KVM: x86: Prevent host from panicking on shared MSR writes.
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100
101 bool kvm_has_tsc_control;
102 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
103 u32  kvm_max_guest_tsc_khz;
104 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
105
106 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
107 static u32 tsc_tolerance_ppm = 250;
108 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
109
110 static bool backwards_tsc_observed = false;
111
112 #define KVM_NR_SHARED_MSRS 16
113
114 struct kvm_shared_msrs_global {
115         int nr;
116         u32 msrs[KVM_NR_SHARED_MSRS];
117 };
118
119 struct kvm_shared_msrs {
120         struct user_return_notifier urn;
121         bool registered;
122         struct kvm_shared_msr_values {
123                 u64 host;
124                 u64 curr;
125         } values[KVM_NR_SHARED_MSRS];
126 };
127
128 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
129 static struct kvm_shared_msrs __percpu *shared_msrs;
130
131 struct kvm_stats_debugfs_item debugfs_entries[] = {
132         { "pf_fixed", VCPU_STAT(pf_fixed) },
133         { "pf_guest", VCPU_STAT(pf_guest) },
134         { "tlb_flush", VCPU_STAT(tlb_flush) },
135         { "invlpg", VCPU_STAT(invlpg) },
136         { "exits", VCPU_STAT(exits) },
137         { "io_exits", VCPU_STAT(io_exits) },
138         { "mmio_exits", VCPU_STAT(mmio_exits) },
139         { "signal_exits", VCPU_STAT(signal_exits) },
140         { "irq_window", VCPU_STAT(irq_window_exits) },
141         { "nmi_window", VCPU_STAT(nmi_window_exits) },
142         { "halt_exits", VCPU_STAT(halt_exits) },
143         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
144         { "hypercalls", VCPU_STAT(hypercalls) },
145         { "request_irq", VCPU_STAT(request_irq_exits) },
146         { "irq_exits", VCPU_STAT(irq_exits) },
147         { "host_state_reload", VCPU_STAT(host_state_reload) },
148         { "efer_reload", VCPU_STAT(efer_reload) },
149         { "fpu_reload", VCPU_STAT(fpu_reload) },
150         { "insn_emulation", VCPU_STAT(insn_emulation) },
151         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
152         { "irq_injections", VCPU_STAT(irq_injections) },
153         { "nmi_injections", VCPU_STAT(nmi_injections) },
154         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
155         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
156         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
157         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
158         { "mmu_flooded", VM_STAT(mmu_flooded) },
159         { "mmu_recycled", VM_STAT(mmu_recycled) },
160         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
161         { "mmu_unsync", VM_STAT(mmu_unsync) },
162         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
163         { "largepages", VM_STAT(lpages) },
164         { NULL }
165 };
166
167 u64 __read_mostly host_xcr0;
168
169 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
170
171 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
172 {
173         int i;
174         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
175                 vcpu->arch.apf.gfns[i] = ~0;
176 }
177
178 static void kvm_on_user_return(struct user_return_notifier *urn)
179 {
180         unsigned slot;
181         struct kvm_shared_msrs *locals
182                 = container_of(urn, struct kvm_shared_msrs, urn);
183         struct kvm_shared_msr_values *values;
184
185         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
186                 values = &locals->values[slot];
187                 if (values->host != values->curr) {
188                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
189                         values->curr = values->host;
190                 }
191         }
192         locals->registered = false;
193         user_return_notifier_unregister(urn);
194 }
195
196 static void shared_msr_update(unsigned slot, u32 msr)
197 {
198         u64 value;
199         unsigned int cpu = smp_processor_id();
200         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
201
202         /* only read, and nobody should modify it at this time,
203          * so don't need lock */
204         if (slot >= shared_msrs_global.nr) {
205                 printk(KERN_ERR "kvm: invalid MSR slot!");
206                 return;
207         }
208         rdmsrl_safe(msr, &value);
209         smsr->values[slot].host = value;
210         smsr->values[slot].curr = value;
211 }
212
213 void kvm_define_shared_msr(unsigned slot, u32 msr)
214 {
215         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
216         if (slot >= shared_msrs_global.nr)
217                 shared_msrs_global.nr = slot + 1;
218         shared_msrs_global.msrs[slot] = msr;
219         /* we need ensured the shared_msr_global have been updated */
220         smp_wmb();
221 }
222 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
223
224 static void kvm_shared_msr_cpu_online(void)
225 {
226         unsigned i;
227
228         for (i = 0; i < shared_msrs_global.nr; ++i)
229                 shared_msr_update(i, shared_msrs_global.msrs[i]);
230 }
231
232 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
233 {
234         unsigned int cpu = smp_processor_id();
235         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
236         int err;
237
238         if (((value ^ smsr->values[slot].curr) & mask) == 0)
239                 return 0;
240         smsr->values[slot].curr = value;
241         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
242         if (err)
243                 return 1;
244
245         if (!smsr->registered) {
246                 smsr->urn.on_user_return = kvm_on_user_return;
247                 user_return_notifier_register(&smsr->urn);
248                 smsr->registered = true;
249         }
250         return 0;
251 }
252 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
253
254 static void drop_user_return_notifiers(void)
255 {
256         unsigned int cpu = smp_processor_id();
257         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
258
259         if (smsr->registered)
260                 kvm_on_user_return(&smsr->urn);
261 }
262
263 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
264 {
265         return vcpu->arch.apic_base;
266 }
267 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
268
269 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
270 {
271         u64 old_state = vcpu->arch.apic_base &
272                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
273         u64 new_state = msr_info->data &
274                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
275         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
276                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
277
278         if (!msr_info->host_initiated &&
279             ((msr_info->data & reserved_bits) != 0 ||
280              new_state == X2APIC_ENABLE ||
281              (new_state == MSR_IA32_APICBASE_ENABLE &&
282               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
283              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
284               old_state == 0)))
285                 return 1;
286
287         kvm_lapic_set_base(vcpu, msr_info->data);
288         return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
291
292 asmlinkage __visible void kvm_spurious_fault(void)
293 {
294         /* Fault while not rebooting.  We want the trace. */
295         BUG();
296 }
297 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
298
299 #define EXCPT_BENIGN            0
300 #define EXCPT_CONTRIBUTORY      1
301 #define EXCPT_PF                2
302
303 static int exception_class(int vector)
304 {
305         switch (vector) {
306         case PF_VECTOR:
307                 return EXCPT_PF;
308         case DE_VECTOR:
309         case TS_VECTOR:
310         case NP_VECTOR:
311         case SS_VECTOR:
312         case GP_VECTOR:
313                 return EXCPT_CONTRIBUTORY;
314         default:
315                 break;
316         }
317         return EXCPT_BENIGN;
318 }
319
320 #define EXCPT_FAULT             0
321 #define EXCPT_TRAP              1
322 #define EXCPT_ABORT             2
323 #define EXCPT_INTERRUPT         3
324
325 static int exception_type(int vector)
326 {
327         unsigned int mask;
328
329         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
330                 return EXCPT_INTERRUPT;
331
332         mask = 1 << vector;
333
334         /* #DB is trap, as instruction watchpoints are handled elsewhere */
335         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
336                 return EXCPT_TRAP;
337
338         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
339                 return EXCPT_ABORT;
340
341         /* Reserved exceptions will result in fault */
342         return EXCPT_FAULT;
343 }
344
345 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
346                 unsigned nr, bool has_error, u32 error_code,
347                 bool reinject)
348 {
349         u32 prev_nr;
350         int class1, class2;
351
352         kvm_make_request(KVM_REQ_EVENT, vcpu);
353
354         if (!vcpu->arch.exception.pending) {
355         queue:
356                 vcpu->arch.exception.pending = true;
357                 vcpu->arch.exception.has_error_code = has_error;
358                 vcpu->arch.exception.nr = nr;
359                 vcpu->arch.exception.error_code = error_code;
360                 vcpu->arch.exception.reinject = reinject;
361                 return;
362         }
363
364         /* to check exception */
365         prev_nr = vcpu->arch.exception.nr;
366         if (prev_nr == DF_VECTOR) {
367                 /* triple fault -> shutdown */
368                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
369                 return;
370         }
371         class1 = exception_class(prev_nr);
372         class2 = exception_class(nr);
373         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
374                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
375                 /* generate double fault per SDM Table 5-5 */
376                 vcpu->arch.exception.pending = true;
377                 vcpu->arch.exception.has_error_code = true;
378                 vcpu->arch.exception.nr = DF_VECTOR;
379                 vcpu->arch.exception.error_code = 0;
380         } else
381                 /* replace previous exception with a new one in a hope
382                    that instruction re-execution will regenerate lost
383                    exception */
384                 goto queue;
385 }
386
387 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
388 {
389         kvm_multiple_exception(vcpu, nr, false, 0, false);
390 }
391 EXPORT_SYMBOL_GPL(kvm_queue_exception);
392
393 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
394 {
395         kvm_multiple_exception(vcpu, nr, false, 0, true);
396 }
397 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
398
399 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
400 {
401         if (err)
402                 kvm_inject_gp(vcpu, 0);
403         else
404                 kvm_x86_ops->skip_emulated_instruction(vcpu);
405 }
406 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
407
408 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
409 {
410         ++vcpu->stat.pf_guest;
411         vcpu->arch.cr2 = fault->address;
412         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
413 }
414 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
415
416 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
419                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
420         else
421                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
422
423         return fault->nested_page_fault;
424 }
425
426 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
427 {
428         atomic_inc(&vcpu->arch.nmi_queued);
429         kvm_make_request(KVM_REQ_NMI, vcpu);
430 }
431 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
432
433 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
434 {
435         kvm_multiple_exception(vcpu, nr, true, error_code, false);
436 }
437 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
438
439 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
440 {
441         kvm_multiple_exception(vcpu, nr, true, error_code, true);
442 }
443 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
444
445 /*
446  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
447  * a #GP and return false.
448  */
449 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
450 {
451         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
452                 return true;
453         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
454         return false;
455 }
456 EXPORT_SYMBOL_GPL(kvm_require_cpl);
457
458 /*
459  * This function will be used to read from the physical memory of the currently
460  * running guest. The difference to kvm_read_guest_page is that this function
461  * can read from guest physical or from the guest's guest physical memory.
462  */
463 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
464                             gfn_t ngfn, void *data, int offset, int len,
465                             u32 access)
466 {
467         struct x86_exception exception;
468         gfn_t real_gfn;
469         gpa_t ngpa;
470
471         ngpa     = gfn_to_gpa(ngfn);
472         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
473         if (real_gfn == UNMAPPED_GVA)
474                 return -EFAULT;
475
476         real_gfn = gpa_to_gfn(real_gfn);
477
478         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
479 }
480 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
481
482 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
483                                void *data, int offset, int len, u32 access)
484 {
485         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
486                                        data, offset, len, access);
487 }
488
489 /*
490  * Load the pae pdptrs.  Return true is they are all valid.
491  */
492 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
493 {
494         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
495         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
496         int i;
497         int ret;
498         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
499
500         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
501                                       offset * sizeof(u64), sizeof(pdpte),
502                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
503         if (ret < 0) {
504                 ret = 0;
505                 goto out;
506         }
507         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
508                 if (is_present_gpte(pdpte[i]) &&
509                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
510                         ret = 0;
511                         goto out;
512                 }
513         }
514         ret = 1;
515
516         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
517         __set_bit(VCPU_EXREG_PDPTR,
518                   (unsigned long *)&vcpu->arch.regs_avail);
519         __set_bit(VCPU_EXREG_PDPTR,
520                   (unsigned long *)&vcpu->arch.regs_dirty);
521 out:
522
523         return ret;
524 }
525 EXPORT_SYMBOL_GPL(load_pdptrs);
526
527 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
528 {
529         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
530         bool changed = true;
531         int offset;
532         gfn_t gfn;
533         int r;
534
535         if (is_long_mode(vcpu) || !is_pae(vcpu))
536                 return false;
537
538         if (!test_bit(VCPU_EXREG_PDPTR,
539                       (unsigned long *)&vcpu->arch.regs_avail))
540                 return true;
541
542         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
543         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
544         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
545                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
546         if (r < 0)
547                 goto out;
548         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
549 out:
550
551         return changed;
552 }
553
554 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
555 {
556         unsigned long old_cr0 = kvm_read_cr0(vcpu);
557         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
558                                     X86_CR0_CD | X86_CR0_NW;
559
560         cr0 |= X86_CR0_ET;
561
562 #ifdef CONFIG_X86_64
563         if (cr0 & 0xffffffff00000000UL)
564                 return 1;
565 #endif
566
567         cr0 &= ~CR0_RESERVED_BITS;
568
569         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
570                 return 1;
571
572         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
573                 return 1;
574
575         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
576 #ifdef CONFIG_X86_64
577                 if ((vcpu->arch.efer & EFER_LME)) {
578                         int cs_db, cs_l;
579
580                         if (!is_pae(vcpu))
581                                 return 1;
582                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
583                         if (cs_l)
584                                 return 1;
585                 } else
586 #endif
587                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
588                                                  kvm_read_cr3(vcpu)))
589                         return 1;
590         }
591
592         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
593                 return 1;
594
595         kvm_x86_ops->set_cr0(vcpu, cr0);
596
597         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
598                 kvm_clear_async_pf_completion_queue(vcpu);
599                 kvm_async_pf_hash_reset(vcpu);
600         }
601
602         if ((cr0 ^ old_cr0) & update_bits)
603                 kvm_mmu_reset_context(vcpu);
604         return 0;
605 }
606 EXPORT_SYMBOL_GPL(kvm_set_cr0);
607
608 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
609 {
610         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
611 }
612 EXPORT_SYMBOL_GPL(kvm_lmsw);
613
614 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
615 {
616         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
617                         !vcpu->guest_xcr0_loaded) {
618                 /* kvm_set_xcr() also depends on this */
619                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
620                 vcpu->guest_xcr0_loaded = 1;
621         }
622 }
623
624 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
625 {
626         if (vcpu->guest_xcr0_loaded) {
627                 if (vcpu->arch.xcr0 != host_xcr0)
628                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
629                 vcpu->guest_xcr0_loaded = 0;
630         }
631 }
632
633 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
634 {
635         u64 xcr0 = xcr;
636         u64 old_xcr0 = vcpu->arch.xcr0;
637         u64 valid_bits;
638
639         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
640         if (index != XCR_XFEATURE_ENABLED_MASK)
641                 return 1;
642         if (!(xcr0 & XSTATE_FP))
643                 return 1;
644         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
645                 return 1;
646
647         /*
648          * Do not allow the guest to set bits that we do not support
649          * saving.  However, xcr0 bit 0 is always set, even if the
650          * emulated CPU does not support XSAVE (see fx_init).
