_vcpu_flush_tlb(vcpu);
6767                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6768                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6769                         r = 0;
6770                         goto out;
6771                 }
6772                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6773                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6774                         r = 0;
6775                         goto out;
6776                 }
6777                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6778                         /* Page is swapped out. Do synthetic halt */
6779                         vcpu->arch.apf.halted = true;
6780                         r = 1;
6781                         goto out;
6782                 }
6783                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6784                         record_steal_time(vcpu);
6785                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6786                         process_smi(vcpu);
6787                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6788                         process_nmi(vcpu);
6789                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6790                         kvm_pmu_handle_event(vcpu);
6791                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6792                         kvm_pmu_deliver_pmi(vcpu);
6793                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6794                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6795                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6796                                      vcpu->arch.ioapic_handled_vectors)) {
6797                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6798                                 vcpu->run->eoi.vector =
6799                                                 vcpu->arch.pending_ioapic_eoi;
6800                                 r = 0;
6801                                 goto out;
6802                         }
6803                 }
6804                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6805                         vcpu_scan_ioapic(vcpu);
6806                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6807                         kvm_vcpu_reload_apic_access_page(vcpu);
6808                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6809                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6810                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6811                         r = 0;
6812                         goto out;
6813                 }
6814                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6815                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6816                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6817                         r = 0;
6818                         goto out;
6819                 }
6820                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6821                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6822                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6823                         r = 0;
6824                         goto out;
6825                 }
6826
6827                 /*
6828                  * KVM_REQ_HV_STIMER has to be processed after
6829                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6830                  * depend on the guest clock being up-to-date
6831                  */
6832                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6833                         kvm_hv_process_stimers(vcpu);
6834         }
6835
6836         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6837                 ++vcpu->stat.req_event;
6838                 kvm_apic_accept_events(vcpu);
6839                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6840                         r = 1;
6841                         goto out;
6842                 }
6843
6844                 if (inject_pending_event(vcpu, req_int_win) != 0)
6845                         req_immediate_exit = true;
6846                 else {
6847                         /* Enable NMI/IRQ window open exits if needed.
6848                          *
6849                          * SMIs have two cases: 1) they can be nested, and
6850                          * then there is nothing to do here because RSM will
6851                          * cause a vmexit anyway; 2) or the SMI can be pending
6852                          * because inject_pending_event has completed the
6853                          * injection of an IRQ or NMI from the previous vmexit,
6854                          * and then we request an immediate exit to inject the SMI.
6855                          */
6856                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6857                                 req_immediate_exit = true;
6858                         if (vcpu->arch.nmi_pending)
6859                                 kvm_x86_ops->enable_nmi_window(vcpu);
6860                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6861                                 kvm_x86_ops->enable_irq_window(vcpu);
6862                 }
6863
6864                 if (kvm_lapic_enabled(vcpu)) {
6865                         update_cr8_intercept(vcpu);
6866                         kvm_lapic_sync_to_vapic(vcpu);
6867                 }
6868         }
6869
6870         r = kvm_mmu_reload(vcpu);
6871         if (unlikely(r)) {
6872                 goto cancel_injection;
6873         }
6874
6875         preempt_disable();
6876
6877         kvm_x86_ops->prepare_guest_switch(vcpu);
6878         kvm_load_guest_fpu(vcpu);
6879
6880         /*
6881          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6882          * IPI are then delayed after guest entry, which ensures that they
6883          * result in virtual interrupt delivery.
6884          */
6885         local_irq_disable();
6886         vcpu->mode = IN_GUEST_MODE;
6887
6888         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6889
6890         /*
6891          * 1) We should set ->mode before checking ->requests.  Please see
6892          * the comment in kvm_vcpu_exiting_guest_mode().
6893          *
6894          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6895          * pairs with the memory barrier implicit in pi_test_and_set_on
6896          * (see vmx_deliver_posted_interrupt).
6897          *
6898          * 3) This also orders the write to mode from any reads to the page
6899          * tables done while the VCPU is running.  Please see the comment
6900          * in kvm_flush_remote_tlbs.
6901          */
6902         smp_mb__after_srcu_read_unlock();
6903
6904         /*
6905          * This handles the case where a posted interrupt was
6906          * notified with kvm_vcpu_kick.
6907          */
6908         if (kvm_lapic_enabled(vcpu)) {
6909                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6910                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6911         }
6912
6913         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6914             || need_resched() || signal_pending(current)) {
6915                 vcpu->mode = OUTSIDE_GUEST_MODE;
6916                 smp_wmb();
6917                 local_irq_enable();
6918                 preempt_enable();
6919                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6920                 r = 1;
6921                 goto cancel_injection;
6922         }
6923
6924         kvm_load_guest_xcr0(vcpu);
6925
6926         if (req_immediate_exit) {
6927                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6928                 smp_send_reschedule(vcpu->cpu);
6929         }
6930
6931         trace_kvm_entry(vcpu->vcpu_id);
6932         wait_lapic_expire(vcpu);
6933         guest_enter_irqoff();
6934
6935         if (unlikely(vcpu->arch.switch_db_regs)) {
6936                 set_debugreg(0, 7);
6937                 set_debugreg(vcpu->arch.eff_db[0], 0);
6938                 set_debugreg(vcpu->arch.eff_db[1], 1);
6939                 set_debugreg(vcpu->arch.eff_db[2], 2);
6940                 set_debugreg(vcpu->arch.eff_db[3], 3);
6941                 set_debugreg(vcpu->arch.dr6, 6);
6942                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6943         }
6944
6945         kvm_x86_ops->run(vcpu);
6946
6947         /*
6948          * Do this here before restoring debug registers on the host.  And
6949          * since we do this before handling the vmexit, a DR access vmexit
6950          * can (a) read the correct value of the debug registers, (b) set
6951          * KVM_DEBUGREG_WONT_EXIT again.
6952          */
6953         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6954                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6955                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6956                 kvm_update_dr0123(vcpu);
6957                 kvm_update_dr6(vcpu);
6958                 kvm_update_dr7(vcpu);
6959                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6960         }
6961
6962         /*
6963          * If the guest has used debug registers, at least dr7
6964          * will be disabled while returning to the host.
6965          * If we don't have active breakpoints in the host, we don't
6966          * care about the messed up debug address registers. But if
6967          * we have some of them active, restore the old state.
6968          */
6969         if (hw_breakpoint_active())
6970                 hw_breakpoint_restore();
6971
6972         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6973
6974         vcpu->mode = OUTSIDE_GUEST_MODE;
6975         smp_wmb();
6976
6977         kvm_put_guest_xcr0(vcpu);
6978
6979         kvm_x86_ops->handle_external_intr(vcpu);
6980
6981         ++vcpu->stat.exits;
6982
6983         guest_exit_irqoff();
6984
6985         local_irq_enable();
6986         preempt_enable();
6987
6988         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6989
6990         /*
6991          * Profile KVM exit RIPs:
6992          */
6993         if (unlikely(prof_on == KVM_PROFILING)) {
6994                 unsigned long rip = kvm_rip_read(vcpu);
6995                 profile_hit(KVM_PROFILING, (void *)rip);
6996         }
6997
6998         if (unlikely(vcpu->arch.tsc_always_catchup))
6999                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7000
7001         if (vcpu->arch.apic_attention)
7002                 kvm_lapic_sync_from_vapic(vcpu);
7003
7004         r = kvm_x86_ops->handle_exit(vcpu);
7005         return r;
7006
7007 cancel_injection:
7008         kvm_x86_ops->cancel_injection(vcpu);
7009         if (unlikely(vcpu->arch.apic_attention))
7010                 kvm_lapic_sync_from_vapic(vcpu);
7011 out:
7012         return r;
7013 }
7014
7015 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7016 {
7017         if (!kvm_arch_vcpu_runnable(vcpu) &&
7018             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7019                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7020                 kvm_vcpu_block(vcpu);
7021                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7022
7023                 if (kvm_x86_ops->post_block)
7024                         kvm_x86_ops->post_block(vcpu);
7025
7026                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7027                         return 1;
7028         }
7029
7030         kvm_apic_accept_events(vcpu);
7031         switch(vcpu->arch.mp_state) {
7032         case KVM_MP_STATE_HALTED:
7033                 vcpu->arch.pv.pv_unhalted = false;
7034                 vcpu->arch.mp_state =
7035                         KVM_MP_STATE_RUNNABLE;
7036         case KVM_MP_STATE_RUNNABLE:
7037                 vcpu->arch.apf.halted = false;
7038                 break;
7039         case KVM_MP_STATE_INIT_RECEIVED:
7040                 break;
7041         default:
7042                 return -EINTR;
7043                 break;
7044         }
7045         return 1;
7046 }
7047
7048 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7049 {
7050         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7051                 kvm_x86_ops->check_nested_events(vcpu, false);
7052
7053         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7054                 !vcpu->arch.apf.halted);
7055 }
7056
7057 static int vcpu_run(struct kvm_vcpu *vcpu)
7058 {
7059         int r;
7060         struct kvm *kvm = vcpu->kvm;
7061
7062         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7063
7064         for (;;) {
7065                 if (kvm_vcpu_running(vcpu)) {
7066                         r = vcpu_enter_guest(vcpu);
7067                 } else {
7068                         r = vcpu_block(kvm, vcpu);
7069                 }
7070
7071                 if (r <= 0)
7072                         break;
7073
7074                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7075                 if (kvm_cpu_has_pending_timer(vcpu))
7076                         kvm_inject_pending_timer_irqs(vcpu);
7077
7078                 if (dm_request_for_irq_injection(vcpu) &&
7079                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7080                         r = 0;
7081                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7082                         ++vcpu->stat.request_irq_exits;
7083                         break;
7084                 }
7085
7086                 kvm_check_async_pf_completion(vcpu);
7087
7088                 if (signal_pending(current)) {
7089                         r = -EINTR;
7090                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7091                         ++vcpu->stat.signal_exits;
7092                         break;
7093                 }
7094                 if (need_resched()) {
7095                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7096                         cond_resched();
7097                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7098                 }
7099         }
7100
7101         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7102
7103         return r;
7104 }
7105
7106 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7107 {
7108         int r;
7109         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7110         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7111         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7112         if (r != EMULATE_DONE)
7113                 return 0;
7114         return 1;
7115 }
7116
7117 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7118 {
7119         BUG_ON(!vcpu->arch.pio.count);
7120
7121         return complete_emulated_io(vcpu);
7122 }
7123
7124 /*
7125  * Implements the following, as a state machine:
7126  *
7127  * read:
7128  *   for each fragment
7129  *     for each mmio piece in the fragment
7130  *       write gpa, len
7131  *       exit
7132  *       copy data
7133  *   execute insn
7134  *
7135  * write:
7136  *   for each fragment
7137  *     for each mmio piece in the fragment
7138  *       write gpa, len
7139  *       copy data
7140  *       exit
7141  */
7142 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7143 {
7144         struct kvm_run *run = vcpu->run;
7145         struct kvm_mmio_fragment *frag;
7146         unsigned len;
7147
7148         BUG_ON(!vcpu->mmio_needed);
7149
7150         /* Complete previous fragment */
7151         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7152         len = min(8u, frag->len);
7153         if (!vcpu->mmio_is_write)
7154                 memcpy(frag->data, run->mmio.data, len);
7155
7156         if (frag->len <= 8) {
7157                 /* Switch to the next fragment. */
7158                 frag++;
7159                 vcpu->mmio_cur_fragment++;
7160         } else {
7161                 /* Go forward to the next mmio piece. */
7162                 frag->data += len;
7163                 frag->gpa += len;
7164                 frag->len -= len;
7165         }
7166
7167         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7168                 vcpu->mmio_needed = 0;
7169
7170                 /* FIXME: return into emulator if single-stepping.  */
7171                 if (vcpu->mmio_is_write)
7172                         return 1;
7173                 vcpu->mmio_read_completed = 1;
7174                 return complete_emulated_io(vcpu);
7175         }
7176
7177         run->exit_reason = KVM_EXIT_MMIO;
7178         run->mmio.phys_addr = frag->gpa;
7179         if (vcpu->mmio_is_write)
7180                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7181         run->mmio.len = min(8u, frag->len);
7182         run->mmio.is_write = vcpu->mmio_is_write;
7183         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7184         return 0;
7185 }
7186
7187
7188 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7189 {
7190         struct fpu *fpu = &current->thread.fpu;
7191         int r;
7192         sigset_t sigsaved;
7193
7194         fpu__activate_curr(fpu);
7195
7196         if (vcpu->sigset_active)
7197                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7198
7199         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7200                 kvm_vcpu_block(vcpu);
7201                 kvm_apic_accept_events(vcpu);
7202                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7203                 r = -EAGAIN;
7204                 goto out;
7205         }
7206
7207         /* re-sync apic's tpr */
7208         if (!lapic_in_kernel(vcpu)) {
7209                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7210                         r = -EINVAL;
7211                         goto out;
7212                 }
7213         }
7214
7215         if (unlikely(vcpu->arch.complete_userspace_io)) {
7216                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7217                 vcpu->arch.complete_userspace_io = NULL;
7218                 r = cui(vcpu);
7219                 if (r <= 0)
7220                         goto out;
7221         } else
7222                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7223
7224         if (kvm_run->immediate_exit)
7225                 r = -EINTR;
7226         else
7227                 r = vcpu_run(vcpu);
7228
7229 out:
7230         post_kvm_run_save(vcpu);
7231         if (vcpu->sigset_active)
7232                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7233
7234         return r;
7235 }
7236
7237 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7238 {
7239         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7240                 /*
7241                  * We are here if userspace calls get_regs() in the middle of
7242                  * instruction emulation. Registers state needs to be copied
7243                  * back from emulation context to vcpu. Userspace shouldn't do
7244                  * that usually, but some bad designed PV devices (vmware
7245                  * backdoor interface) need this to work
7246                  */
7247                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7248                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7249         }
7250         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7251         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7252         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7253         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7254         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7255         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7256         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7257         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7258 #ifdef CONFIG_X86_64