651          */
652         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
653         if (xcr0 & ~valid_bits)
654                 return 1;
655
656         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
657                 return 1;
658
659         kvm_put_guest_xcr0(vcpu);
660         vcpu->arch.xcr0 = xcr0;
661
662         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
663                 kvm_update_cpuid(vcpu);
664         return 0;
665 }
666
667 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
670             __kvm_set_xcr(vcpu, index, xcr)) {
671                 kvm_inject_gp(vcpu, 0);
672                 return 1;
673         }
674         return 0;
675 }
676 EXPORT_SYMBOL_GPL(kvm_set_xcr);
677
678 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
679 {
680         unsigned long old_cr4 = kvm_read_cr4(vcpu);
681         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
682                                    X86_CR4_PAE | X86_CR4_SMEP;
683         if (cr4 & CR4_RESERVED_BITS)
684                 return 1;
685
686         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
687                 return 1;
688
689         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
690                 return 1;
691
692         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
693                 return 1;
694
695         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
696                 return 1;
697
698         if (is_long_mode(vcpu)) {
699                 if (!(cr4 & X86_CR4_PAE))
700                         return 1;
701         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
702                    && ((cr4 ^ old_cr4) & pdptr_bits)
703                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
704                                    kvm_read_cr3(vcpu)))
705                 return 1;
706
707         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
708                 if (!guest_cpuid_has_pcid(vcpu))
709                         return 1;
710
711                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
712                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
713                         return 1;
714         }
715
716         if (kvm_x86_ops->set_cr4(vcpu, cr4))
717                 return 1;
718
719         if (((cr4 ^ old_cr4) & pdptr_bits) ||
720             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
721                 kvm_mmu_reset_context(vcpu);
722
723         if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
724                 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
725
726         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
727                 kvm_update_cpuid(vcpu);
728
729         return 0;
730 }
731 EXPORT_SYMBOL_GPL(kvm_set_cr4);
732
733 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
734 {
735         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
736                 kvm_mmu_sync_roots(vcpu);
737                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
738                 return 0;
739         }
740
741         if (is_long_mode(vcpu)) {
742                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
743                         return 1;
744         } else if (is_pae(vcpu) && is_paging(vcpu) &&
745                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
746                 return 1;
747
748         vcpu->arch.cr3 = cr3;
749         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
750         kvm_mmu_new_cr3(vcpu);
751         return 0;
752 }
753 EXPORT_SYMBOL_GPL(kvm_set_cr3);
754
755 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
756 {
757         if (cr8 & CR8_RESERVED_BITS)
758                 return 1;
759         if (irqchip_in_kernel(vcpu->kvm))
760                 kvm_lapic_set_tpr(vcpu, cr8);
761         else
762                 vcpu->arch.cr8 = cr8;
763         return 0;
764 }
765 EXPORT_SYMBOL_GPL(kvm_set_cr8);
766
767 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
768 {
769         if (irqchip_in_kernel(vcpu->kvm))
770                 return kvm_lapic_get_cr8(vcpu);
771         else
772                 return vcpu->arch.cr8;
773 }
774 EXPORT_SYMBOL_GPL(kvm_get_cr8);
775
776 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
777 {
778         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
779                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
780 }
781
782 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
783 {
784         unsigned long dr7;
785
786         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
787                 dr7 = vcpu->arch.guest_debug_dr7;
788         else
789                 dr7 = vcpu->arch.dr7;
790         kvm_x86_ops->set_dr7(vcpu, dr7);
791         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
792         if (dr7 & DR7_BP_EN_MASK)
793                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
794 }
795
796 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
797 {
798         u64 fixed = DR6_FIXED_1;
799
800         if (!guest_cpuid_has_rtm(vcpu))
801                 fixed |= DR6_RTM;
802         return fixed;
803 }
804
805 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
806 {
807         switch (dr) {
808         case 0 ... 3:
809                 vcpu->arch.db[dr] = val;
810                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
811                         vcpu->arch.eff_db[dr] = val;
812                 break;
813         case 4:
814                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
815                         return 1; /* #UD */
816                 /* fall through */
817         case 6:
818                 if (val & 0xffffffff00000000ULL)
819                         return -1; /* #GP */
820                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
821                 kvm_update_dr6(vcpu);
822                 break;
823         case 5:
824                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
825                         return 1; /* #UD */
826                 /* fall through */
827         default: /* 7 */
828                 if (val & 0xffffffff00000000ULL)
829                         return -1; /* #GP */
830                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
831                 kvm_update_dr7(vcpu);
832                 break;
833         }
834
835         return 0;
836 }
837
838 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
839 {
840         int res;
841
842         res = __kvm_set_dr(vcpu, dr, val);
843         if (res > 0)
844                 kvm_queue_exception(vcpu, UD_VECTOR);
845         else if (res < 0)
846                 kvm_inject_gp(vcpu, 0);
847
848         return res;
849 }
850 EXPORT_SYMBOL_GPL(kvm_set_dr);
851
852 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
853 {
854         switch (dr) {
855         case 0 ... 3:
856                 *val = vcpu->arch.db[dr];
857                 break;
858         case 4:
859                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
860                         return 1;
861                 /* fall through */
862         case 6:
863                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
864                         *val = vcpu->arch.dr6;
865                 else
866                         *val = kvm_x86_ops->get_dr6(vcpu);
867                 break;
868         case 5:
869                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
870                         return 1;
871                 /* fall through */
872         default: /* 7 */
873                 *val = vcpu->arch.dr7;
874                 break;
875         }
876
877         return 0;
878 }
879
880 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
881 {
882         if (_kvm_get_dr(vcpu, dr, val)) {
883                 kvm_queue_exception(vcpu, UD_VECTOR);
884                 return 1;
885         }
886         return 0;
887 }
888 EXPORT_SYMBOL_GPL(kvm_get_dr);
889
890 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
891 {
892         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
893         u64 data;
894         int err;
895
896         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
897         if (err)
898                 return err;
899         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
900         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
901         return err;
902 }
903 EXPORT_SYMBOL_GPL(kvm_rdpmc);
904
905 /*
906  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
907  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
908  *
909  * This list is modified at module load time to reflect the
910  * capabilities of the host cpu. This capabilities test skips MSRs that are
911  * kvm-specific. Those are put in the beginning of the list.
912  */
913
914 #define KVM_SAVE_MSRS_BEGIN     12
915 static u32 msrs_to_save[] = {
916         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
917         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
918         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
919         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
920         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
921         MSR_KVM_PV_EOI_EN,
922         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
923         MSR_STAR,
924 #ifdef CONFIG_X86_64
925         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
926 #endif
927         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
928         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
929 };
930
931 static unsigned num_msrs_to_save;
932
933 static const u32 emulated_msrs[] = {
934         MSR_IA32_TSC_ADJUST,
935         MSR_IA32_TSCDEADLINE,
936         MSR_IA32_MISC_ENABLE,
937         MSR_IA32_MCG_STATUS,
938         MSR_IA32_MCG_CTL,
939 };
940
941 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
942 {
943         if (efer & efer_reserved_bits)
944                 return false;
945
946         if (efer & EFER_FFXSR) {
947                 struct kvm_cpuid_entry2 *feat;
948
949                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
950                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
951                         return false;
952         }
953
954         if (efer & EFER_SVME) {
955                 struct kvm_cpuid_entry2 *feat;
956
957                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
958                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
959                         return false;
960         }
961
962         return true;
963 }
964 EXPORT_SYMBOL_GPL(kvm_valid_efer);
965
966 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
967 {
968         u64 old_efer = vcpu->arch.efer;
969
970         if (!kvm_valid_efer(vcpu, efer))
971                 return 1;
972
973         if (is_paging(vcpu)
974             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
975                 return 1;
976
977         efer &= ~EFER_LMA;
978         efer |= vcpu->arch.efer & EFER_LMA;
979
980         kvm_x86_ops->set_efer(vcpu, efer);
981
982         /* Update reserved bits */
983         if ((efer ^ old_efer) & EFER_NX)
984                 kvm_mmu_reset_context(vcpu);
985
986         return 0;
987 }
988
989 void kvm_enable_efer_bits(u64 mask)
990 {
991        efer_reserved_bits &= ~mask;
992 }
993 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
994
995 /*
996  * Writes msr value into into the appropriate "register".
997  * Returns 0 on success, non-0 otherwise.
998  * Assumes vcpu_load() was already called.
999  */
1000 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1001 {
1002         switch (msr->index) {
1003         case MSR_FS_BASE:
1004         case MSR_GS_BASE:
1005         case MSR_KERNEL_GS_BASE:
1006         case MSR_CSTAR:
1007         case MSR_LSTAR:
1008                 if (is_noncanonical_address(msr->data))
1009                         return 1;
1010                 break;
1011         case MSR_IA32_SYSENTER_EIP:
1012         case MSR_IA32_SYSENTER_ESP:
1013                 /*
1014                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1015                  * non-canonical address is written on Intel but not on
1016                  * AMD (which ignores the top 32-bits, because it does
1017                  * not implement 64-bit SYSENTER).
1018                  *
1019                  * 64-bit code should hence be able to write a non-canonical
1020                  * value on AMD.  Making the address canonical ensures that
1021                  * vmentry does not fail on Intel after writing a non-canonical
1022                  * value, and that something deterministic happens if the guest
1023                  * invokes 64-bit SYSENTER.
1024                  */
1025                 msr->data = get_canonical(msr->data);
1026         }
1027         return kvm_x86_ops->set_msr(vcpu, msr);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_set_msr);
1030
1031 /*
1032  * Adapt set_msr() to msr_io()'s calling convention
1033  */
1034 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1035 {
1036         struct msr_data msr;
1037
1038         msr.data = *data;
1039         msr.index = index;
1040         msr.host_initiated = true;
1041         return kvm_set_msr(vcpu, &msr);
1042 }
1043
1044 #ifdef CONFIG_X86_64
1045 struct pvclock_gtod_data {
1046         seqcount_t      seq;
1047
1048         struct { /* extract of a clocksource struct */
1049                 int vclock_mode;
1050                 cycle_t cycle_last;
1051                 cycle_t mask;
1052                 u32     mult;
1053                 u32     shift;
1054         } clock;
1055
1056         u64             boot_ns;
1057         u64             nsec_base;
1058 };
1059
1060 static struct pvclock_gtod_data pvclock_gtod_data;
1061
1062 static void update_pvclock_gtod(struct timekeeper *tk)
1063 {
1064         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1065         u64 boot_ns;
1066
1067         boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1068
1069         write_seqcount_begin(&vdata->seq);
1070
1071         /* copy pvclock gtod data */
1072         vdata->clock.vclock_mode        = tk->tkr.clock->archdata.vclock_mode;
1073         vdata->clock.cycle_last         = tk->tkr.cycle_last;
1074         vdata->clock.mask               = tk->tkr.mask;
1075         vdata->clock.mult               = tk->tkr.mult;
1076         vdata->clock.shift              = tk->tkr.shift;
1077
1078         vdata->boot_ns                  = boot_ns;
1079         vdata->nsec_base                = tk->tkr.xtime_nsec;
1080
1081         write_seqcount_end(&vdata->seq);
1082 }
1083 #endif
1084
1085
1086 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1087 {
1088         int version;
1089         int r;
1090         struct pvclock_wall_clock wc;
1091         struct timespec boot;
1092
1093         if (!wall_clock)
1094                 return;
1095
1096         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1097         if (r)
1098                 return;
1099
1100         if (version & 1)
1101                 ++version;  /* first time write, random junk */
1102
1103         ++version;
1104
1105         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1106
1107         /*
1108          * The guest calculates current wall clock time by adding
1109          * system time (updated by kvm_guest_time_update below) to the
1110          * wall clock specified here.  guest system time equals host
1111          * system time for us, thus we must fill in host boot time here.
1112          */
1113         getboottime(&boot);
1114
1115         if (kvm->arch.kvmclock_offset) {
1116                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1117                 boot = timespec_sub(boot, ts);
1118         }
1119         wc.sec = boot.tv_sec;
1120         wc.nsec = boot.tv_nsec;
1121         wc.version = version;
1122
1123         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1124
1125         version++;
1126         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1127 }
1128
1129 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1130 {
1131         uint32_t quotient, remainder;
1132
1133         /* Don't try to replace with do_div(), this one calculates
1134          * "(dividend << 32) / divisor" */
1135         __asm__ ( "divl %4"
1136                   : "=a" (quotient), "=d" (remainder)
1137                   : "0" (0), "1" (dividend), "r" (divisor) );
1138         return quotient;
1139 }
1140
1141 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1142                                s8 *pshift, u32 *pmultiplier)
1143 {
1144         uint64_t scaled64;
1145         int32_t  shift = 0;
1146         uint64_t tps64;
1147         uint32_t tps32;
1148
1149         tps64 = base_khz * 1000LL;
1150         scaled64 = scaled_khz * 1000LL;
1151         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1152                 tps64 >>= 1;
1153                 shift--;
1154         }
1155
1156         tps32 = (uint32_t)tps64;
1157         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1158                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1159                         scaled64 >>= 1;
1160                 else
1161                         tps32 <<= 1;
1162                 shift++;
1163         }
1164
1165         *pshift = shift;
1166         *pmultiplier = div_frac(scaled64, tps32);
1167
1168         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1169                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1170 }
1171
1172 static inline u64 get_kernel_ns(void)
1173 {
1174         return ktime_get_boot_ns();
1175 }
1176
1177 #ifdef CONFIG_X86_64
1178 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1179 #endif
1180
1181 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1182 unsigned long max_tsc_khz;
1183
1184 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1185 {
1186         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1187                                    vcpu->arch.virtual_tsc_shift);
1188 }
1189
1190 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1191 {
1192         u64 v = (u64)khz * (1000000 + ppm);
1193         do_div(v, 1000000);
1194         return v;
1195 }
1196
1197 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1198 {
1199         u32 thresh_lo, thresh_hi;
1200         int use_scaling = 0;
1201
1202         /* tsc_khz can be zero if TSC calibration fails */
1203         if (this_tsc_khz == 0)
1204                 return;
1205
1206         /* Compute a scale to convert nanoseconds in TSC cycles */
1207         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1208                            &vcpu->arch.virtual_tsc_shift,
1209                            &vcpu->arch.virtual_tsc_mult);
1210         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1211
1212         /*
1213          * Compute the variation in TSC rate which is acceptable
1214          * within the range of tolerance and decide if the
1215          * rate being applied is within that bounds of the hardware
1216          * rate.  If so, no scaling or compensation need be done.
1217          */
1218         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1219         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1220         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1221                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1222                 use_scaling = 1;
1223         }
1224         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1225 }
1226
1227 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1228 {
1229         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1230                                       vcpu->arch.virtual_tsc_mult,
1231                                       vcpu->arch.virtual_tsc_shift);
1232         tsc += vcpu->arch.this_tsc_write;
1233         return tsc;
1234 }
1235
1236 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1237 {
1238 #ifdef CONFIG_X86_64
1239         bool vcpus_matched;
1240         bool do_request = false;
1241         struct kvm_arch *ka = &vcpu->kvm->arch;
1242         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1243
1244         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1245                          atomic_read(&vcpu->kvm->online_vcpus));
1246
1247         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1248                 if (!ka->use_master_clock)
1249                         do_request = 1;
1250
1251         if (!vcpus_matched && ka->use_master_clock)
1252                         do_request = 1;
1253
1254         if (do_request)
1255                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1256
1257         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1258                             atomic_read(&vcpu->kvm->online_vcpus),
1259                             ka->use_master_clock, gtod->clock.vclock_mode);
1260 #endif
1261 }
1262
1263 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1264 {
1265         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1266         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1267 }
1268
1269 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1270 {
1271         struct kvm *kvm = vcpu->kvm;
1272         u64 offset, ns, elapsed;
1273         unsigned long flags;
1274         s64 usdiff;
1275         bool matched;
1276         bool already_matched;
1277         u64 data = msr->data;
1278
1279         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1280         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1281         ns = get_kernel_ns();
1282         elapsed = ns - kvm->arch.last_tsc_nsec;
1283
1284         if (vcpu->arch.virtual_tsc_khz) {
1285                 int faulted = 0;
1286
1287                 /* n.b - signed multiplication and division required */
1288                 usdiff = data - kvm->arch.last_tsc_write;
1289 #ifdef CONFIG_X86_64
1290                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1291 #else
1292                 /* do_div() only does unsigned */
1293                 asm("1: idivl %[divisor]\n"
1294                     "2: xor %%edx, %%edx\n"
1295                     "   movl $0, %[faulted]\n"
1296                     "3:\n"
1297                     ".section .fixup,\"ax\"\n"
1298                     "4: movl $1, %[faulted]\n"
1299                     "   jmp  3b\n"
1300                     ".previous\n"
1301
1302                 _ASM_EXTABLE(1b, 4b)
1303
1304                 : "=A"(usdiff), [faulted] "=r" (faulted)
1305                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1306
1307 #endif
1308                 do_div(elapsed, 1000);
1309                 usdiff -= elapsed;
1310                 if (usdiff < 0)
1311                         usdiff = -usdiff;
1312
1313                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1314                 if (faulted)
1315                         usdiff = USEC_PER_SEC;
1316         } else
1317                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1318
1319         /*
1320          * Special case: TSC write with a small delta (1 second) of virtual
1321          * cycle time against real time is interpreted as an attempt to
1322          * synchronize the CPU.
1323          *
1324          * For a reliable TSC, we can match TSC offsets, and for an unstable
1325          * TSC, we add elapsed time in this computation.  We could let the
1326          * compensation code attempt to catch up if we fall behind, but
1327          * it's better to try to match offsets from the beginning.