7259         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7260         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7261         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7262         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7263         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7264         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7265         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7266         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7267 #endif
7268
7269         regs->rip = kvm_rip_read(vcpu);
7270         regs->rflags = kvm_get_rflags(vcpu);
7271
7272         return 0;
7273 }
7274
7275 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7276 {
7277         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7278         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7279
7280         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7281         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7282         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7283         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7284         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7285         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7286         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7287         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7288 #ifdef CONFIG_X86_64
7289         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7290         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7291         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7292         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7293         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7294         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7295         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7296         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7297 #endif
7298
7299         kvm_rip_write(vcpu, regs->rip);
7300         kvm_set_rflags(vcpu, regs->rflags);
7301
7302         vcpu->arch.exception.pending = false;
7303
7304         kvm_make_request(KVM_REQ_EVENT, vcpu);
7305
7306         return 0;
7307 }
7308
7309 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7310 {
7311         struct kvm_segment cs;
7312
7313         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7314         *db = cs.db;
7315         *l = cs.l;
7316 }
7317 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7318
7319 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7320                                   struct kvm_sregs *sregs)
7321 {
7322         struct desc_ptr dt;
7323
7324         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7325         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7326         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7327         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7328         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7329         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7330
7331         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7332         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7333
7334         kvm_x86_ops->get_idt(vcpu, &dt);
7335         sregs->idt.limit = dt.size;
7336         sregs->idt.base = dt.address;
7337         kvm_x86_ops->get_gdt(vcpu, &dt);
7338         sregs->gdt.limit = dt.size;
7339         sregs->gdt.base = dt.address;
7340
7341         sregs->cr0 = kvm_read_cr0(vcpu);
7342         sregs->cr2 = vcpu->arch.cr2;
7343         sregs->cr3 = kvm_read_cr3(vcpu);
7344         sregs->cr4 = kvm_read_cr4(vcpu);
7345         sregs->cr8 = kvm_get_cr8(vcpu);
7346         sregs->efer = vcpu->arch.efer;
7347         sregs->apic_base = kvm_get_apic_base(vcpu);
7348
7349         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7350
7351         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7352                 set_bit(vcpu->arch.interrupt.nr,
7353                         (unsigned long *)sregs->interrupt_bitmap);
7354
7355         return 0;
7356 }
7357
7358 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7359                                     struct kvm_mp_state *mp_state)
7360 {
7361         kvm_apic_accept_events(vcpu);
7362         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7363                                         vcpu->arch.pv.pv_unhalted)
7364                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7365         else
7366                 mp_state->mp_state = vcpu->arch.mp_state;
7367
7368         return 0;
7369 }
7370
7371 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7372                                     struct kvm_mp_state *mp_state)
7373 {
7374         if (!lapic_in_kernel(vcpu) &&
7375             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7376                 return -EINVAL;
7377
7378         /* INITs are latched while in SMM */
7379         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7380             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7381              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7382                 return -EINVAL;
7383
7384         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7385                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7386                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7387         } else
7388                 vcpu->arch.mp_state = mp_state->mp_state;
7389         kvm_make_request(KVM_REQ_EVENT, vcpu);
7390         return 0;
7391 }
7392
7393 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7394                     int reason, bool has_error_code, u32 error_code)
7395 {
7396         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7397         int ret;
7398
7399         init_emulate_ctxt(vcpu);
7400
7401         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7402                                    has_error_code, error_code);
7403
7404         if (ret)
7405                 return EMULATE_FAIL;
7406
7407         kvm_rip_write(vcpu, ctxt->eip);
7408         kvm_set_rflags(vcpu, ctxt->eflags);
7409         kvm_make_request(KVM_REQ_EVENT, vcpu);
7410         return EMULATE_DONE;
7411 }
7412 EXPORT_SYMBOL_GPL(kvm_task_switch);
7413
7414 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7415                                   struct kvm_sregs *sregs)
7416 {
7417         struct msr_data apic_base_msr;
7418         int mmu_reset_needed = 0;
7419         int pending_vec, max_bits, idx;
7420         struct desc_ptr dt;
7421
7422         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7423                 return -EINVAL;
7424
7425         dt.size = sregs->idt.limit;
7426         dt.address = sregs->idt.base;
7427         kvm_x86_ops->set_idt(vcpu, &dt);
7428         dt.size = sregs->gdt.limit;
7429         dt.address = sregs->gdt.base;
7430         kvm_x86_ops->set_gdt(vcpu, &dt);
7431
7432         vcpu->arch.cr2 = sregs->cr2;
7433         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7434         vcpu->arch.cr3 = sregs->cr3;
7435         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7436
7437         kvm_set_cr8(vcpu, sregs->cr8);
7438
7439         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7440         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7441         apic_base_msr.data = sregs->apic_base;
7442         apic_base_msr.host_initiated = true;
7443         kvm_set_apic_base(vcpu, &apic_base_msr);
7444
7445         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7446         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7447         vcpu->arch.cr0 = sregs->cr0;
7448
7449         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7450         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7451         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7452                 kvm_update_cpuid(vcpu);
7453
7454         idx = srcu_read_lock(&vcpu->kvm->srcu);
7455         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7456                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7457                 mmu_reset_needed = 1;
7458         }
7459         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7460
7461         if (mmu_reset_needed)
7462                 kvm_mmu_reset_context(vcpu);
7463
7464         max_bits = KVM_NR_INTERRUPTS;
7465         pending_vec = find_first_bit(
7466                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7467         if (pending_vec < max_bits) {
7468                 kvm_queue_interrupt(vcpu, pending_vec, false);
7469                 pr_debug("Set back pending irq %d\n", pending_vec);
7470         }
7471
7472         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7473         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7474         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7475         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7476         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7477         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7478
7479         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7480         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7481
7482         update_cr8_intercept(vcpu);
7483
7484         /* Older userspace won't unhalt the vcpu on reset. */
7485         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7486             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7487             !is_protmode(vcpu))
7488                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7489
7490         kvm_make_request(KVM_REQ_EVENT, vcpu);
7491
7492         return 0;
7493 }
7494
7495 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7496                                         struct kvm_guest_debug *dbg)
7497 {
7498         unsigned long rflags;
7499         int i, r;
7500
7501         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7502                 r = -EBUSY;
7503                 if (vcpu->arch.exception.pending)
7504                         goto out;
7505                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7506                         kvm_queue_exception(vcpu, DB_VECTOR);
7507                 else
7508                         kvm_queue_exception(vcpu, BP_VECTOR);
7509         }
7510
7511         /*
7512          * Read rflags as long as potentially injected trace flags are still
7513          * filtered out.