1328          */
1329         if (usdiff < USEC_PER_SEC &&
1330             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1331                 if (!check_tsc_unstable()) {
1332                         offset = kvm->arch.cur_tsc_offset;
1333                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1334                 } else {
1335                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1336                         data += delta;
1337                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1338                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1339                 }
1340                 matched = true;
1341                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1342         } else {
1343                 /*
1344                  * We split periods of matched TSC writes into generations.
1345                  * For each generation, we track the original measured
1346                  * nanosecond time, offset, and write, so if TSCs are in
1347                  * sync, we can match exact offset, and if not, we can match
1348                  * exact software computation in compute_guest_tsc()
1349                  *
1350                  * These values are tracked in kvm->arch.cur_xxx variables.
1351                  */
1352                 kvm->arch.cur_tsc_generation++;
1353                 kvm->arch.cur_tsc_nsec = ns;
1354                 kvm->arch.cur_tsc_write = data;
1355                 kvm->arch.cur_tsc_offset = offset;
1356                 matched = false;
1357                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1358                          kvm->arch.cur_tsc_generation, data);
1359         }
1360
1361         /*
1362          * We also track th most recent recorded KHZ, write and time to
1363          * allow the matching interval to be extended at each write.
1364          */
1365         kvm->arch.last_tsc_nsec = ns;
1366         kvm->arch.last_tsc_write = data;
1367         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1368
1369         vcpu->arch.last_guest_tsc = data;
1370
1371         /* Keep track of which generation this VCPU has synchronized to */
1372         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1373         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1374         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1375
1376         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1377                 update_ia32_tsc_adjust_msr(vcpu, offset);
1378         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1379         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1380
1381         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1382         if (!matched) {
1383                 kvm->arch.nr_vcpus_matched_tsc = 0;
1384         } else if (!already_matched) {
1385                 kvm->arch.nr_vcpus_matched_tsc++;
1386         }
1387
1388         kvm_track_tsc_matching(vcpu);
1389         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1390 }
1391
1392 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1393
1394 #ifdef CONFIG_X86_64
1395
1396 static cycle_t read_tsc(void)
1397 {
1398         cycle_t ret;
1399         u64 last;
1400
1401         /*
1402          * Empirically, a fence (of type that depends on the CPU)
1403          * before rdtsc is enough to ensure that rdtsc is ordered
1404          * with respect to loads.  The various CPU manuals are unclear
1405          * as to whether rdtsc can be reordered with later loads,
1406          * but no one has ever seen it happen.
1407          */
1408         rdtsc_barrier();
1409         ret = (cycle_t)vget_cycles();
1410
1411         last = pvclock_gtod_data.clock.cycle_last;
1412
1413         if (likely(ret >= last))
1414                 return ret;
1415
1416         /*
1417          * GCC likes to generate cmov here, but this branch is extremely
1418          * predictable (it's just a funciton of time and the likely is
1419          * very likely) and there's a data dependence, so force GCC
1420          * to generate a branch instead.  I don't barrier() because
1421          * we don't actually need a barrier, and if this function
1422          * ever gets inlined it will generate worse code.
1423          */
1424         asm volatile ("");
1425         return last;
1426 }
1427
1428 static inline u64 vgettsc(cycle_t *cycle_now)
1429 {
1430         long v;
1431         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1432
1433         *cycle_now = read_tsc();
1434
1435         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1436         return v * gtod->clock.mult;
1437 }
1438
1439 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1440 {
1441         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1442         unsigned long seq;
1443         int mode;
1444         u64 ns;
1445
1446         do {
1447                 seq = read_seqcount_begin(&gtod->seq);
1448                 mode = gtod->clock.vclock_mode;
1449                 ns = gtod->nsec_base;
1450                 ns += vgettsc(cycle_now);
1451                 ns >>= gtod->clock.shift;
1452                 ns += gtod->boot_ns;
1453         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1454         *t = ns;
1455
1456         return mode;
1457 }
1458
1459 /* returns true if host is using tsc clocksource */
1460 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1461 {
1462         /* checked again under seqlock below */
1463         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1464                 return false;
1465
1466         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1467 }
1468 #endif
1469
1470 /*
1471  *
1472  * Assuming a stable TSC across physical CPUS, and a stable TSC
1473  * across virtual CPUs, the following condition is possible.
1474  * Each numbered line represents an event visible to both
1475  * CPUs at the next numbered event.
1476  *
1477  * "timespecX" represents host monotonic time. "tscX" represents
1478  * RDTSC value.
1479  *
1480  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1481  *
1482  * 1.  read timespec0,tsc0
1483  * 2.                                   | timespec1 = timespec0 + N
1484  *                                      | tsc1 = tsc0 + M
1485  * 3. transition to guest               | transition to guest
1486  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1487  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1488  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1489  *
1490  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1491  *
1492  *      - ret0 < ret1
1493  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1494  *              ...
1495  *      - 0 < N - M => M < N
1496  *
1497  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1498  * always the case (the difference between two distinct xtime instances
1499  * might be smaller then the difference between corresponding TSC reads,
1500  * when updating guest vcpus pvclock areas).
1501  *
1502  * To avoid that problem, do not allow visibility of distinct
1503  * system_timestamp/tsc_timestamp values simultaneously: use a master
1504  * copy of host monotonic time values. Update that master copy
1505  * in lockstep.
1506  *
1507  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1508  *
1509  */
1510
1511 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1512 {
1513 #ifdef CONFIG_X86_64
1514         struct kvm_arch *ka = &kvm->arch;
1515         int vclock_mode;
1516         bool host_tsc_clocksource, vcpus_matched;
1517
1518         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1519                         atomic_read(&kvm->online_vcpus));
1520
1521         /*
1522          * If the host uses TSC clock, then passthrough TSC as stable
1523          * to the guest.
1524          */
1525         host_tsc_clocksource = kvm_get_time_and_clockread(
1526                                         &ka->master_kernel_ns,
1527                                         &ka->master_cycle_now);
1528
1529         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1530                                 && !backwards_tsc_observed;
1531
1532         if (ka->use_master_clock)
1533                 atomic_set(&kvm_guest_has_master_clock, 1);
1534
1535         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1536         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1537                                         vcpus_matched);
1538 #endif
1539 }
1540
1541 static void kvm_gen_update_masterclock(struct kvm *kvm)
1542 {
1543 #ifdef CONFIG_X86_64
1544         int i;
1545         struct kvm_vcpu *vcpu;
1546         struct kvm_arch *ka = &kvm->arch;
1547
1548         spin_lock(&ka->pvclock_gtod_sync_lock);
1549         kvm_make_mclock_inprogress_request(kvm);
1550         /* no guest entries from this point */
1551         pvclock_update_vm_gtod_copy(kvm);
1552
1553         kvm_for_each_vcpu(i, vcpu, kvm)
1554                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1555
1556         /* guest entries allowed */
1557         kvm_for_each_vcpu(i, vcpu, kvm)
1558                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1559
1560         spin_unlock(&ka->pvclock_gtod_sync_lock);
1561 #endif
1562 }
1563
1564 static int kvm_guest_time_update(struct kvm_vcpu *v)
1565 {
1566         unsigned long flags, this_tsc_khz;
1567         struct kvm_vcpu_arch *vcpu = &v->arch;
1568         struct kvm_arch *ka = &v->kvm->arch;
1569         s64 kernel_ns;
1570         u64 tsc_timestamp, host_tsc;
1571         struct pvclock_vcpu_time_info guest_hv_clock;
1572         u8 pvclock_flags;
1573         bool use_master_clock;
1574
1575         kernel_ns = 0;
1576         host_tsc = 0;
1577
1578         /*
1579          * If the host uses TSC clock, then passthrough TSC as stable
1580          * to the guest.
1581          */
1582         spin_lock(&ka->pvclock_gtod_sync_lock);
1583         use_master_clock = ka->use_master_clock;
1584         if (use_master_clock) {
1585                 host_tsc = ka->master_cycle_now;
1586                 kernel_ns = ka->master_kernel_ns;
1587         }
1588         spin_unlock(&ka->pvclock_gtod_sync_lock);
1589
1590         /* Keep irq disabled to prevent changes to the clock */
1591         local_irq_save(flags);
1592         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1593         if (unlikely(this_tsc_khz == 0)) {
1594                 local_irq_restore(flags);
1595                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1596                 return 1;
1597         }
1598         if (!use_master_clock) {
1599                 host_tsc = native_read_tsc();
1600                 kernel_ns = get_kernel_ns();
1601         }
1602
1603         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1604
1605         /*
1606          * We may have to catch up the TSC to match elapsed wall clock
1607          * time for two reasons, even if kvmclock is used.
1608          *   1) CPU could have been running below the maximum TSC rate
1609          *   2) Broken TSC compensation resets the base at each VCPU
1610          *      entry to avoid unknown leaps of TSC even when running
1611          *      again on the same CPU.  This may cause apparent elapsed
1612          *      time to disappear, and the guest to stand still or run
1613          *      very slowly.
1614          */
1615         if (vcpu->tsc_catchup) {
1616                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1617                 if (tsc > tsc_timestamp) {
1618                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1619                         tsc_timestamp = tsc;
1620                 }
1621         }
1622
1623         local_irq_restore(flags);
1624
1625         if (!vcpu->pv_time_enabled)
1626                 return 0;
1627
1628         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1629                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1630                                    &vcpu->hv_clock.tsc_shift,
1631                                    &vcpu->hv_clock.tsc_to_system_mul);
1632                 vcpu->hw_tsc_khz = this_tsc_khz;
1633         }
1634
1635         /* With all the info we got, fill in the values */
1636         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1637         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1638         vcpu->last_guest_tsc = tsc_timestamp;
1639
1640         /*
1641          * The interface expects us to write an even number signaling that the
1642          * update is finished. Since the guest won't see the intermediate
1643          * state, we just increase by 2 at the end.
1644          */
1645         vcpu->hv_clock.version += 2;
1646
1647         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1648                 &guest_hv_clock, sizeof(guest_hv_clock))))
1649                 return 0;
1650
1651         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1652         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1653
1654         if (vcpu->pvclock_set_guest_stopped_request) {
1655                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1656                 vcpu->pvclock_set_guest_stopped_request = false;
1657         }
1658
1659         /* If the host uses TSC clocksource, then it is stable */
1660         if (use_master_clock)
1661                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1662
1663         vcpu->hv_clock.flags = pvclock_flags;
1664
1665         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1666                                 &vcpu->hv_clock,
1667                                 sizeof(vcpu->hv_clock));
1668         return 0;
1669 }
1670
1671 /*
1672  * kvmclock updates which are isolated to a given vcpu, such as
1673  * vcpu->cpu migration, should not allow system_timestamp from
1674  * the rest of the vcpus to remain static. Otherwise ntp frequency
1675  * correction applies to one vcpu's system_timestamp but not
1676  * the others.
1677  *
1678  * So in those cases, request a kvmclock update for all vcpus.
1679  * We need to rate-limit these requests though, as they can
1680  * considerably slow guests that have a large number of vcpus.
1681  * The time for a remote vcpu to update its kvmclock is bound
1682  * by the delay we use to rate-limit the updates.
1683  */
1684
1685 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1686
1687 static void kvmclock_update_fn(struct work_struct *work)
1688 {
1689         int i;
1690         struct delayed_work *dwork = to_delayed_work(work);
1691         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1692                                            kvmclock_update_work);
1693         struct kvm *kvm = container_of(ka, struct kvm, arch);
1694         struct kvm_vcpu *vcpu;
1695
1696         kvm_for_each_vcpu(i, vcpu, kvm) {
1697                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1698                 kvm_vcpu_kick(vcpu);
1699         }
1700 }
1701
1702 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1703 {
1704         struct kvm *kvm = v->kvm;
1705
1706         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1707         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1708                                         KVMCLOCK_UPDATE_DELAY);
1709 }
1710
1711 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1712
1713 static void kvmclock_sync_fn(struct work_struct *work)
1714 {
1715         struct delayed_work *dwork = to_delayed_work(work);
1716         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1717                                            kvmclock_sync_work);
1718         struct kvm *kvm = container_of(ka, struct kvm, arch);
1719
1720         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1721         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1722                                         KVMCLOCK_SYNC_PERIOD);
1723 }
1724
1725 static bool msr_mtrr_valid(unsigned msr)
1726 {
1727         switch (msr) {
1728         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1729         case MSR_MTRRfix64K_00000:
1730         case MSR_MTRRfix16K_80000:
1731         case MSR_MTRRfix16K_A0000:
1732         case MSR_MTRRfix4K_C0000:
1733         case MSR_MTRRfix4K_C8000:
1734         case MSR_MTRRfix4K_D0000:
1735         case MSR_MTRRfix4K_D8000:
1736         case MSR_MTRRfix4K_E0000:
1737         case MSR_MTRRfix4K_E8000:
1738         case MSR_MTRRfix4K_F0000:
1739         case MSR_MTRRfix4K_F8000:
1740         case MSR_MTRRdefType:
1741         case MSR_IA32_CR_PAT:
1742                 return true;
1743         case 0x2f8:
1744                 return true;
1745         }
1746         return false;
1747 }
1748
1749 static bool valid_pat_type(unsigned t)
1750 {
1751         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1752 }
1753
1754 static bool valid_mtrr_type(unsigned t)
1755 {
1756         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1757 }
1758
1759 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1760 {
1761         int i;
1762         u64 mask;
1763
1764         if (!msr_mtrr_valid(msr))
1765                 return false;
1766
1767         if (msr == MSR_IA32_CR_PAT) {
1768                 for (i = 0; i < 8; i++)
1769                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1770                                 return false;
1771                 return true;
1772         } else if (msr == MSR_MTRRdefType) {
1773                 if (data & ~0xcff)
1774                         return false;
1775                 return valid_mtrr_type(data & 0xff);
1776         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1777                 for (i = 0; i < 8 ; i++)
1778                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1779                                 return false;
1780                 return true;
1781         }
1782
1783         /* variable MTRRs */
1784         WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1785
1786         mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1787         if ((msr & 1) == 0) {
1788                 /* MTRR base */
1789                 if (!valid_mtrr_type(data & 0xff))
1790                         return false;
1791                 mask |= 0xf00;
1792         } else
1793                 /* MTRR mask */
1794                 mask |= 0x7ff;
1795         if (data & mask) {
1796                 kvm_inject_gp(vcpu, 0);
1797                 return false;
1798         }
1799
1800         return true;
1801 }
1802 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1803
1804 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1805 {
1806         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1807
1808         if (!kvm_mtrr_valid(vcpu, msr, data))
1809                 return 1;
1810
1811         if (msr == MSR_MTRRdefType) {
1812                 vcpu->arch.mtrr_state.def_type = data;
1813                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1814         } else if (msr == MSR_MTRRfix64K_00000)
1815                 p[0] = data;
1816         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1817                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1818         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1819                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1820         else if (msr == MSR_IA32_CR_PAT)
1821                 vcpu->arch.pat = data;
1822         else {  /* Variable MTRRs */
1823                 int idx, is_mtrr_mask;
1824                 u64 *pt;
1825
1826                 idx = (msr - 0x200) / 2;
1827                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1828                 if (!is_mtrr_mask)
1829                         pt =
1830                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1831                 else