7514          */
7515         rflags = kvm_get_rflags(vcpu);
7516
7517         vcpu->guest_debug = dbg->control;
7518         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7519                 vcpu->guest_debug = 0;
7520
7521         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7522                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7523                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7524                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7525         } else {
7526                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7527                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7528         }
7529         kvm_update_dr7(vcpu);
7530
7531         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7532                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7533                         get_segment_base(vcpu, VCPU_SREG_CS);
7534
7535         /*
7536          * Trigger an rflags update that will inject or remove the trace
7537          * flags.
7538          */
7539         kvm_set_rflags(vcpu, rflags);
7540
7541         kvm_x86_ops->update_bp_intercept(vcpu);
7542
7543         r = 0;
7544
7545 out:
7546
7547         return r;
7548 }
7549
7550 /*
7551  * Translate a guest virtual address to a guest physical address.
7552  */
7553 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7554                                     struct kvm_translation *tr)
7555 {
7556         unsigned long vaddr = tr->linear_address;
7557         gpa_t gpa;
7558         int idx;
7559
7560         idx = srcu_read_lock(&vcpu->kvm->srcu);
7561         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7562         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7563         tr->physical_address = gpa;
7564         tr->valid = gpa != UNMAPPED_GVA;
7565         tr->writeable = 1;
7566         tr->usermode = 0;
7567
7568         return 0;
7569 }
7570
7571 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7572 {
7573         struct fxregs_state *fxsave =
7574                         &vcpu->arch.guest_fpu.state.fxsave;
7575
7576         memcpy(fpu->fpr, fxsave->st_space, 128);
7577         fpu->fcw = fxsave->cwd;
7578         fpu->fsw = fxsave->swd;
7579         fpu->ftwx = fxsave->twd;
7580         fpu->last_opcode = fxsave->fop;
7581         fpu->last_ip = fxsave->rip;
7582         fpu->last_dp = fxsave->rdp;
7583         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7584
7585         return 0;
7586 }
7587
7588 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7589 {
7590         struct fxregs_state *fxsave =
7591                         &vcpu->arch.guest_fpu.state.fxsave;
7592
7593         memcpy(fxsave->st_space, fpu->fpr, 128);
7594         fxsave->cwd = fpu->fcw;
7595         fxsave->swd = fpu->fsw;
7596         fxsave->twd = fpu->ftwx;
7597         fxsave->fop = fpu->last_opcode;
7598         fxsave->rip = fpu->last_ip;
7599         fxsave->rdp = fpu->last_dp;
7600         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7601
7602         return 0;
7603 }
7604
7605 static void fx_init(struct kvm_vcpu *vcpu)
7606 {
7607         fpstate_init(&vcpu->arch.guest_fpu.state);
7608         if (boot_cpu_has(X86_FEATURE_XSAVES))
7609                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7610                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7611
7612         /*
7613          * Ensure guest xcr0 is valid for loading
7614          */
7615         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7616
7617         vcpu->arch.cr0 |= X86_CR0_ET;
7618 }
7619
7620 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7621 {
7622         if (vcpu->guest_fpu_loaded)
7623                 return;
7624
7625         /*
7626          * Restore all possible states in the guest,
7627          * and assume host would use all available bits.
7628          * Guest xcr0 would be loaded later.
7629          */
7630         vcpu->guest_fpu_loaded = 1;
7631         __kernel_fpu_begin();
7632         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7633         trace_kvm_fpu(1);
7634 }
7635
7636 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7637 {
7638         if (!vcpu->guest_fpu_loaded)
7639                 return;
7640
7641         vcpu->guest_fpu_loaded = 0;
7642         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7643         __kernel_fpu_end();
7644         ++vcpu->stat.fpu_reload;
7645         trace_kvm_fpu(0);
7646 }
7647
7648 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7649 {
7650         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7651
7652         kvmclock_reset(vcpu);
7653
7654         kvm_x86_ops->vcpu_free(vcpu);
7655         free_cpumask_var(wbinvd_dirty_mask);
7656 }
7657
7658 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7659                                                 unsigned int id)
7660 {
7661         struct kvm_vcpu *vcpu;
7662
7663         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7664                 printk_once(KERN_WARNING
7665                 "kvm: SMP vm created on host with unstable TSC; "
7666                 "guest TSC will not be reliable\n");
7667
7668         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7669
7670         return vcpu;
7671 }
7672
7673 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7674 {
7675         int r;
7676
7677         kvm_vcpu_mtrr_init(vcpu);
7678         r = vcpu_load(vcpu);
7679         if (r)
7680                 return r;
7681         kvm_vcpu_reset(vcpu, false);
7682         kvm_mmu_setup(vcpu);
7683         vcpu_put(vcpu);
7684         return r;
7685 }
7686
7687 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7688 {
7689         struct msr_data msr;
7690         struct kvm *kvm = vcpu->kvm;
7691
7692         kvm_hv_vcpu_postcreate(vcpu);
7693
7694         if (vcpu_load(vcpu))
7695                 return;
7696         msr.data = 0x0;
7697         msr.index = MSR_IA32_TSC;
7698         msr.host_initiated = true;
7699         kvm_write_tsc(vcpu, &msr);
7700         vcpu_put(vcpu);
7701
7702         if (!kvmclock_periodic_sync)
7703                 return;
7704
7705         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7706                                         KVMCLOCK_SYNC_PERIOD);
7707 }
7708
7709 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7710 {
7711         int r;
7712         vcpu->arch.apf.msr_val = 0;
7713
7714         r = vcpu_load(vcpu);
7715         BUG_ON(r);
7716         kvm_mmu_unload(vcpu);
7717         vcpu_put(vcpu);
7718
7719         kvm_x86_ops->vcpu_free(vcpu);
7720 }
7721
7722 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7723 {
7724         vcpu->arch.hflags = 0;
7725
7726         vcpu->arch.smi_pending = 0;
7727         atomic_set(&vcpu->arch.nmi_queued, 0);
7728         vcpu->arch.nmi_pending = 0;
7729         vcpu->arch.nmi_injected = false;
7730         kvm_clear_interrupt_queue(vcpu);
7731         kvm_clear_exception_queue(vcpu);
7732
7733         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7734         kvm_update_dr0123(vcpu);
7735         vcpu->arch.dr6 = DR6_INIT;
7736         kvm_update_dr6(vcpu);
7737         vcpu->arch.dr7 = DR7_FIXED_1;
7738         kvm_update_dr7(vcpu);
7739
7740         vcpu->arch.cr2 = 0;
7741
7742         kvm_make_request(KVM_REQ_EVENT, vcpu);
7743         vcpu->arch.apf.msr_val = 0;
7744         vcpu->arch.st.msr_val = 0;
7745
7746         kvmclock_reset(vcpu);
7747
7748         kvm_clear_async_pf_completion_queue(vcpu);
7749         kvm_async_pf_hash_reset(vcpu);
7750         vcpu->arch.apf.halted = false;
7751
7752         if (!init_event) {
7753                 kvm_pmu_reset(vcpu);
7754                 vcpu->arch.smbase = 0x30000;
7755
7756                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7757                 vcpu->arch.msr_misc_features_enables = 0;
7758         }
7759
7760         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7761         vcpu->arch.regs_avail = ~0;
7762         vcpu->arch.regs_dirty = ~0;
7763
7764         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7765 }
7766
7767 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7768 {
7769         struct kvm_segment cs;
7770
7771         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7772         cs.selector = vector << 8;
7773         cs.base = vector << 12;
7774         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7775         kvm_rip_write(vcpu, 0);
7776 }
7777
7778 int kvm_arch_hardware_enable(void)
7779 {
7780         struct kvm *kvm;
7781         struct kvm_vcpu *vcpu;
7782         int i;
7783         int ret;
7784         u64 local_tsc;
7785         u64 max_tsc = 0;
7786         bool stable, backwards_tsc = false;
7787
7788         kvm_shared_msr_cpu_online();
7789         ret = kvm_x86_ops->hardware_enable();
7790         if (ret != 0)
7791                 return ret;
7792
7793         local_tsc = rdtsc();
7794         stable = !check_tsc_unstable();
7795         list_for_each_entry(kvm, &vm_list, vm_list) {
7796                 kvm_for_each_vcpu(i, vcpu, kvm) {
7797                         if (!stable && vcpu->cpu == smp_processor_id())
7798                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7799                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7800                                 backwards_tsc = true;
7801                                 if (vcpu->arch.last_host_tsc > max_tsc)
7802                                         max_tsc = vcpu->arch.last_host_tsc;
7803                         }
7804                 }
7805         }
7806
7807         /*
7808          * Sometimes, even reliable TSCs go backwards.  This happens on
7809          * platforms that reset TSC during suspend or hibernate actions, but
7810          * maintain synchronization.  We must compensate.  Fortunately, we can
7811          * detect that condition here, which happens early in CPU bringup,
7812          * before any KVM threads can be running.  Unfortunately, we can't
7813          * bring the TSCs fully up to date with real time, as we aren't yet far
7814          * enough into CPU bringup that we know how much real time has actually
7815          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7816          * variables that haven't been updated yet.
7817          *
7818          * So we simply find the maximum observed TSC above, then record the
7819          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7820          * the adjustment will be applied.  Note that we accumulate
7821          * adjustments, in case multiple suspend cycles happen before some VCPU
7822          * gets a chance to run again.  In the event that no KVM threads get a
7823          * chance to run, we will miss the entire elapsed period, as we'll have
7824          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7825          * loose cycle time.  This isn't too big a deal, since the loss will be
7826          * uniform across all VCPUs (not to mention the scenario is extremely
7827          * unlikely). It is possible that a second hibernate recovery happens
7828          * much faster than a first, causing the observed TSC here to be
7829          * smaller; this would require additional padding adjustment, which is
7830          * why we set last_host_tsc to the local tsc observed here.
7831          *
7832          * N.B. - this code below runs only on platforms with reliable TSC,
7833          * as that is the only way backwards_tsc is set above.  Also note
7834          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7835          * have the same delta_cyc adjustment applied if backwards_tsc
7836          * is detected.  Note further, this adjustment is only done once,
7837          * as we reset last_host_tsc on all VCPUs to stop this from being
7838          * called multiple times (one for each physical CPU bringup).
7839          *
7840          * Platforms with unreliable TSCs don't have to deal with this, they
7841          * will be compensated by the logic in vcpu_load, which sets the TSC to
7842          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7843          * guarantee that they stay in perfect synchronization.
7844          */
7845         if (backwards_tsc) {
7846                 u64 delta_cyc = max_tsc - local_tsc;
7847                 list_for_each_entry(kvm, &vm_list, vm_list) {
7848                         kvm->arch.backwards_tsc_observed = true;
7849                         kvm_for_each_vcpu(i, vcpu, kvm) {
7850                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7851                                 vcpu->arch.last_host_tsc = local_tsc;
7852                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7853                         }
7854
7855                         /*
7856                          * We have to disable TSC offset matching.. if you were
7857                          * booting a VM while issuing an S4 host suspend....
7858                          * you may have some problem.  Solving this issue is
7859                          * left as an exercise to the reader.
7860                          */
7861                         kvm->arch.last_tsc_nsec = 0;
7862                         kvm->arch.last_tsc_write = 0;
7863                 }
7864
7865         }
7866         return 0;
7867 }
7868
7869 void kvm_arch_hardware_disable(void)
7870 {
7871         kvm_x86_ops->hardware_disable();
7872         drop_user_return_notifiers();
7873 }
7874
7875 int kvm_arch_hardware_setup(void)
7876 {
7877         int r;
7878
7879         r = kvm_x86_ops->hardware_setup();
7880         if (r != 0)
7881                 return r;
7882
7883         if (kvm_has_tsc_control) {
7884                 /*
7885                  * Make sure the user can only configure tsc_khz values that
7886                  * fit into a signed integer.
7887                  * A min value is not calculated needed because it will always
7888                  * be 1 on all machines.