1832                         pt =
1833                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1834                 *pt = data;
1835         }
1836
1837         kvm_mmu_reset_context(vcpu);
1838         return 0;
1839 }
1840
1841 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1842 {
1843         u64 mcg_cap = vcpu->arch.mcg_cap;
1844         unsigned bank_num = mcg_cap & 0xff;
1845
1846         switch (msr) {
1847         case MSR_IA32_MCG_STATUS:
1848                 vcpu->arch.mcg_status = data;
1849                 break;
1850         case MSR_IA32_MCG_CTL:
1851                 if (!(mcg_cap & MCG_CTL_P))
1852                         return 1;
1853                 if (data != 0 && data != ~(u64)0)
1854                         return -1;
1855                 vcpu->arch.mcg_ctl = data;
1856                 break;
1857         default:
1858                 if (msr >= MSR_IA32_MC0_CTL &&
1859                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1860                         u32 offset = msr - MSR_IA32_MC0_CTL;
1861                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1862                          * some Linux kernels though clear bit 10 in bank 4 to
1863                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1864                          * this to avoid an uncatched #GP in the guest
1865                          */
1866                         if ((offset & 0x3) == 0 &&
1867                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1868                                 return -1;
1869                         vcpu->arch.mce_banks[offset] = data;
1870                         break;
1871                 }
1872                 return 1;
1873         }
1874         return 0;
1875 }
1876
1877 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1878 {
1879         struct kvm *kvm = vcpu->kvm;
1880         int lm = is_long_mode(vcpu);
1881         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1882                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1883         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1884                 : kvm->arch.xen_hvm_config.blob_size_32;
1885         u32 page_num = data & ~PAGE_MASK;
1886         u64 page_addr = data & PAGE_MASK;
1887         u8 *page;
1888         int r;
1889
1890         r = -E2BIG;
1891         if (page_num >= blob_size)
1892                 goto out;
1893         r = -ENOMEM;
1894         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1895         if (IS_ERR(page)) {
1896                 r = PTR_ERR(page);
1897                 goto out;
1898         }
1899         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1900                 goto out_free;
1901         r = 0;
1902 out_free:
1903         kfree(page);
1904 out:
1905         return r;
1906 }
1907
1908 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1909 {
1910         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1911 }
1912
1913 static bool kvm_hv_msr_partition_wide(u32 msr)
1914 {
1915         bool r = false;
1916         switch (msr) {
1917         case HV_X64_MSR_GUEST_OS_ID:
1918         case HV_X64_MSR_HYPERCALL:
1919         case HV_X64_MSR_REFERENCE_TSC:
1920         case HV_X64_MSR_TIME_REF_COUNT:
1921                 r = true;
1922                 break;
1923         }
1924
1925         return r;
1926 }
1927
1928 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1929 {
1930         struct kvm *kvm = vcpu->kvm;
1931
1932         switch (msr) {
1933         case HV_X64_MSR_GUEST_OS_ID:
1934                 kvm->arch.hv_guest_os_id = data;
1935                 /* setting guest os id to zero disables hypercall page */
1936                 if (!kvm->arch.hv_guest_os_id)
1937                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1938                 break;
1939         case HV_X64_MSR_HYPERCALL: {
1940                 u64 gfn;
1941                 unsigned long addr;
1942                 u8 instructions[4];
1943
1944                 /* if guest os id is not set hypercall should remain disabled */
1945                 if (!kvm->arch.hv_guest_os_id)
1946                         break;
1947                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1948                         kvm->arch.hv_hypercall = data;
1949                         break;
1950                 }
1951                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1952                 addr = gfn_to_hva(kvm, gfn);
1953                 if (kvm_is_error_hva(addr))
1954                         return 1;
1955                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1956                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1957                 if (__copy_to_user((void __user *)addr, instructions, 4))
1958                         return 1;
1959                 kvm->arch.hv_hypercall = data;
1960                 mark_page_dirty(kvm, gfn);
1961                 break;
1962         }
1963         case HV_X64_MSR_REFERENCE_TSC: {
1964                 u64 gfn;
1965                 HV_REFERENCE_TSC_PAGE tsc_ref;
1966                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1967                 kvm->arch.hv_tsc_page = data;
1968                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1969                         break;
1970                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1971                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1972                         &tsc_ref, sizeof(tsc_ref)))
1973                         return 1;
1974                 mark_page_dirty(kvm, gfn);
1975                 break;
1976         }
1977         default:
1978                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1979                             "data 0x%llx\n", msr, data);
1980                 return 1;
1981         }
1982         return 0;
1983 }
1984
1985 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1986 {
1987         switch (msr) {
1988         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1989                 u64 gfn;
1990                 unsigned long addr;
1991
1992                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1993                         vcpu->arch.hv_vapic = data;
1994                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1995                                 return 1;
1996                         break;
1997                 }
1998                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1999                 addr = gfn_to_hva(vcpu->kvm, gfn);
2000                 if (kvm_is_error_hva(addr))
2001                         return 1;
2002                 if (__clear_user((void __user *)addr, PAGE_SIZE))
2003                         return 1;
2004                 vcpu->arch.hv_vapic = data;
2005                 mark_page_dirty(vcpu->kvm, gfn);
2006                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2007                         return 1;
2008                 break;
2009         }
2010         case HV_X64_MSR_EOI:
2011                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2012         case HV_X64_MSR_ICR:
2013                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2014         case HV_X64_MSR_TPR:
2015                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2016         default:
2017                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2018                             "data 0x%llx\n", msr, data);
2019                 return 1;
2020         }
2021
2022         return 0;
2023 }
2024
2025 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2026 {
2027         gpa_t gpa = data & ~0x3f;
2028
2029         /* Bits 2:5 are reserved, Should be zero */
2030         if (data & 0x3c)
2031                 return 1;
2032
2033         vcpu->arch.apf.msr_val = data;
2034
2035         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2036                 kvm_clear_async_pf_completion_queue(vcpu);
2037                 kvm_async_pf_hash_reset(vcpu);
2038                 return 0;
2039         }
2040
2041         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2042                                         sizeof(u32)))
2043                 return 1;
2044
2045         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2046         kvm_async_pf_wakeup_all(vcpu);
2047         return 0;
2048 }
2049
2050 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2051 {
2052         vcpu->arch.pv_time_enabled = false;
2053 }
2054
2055 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2056 {
2057         u64 delta;
2058
2059         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2060                 return;
2061
2062         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2063         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2064         vcpu->arch.st.accum_steal = delta;
2065 }
2066
2067 static void record_steal_time(struct kvm_vcpu *vcpu)
2068 {
2069         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2070                 return;
2071
2072         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2073                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2074                 return;
2075
2076         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2077         vcpu->arch.st.steal.version += 2;
2078         vcpu->arch.st.accum_steal = 0;
2079
2080         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2081                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2082 }
2083
2084 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2085 {
2086         bool pr = false;
2087         u32 msr = msr_info->index;
2088         u64 data = msr_info->data;
2089
2090         switch (msr) {
2091         case MSR_AMD64_NB_CFG:
2092         case MSR_IA32_UCODE_REV:
2093         case MSR_IA32_UCODE_WRITE:
2094         case MSR_VM_HSAVE_PA:
2095         case MSR_AMD64_PATCH_LOADER:
2096         case MSR_AMD64_BU_CFG2:
2097                 break;
2098
2099         case MSR_EFER:
2100                 return set_efer(vcpu, data);
2101         case MSR_K7_HWCR:
2102                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2103                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2104                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2105                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2106                 if (data != 0) {
2107                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2108                                     data);
2109                         return 1;
2110                 }
2111                 break;
2112         case MSR_FAM10H_MMIO_CONF_BASE:
2113                 if (data != 0) {
2114                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2115                                     "0x%llx\n", data);
2116                         return 1;
2117                 }
2118                 break;
2119         case MSR_IA32_DEBUGCTLMSR:
2120                 if (!data) {
2121                         /* We support the non-activated case already */
2122                         break;
2123                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2124                         /* Values other than LBR and BTF are vendor-specific,
2125                            thus reserved and should throw a #GP */
2126                         return 1;
2127                 }
2128                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2129                             __func__, data);
2130                 break;
2131         case 0x200 ... 0x2ff:
2132                 return set_msr_mtrr(vcpu, msr, data);
2133         case MSR_IA32_APICBASE:
2134                 return kvm_set_apic_base(vcpu, msr_info);
2135         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2136                 return kvm_x2apic_msr_write(vcpu, msr, data);
2137         case MSR_IA32_TSCDEADLINE:
2138                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2139                 break;
2140         case MSR_IA32_TSC_ADJUST:
2141                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2142                         if (!msr_info->host_initiated) {
2143                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2144                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2145                         }
2146                         vcpu->arch.ia32_tsc_adjust_msr = data;
2147                 }
2148                 break;
2149         case MSR_IA32_MISC_ENABLE:
2150                 vcpu->arch.ia32_misc_enable_msr = data;
2151                 break;
2152         case MSR_KVM_WALL_CLOCK_NEW:
2153         case MSR_KVM_WALL_CLOCK:
2154                 vcpu->kvm->arch.wall_clock = data;
2155                 kvm_write_wall_clock(vcpu->kvm, data);
2156                 break;
2157         case MSR_KVM_SYSTEM_TIME_NEW:
2158         case MSR_KVM_SYSTEM_TIME: {
2159                 u64 gpa_offset;
2160                 kvmclock_reset(vcpu);
2161
2162                 vcpu->arch.time = data;
2163                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2164
2165                 /* we verify if the enable bit is set... */
2166                 if (!(data & 1))
2167                         break;
2168
2169                 gpa_offset = data & ~(PAGE_MASK | 1);
2170
2171                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2172                      &vcpu->arch.pv_time, data & ~1ULL,
2173                      sizeof(struct pvclock_vcpu_time_info)))
2174                         vcpu->arch.pv_time_enabled = false;
2175                 else
2176                         vcpu->arch.pv_time_enabled = true;
2177
2178                 break;
2179         }
2180         case MSR_KVM_ASYNC_PF_EN:
2181                 if (kvm_pv_enable_async_pf(vcpu, data))
2182                         return 1;
2183                 break;
2184         case MSR_KVM_STEAL_TIME:
2185
2186                 if (unlikely(!sched_info_on()))
2187                         return 1;
2188
2189                 if (data & KVM_STEAL_RESERVED_MASK)
2190                         return 1;
2191
2192                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2193                                                 data & KVM_STEAL_VALID_BITS,
2194                                                 sizeof(struct kvm_steal_time)))
2195                         return 1;
2196
2197                 vcpu->arch.st.msr_val = data;
2198
2199                 if (!(data & KVM_MSR_ENABLED))
2200                         break;
2201
2202                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2203
2204                 preempt_disable();
2205                 accumulate_steal_time(vcpu);
2206                 preempt_enable();
2207
2208                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2209
2210                 break;
2211         case MSR_KVM_PV_EOI_EN:
2212                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2213                         return 1;
2214                 break;
2215
2216         case MSR_IA32_MCG_CTL:
2217         case MSR_IA32_MCG_STATUS:
2218         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2219                 return set_msr_mce(vcpu, msr, data);
2220
2221         /* Performance counters are not protected by a CPUID bit,
2222          * so we should check all of them in the generic path for the sake of
2223          * cross vendor migration.
2224          * Writing a zero into the event select MSRs disables them,
2225          * which we perfectly emulate ;-). Any other value should be at least
2226          * reported, some guests depend on them.
2227          */
2228         case MSR_K7_EVNTSEL0:
2229         case MSR_K7_EVNTSEL1:
2230         case MSR_K7_EVNTSEL2:
2231         case MSR_K7_EVNTSEL3:
2232                 if (data != 0)
2233                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2234                                     "0x%x data 0x%llx\n", msr, data);
2235                 break;
2236         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2237          * so we ignore writes to make it happy.
2238          */
2239         case MSR_K7_PERFCTR0:
2240         case MSR_K7_PERFCTR1:
2241         case MSR_K7_PERFCTR2:
2242         case MSR_K7_PERFCTR3:
2243                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2244                             "0x%x data 0x%llx\n", msr, data);
2245                 break;
2246         case MSR_P6_PERFCTR0:
2247         case MSR_P6_PERFCTR1:
2248                 pr = true;
2249         case MSR_P6_EVNTSEL0:
2250         case MSR_P6_EVNTSEL1:
2251                 if (kvm_pmu_msr(vcpu, msr))
2252                         return kvm_pmu_set_msr(vcpu, msr_info);
2253
2254                 if (pr || data != 0)
2255                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2256                                     "0x%x data 0x%llx\n", msr, data);
2257                 break;
2258         case MSR_K7_CLK_CTL:
2259                 /*
2260                  * Ignore all writes to this no longer documented MSR.
2261                  * Writes are only relevant for old K7 processors,
2262                  * all pre-dating SVM, but a recommended workaround from
2263                  * AMD for these chips. It is possible to specify the
2264                  * affected processor models on the command line, hence
2265                  * the need to ignore the workaround.
2266                  */
2267                 break;
2268         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2269                 if (kvm_hv_msr_partition_wide(msr)) {
2270                         int r;
2271                         mutex_lock(&vcpu->kvm->lock);
2272                         r = set_msr_hyperv_pw(vcpu, msr, data);
2273                         mutex_unlock(&vcpu->kvm->lock);
2274                         return r;
2275                 } else
2276                         return set_msr_hyperv(vcpu, msr, data);
2277                 break;
2278         case MSR_IA32_BBL_CR_CTL3:
2279                 /* Drop writes to this legacy MSR -- see rdmsr
2280                  * counterpart for further detail.
2281                  */
2282                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2283                 break;
2284         case MSR_AMD64_OSVW_ID_LENGTH:
2285                 if (!guest_cpuid_has_osvw(vcpu))
2286                         return 1;
2287                 vcpu->arch.osvw.length = data;
2288                 break;
2289         case MSR_AMD64_OSVW_STATUS:
2290                 if (!guest_cpuid_has_osvw(vcpu))
2291                         return 1;
2292                 vcpu->arch.osvw.status = data;
2293                 break;
2294         default:
2295                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2296                         return xen_hvm_config(vcpu, data);
2297                 if (kvm_pmu_msr(vcpu, msr))
2298                         return kvm_pmu_set_msr(vcpu, msr_info);
2299                 if (!ignore_msrs) {
2300                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2301                                     msr, data);
2302                         return 1;
2303                 } else {
2304                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2305                                     msr, data);
2306                         break;
2307                 }
2308         }
2309         return 0;
2310 }
2311 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2312
2313
2314 /*
2315  * Reads an msr value (of 'msr_index') into 'pdata'.
2316  * Returns 0 on success, non-0 otherwise.
2317  * Assumes vcpu_load() was already called.