7889                  */
7890                 u64 max = min(0x7fffffffULL,
7891                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7892                 kvm_max_guest_tsc_khz = max;
7893
7894                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7895         }
7896
7897         kvm_init_msr_list();
7898         return 0;
7899 }
7900
7901 void kvm_arch_hardware_unsetup(void)
7902 {
7903         kvm_x86_ops->hardware_unsetup();
7904 }
7905
7906 void kvm_arch_check_processor_compat(void *rtn)
7907 {
7908         kvm_x86_ops->check_processor_compatibility(rtn);
7909 }
7910
7911 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7912 {
7913         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7914 }
7915 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7916
7917 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7918 {
7919         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7920 }
7921
7922 struct static_key kvm_no_apic_vcpu __read_mostly;
7923 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7924
7925 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7926 {
7927         struct page *page;
7928         struct kvm *kvm;
7929         int r;
7930
7931         BUG_ON(vcpu->kvm == NULL);
7932         kvm = vcpu->kvm;
7933
7934         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7935         vcpu->arch.pv.pv_unhalted = false;
7936         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7937         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7938                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7939         else
7940                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7941
7942         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7943         if (!page) {
7944                 r = -ENOMEM;
7945                 goto fail;
7946         }
7947         vcpu->arch.pio_data = page_address(page);
7948
7949         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7950
7951         r = kvm_mmu_create(vcpu);
7952         if (r < 0)
7953                 goto fail_free_pio_data;
7954
7955         if (irqchip_in_kernel(kvm)) {
7956                 r = kvm_create_lapic(vcpu);
7957                 if (r < 0)
7958                         goto fail_mmu_destroy;
7959         } else
7960                 static_key_slow_inc(&kvm_no_apic_vcpu);
7961
7962         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7963                                        GFP_KERNEL);
7964         if (!vcpu->arch.mce_banks) {
7965                 r = -ENOMEM;
7966                 goto fail_free_lapic;
7967         }
7968         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7969
7970         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7971                 r = -ENOMEM;
7972                 goto fail_free_mce_banks;
7973         }
7974
7975         fx_init(vcpu);
7976
7977         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7978         vcpu->arch.pv_time_enabled = false;
7979
7980         vcpu->arch.guest_supported_xcr0 = 0;
7981         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7982
7983         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7984
7985         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7986
7987         kvm_async_pf_hash_reset(vcpu);
7988         kvm_pmu_init(vcpu);
7989
7990         vcpu->arch.pending_external_vector = -1;
7991
7992         kvm_hv_vcpu_init(vcpu);
7993
7994         return 0;
7995
7996 fail_free_mce_banks:
7997         kfree(vcpu->arch.mce_banks);
7998 fail_free_lapic:
7999         kvm_free_lapic(vcpu);
8000 fail_mmu_destroy:
8001         kvm_mmu_destroy(vcpu);
8002 fail_free_pio_data:
8003         free_page((unsigned long)vcpu->arch.pio_data);
8004 fail:
8005         return r;
8006 }
8007
8008 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8009 {
8010         int idx;
8011
8012         kvm_hv_vcpu_uninit(vcpu);
8013         kvm_pmu_destroy(vcpu);
8014         kfree(vcpu->arch.mce_banks);
8015         kvm_free_lapic(vcpu);
8016         idx = srcu_read_lock(&vcpu->kvm->srcu);
8017         kvm_mmu_destroy(vcpu);
8018         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8019         free_page((unsigned long)vcpu->arch.pio_data);
8020         if (!lapic_in_kernel(vcpu))
8021                 static_key_slow_dec(&kvm_no_apic_vcpu);
8022 }
8023
8024 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8025 {
8026         kvm_x86_ops->sched_in(vcpu, cpu);
8027 }
8028
8029 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8030 {
8031         if (type)
8032                 return -EINVAL;
8033
8034         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8035         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8036         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8037         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8038         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8039
8040         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8041         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8042         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8043         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8044                 &kvm->arch.irq_sources_bitmap);
8045
8046         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8047         mutex_init(&kvm->arch.apic_map_lock);
8048         mutex_init(&kvm->arch.hyperv.hv_lock);
8049         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8050
8051         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8052         pvclock_update_vm_gtod_copy(kvm);
8053
8054         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8055         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8056
8057         kvm_page_track_init(kvm);
8058         kvm_mmu_init_vm(kvm);
8059
8060         if (kvm_x86_ops->vm_init)
8061                 return kvm_x86_ops->vm_init(kvm);
8062
8063         return 0;
8064 }
8065
8066 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8067 {
8068         int r;
8069         r = vcpu_load(vcpu);
8070         BUG_ON(r);
8071         kvm_mmu_unload(vcpu);
8072         vcpu_put(vcpu);
8073 }
8074
8075 static void kvm_free_vcpus(struct kvm *kvm)
8076 {
8077         unsigned int i;
8078         struct kvm_vcpu *vcpu;
8079
8080         /*
8081          * Unpin any mmu pages first.
8082          */
8083         kvm_for_each_vcpu(i, vcpu, kvm) {
8084                 kvm_clear_async_pf_completion_queue(vcpu);
8085                 kvm_unload_vcpu_mmu(vcpu);
8086         }
8087         kvm_for_each_vcpu(i, vcpu, kvm)
8088                 kvm_arch_vcpu_free(vcpu);
8089
8090         mutex_lock(&kvm->lock);
8091         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8092                 kvm->vcpus[i] = NULL;
8093
8094         atomic_set(&kvm->online_vcpus, 0);
8095         mutex_unlock(&kvm->lock);
8096 }
8097
8098 void kvm_arch_sync_events(struct kvm *kvm)
8099 {
8100         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8101         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8102         kvm_free_pit(kvm);
8103 }
8104
8105 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8106 {
8107         int i, r;
8108         unsigned long hva;
8109         struct kvm_memslots *slots = kvm_memslots(kvm);
8110         struct kvm_memory_slot *slot, old;
8111
8112         /* Called with kvm->slots_lock held.  */
8113         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8114                 return -EINVAL;
8115
8116         slot = id_to_memslot(slots, id);
8117         if (size) {
8118                 if (slot->npages)
8119                         return -EEXIST;
8120
8121                 /*
8122                  * MAP_SHARED to prevent internal slot pages from being moved
8123                  * by fork()/COW.
8124                  */
8125                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8126                               MAP_SHARED | MAP_ANONYMOUS, 0);
8127                 if (IS_ERR((void *)hva))
8128                         return PTR_ERR((void *)hva);
8129         } else {
8130                 if (!slot->npages)
8131                         return 0;
8132
8133                 hva = 0;
8134         }
8135
8136         old = *slot;
8137         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8138                 struct kvm_userspace_memory_region m;
8139
8140                 m.slot = id | (i << 16);
8141                 m.flags = 0;
8142                 m.guest_phys_addr = gpa;
8143                 m.userspace_addr = hva;
8144                 m.memory_size = size;
8145                 r = __kvm_set_memory_region(kvm, &m);
8146                 if (r < 0)
8147                         return r;
8148         }
8149
8150         if (!size) {
8151                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8152                 WARN_ON(r < 0);
8153         }
8154
8155         return 0;
8156 }
8157 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8158
8159 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8160 {
8161         int r;
8162
8163         mutex_lock(&kvm->slots_lock);
8164         r = __x86_set_memory_region(kvm, id, gpa, size);
8165         mutex_unlock(&kvm->slots_lock);
8166
8167         return r;
8168 }
8169 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8170
8171 void kvm_arch_destroy_vm(struct kvm *kvm)
8172 {
8173         if (current->mm == kvm->mm) {
8174                 /*
8175                  * Free memory regions allocated on behalf of userspace,
8176                  * unless the the memory map has changed due to process exit
8177                  * or fd copying.