2318  */
2319 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2320 {
2321         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2322 }
2323
2324 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2327
2328         if (!msr_mtrr_valid(msr))
2329                 return 1;
2330
2331         if (msr == MSR_MTRRdefType)
2332                 *pdata = vcpu->arch.mtrr_state.def_type +
2333                          (vcpu->arch.mtrr_state.enabled << 10);
2334         else if (msr == MSR_MTRRfix64K_00000)
2335                 *pdata = p[0];
2336         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2337                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2338         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2339                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2340         else if (msr == MSR_IA32_CR_PAT)
2341                 *pdata = vcpu->arch.pat;
2342         else {  /* Variable MTRRs */
2343                 int idx, is_mtrr_mask;
2344                 u64 *pt;
2345
2346                 idx = (msr - 0x200) / 2;
2347                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2348                 if (!is_mtrr_mask)
2349                         pt =
2350                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2351                 else
2352                         pt =
2353                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2354                 *pdata = *pt;
2355         }
2356
2357         return 0;
2358 }
2359
2360 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2361 {
2362         u64 data;
2363         u64 mcg_cap = vcpu->arch.mcg_cap;
2364         unsigned bank_num = mcg_cap & 0xff;
2365
2366         switch (msr) {
2367         case MSR_IA32_P5_MC_ADDR:
2368         case MSR_IA32_P5_MC_TYPE:
2369                 data = 0;
2370                 break;
2371         case MSR_IA32_MCG_CAP:
2372                 data = vcpu->arch.mcg_cap;
2373                 break;
2374         case MSR_IA32_MCG_CTL:
2375                 if (!(mcg_cap & MCG_CTL_P))
2376                         return 1;
2377                 data = vcpu->arch.mcg_ctl;
2378                 break;
2379         case MSR_IA32_MCG_STATUS:
2380                 data = vcpu->arch.mcg_status;
2381                 break;
2382         default:
2383                 if (msr >= MSR_IA32_MC0_CTL &&
2384                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2385                         u32 offset = msr - MSR_IA32_MC0_CTL;
2386                         data = vcpu->arch.mce_banks[offset];
2387                         break;
2388                 }
2389                 return 1;
2390         }
2391         *pdata = data;
2392         return 0;
2393 }
2394
2395 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2396 {
2397         u64 data = 0;
2398         struct kvm *kvm = vcpu->kvm;
2399
2400         switch (msr) {
2401         case HV_X64_MSR_GUEST_OS_ID:
2402                 data = kvm->arch.hv_guest_os_id;
2403                 break;
2404         case HV_X64_MSR_HYPERCALL:
2405                 data = kvm->arch.hv_hypercall;
2406                 break;
2407         case HV_X64_MSR_TIME_REF_COUNT: {
2408                 data =
2409                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2410                 break;
2411         }
2412         case HV_X64_MSR_REFERENCE_TSC:
2413                 data = kvm->arch.hv_tsc_page;
2414                 break;
2415         default:
2416                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2417                 return 1;
2418         }
2419
2420         *pdata = data;
2421         return 0;
2422 }
2423
2424 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2425 {
2426         u64 data = 0;
2427
2428         switch (msr) {
2429         case HV_X64_MSR_VP_INDEX: {
2430                 int r;
2431                 struct kvm_vcpu *v;
2432                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2433                         if (v == vcpu) {
2434                                 data = r;
2435                                 break;
2436                         }
2437                 }
2438                 break;
2439         }
2440         case HV_X64_MSR_EOI:
2441                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2442         case HV_X64_MSR_ICR:
2443                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2444         case HV_X64_MSR_TPR:
2445                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2446         case HV_X64_MSR_APIC_ASSIST_PAGE:
2447                 data = vcpu->arch.hv_vapic;
2448                 break;
2449         default:
2450                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2451                 return 1;
2452         }
2453         *pdata = data;
2454         return 0;
2455 }
2456
2457 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2458 {
2459         u64 data;
2460
2461         switch (msr) {
2462         case MSR_IA32_PLATFORM_ID:
2463         case MSR_IA32_EBL_CR_POWERON:
2464         case MSR_IA32_DEBUGCTLMSR:
2465         case MSR_IA32_LASTBRANCHFROMIP:
2466         case MSR_IA32_LASTBRANCHTOIP:
2467         case MSR_IA32_LASTINTFROMIP:
2468         case MSR_IA32_LASTINTTOIP:
2469         case MSR_K8_SYSCFG:
2470         case MSR_K7_HWCR:
2471         case MSR_VM_HSAVE_PA:
2472         case MSR_K7_EVNTSEL0:
2473         case MSR_K7_EVNTSEL1:
2474         case MSR_K7_EVNTSEL2:
2475         case MSR_K7_EVNTSEL3:
2476         case MSR_K7_PERFCTR0:
2477         case MSR_K7_PERFCTR1:
2478         case MSR_K7_PERFCTR2:
2479         case MSR_K7_PERFCTR3:
2480         case MSR_K8_INT_PENDING_MSG:
2481         case MSR_AMD64_NB_CFG:
2482         case MSR_FAM10H_MMIO_CONF_BASE:
2483         case MSR_AMD64_BU_CFG2:
2484                 data = 0;
2485                 break;
2486         case MSR_P6_PERFCTR0:
2487         case MSR_P6_PERFCTR1:
2488         case MSR_P6_EVNTSEL0:
2489         case MSR_P6_EVNTSEL1:
2490                 if (kvm_pmu_msr(vcpu, msr))
2491                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2492                 data = 0;
2493                 break;
2494         case MSR_IA32_UCODE_REV:
2495                 data = 0x100000000ULL;
2496                 break;
2497         case MSR_MTRRcap:
2498                 data = 0x500 | KVM_NR_VAR_MTRR;
2499                 break;
2500         case 0x200 ... 0x2ff:
2501                 return get_msr_mtrr(vcpu, msr, pdata);
2502         case 0xcd: /* fsb frequency */
2503                 data = 3;
2504                 break;
2505                 /*
2506                  * MSR_EBC_FREQUENCY_ID
2507                  * Conservative value valid for even the basic CPU models.
2508                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2509                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2510                  * and 266MHz for model 3, or 4. Set Core Clock
2511                  * Frequency to System Bus Frequency Ratio to 1 (bits
2512                  * 31:24) even though these are only valid for CPU
2513                  * models > 2, however guests may end up dividing or
2514                  * multiplying by zero otherwise.
2515                  */
2516         case MSR_EBC_FREQUENCY_ID:
2517                 data = 1 << 24;
2518                 break;
2519         case MSR_IA32_APICBASE:
2520                 data = kvm_get_apic_base(vcpu);
2521                 break;
2522         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2523                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2524                 break;
2525         case MSR_IA32_TSCDEADLINE:
2526                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2527                 break;
2528         case MSR_IA32_TSC_ADJUST:
2529                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2530                 break;
2531         case MSR_IA32_MISC_ENABLE:
2532                 data = vcpu->arch.ia32_misc_enable_msr;
2533                 break;
2534         case MSR_IA32_PERF_STATUS:
2535                 /* TSC increment by tick */
2536                 data = 1000ULL;
2537                 /* CPU multiplier */
2538                 data |= (((uint64_t)4ULL) << 40);
2539                 break;
2540         case MSR_EFER:
2541                 data = vcpu->arch.efer;
2542                 break;
2543         case MSR_KVM_WALL_CLOCK:
2544         case MSR_KVM_WALL_CLOCK_NEW:
2545                 data = vcpu->kvm->arch.wall_clock;
2546                 break;
2547         case MSR_KVM_SYSTEM_TIME:
2548         case MSR_KVM_SYSTEM_TIME_NEW:
2549                 data = vcpu->arch.time;
2550                 break;
2551         case MSR_KVM_ASYNC_PF_EN:
2552                 data = vcpu->arch.apf.msr_val;
2553                 break;
2554         case MSR_KVM_STEAL_TIME:
2555                 data = vcpu->arch.st.msr_val;
2556                 break;
2557         case MSR_KVM_PV_EOI_EN:
2558                 data = vcpu->arch.pv_eoi.msr_val;
2559                 break;
2560         case MSR_IA32_P5_MC_ADDR:
2561         case MSR_IA32_P5_MC_TYPE:
2562         case MSR_IA32_MCG_CAP:
2563         case MSR_IA32_MCG_CTL:
2564         case MSR_IA32_MCG_STATUS:
2565         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2566                 return get_msr_mce(vcpu, msr, pdata);
2567         case MSR_K7_CLK_CTL:
2568                 /*
2569                  * Provide expected ramp-up count for K7. All other
2570                  * are set to zero, indicating minimum divisors for
2571                  * every field.
2572                  *
2573                  * This prevents guest kernels on AMD host with CPU
2574                  * type 6, model 8 and higher from exploding due to
2575                  * the rdmsr failing.
2576                  */
2577                 data = 0x20000000;
2578                 break;
2579         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2580                 if (kvm_hv_msr_partition_wide(msr)) {
2581                         int r;
2582                         mutex_lock(&vcpu->kvm->lock);
2583                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2584                         mutex_unlock(&vcpu->kvm->lock);
2585                         return r;
2586                 } else
2587                         return get_msr_hyperv(vcpu, msr, pdata);
2588                 break;
2589         case MSR_IA32_BBL_CR_CTL3:
2590                 /* This legacy MSR exists but isn't fully documented in current
2591                  * silicon.  It is however accessed by winxp in very narrow
2592                  * scenarios where it sets bit #19, itself documented as
2593                  * a "reserved" bit.  Best effort attempt to source coherent
2594                  * read data here should the balance of the register be
2595                  * interpreted by the guest:
2596                  *
2597                  * L2 cache control register 3: 64GB range, 256KB size,
2598                  * enabled, latency 0x1, configured
2599                  */
2600                 data = 0xbe702111;
2601                 break;
2602         case MSR_AMD64_OSVW_ID_LENGTH:
2603                 if (!guest_cpuid_has_osvw(vcpu))
2604                         return 1;
2605                 data = vcpu->arch.osvw.length;
2606                 break;
2607         case MSR_AMD64_OSVW_STATUS:
2608                 if (!guest_cpuid_has_osvw(vcpu))
2609                         return 1;
2610                 data = vcpu->arch.osvw.status;
2611                 break;
2612         default:
2613                 if (kvm_pmu_msr(vcpu, msr))
2614                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2615                 if (!ignore_msrs) {
2616                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2617                         return 1;
2618                 } else {
2619                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2620                         data = 0;
2621                 }
2622                 break;
2623         }
2624         *pdata = data;
2625         return 0;
2626 }
2627 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2628
2629 /*
2630  * Read or write a bunch of msrs. All parameters are kernel addresses.
2631  *
2632  * @return number of msrs set successfully.
2633  */
2634 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2635                     struct kvm_msr_entry *entries,
2636                     int (*do_msr)(struct kvm_vcpu *vcpu,
2637                                   unsigned index, u64 *data))
2638 {
2639         int i, idx;
2640
2641         idx = srcu_read_lock(&vcpu->kvm->srcu);
2642         for (i = 0; i < msrs->nmsrs; ++i)
2643                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2644                         break;
2645         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2646
2647         return i;
2648 }
2649
2650 /*
2651  * Read or write a bunch of msrs. Parameters are user addresses.
2652  *
2653  * @return number of msrs set successfully.
2654  */
2655 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2656                   int (*do_msr)(struct kvm_vcpu *vcpu,
2657                                 unsigned index, u64 *data),
2658                   int writeback)
2659 {
2660         struct kvm_msrs msrs;
2661         struct kvm_msr_entry *entries;
2662         int r, n;
2663         unsigned size;
2664
2665         r = -EFAULT;
2666         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2667                 goto out;
2668
2669         r = -E2BIG;
2670         if (msrs.nmsrs >= MAX_IO_MSRS)
2671                 goto out;
2672
2673         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2674         entries = memdup_user(user_msrs->entries, size);
2675         if (IS_ERR(entries)) {
2676                 r = PTR_ERR(entries);
2677                 goto out;
2678         }
2679
2680         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2681         if (r < 0)
2682                 goto out_free;
2683
2684         r = -EFAULT;
2685         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2686                 goto out_free;
2687
2688         r = n;
2689
2690 out_free:
2691         kfree(entries);
2692 out:
2693         return r;
2694 }
2695
2696 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2697 {
2698         int r;
2699
2700         switch (ext) {
2701         case KVM_CAP_IRQCHIP:
2702         case KVM_CAP_HLT:
2703         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2704         case KVM_CAP_SET_TSS_ADDR:
2705         case KVM_CAP_EXT_CPUID:
2706         case KVM_CAP_EXT_EMUL_CPUID:
2707         case KVM_CAP_CLOCKSOURCE:
2708         case KVM_CAP_PIT:
2709         case KVM_CAP_NOP_IO_DELAY:
2710         case KVM_CAP_MP_STATE:
2711         case KVM_CAP_SYNC_MMU:
2712         case KVM_CAP_USER_NMI:
2713         case KVM_CAP_REINJECT_CONTROL:
2714         case KVM_CAP_IRQ_INJECT_STATUS:
2715         case KVM_CAP_IRQFD:
2716         case KVM_CAP_IOEVENTFD:
2717         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2718         case KVM_CAP_PIT2:
2719         case KVM_CAP_PIT_STATE2:
2720         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2721         case KVM_CAP_XEN_HVM:
2722         case KVM_CAP_ADJUST_CLOCK:
2723         case KVM_CAP_VCPU_EVENTS:
2724         case KVM_CAP_HYPERV:
2725         case KVM_CAP_HYPERV_VAPIC:
2726         case KVM_CAP_HYPERV_SPIN:
2727         case KVM_CAP_PCI_SEGMENT:
2728         case KVM_CAP_DEBUGREGS:
2729         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2730         case KVM_CAP_XSAVE:
2731         case KVM_CAP_ASYNC_PF:
2732         case KVM_CAP_GET_TSC_KHZ:
2733         case KVM_CAP_KVMCLOCK_CTRL:
2734         case KVM_CAP_READONLY_MEM:
2735         case KVM_CAP_HYPERV_TIME:
2736         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2737 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2738         case KVM_CAP_ASSIGN_DEV_IRQ:
2739         case KVM_CAP_PCI_2_3:
2740 #endif
2741                 r = 1;
2742                 break;
2743         case KVM_CAP_COALESCED_MMIO:
2744                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2745                 break;
2746         case KVM_CAP_VAPIC:
2747                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2748                 break;
2749         case KVM_CAP_NR_VCPUS:
2750                 r = KVM_SOFT_MAX_VCPUS;
2751                 break;
2752         case KVM_CAP_MAX_VCPUS:
2753                 r = KVM_MAX_VCPUS;
2754                 break;
2755         case KVM_CAP_NR_MEMSLOTS:
2756                 r = KVM_USER_MEM_SLOTS;
2757                 break;
2758         case KVM_CAP_PV_MMU:    /* obsolete */
2759                 r = 0;
2760                 break;
2761 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2762         case KVM_CAP_IOMMU:
2763                 r = iommu_present(&pci_bus_type);
2764                 break;
2765 #endif
2766         case KVM_CAP_MCE:
2767                 r = KVM_MAX_MCE_BANKS;
2768                 break;
2769         case KVM_CAP_XCRS:
2770                 r = cpu_has_xsave;
2771                 break;
2772         case KVM_CAP_TSC_CONTROL:
2773                 r = kvm_has_tsc_control;
2774                 break;
2775         case KVM_CAP_TSC_DEADLINE_TIMER:
2776                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2777                 break;
2778         default:
2779                 r = 0;
2780                 break;
2781         }
2782         return r;
2783
2784 }
2785
2786 long kvm_arch_dev_ioctl(struct file *filp,
2787                         unsigned int ioctl, unsigned long arg)
2788 {
2789         void __user *argp = (void __user *)arg;
2790         long r;
2791
2792         switch (ioctl) {
2793         case KVM_GET_MSR_INDEX_LIST: {
2794                 struct kvm_msr_list __user *user_msr_list = argp;
2795                 struct kvm_msr_list msr_list;
2796                 unsigned n;
2797
2798                 r = -EFAULT;
2799                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2800                         goto out;
2801                 n = msr_list.nmsrs;
2802                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2803                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2804                         goto out;
2805                 r = -E2BIG;
2806                 if (n < msr_list.nmsrs)
2807                         goto out;
2808                 r = -EFAULT;
2809                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2810                                  num_msrs_to_save * sizeof(u32)))
2811                         goto out;
2812                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2813                                  &emulated_msrs,
2814                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2815                         goto out;
2816                 r = 0;
2817                 break;
2818         }
2819         case KVM_GET_SUPPORTED_CPUID:
2820         case KVM_GET_EMULATED_CPUID: {
2821                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2822                 struct kvm_cpuid2 cpuid;
2823
2824                 r = -EFAULT;
2825                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2826                         goto out;
2827
2828                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2829                                             ioctl);
2830                 if (r)
2831                         goto out;
2832
2833                 r = -EFAULT;
2834                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2835                         goto out;
2836                 r = 0;
2837                 break;
2838         }
2839         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2840                 u64 mce_cap;
2841
2842                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2843                 r = -EFAULT;
2844                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2845                         goto out;
2846                 r = 0;
2847                 break;
2848         }
2849         default:
2850                 r = -EINVAL;
2851         }
2852 out:
2853         return r;
2854 }
2855
2856 static void wbinvd_ipi(void *garbage)
2857 {
2858         wbinvd();
2859 }
2860
2861 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2862 {
2863         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2864 }
2865
2866 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2867 {
2868         /* Address WBINVD may be executed by guest */
2869         if (need_emulate_wbinvd(vcpu)) {
2870                 if (kvm_x86_ops->has_wbinvd_exit())
2871                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2872                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2873                         smp_call_function_single(vcpu->cpu,
2874                                         wbinvd_ipi, NULL, 1);
2875         }
2876
2877         kvm_x86_ops->vcpu_load(vcpu, cpu);
2878
2879         /* Apply any externally detected TSC adjustments (due to suspend) */
2880         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2881                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2882                 vcpu->arch.tsc_offset_adjustment = 0;
2883                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2884         }
2885
2886         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2887                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2888                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2889                 if (tsc_delta < 0)
2890                         mark_tsc_unstable("KVM discovered backwards TSC");
2891                 if (check_tsc_unstable()) {
2892                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2893                                                 vcpu->arch.last_guest_tsc);
2894                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2895                         vcpu->arch.tsc_catchup = 1;
2896                 }
2897                 /*
2898                  * On a host with synchronized TSC, there is no need to update
2899                  * kvmclock on vcpu->cpu migration
2900                  */
2901                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2902                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2903                 if (vcpu->cpu != cpu)
2904                         kvm_migrate_timers(vcpu);
2905                 vcpu->cpu = cpu;
2906         }
2907
2908         accumulate_steal_time(vcpu);
2909         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2910 }
2911
2912 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2913 {
2914         kvm_x86_ops->vcpu_put(vcpu);
2915         kvm_put_guest_fpu(vcpu);
2916         vcpu->arch.last_host_tsc = native_read_tsc();
2917 }
2918
2919 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2920                                     struct kvm_lapic_state *s)
2921 {
2922         kvm_x86_ops->sync_pir_to_irr(vcpu);
2923         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2924
2925         return 0;
2926 }
2927
2928 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2929                                     struct kvm_lapic_state *s)
2930 {
2931         kvm_apic_post_state_restore(vcpu, s);
2932         update_cr8_intercept(vcpu);
2933
2934         return 0;
2935 }
2936
2937 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2938                                     struct kvm_interrupt *irq)
2939 {
2940         if (irq->irq >= KVM_NR_INTERRUPTS)
2941                 return -EINVAL;
2942         if (irqchip_in_kernel(vcpu->kvm))
2943                 return -ENXIO;
2944
2945         kvm_queue_interrupt(vcpu, irq->irq, false);
2946         kvm_make_request(KVM_REQ_EVENT, vcpu);
2947
2948         return 0;
2949 }
2950
2951 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2952 {
2953         kvm_inject_nmi(vcpu);
2954
2955         return 0;
2956 }
2957
2958 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2959                                            struct kvm_tpr_access_ctl *tac)
2960 {
2961         if (tac->flags)
2962                 return -EINVAL;
2963         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2964         return 0;
2965 }
2966
2967 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2968                                         u64 mcg_cap)
2969 {
2970         int r;
2971         unsigned bank_num = mcg_cap & 0xff, bank;
2972
2973         r = -EINVAL;
2974         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2975                 goto out;
2976         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2977                 goto out;
2978         r = 0;
2979         vcpu->arch.mcg_cap = mcg_cap;
2980         /* Init IA32_MCG_CTL to all 1s */
2981         if (mcg_cap & MCG_CTL_P)
2982                 vcpu->arch.mcg_ctl = ~(u64)0;
2983         /* Init IA32_MCi_CTL to all 1s */
2984         for (bank = 0; bank < bank_num; bank++)
2985                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2986 out:
2987         return r;
2988 }
2989
2990 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2991                                       struct kvm_x86_mce *mce)
2992 {
2993         u64 mcg_cap = vcpu->arch.mcg_cap;
2994         unsigned bank_num = mcg_cap & 0xff;
2995         u64 *banks = vcpu->arch.mce_banks;
2996
2997         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2998                 return -EINVAL;
2999         /*
3000          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3001          * reporting is disabled
3002          */
3003         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3004             vcpu->arch.mcg_ctl != ~(u64)0)
3005                 return 0;
3006         banks += 4 * mce->bank;
3007         /*
3008          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3009          * reporting is disabled for the bank
3010          */
3011         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3012                 return 0;
3013         if (mce->status & MCI_STATUS_UC) {
3014                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3015                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3016                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3017                         return 0;
3018                 }
3019                 if (banks[1] & MCI_STATUS_VAL)
3020                         mce->status |= MCI_STATUS_OVER;
3021                 banks[2] = mce->addr;
3022                 banks[3] = mce->misc;
3023                 vcpu->arch.mcg_status = mce->mcg_status;
3024                 banks[1] = mce->status;
3025                 kvm_queue_exception(vcpu, MC_VECTOR);
3026         } else if (!(banks[1] & MCI_STATUS_VAL)
3027                    || !(banks[1] & MCI_STATUS_UC)) {
3028                 if (banks[1] & MCI_STATUS_VAL)
3029                         mce->status |= MCI_STATUS_OVER;
3030                 banks[2] = mce->addr;
3031                 banks[3] = mce->misc;
3032                 banks[1] = mce->status;
3033         } else
3034                 banks[1] |= MCI_STATUS_OVER;
3035         return 0;
3036 }
3037
3038 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3039                                                struct kvm_vcpu_events *events)
3040 {
3041         process_nmi(vcpu);
3042         events->exception.injected =
3043                 vcpu->arch.exception.pending &&
3044                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3045         events->exception.nr = vcpu->arch.exception.nr;
3046         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3047         events->exception.pad = 0;
3048         events->exception.error_code = vcpu->arch.exception.error_code;
3049
3050         events->interrupt.injected =
3051                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3052         events->interrupt.nr = vcpu->arch.interrupt.nr;
3053         events->interrupt.soft = 0;
3054         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3055
3056         events->nmi.injected = vcpu->arch.nmi_injected;
3057         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3058         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3059         events->nmi.pad = 0;
3060
3061         events->sipi_vector = 0; /* never valid when reporting to user space */
3062
3063         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3064                          | KVM_VCPUEVENT_VALID_SHADOW);
3065         memset(&events->reserved, 0, sizeof(events->reserved));
3066 }
3067
3068 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3069                                               struct kvm_vcpu_events *events)
3070 {
3071         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3072                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3073                               | KVM_VCPUEVENT_VALID_SHADOW))
3074                 return -EINVAL;
3075
3076         process_nmi(vcpu);
3077         vcpu->arch.exception.pending = events->exception.injected;
3078         vcpu->arch.exception.nr = events->exception.nr;
3079         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3080         vcpu->arch.exception.error_code = events->exception.error_code;
3081
3082         vcpu->arch.interrupt.pending = events->interrupt.injected;
3083         vcpu->arch.interrupt.nr = events->interrupt.nr;
3084         vcpu->arch.interrupt.soft = events->interrupt.soft;
3085         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3086                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3087                                                   events->interrupt.shadow);
3088
3089         vcpu->arch.nmi_injected = events->nmi.injected;
3090         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3091                 vcpu->arch.nmi_pending = events->nmi.pending;
3092         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3093
3094         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3095             kvm_vcpu_has_lapic(vcpu))
3096                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3097
3098         kvm_make_request(KVM_REQ_EVENT, vcpu);
3099
3100         return 0;
3101 }
3102
3103 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3104                                              struct kvm_debugregs *dbgregs)
3105 {
3106         unsigned long val;
3107
3108         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3109         _kvm_get_dr(vcpu, 6, &val);
3110         dbgregs->dr6 = val;
3111         dbgregs->dr7 = vcpu->arch.dr7;
3112         dbgregs->flags = 0;
3113         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3114 }
3115
3116 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3117                                             struct kvm_debugregs *dbgregs)
3118 {
3119         if (dbgregs->flags)
3120                 return -EINVAL;
3121
3122         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3123         vcpu->arch.dr6 = dbgregs->dr6;
3124         kvm_update_dr6(vcpu);
3125         vcpu->arch.dr7 = dbgregs->dr7;
3126         kvm_update_dr7(vcpu);
3127
3128         return 0;
3129 }
3130
3131 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3132                                          struct kvm_xsave *guest_xsave)
3133 {
3134         if (cpu_has_xsave) {
3135                 memcpy(guest_xsave->region,
3136                         &vcpu->arch.guest_fpu.state->xsave,
3137                         vcpu->arch.guest_xstate_size);
3138                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3139                         vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3140         } else {
3141                 memcpy(guest_xsave->region,
3142                         &vcpu->arch.guest_fpu.state->fxsave,
3143                         sizeof(struct i387_fxsave_struct));
3144                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3145                         XSTATE_FPSSE;
3146         }
3147 }
3148
3149 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3150                                         struct kvm_xsave *guest_xsave)
3151 {
3152         u64 xstate_bv =
3153                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3154
3155         if (cpu_has_xsave) {
3156                 /*
3157                  * Here we allow setting states that are not present in
3158                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3159                  * with old userspace.
3160                  */
3161                 if (xstate_bv & ~kvm_supported_xcr0())
3162                         return -EINVAL;
3163                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3164                         guest_xsave->region, vcpu->arch.guest_xstate_size);
3165         } else {
3166                 if (xstate_bv & ~XSTATE_FPSSE)
3167                         return -EINVAL;
3168                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3169                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3170         }
3171         return 0;
3172 }
3173
3174 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3175                                         struct kvm_xcrs *guest_xcrs)
3176 {
3177         if (!cpu_has_xsave) {
3178                 guest_xcrs->nr_xcrs = 0;
3179                 return;
3180         }
3181
3182         guest_xcrs->nr_xcrs = 1;
3183         guest_xcrs->flags = 0;
3184         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3185         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3186 }
3187
3188 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3189                                        struct kvm_xcrs *guest_xcrs)
3190 {
3191         int i, r = 0;
3192
3193         if (!cpu_has_xsave)
3194                 return -EINVAL;
3195
3196         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3197                 return -EINVAL;
3198
3199         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3200                 /* Only support XCR0 currently */
3201                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3202                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3203                                 guest_xcrs->xcrs[i].value);
3204                         break;
3205                 }
3206         if (r)
3207                 r = -EINVAL;
3208         return r;
3209 }
3210
3211 /*
3212  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3213  * stopped by the hypervisor.  This function will be called from the host only.
3214  * EINVAL is returned when the host attempts to set the flag for a guest that
3215  * does not support pv clocks.
3216  */
3217 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3218 {
3219         if (!vcpu->arch.pv_time_enabled)
3220                 return -EINVAL;
3221         vcpu->arch.pvclock_set_guest_stopped_request = true;
3222         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3223         return 0;
3224 }
3225
3226 long kvm_arch_vcpu_ioctl(struct file *filp,
3227                          unsigned int ioctl, unsigned long arg)
3228 {
3229         struct kvm_vcpu *vcpu = filp->private_data;
3230         void __user *argp = (void __user *)arg;
3231         int r;
3232         union {
3233                 struct kvm_lapic_state *lapic;
3234                 struct kvm_xsave *xsave;
3235                 struct kvm_xcrs *xcrs;
3236                 void *buffer;
3237         } u;
3238
3239         u.buffer = NULL;
3240         switch (ioctl) {
3241         case KVM_GET_LAPIC: {
3242                 r = -EINVAL;
3243                 if (!vcpu->arch.apic)
3244                         goto out;
3245                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3246
3247                 r = -ENOMEM;
3248                 if (!u.lapic)
3249                         goto out;
3250                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3251                 if (r)
3252                         goto out;
3253                 r = -EFAULT;
3254                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3255                         goto out;
3256                 r = 0;
3257                 break;
3258         }
3259         case KVM_SET_LAPIC: {
3260                 r = -EINVAL;
3261                 if (!vcpu->arch.apic)
3262                         goto out;
3263                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3264                 if (IS_ERR(u.lapic))
3265                         return PTR_ERR(u.lapic);
3266
3267                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3268                 break;
3269         }
3270         case KVM_INTERRUPT: {
3271                 struct kvm_interrupt irq;
3272
3273                 r = -EFAULT;
3274                 if (copy_from_user(&irq, argp, sizeof irq))
3275                         goto out;
3276                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3277                 break;
3278         }
3279         case KVM_NMI: {
3280                 r = kvm_vcpu_ioctl_nmi(vcpu);
3281                 break;
3282         }
3283         case KVM_SET_CPUID: {
3284                 struct kvm_cpuid __user *cpuid_arg = argp;
3285                 struct kvm_cpuid cpuid;
3286
3287                 r = -EFAULT;
3288                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3289                         goto out;
3290                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3291                 break;
3292         }
3293         case KVM_SET_CPUID2: {
3294                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3295                 struct kvm_cpuid2 cpuid;
3296
3297                 r = -EFAULT;
3298                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3299                         goto out;
3300                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3301                                               cpuid_arg->entries);
3302                 break;
3303         }
3304         case KVM_GET_CPUID2: {
3305                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3306                 struct kvm_cpuid2 cpuid;
3307
3308                 r = -EFAULT;
3309                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3310                         goto out;
3311                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3312                                               cpuid_arg->entries);
3313                 if (r)
3314                         goto out;
3315                 r = -EFAULT;
3316                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3317                         goto out;
3318                 r = 0;
3319                 break;
3320         }
3321         case KVM_GET_MSRS:
3322                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3323                 break;
3324         case KVM_SET_MSRS:
3325                 r = msr_io(vcpu, argp, do_set_msr, 0);
3326                 break;
3327         case KVM_TPR_ACCESS_REPORTING: {
3328                 struct kvm_tpr_access_ctl tac;
3329
3330                 r = -EFAULT;
3331                 if (copy_from_user(&tac, argp, sizeof tac))
3332                         goto out;
3333                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3334                 if (r)
3335                         goto out;
3336                 r = -EFAULT;
3337                 if (copy_to_user(argp, &tac, sizeof tac))
3338                         goto out;
3339                 r = 0;
3340                 break;
3341         };
3342         case KVM_SET_VAPIC_ADDR: {
3343                 struct kvm_vapic_addr va;
3344
3345                 r = -EINVAL;
3346                 if (!irqchip_in_kernel(vcpu->kvm))
3347                         goto out;
3348                 r = -EFAULT;
3349                 if (copy_from_user(&va, argp, sizeof va))
3350                         goto out;
3351                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3352                 break;
3353         }
3354         case KVM_X86_SETUP_MCE: {
3355                 u64 mcg_cap;
3356
3357                 r = -EFAULT;
3358                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3359                         goto out;
3360                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3361                 break;
3362         }
3363         case KVM_X86_SET_MCE: {
3364                 struct kvm_x86_mce mce;
3365
3366                 r = -EFAULT;
3367                 if (copy_from_user(&mce, argp, sizeof mce))
3368                         goto out;
3369                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3370                 break;
3371         }
3372         case KVM_GET_VCPU_EVENTS: {
3373                 struct kvm_vcpu_events events;
3374
3375                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3376
3377                 r = -EFAULT;
3378                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3379                         break;
3380                 r = 0;
3381                 break;
3382         }
3383         case KVM_SET_VCPU_EVENTS: {
3384                 struct kvm_vcpu_events events;
3385
3386                 r = -EFAULT;
3387                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3388                         break;
3389
3390                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3391                 break;
3392         }
3393         case KVM_GET_DEBUGREGS: {
3394                 struct kvm_debugregs dbgregs;
3395
3396                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3397
3398                 r = -EFAULT;
3399                 if (copy_to_user(argp, &dbgregs,
3400                                  sizeof(struct kvm_debugregs)))
3401                         break;
3402                 r = 0;
3403                 break;
3404         }
3405         case KVM_SET_DEBUGREGS: {
3406                 struct kvm_debugregs dbgregs;
3407
3408                 r = -EFAULT;
3409                 if (copy_from_user(&dbgregs, argp,
3410                                    sizeof(struct kvm_debugregs)))
3411                         break;
3412
3413                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3414                 break;
3415         }
3416         case KVM_GET_XSAVE: {
3417                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3418                 r = -ENOMEM;
3419                 if (!u.xsave)
3420                         break;
3421
3422                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3423
3424                 r = -EFAULT;
3425                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3426                         break;
3427                 r = 0;
3428                 break;
3429         }
3430         case KVM_SET_XSAVE: {
3431                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3432                 if (IS_ERR(u.xsave))
3433                         return PTR_ERR(u.xsave);
3434
3435                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3436                 break;
3437         }
3438         case KVM_GET_XCRS: {
3439                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3440                 r = -ENOMEM;
3441                 if (!u.xcrs)
3442                         break;
3443
3444                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3445
3446                 r = -EFAULT;
3447                 if (copy_to_user(argp, u.xcrs,
3448                                  sizeof(struct kvm_xcrs)))
3449                         break;
3450                 r = 0;
3451                 break;
3452         }
3453         case KVM_SET_XCRS: {
3454                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3455                 if (IS_ERR(u.xcrs))
3456                         return PTR_ERR(u.xcrs);
3457
3458                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3459                 break;
3460         }
3461         case KVM_SET_TSC_KHZ: {
3462                 u32 user_tsc_khz;
3463
3464                 r = -EINVAL;
3465                 user_tsc_khz = (u32)arg;
3466
3467                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3468                         goto out;
3469
3470                 if (user_tsc_khz == 0)
3471                         user_tsc_khz = tsc_khz;
3472
3473                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3474
3475                 r = 0;
3476                 goto out;
3477         }
3478         case KVM_GET_TSC_KHZ: {
3479                 r = vcpu->arch.virtual_tsc_khz;
3480                 goto out;
3481         }
3482         case KVM_KVMCLOCK_CTRL: {
3483                 r = kvm_set_guest_paused(vcpu);
3484                 goto out;
3485         }
3486         default:
3487                 r = -EINVAL;
3488         }
3489 out:
3490         kfree(u.buffer);
3491         return r;
3492 }
3493
3494 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3495 {
3496         return VM_FAULT_SIGBUS;
3497 }
3498
3499 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3500 {
3501         int ret;
3502
3503         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3504                 return -EINVAL;
3505         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3506         return ret;
3507 }
3508
3509 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3510                                               u64 ident_addr)
3511 {
3512         kvm->arch.ept_identity_map_addr = ident_addr;
3513         return 0;
3514 }
3515
3516 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3517                                           u32 kvm_nr_mmu_pages)
3518 {
3519         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3520                 return -EINVAL;
3521
3522         mutex_lock(&kvm->slots_lock);
3523
3524         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3525         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3526
3527         mutex_unlock(&kvm->slots_lock);
3528         return 0;
3529 }
3530
3531 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3532 {
3533         return kvm->arch.n_max_mmu_pages;
3534 }
3535
3536 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3537 {
3538         int r;
3539
3540         r = 0;
3541         switch (chip->chip_id) {
3542         case KVM_IRQCHIP_PIC_MASTER:
3543                 memcpy(&chip->chip.pic,
3544                         &pic_irqchip(kvm)->pics[0],
3545                         sizeof(struct kvm_pic_state));
3546                 break;
3547         case KVM_IRQCHIP_PIC_SLAVE:
3548                 memcpy(&chip->chip.pic,
3549                         &pic_irqchip(kvm)->pics[1],
3550                         sizeof(struct kvm_pic_state));
3551                 break;
3552         case KVM_IRQCHIP_IOAPIC:
3553                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3554                 break;
3555         default:
3556                 r = -EINVAL;
3557                 break;
3558         }
3559         return r;
3560 }
3561
3562 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3563 {
3564         int r;
3565
3566         r = 0;
3567         switch (chip->chip_id) {
3568         case KVM_IRQCHIP_PIC_MASTER:
3569                 spin_lock(&pic_irqchip(kvm)->lock);
3570                 memcpy(&pic_irqchip(kvm)->pics[0],
3571                         &chip->chip.pic,
3572                         sizeof(struct kvm_pic_state));
3573                 spin_unlock(&pic_irqchip(kvm)->lock);
3574                 break;
3575         case KVM_IRQCHIP_PIC_SLAVE:
3576                 spin_lock(&pic_irqchip(kvm)->lock);
3577                 memcpy(&pic_irqchip(kvm)->pics[1],
3578                         &chip->chip.pic,
3579                         sizeof(struct kvm_pic_state));
3580                 spin_unlock(&pic_irqchip(kvm)->lock);
3581                 break;
3582         case KVM_IRQCHIP_IOAPIC:
3583                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3584                 break;
3585         default:
3586                 r = -EINVAL;
3587                 break;
3588         }
3589         kvm_pic_update_irq(pic_irqchip(kvm));
3590         return r;
3591 }
3592
3593 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3594 {
3595         int r = 0;
3596
3597         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3598         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3599         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3600         return r;
3601 }
3602
3603 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3604 {
3605         int r = 0;
3606
3607         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3608         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3609         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3610         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3611         return r;
3612 }
3613
3614 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3615 {
3616         int r = 0;
3617
3618         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3619         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3620                 sizeof(ps->channels));
3621         ps->flags = kvm->arch.vpit->pit_state.flags;
3622         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3623         memset(&ps->reserved, 0, sizeof(ps->reserved));
3624         return r;
3625 }
3626
3627 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3628 {
3629         int r = 0, start = 0;
3630         u32 prev_legacy, cur_legacy;
3631         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3632         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3633         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3634         if (!prev_legacy && cur_legacy)
3635                 start = 1;
3636         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3637                sizeof(kvm->arch.vpit->pit_state.channels));
3638         kvm->arch.vpit->pit_state.flags = ps->flags;
3639         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3640         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3641         return r;
3642 }
3643
3644 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3645                                  struct kvm_reinject_control *control)
3646 {
3647         if (!kvm->arch.vpit)
3648                 return -ENXIO;
3649         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3650         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3651         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3652         return 0;
3653 }
3654
3655 /**
3656  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3657  * @kvm: kvm instance
3658  * @log: slot id and address to which we copy the log
3659  *
3660  * We need to keep it in mind that VCPU threads can write to the bitmap
3661  * concurrently.  So, to avoid losing data, we keep the following order for
3662  * each bit:
3663  *
3664  *   1. Take a snapshot of the bit and clear it if needed.