8178                  */
8179                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8180                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8181                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8182         }
8183         if (kvm_x86_ops->vm_destroy)
8184                 kvm_x86_ops->vm_destroy(kvm);
8185         kvm_pic_destroy(kvm);
8186         kvm_ioapic_destroy(kvm);
8187         kvm_free_vcpus(kvm);
8188         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8189         kvm_mmu_uninit_vm(kvm);
8190         kvm_page_track_cleanup(kvm);
8191 }
8192
8193 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8194                            struct kvm_memory_slot *dont)
8195 {
8196         int i;
8197
8198         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8199                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8200                         kvfree(free->arch.rmap[i]);
8201                         free->arch.rmap[i] = NULL;
8202                 }
8203                 if (i == 0)
8204                         continue;
8205
8206                 if (!dont || free->arch.lpage_info[i - 1] !=
8207                              dont->arch.lpage_info[i - 1]) {
8208                         kvfree(free->arch.lpage_info[i - 1]);
8209                         free->arch.lpage_info[i - 1] = NULL;
8210                 }
8211         }
8212
8213         kvm_page_track_free_memslot(free, dont);
8214 }
8215
8216 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8217                             unsigned long npages)
8218 {
8219         int i;
8220
8221         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8222                 struct kvm_lpage_info *linfo;
8223                 unsigned long ugfn;
8224                 int lpages;
8225                 int level = i + 1;
8226
8227                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8228                                       slot->base_gfn, level) + 1;
8229
8230                 slot->arch.rmap[i] =
8231                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8232                 if (!slot->arch.rmap[i])
8233                         goto out_free;
8234                 if (i == 0)
8235                         continue;
8236
8237                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8238                 if (!linfo)
8239                         goto out_free;
8240
8241                 slot->arch.lpage_info[i - 1] = linfo;
8242
8243                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8244                         linfo[0].disallow_lpage = 1;
8245                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8246                         linfo[lpages - 1].disallow_lpage = 1;
8247                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8248                 /*
8249                  * If the gfn and userspace address are not aligned wrt each
8250                  * other, or if explicitly asked to, disable large page
8251                  * support for this slot
8252                  */
8253                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8254                     !kvm_largepages_enabled()) {
8255                         unsigned long j;
8256
8257                         for (j = 0; j < lpages; ++j)
8258                                 linfo[j].disallow_lpage = 1;
8259                 }
8260         }
8261
8262         if (kvm_page_track_create_memslot(slot, npages))
8263                 goto out_free;
8264
8265         return 0;
8266
8267 out_free:
8268         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8269                 kvfree(slot->arch.rmap[i]);
8270                 slot->arch.rmap[i] = NULL;
8271                 if (i == 0)
8272                         continue;
8273
8274                 kvfree(slot->arch.lpage_info[i - 1]);
8275                 slot->arch.lpage_info[i - 1] = NULL;
8276         }
8277         return -ENOMEM;
8278 }
8279
8280 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8281 {
8282         /*
8283          * memslots->generation has been incremented.
8284          * mmio generation may have reached its maximum value.
8285          */
8286         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8287 }
8288
8289 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8290                                 struct kvm_memory_slot *memslot,
8291                                 const struct kvm_userspace_memory_region *mem,
8292                                 enum kvm_mr_change change)
8293 {
8294         return 0;
8295 }
8296
8297 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8298                                      struct kvm_memory_slot *new)
8299 {
8300         /* Still write protect RO slot */
8301         if (new->flags & KVM_MEM_READONLY) {
8302                 kvm_mmu_slot_remove_write_access(kvm, new);
8303                 return;
8304         }
8305
8306         /*
8307          * Call kvm_x86_ops dirty logging hooks when they are valid.
8308          *
8309          * kvm_x86_ops->slot_disable_log_dirty is called when:
8310          *
8311          *  - KVM_MR_CREATE with dirty logging is disabled
8312          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8313          *
8314          * The reason is, in case of PML, we need to set D-bit for any slots
8315          * with dirty logging disabled in order to eliminate unnecessary GPA
8316          * logging in PML buffer (and potential PML buffer full VMEXT). This
8317          * guarantees leaving PML enabled during guest's lifetime won't have
8318          * any additonal overhead from PML when guest is running with dirty
8319          * logging disabled for memory slots.
8320          *
8321          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8322          * to dirty logging mode.
8323          *
8324          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8325          *
8326          * In case of write protect:
8327          *
8328          * Write protect all pages for dirty logging.
8329          *
8330          * All the sptes including the large sptes which point to this
8331          * slot are set to readonly. We can not create any new large
8332          * spte on this slot until the end of the logging.
8333          *
8334          * See the comments in fast_page_fault().
8335          */
8336         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8337                 if (kvm_x86_ops->slot_enable_log_dirty)
8338                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8339                 else
8340                         kvm_mmu_slot_remove_write_access(kvm, new);
8341         } else {
8342                 if (kvm_x86_ops->slot_disable_log_dirty)
8343                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8344         }
8345 }
8346
8347 void kvm_arch_commit_memory_region(struct kvm *kvm,
8348                                 const struct kvm_userspace_memory_region *mem,
8349                                 const struct kvm_memory_slot *old,
8350                                 const struct kvm_memory_slot *new,
8351                                 enum kvm_mr_change change)
8352 {
8353         int nr_mmu_pages = 0;
8354
8355         if (!kvm->arch.n_requested_mmu_pages)
8356                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8357
8358         if (nr_mmu_pages)
8359                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8360
8361         /*
8362          * Dirty logging tracks sptes in 4k granularity, meaning that large
8363          * sptes have to be split.  If live migration is successful, the guest
8364          * in the source machine will be destroyed and large sptes will be
8365          * created in the destination. However, if the guest continues to run
8366          * in the source machine (for example if live migration fails), small
8367          * sptes will remain around and cause bad performance.
8368          *
8369          * Scan sptes if dirty logging has been stopped, dropping those
8370          * which can be collapsed into a single large-page spte.  Later
8371          * page faults will create the large-page sptes.
8372          */
8373         if ((change != KVM_MR_DELETE) &&
8374                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8375                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8376                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8377
8378         /*
8379          * Set up write protection and/or dirty logging for the new slot.
8380          *
8381          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8382          * been zapped so no dirty logging staff is needed for old slot. For
8383          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8384          * new and it's also covered when dealing with the new slot.
8385          *
8386          * FIXME: const-ify all uses of struct kvm_memory_slot.