3665  *   2. Write protect the corresponding page.
3666  *   3. Flush TLB's if needed.
3667  *   4. Copy the snapshot to the userspace.
3668  *
3669  * Between 2 and 3, the guest may write to the page using the remaining TLB
3670  * entry.  This is not a problem because the page will be reported dirty at
3671  * step 4 using the snapshot taken before and step 3 ensures that successive
3672  * writes will be logged for the next call.
3673  */
3674 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3675 {
3676         int r;
3677         struct kvm_memory_slot *memslot;
3678         unsigned long n, i;
3679         unsigned long *dirty_bitmap;
3680         unsigned long *dirty_bitmap_buffer;
3681         bool is_dirty = false;
3682
3683         mutex_lock(&kvm->slots_lock);
3684
3685         r = -EINVAL;
3686         if (log->slot >= KVM_USER_MEM_SLOTS)
3687                 goto out;
3688
3689         memslot = id_to_memslot(kvm->memslots, log->slot);
3690
3691         dirty_bitmap = memslot->dirty_bitmap;
3692         r = -ENOENT;
3693         if (!dirty_bitmap)
3694                 goto out;
3695
3696         n = kvm_dirty_bitmap_bytes(memslot);
3697
3698         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3699         memset(dirty_bitmap_buffer, 0, n);
3700
3701         spin_lock(&kvm->mmu_lock);
3702
3703         for (i = 0; i < n / sizeof(long); i++) {
3704                 unsigned long mask;
3705                 gfn_t offset;
3706
3707                 if (!dirty_bitmap[i])
3708                         continue;
3709
3710                 is_dirty = true;
3711
3712                 mask = xchg(&dirty_bitmap[i], 0);
3713                 dirty_bitmap_buffer[i] = mask;
3714
3715                 offset = i * BITS_PER_LONG;
3716                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3717         }
3718
3719         spin_unlock(&kvm->mmu_lock);
3720
3721         /* See the comments in kvm_mmu_slot_remove_write_access(). */
3722         lockdep_assert_held(&kvm->slots_lock);
3723
3724         /*
3725          * All the TLBs can be flushed out of mmu lock, see the comments in
3726          * kvm_mmu_slot_remove_write_access().
3727          */
3728         if (is_dirty)
3729                 kvm_flush_remote_tlbs(kvm);
3730
3731         r = -EFAULT;
3732         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3733                 goto out;
3734
3735         r = 0;
3736 out:
3737         mutex_unlock(&kvm->slots_lock);
3738         return r;
3739 }
3740
3741 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3742                         bool line_status)
3743 {
3744         if (!irqchip_in_kernel(kvm))
3745                 return -ENXIO;
3746
3747         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3748                                         irq_event->irq, irq_event->level,
3749                                         line_status);
3750         return 0;
3751 }
3752
3753 long kvm_arch_vm_ioctl(struct file *filp,
3754                        unsigned int ioctl, unsigned long arg)
3755 {
3756         struct kvm *kvm = filp->private_data;
3757         void __user *argp = (void __user *)arg;
3758         int r = -ENOTTY;
3759         /*
3760          * This union makes it completely explicit to gcc-3.x
3761          * that these two variables' stack usage should be
3762          * combined, not added together.
3763          */
3764         union {
3765                 struct kvm_pit_state ps;
3766                 struct kvm_pit_state2 ps2;
3767                 struct kvm_pit_config pit_config;
3768         } u;
3769
3770         switch (ioctl) {
3771         case KVM_SET_TSS_ADDR:
3772                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3773                 break;
3774         case KVM_SET_IDENTITY_MAP_ADDR: {
3775                 u64 ident_addr;
3776
3777                 r = -EFAULT;
3778                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3779                         goto out;
3780                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3781                 break;
3782         }
3783         case KVM_SET_NR_MMU_PAGES:
3784                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3785                 break;
3786         case KVM_GET_NR_MMU_PAGES:
3787                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3788                 break;
3789         case KVM_CREATE_IRQCHIP: {
3790                 struct kvm_pic *vpic;
3791
3792                 mutex_lock(&kvm->lock);
3793                 r = -EEXIST;
3794                 if (kvm->arch.vpic)
3795                         goto create_irqchip_unlock;
3796                 r = -EINVAL;
3797                 if (atomic_read(&kvm->online_vcpus))
3798                         goto create_irqchip_unlock;
3799                 r = -ENOMEM;
3800                 vpic = kvm_create_pic(kvm);
3801                 if (vpic) {
3802                         r = kvm_ioapic_init(kvm);
3803                         if (r) {
3804                                 mutex_lock(&kvm->slots_lock);
3805                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3806                                                           &vpic->dev_master);
3807                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3808                                                           &vpic->dev_slave);
3809                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3810                                                           &vpic->dev_eclr);
3811                                 mutex_unlock(&kvm->slots_lock);
3812                                 kfree(vpic);
3813                                 goto create_irqchip_unlock;
3814                         }
3815                 } else
3816                         goto create_irqchip_unlock;
3817                 smp_wmb();
3818                 kvm->arch.vpic = vpic;
3819                 smp_wmb();
3820                 r = kvm_setup_default_irq_routing(kvm);
3821                 if (r) {
3822                         mutex_lock(&kvm->slots_lock);
3823                         mutex_lock(&kvm->irq_lock);
3824                         kvm_ioapic_destroy(kvm);
3825                         kvm_destroy_pic(kvm);
3826                         mutex_unlock(&kvm->irq_lock);
3827                         mutex_unlock(&kvm->slots_lock);
3828                 }
3829         create_irqchip_unlock:
3830                 mutex_unlock(&kvm->lock);
3831                 break;
3832         }
3833         case KVM_CREATE_PIT:
3834                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3835                 goto create_pit;
3836         case KVM_CREATE_PIT2:
3837                 r = -EFAULT;
3838                 if (copy_from_user(&u.pit_config, argp,
3839                                    sizeof(struct kvm_pit_config)))
3840                         goto out;
3841         create_pit:
3842                 mutex_lock(&kvm->slots_lock);
3843                 r = -EEXIST;
3844                 if (kvm->arch.vpit)
3845                         goto create_pit_unlock;
3846                 r = -ENOMEM;
3847                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3848                 if (kvm->arch.vpit)
3849                         r = 0;
3850         create_pit_unlock:
3851                 mutex_unlock(&kvm->slots_lock);
3852                 break;
3853         case KVM_GET_IRQCHIP: {
3854                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3855                 struct kvm_irqchip *chip;
3856
3857                 chip = memdup_user(argp, sizeof(*chip));
3858                 if (IS_ERR(chip)) {
3859                         r = PTR_ERR(chip);
3860                         goto out;
3861                 }
3862
3863                 r = -ENXIO;
3864                 if (!irqchip_in_kernel(kvm))
3865                         goto get_irqchip_out;
3866                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3867                 if (r)
3868                         goto get_irqchip_out;
3869                 r = -EFAULT;
3870                 if (copy_to_user(argp, chip, sizeof *chip))
3871                         goto get_irqchip_out;
3872                 r = 0;
3873         get_irqchip_out:
3874                 kfree(chip);
3875                 break;
3876         }
3877         case KVM_SET_IRQCHIP: {
3878                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3879                 struct kvm_irqchip *chip;
3880
3881                 chip = memdup_user(argp, sizeof(*chip));
3882                 if (IS_ERR(chip)) {
3883                         r = PTR_ERR(chip);
3884                         goto out;
3885                 }
3886
3887                 r = -ENXIO;
3888                 if (!irqchip_in_kernel(kvm))
3889                         goto set_irqchip_out;
3890                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3891                 if (r)
3892                         goto set_irqchip_out;
3893                 r = 0;
3894         set_irqchip_out:
3895                 kfree(chip);
3896                 break;
3897         }
3898         case KVM_GET_PIT: {
3899                 r = -EFAULT;
3900                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3901                         goto out;
3902                 r = -ENXIO;
3903                 if (!kvm->arch.vpit)
3904                         goto out;
3905                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3906                 if (r)
3907                         goto out;
3908                 r = -EFAULT;
3909                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3910                         goto out;
3911                 r = 0;
3912                 break;
3913         }
3914         case KVM_SET_PIT: {
3915                 r = -EFAULT;
3916                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3917                         goto out;
3918                 r = -ENXIO;
3919                 if (!kvm->arch.vpit)
3920                         goto out;
3921                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3922                 break;
3923         }
3924         case KVM_GET_PIT2: {
3925                 r = -ENXIO;
3926                 if (!kvm->arch.vpit)
3927                         goto out;
3928                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3929                 if (r)
3930                         goto out;
3931                 r = -EFAULT;
3932                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3933                         goto out;
3934                 r = 0;
3935                 break;
3936         }
3937         case KVM_SET_PIT2: {
3938                 r = -EFAULT;
3939                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3940                         goto out;
3941                 r = -ENXIO;
3942                 if (!kvm->arch.vpit)
3943                         goto out;
3944                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3945                 break;
3946         }
3947         case KVM_REINJECT_CONTROL: {
3948                 struct kvm_reinject_control control;
3949                 r =  -EFAULT;
3950                 if (copy_from_user(&control, argp, sizeof(control)))
3951                         goto out;
3952                 r = kvm_vm_ioctl_reinject(kvm, &control);
3953                 break;
3954         }
3955         case KVM_XEN_HVM_CONFIG: {
3956                 r = -EFAULT;
3957                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3958                                    sizeof(struct kvm_xen_hvm_config)))
3959                         goto out;
3960                 r = -EINVAL;
3961                 if (kvm->arch.xen_hvm_config.flags)
3962                         goto out;
3963                 r = 0;
3964                 break;
3965         }
3966         case KVM_SET_CLOCK: {
3967                 struct kvm_clock_data user_ns;
3968                 u64 now_ns;
3969                 s64 delta;
3970
3971                 r = -EFAULT;
3972                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3973                         goto out;
3974
3975                 r = -EINVAL;
3976                 if (user_ns.flags)
3977                         goto out;
3978
3979                 r = 0;
3980                 local_irq_disable();
3981                 now_ns = get_kernel_ns();
3982                 delta = user_ns.clock - now_ns;
3983                 local_irq_enable();
3984                 kvm->arch.kvmclock_offset = delta;
3985                 kvm_gen_update_masterclock(kvm);
3986                 break;
3987         }
3988         case KVM_GET_CLOCK: {
3989                 struct kvm_clock_data user_ns;
3990                 u64 now_ns;
3991
3992                 local_irq_disable();
3993                 now_ns = get_kernel_ns();
3994                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3995                 local_irq_enable();
3996                 user_ns.flags = 0;
3997                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3998
3999                 r = -EFAULT;
4000                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4001                         goto out;
4002                 r = 0;
4003                 break;
4004         }
4005
4006         default:
4007                 ;
4008         }
4009 out:
4010         return r;
4011 }
4012
4013 static void kvm_init_msr_list(void)
4014 {
4015         u32 dummy[2];
4016         unsigned i, j;
4017
4018         /* skip the first msrs in the list. KVM-specific */
4019         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4020                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4021                         continue;
4022
4023                 /*
4024                  * Even MSRs that are valid in the host may not be exposed
4025                  * to the guests in some cases.  We could work around this
4026                  * in VMX with the generic MSR save/load machinery, but it
4027                  * is not really worthwhile since it will really only
4028                  * happen with nested virtualization.