8387          */
8388         if (change != KVM_MR_DELETE)
8389                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8390 }
8391
8392 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8393 {
8394         kvm_mmu_invalidate_zap_all_pages(kvm);
8395 }
8396
8397 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8398                                    struct kvm_memory_slot *slot)
8399 {
8400         kvm_page_track_flush_slot(kvm, slot);
8401 }
8402
8403 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8404 {
8405         if (!list_empty_careful(&vcpu->async_pf.done))
8406                 return true;
8407
8408         if (kvm_apic_has_events(vcpu))
8409                 return true;
8410
8411         if (vcpu->arch.pv.pv_unhalted)
8412                 return true;
8413
8414         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8415             (vcpu->arch.nmi_pending &&
8416              kvm_x86_ops->nmi_allowed(vcpu)))
8417                 return true;
8418
8419         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8420             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8421                 return true;
8422
8423         if (kvm_arch_interrupt_allowed(vcpu) &&
8424             kvm_cpu_has_interrupt(vcpu))
8425                 return true;
8426
8427         if (kvm_hv_has_stimer_pending(vcpu))
8428                 return true;
8429
8430         return false;
8431 }
8432
8433 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8434 {
8435         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8436 }
8437
8438 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8439 {
8440         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8441 }
8442
8443 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8444 {
8445         return kvm_x86_ops->interrupt_allowed(vcpu);
8446 }
8447
8448 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8449 {
8450         if (is_64_bit_mode(vcpu))
8451                 return kvm_rip_read(vcpu);
8452         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8453                      kvm_rip_read(vcpu));
8454 }
8455 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8456
8457 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8458 {
8459         return kvm_get_linear_rip(vcpu) == linear_rip;
8460 }
8461 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8462
8463 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8464 {
8465         unsigned long rflags;
8466
8467         rflags = kvm_x86_ops->get_rflags(vcpu);
8468         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8469                 rflags &= ~X86_EFLAGS_TF;
8470         return rflags;
8471 }
8472 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8473
8474 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8475 {
8476         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8477             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8478                 rflags |= X86_EFLAGS_TF;
8479         kvm_x86_ops->set_rflags(vcpu, rflags);
8480 }
8481
8482 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8483 {
8484         __kvm_set_rflags(vcpu, rflags);
8485         kvm_make_request(KVM_REQ_EVENT, vcpu);
8486 }
8487 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8488
8489 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8490 {
8491         int r;
8492
8493         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8494               work->wakeup_all)
8495                 return;
8496
8497         r = kvm_mmu_reload(vcpu);
8498         if (unlikely(r))
8499                 return;
8500
8501         if (!vcpu->arch.mmu.direct_map &&
8502               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8503                 return;
8504
8505         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8506 }
8507
8508 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8509 {
8510         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8511 }
8512
8513 static inline u32 kvm_async_pf_next_probe(u32 key)
8514 {
8515         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8516 }
8517
8518 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8519 {
8520         u32 key = kvm_async_pf_hash_fn(gfn);
8521
8522         while (vcpu->arch.apf.gfns[key] != ~0)
8523                 key = kvm_async_pf_next_probe(key);
8524
8525         vcpu->arch.apf.gfns[key] = gfn;
8526 }
8527
8528 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8529 {
8530         int i;
8531         u32 key = kvm_async_pf_hash_fn(gfn);
8532
8533         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8534                      (vcpu->arch.apf.gfns[key] != gfn &&
8535                       vcpu->arch.apf.gfns[key] != ~0); i++)
8536                 key = kvm_async_pf_next_probe(key);
8537
8538         return key;
8539 }
8540
8541 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8542 {
8543         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8544 }
8545
8546 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8547 {
8548         u32 i, j, k;
8549
8550         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8551         while (true) {
8552                 vcpu->arch.apf.gfns[i] = ~0;
8553                 do {
8554                         j = kvm_async_pf_next_probe(j);
8555                         if (vcpu->arch.apf.gfns[j] == ~0)
8556                                 return;
8557                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8558                         /*
8559                          * k lies cyclically in ]i,j]
8560                          * |    i.k.j |
8561                          * |....j i.k.| or  |.k..j i...|
8562                          */
8563                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8564                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8565                 i = j;
8566         }
8567 }
8568
8569 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8570 {
8571
8572         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8573                                       sizeof(val));
8574 }
8575
8576 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8577                                      struct kvm_async_pf *work)
8578 {
8579         struct x86_exception fault;
8580
8581         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8582         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8583
8584         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8585             (vcpu->arch.apf.send_user_only &&
8586              kvm_x86_ops->get_cpl(vcpu) == 0))
8587                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8588         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8589                 fault.vector = PF_VECTOR;
8590                 fault.error_code_valid = true;
8591                 fault.error_code = 0;
8592                 fault.nested_page_fault = false;
8593                 fault.address = work->arch.token;
8594                 fault.async_page_fault = true;
8595                 kvm_inject_page_fault(vcpu, &fault);
8596         }
8597 }
8598
8599 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8600                                  struct kvm_async_pf *work)
8601 {
8602         struct x86_exception fault;
8603
8604         if (work->wakeup_all)
8605                 work->arch.token = ~0; /* broadcast wakeup */
8606         else
8607                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8608         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8609
8610         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8611             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8612                 fault.vector = PF_VECTOR;
8613                 fault.error_code_valid = true;
8614                 fault.error_code = 0;
8615                 fault.nested_page_fault = false;
8616                 fault.address = work->arch.token;
8617                 fault.async_page_fault = true;
8618                 kvm_inject_page_fault(vcpu, &fault);
8619         }
8620         vcpu->arch.apf.halted = false;
8621         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8622 }
8623
8624 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8625 {
8626         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8627                 return true;
8628         else
8629                 return kvm_can_do_async_pf(vcpu);
8630 }
8631
8632 void kvm_arch_start_assignment(struct kvm *kvm)
8633 {
8634         atomic_inc(&kvm->arch.assigned_device_count);
8635 }
8636 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8637
8638 void kvm_arch_end_assignment(struct kvm *kvm)
8639 {
8640         atomic_dec(&kvm->arch.assigned_device_count);
8641 }
8642 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8643
8644 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8645 {
8646         return atomic_read(&kvm->arch.assigned_device_count);
8647 }
8648 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8649
8650 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8651 {
8652         atomic_inc(&kvm->arch.noncoherent_dma_count);
8653 }
8654 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8655
8656 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8657 {
8658         atomic_dec(&kvm->arch.noncoherent_dma_count);
8659 }
8660 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8661
8662 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8663 {
8664         return atomic_read(&kvm->arch.noncoherent_dma_count);
8665 }
8666 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8667
8668 bool kvm_arch_has_irq_bypass(void)
8669 {
8670         return kvm_x86_ops->update_pi_irte != NULL;
8671 }
8672
8673 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8674                                       struct irq_bypass_producer *prod)
8675 {
8676         struct kvm_kernel_irqfd *irqfd =
8677                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8678
8679         irqfd->producer = prod;
8680
8681         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8682                                            prod->irq, irqfd->gsi, 1);
8683 }
8684
8685 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8686                                       struct irq_bypass_producer *prod)
8687 {
8688         int ret;
8689         struct kvm_kernel_irqfd *irqfd =
8690                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8691
8692         WARN_ON(irqfd->producer != prod);
8693         irqfd->producer = NULL;
8694
8695         /*
8696          * When producer of consumer is unregistered, we change back to
8697          * remapped mode, so we can re-use the current implementation
8698          * when the irq is masked/disabled or the consumer side (KVM
8699          * int this case doesn't want to receive the interrupts.
8700         */
8701         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8702         if (ret)
8703                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8704                        " fails: %d\n", irqfd->consumer.token, ret);
8705 }
8706
8707 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8708                                    uint32_t guest_irq, bool set)
8709 {
8710         if (!kvm_x86_ops->update_pi_irte)
8711                 return -EINVAL;
8712
8713         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8714 }
8715
8716 bool kvm_vector_hashing_enabled(void)
8717 {
8718         return vector_hashing;
8719 }
8720 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8721
8722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);