4029                  */
4030                 switch (msrs_to_save[i]) {
4031                 case MSR_IA32_BNDCFGS:
4032                         if (!kvm_x86_ops->mpx_supported())
4033                                 continue;
4034                         break;
4035                 default:
4036                         break;
4037                 }
4038
4039                 if (j < i)
4040                         msrs_to_save[j] = msrs_to_save[i];
4041                 j++;
4042         }
4043         num_msrs_to_save = j;
4044 }
4045
4046 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4047                            const void *v)
4048 {
4049         int handled = 0;
4050         int n;
4051
4052         do {
4053                 n = min(len, 8);
4054                 if (!(vcpu->arch.apic &&
4055                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4056                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4057                         break;
4058                 handled += n;
4059                 addr += n;
4060                 len -= n;
4061                 v += n;
4062         } while (len);
4063
4064         return handled;
4065 }
4066
4067 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4068 {
4069         int handled = 0;
4070         int n;
4071
4072         do {
4073                 n = min(len, 8);
4074                 if (!(vcpu->arch.apic &&
4075                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4076                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4077                         break;
4078                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4079                 handled += n;
4080                 addr += n;
4081                 len -= n;
4082                 v += n;
4083         } while (len);
4084
4085         return handled;
4086 }
4087
4088 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4089                         struct kvm_segment *var, int seg)
4090 {
4091         kvm_x86_ops->set_segment(vcpu, var, seg);
4092 }
4093
4094 void kvm_get_segment(struct kvm_vcpu *vcpu,
4095                      struct kvm_segment *var, int seg)
4096 {
4097         kvm_x86_ops->get_segment(vcpu, var, seg);
4098 }
4099
4100 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4101                            struct x86_exception *exception)
4102 {
4103         gpa_t t_gpa;
4104
4105         BUG_ON(!mmu_is_nested(vcpu));
4106
4107         /* NPT walks are always user-walks */
4108         access |= PFERR_USER_MASK;
4109         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4110
4111         return t_gpa;
4112 }
4113
4114 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4115                               struct x86_exception *exception)
4116 {
4117         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4118         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4119 }
4120
4121  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4122                                 struct x86_exception *exception)
4123 {
4124         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4125         access |= PFERR_FETCH_MASK;
4126         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4127 }
4128
4129 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4130                                struct x86_exception *exception)
4131 {
4132         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4133         access |= PFERR_WRITE_MASK;
4134         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4135 }
4136
4137 /* uses this to access any guest's mapped memory without checking CPL */
4138 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4139                                 struct x86_exception *exception)
4140 {
4141         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4142 }
4143
4144 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4145                                       struct kvm_vcpu *vcpu, u32 access,
4146                                       struct x86_exception *exception)
4147 {
4148         void *data = val;
4149         int r = X86EMUL_CONTINUE;
4150
4151         while (bytes) {
4152                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4153                                                             exception);
4154                 unsigned offset = addr & (PAGE_SIZE-1);
4155                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4156                 int ret;
4157
4158                 if (gpa == UNMAPPED_GVA)
4159                         return X86EMUL_PROPAGATE_FAULT;
4160                 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4161                                           offset, toread);
4162                 if (ret < 0) {
4163                         r = X86EMUL_IO_NEEDED;
4164                         goto out;
4165                 }
4166
4167                 bytes -= toread;
4168                 data += toread;
4169                 addr += toread;
4170         }
4171 out:
4172         return r;
4173 }
4174
4175 /* used for instruction fetching */
4176 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4177                                 gva_t addr, void *val, unsigned int bytes,
4178                                 struct x86_exception *exception)
4179 {
4180         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4181         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4182         unsigned offset;
4183         int ret;
4184
4185         /* Inline kvm_read_guest_virt_helper for speed.  */
4186         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4187                                                     exception);
4188         if (unlikely(gpa == UNMAPPED_GVA))
4189                 return X86EMUL_PROPAGATE_FAULT;
4190
4191         offset = addr & (PAGE_SIZE-1);
4192         if (WARN_ON(offset + bytes > PAGE_SIZE))
4193                 bytes = (unsigned)PAGE_SIZE - offset;
4194         ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4195                                   offset, bytes);
4196         if (unlikely(ret < 0))
4197                 return X86EMUL_IO_NEEDED;
4198
4199         return X86EMUL_CONTINUE;
4200 }
4201
4202 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4203                                gva_t addr, void *val, unsigned int bytes,
4204                                struct x86_exception *exception)
4205 {
4206         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4207         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4208
4209         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4210                                           exception);
4211 }
4212 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4213
4214 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4215                                       gva_t addr, void *val, unsigned int bytes,
4216                                       struct x86_exception *exception)
4217 {
4218         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4219         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4220 }
4221
4222 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4223                                        gva_t addr, void *val,
4224                                        unsigned int bytes,
4225                                        struct x86_exception *exception)
4226 {
4227         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4228         void *data = val;
4229         int r = X86EMUL_CONTINUE;
4230
4231         while (bytes) {
4232                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4233                                                              PFERR_WRITE_MASK,
4234                                                              exception);
4235                 unsigned offset = addr & (PAGE_SIZE-1);
4236                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4237                 int ret;
4238
4239                 if (gpa == UNMAPPED_GVA)
4240                         return X86EMUL_PROPAGATE_FAULT;
4241                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4242                 if (ret < 0) {
4243                         r = X86EMUL_IO_NEEDED;
4244                         goto out;
4245                 }
4246
4247                 bytes -= towrite;
4248                 data += towrite;
4249                 addr += towrite;
4250         }
4251 out:
4252         return r;
4253 }
4254 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4255
4256 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4257                                 gpa_t *gpa, struct x86_exception *exception,
4258                                 bool write)
4259 {
4260         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4261                 | (write ? PFERR_WRITE_MASK : 0);
4262
4263         if (vcpu_match_mmio_gva(vcpu, gva)
4264             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4265                                  vcpu->arch.access, access)) {
4266                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4267                                         (gva & (PAGE_SIZE - 1));
4268                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4269                 return 1;
4270         }
4271
4272         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4273
4274         if (*gpa == UNMAPPED_GVA)
4275                 return -1;
4276
4277         /* For APIC access vmexit */
4278         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4279                 return 1;
4280
4281         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4282                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4283                 return 1;
4284         }
4285
4286         return 0;
4287 }
4288
4289 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4290                         const void *val, int bytes)
4291 {
4292         int ret;
4293
4294         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4295         if (ret < 0)
4296                 return 0;
4297         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4298         return 1;
4299 }
4300
4301 struct read_write_emulator_ops {
4302         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4303                                   int bytes);
4304         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4305                                   void *val, int bytes);
4306         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4307                                int bytes, void *val);
4308         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4309                                     void *val, int bytes);
4310         bool write;
4311 };
4312
4313 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4314 {
4315         if (vcpu->mmio_read_completed) {
4316                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4317                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4318                 vcpu->mmio_read_completed = 0;
4319                 return 1;
4320         }
4321
4322         return 0;
4323 }
4324
4325 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4326                         void *val, int bytes)
4327 {
4328         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4329 }
4330
4331 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4332                          void *val, int bytes)
4333 {
4334         return emulator_write_phys(vcpu, gpa, val, bytes);
4335 }
4336
4337 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4338 {
4339         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4340         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4341 }
4342
4343 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4344                           void *val, int bytes)
4345 {
4346         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4347         return X86EMUL_IO_NEEDED;
4348 }
4349
4350 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4351                            void *val, int bytes)
4352 {
4353         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4354
4355         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4356         return X86EMUL_CONTINUE;
4357 }
4358
4359 static const struct read_write_emulator_ops read_emultor = {
4360         .read_write_prepare = read_prepare,
4361         .read_write_emulate = read_emulate,
4362         .read_write_mmio = vcpu_mmio_read,
4363         .read_write_exit_mmio = read_exit_mmio,
4364 };
4365
4366 static const struct read_write_emulator_ops write_emultor = {
4367         .read_write_emulate = write_emulate,
4368         .read_write_mmio = write_mmio,
4369         .read_write_exit_mmio = write_exit_mmio,
4370         .write = true,
4371 };
4372
4373 static int emulator_read_write_onepage(unsigned long addr, void *val,
4374                                        unsigned int bytes,
4375                                        struct x86_exception *exception,
4376                                        struct kvm_vcpu *vcpu,
4377                                        const struct read_write_emulator_ops *ops)
4378 {
4379         gpa_t gpa;
4380         int handled, ret;
4381         bool write = ops->write;
4382         struct kvm_mmio_fragment *frag;
4383
4384         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4385
4386         if (ret < 0)
4387                 return X86EMUL_PROPAGATE_FAULT;
4388
4389         /* For APIC access vmexit */
4390         if (ret)
4391                 goto mmio;
4392
4393         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4394                 return X86EMUL_CONTINUE;
4395
4396 mmio:
4397         /*
4398          * Is this MMIO handled locally?
4399          */
4400         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4401         if (handled == bytes)
4402                 return X86EMUL_CONTINUE;
4403
4404         gpa += handled;
4405         bytes -= handled;
4406         val += handled;
4407
4408         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4409         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4410         frag->gpa = gpa;
4411         frag->data = val;
4412         frag->len = bytes;
4413         return X86EMUL_CONTINUE;
4414 }
4415
4416 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4417                         void *val, unsigned int bytes,
4418                         struct x86_exception *exception,
4419                         const struct read_write_emulator_ops *ops)
4420 {
4421         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4422         gpa_t gpa;
4423         int rc;
4424
4425         if (ops->read_write_prepare &&
4426                   ops->read_write_prepare(vcpu, val, bytes))
4427                 return X86EMUL_CONTINUE;
4428
4429         vcpu->mmio_nr_fragments = 0;
4430
4431         /* Crossing a page boundary? */
4432         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4433                 int now;
4434
4435                 now = -addr & ~PAGE_MASK;
4436                 rc = emulator_read_write_onepage(addr, val, now, exception,
4437                                                  vcpu, ops);
4438
4439                 if (rc != X86EMUL_CONTINUE)
4440                         return rc;
4441                 addr += now;
4442                 val += now;
4443                 bytes -= now;
4444         }
4445
4446         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4447                                          vcpu, ops);
4448         if (rc != X86EMUL_CONTINUE)
4449                 return rc;
4450
4451         if (!vcpu->mmio_nr_fragments)
4452                 return rc;
4453
4454         gpa = vcpu->mmio_fragments[0].gpa;
4455
4456         vcpu->mmio_needed = 1;
4457         vcpu->mmio_cur_fragment = 0;
4458
4459         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4460         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4461         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4462         vcpu->run->mmio.phys_addr = gpa;
4463
4464         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4465 }
4466
4467 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4468                                   unsigned long addr,
4469                                   void *val,
4470                                   unsigned int bytes,
4471                                   struct x86_exception *exception)
4472 {
4473         return emulator_read_write(ctxt, addr, val, bytes,
4474                                    exception, &read_emultor);
4475 }
4476
4477 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4478                             unsigned long addr,
4479                             const void *val,
4480                             unsigned int bytes,
4481                             struct x86_exception *exception)
4482 {
4483         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4484                                    exception, &write_emultor);
4485 }
4486
4487 #define CMPXCHG_TYPE(t, ptr, old, new) \
4488         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4489
4490 #ifdef CONFIG_X86_64
4491 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4492 #else
4493 #  define CMPXCHG64(ptr, old, new) \
4494         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4495 #endif
4496
4497 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4498                                      unsigned long addr,
4499                                      const void *old,
4500                                      const void *new,
4501                                      unsigned int bytes,
4502                                      struct x86_exception *exception)
4503 {
4504         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505         gpa_t gpa;
4506         struct page *page;
4507         char *kaddr;
4508         bool exchanged;
4509
4510         /* guests cmpxchg8b have to be emulated atomically */
4511         if (bytes > 8 || (bytes & (bytes - 1)))
4512                 goto emul_write;
4513
4514         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4515
4516         if (gpa == UNMAPPED_GVA ||
4517             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4518                 goto emul_write;
4519
4520         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4521                 goto emul_write;
4522
4523         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4524         if (is_error_page(page))
4525                 goto emul_write;
4526
4527         kaddr = kmap_atomic(page);
4528         kaddr += offset_in_page(gpa);
4529         switch (bytes) {
4530         case 1:
4531                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4532                 break;
4533         case 2:
4534                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4535                 break;
4536         case 4:
4537                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4538                 break;
4539         case 8:
4540                 exchanged = CMPXCHG64(kaddr, old, new);
4541                 break;
4542         default:
4543                 BUG();
4544         }
4545         kunmap_atomic(kaddr);
4546         kvm_release_page_dirty(page);
4547
4548         if (!exchanged)
4549                 return X86EMUL_CMPXCHG_FAILED;
4550
4551         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4552         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4553
4554         return X86EMUL_CONTINUE;
4555
4556 emul_write:
4557         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4558
4559         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4560 }
4561
4562 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4563 {
4564         /* TODO: String I/O for in kernel device */
4565         int r;
4566
4567         if (vcpu->arch.pio.in)
4568                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4569                                     vcpu->arch.pio.size, pd);
4570         else
4571                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4572                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4573                                      pd);
4574         return r;
4575 }
4576
4577 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4578                                unsigned short port, void *val,
4579                                unsigned int count, bool in)
4580 {
4581         vcpu->arch.pio.port = port;
4582         vcpu->arch.pio.in = in;
4583         vcpu->arch.pio.count  = count;
4584         vcpu->arch.pio.size = size;
4585
4586         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4587                 vcpu->arch.pio.count = 0;
4588                 return 1;
4589         }
4590
4591         vcpu->run->exit_reason = KVM_EXIT_IO;
4592         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4593         vcpu->run->io.size = size;
4594         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4595         vcpu->run->io.count = count;
4596         vcpu->run->io.port = port;
4597
4598         return 0;
4599 }
4600
4601 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4602                                     int size, unsigned short port, void *val,
4603                                     unsigned int count)
4604 {
4605         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606         int ret;
4607
4608         if (vcpu->arch.pio.count)
4609                 goto data_avail;
4610
4611         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4612         if (ret) {
4613 data_avail:
4614                 memcpy(val, vcpu->arch.pio_data, size * count);
4615                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4616                 vcpu->arch.pio.count = 0;
4617                 return 1;
4618         }
4619
4620         return 0;
4621 }
4622
4623 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4624                                      int size, unsigned short port,
4625                                      const void *val, unsigned int count)
4626 {
4627         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4628
4629         memcpy(vcpu->arch.pio_data, val, size * count);
4630         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4631         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4632 }
4633
4634 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4635 {
4636         return kvm_x86_ops->get_segment_base(vcpu, seg);
4637 }
4638
4639 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4640 {
4641         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4642 }
4643
4644 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4645 {
4646         if (!need_emulate_wbinvd(vcpu))
4647                 return X86EMUL_CONTINUE;
4648
4649         if (kvm_x86_ops->has_wbinvd_exit()) {
4650                 int cpu = get_cpu();
4651
4652                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4653                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4654                                 wbinvd_ipi, NULL, 1);
4655                 put_cpu();
4656                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4657         } else
4658                 wbinvd();
4659         return X86EMUL_CONTINUE;
4660 }
4661 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4662
4663 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4664 {
4665         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4666 }
4667
4668 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4669 {
4670         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4671 }
4672
4673 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4674 {
4675
4676         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4677 }
4678
4679 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4680 {
4681         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4682 }
4683
4684 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4685 {
4686         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4687         unsigned long value;
4688
4689         switch (cr) {
4690         case 0:
4691                 value = kvm_read_cr0(vcpu);
4692                 break;
4693         case 2:
4694                 value = vcpu->arch.cr2;
4695                 break;
4696         case 3:
4697                 value = kvm_read_cr3(vcpu);
4698                 break;
4699         case 4:
4700                 value = kvm_read_cr4(vcpu);
4701                 break;
4702         case 8:
4703                 value = kvm_get_cr8(vcpu);
4704                 break;
4705         default:
4706                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4707                 return 0;
4708         }
4709
4710         return value;
4711 }
4712
4713 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4714 {
4715         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4716         int res = 0;
4717
4718         switch (cr) {
4719         case 0:
4720                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4721                 break;
4722         case 2:
4723                 vcpu->arch.cr2 = val;
4724                 break;
4725         case 3:
4726                 res = kvm_set_cr3(vcpu, val);
4727                 break;
4728         case 4:
4729                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4730                 break;
4731         case 8:
4732                 res = kvm_set_cr8(vcpu, val);
4733                 break;
4734         default:
4735                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4736                 res = -1;
4737         }
4738
4739         return res;
4740 }
4741
4742 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4743 {
4744         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4745 }
4746
4747 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4748 {
4749         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4750 }
4751
4752 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4753 {
4754         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4755 }
4756
4757 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4758 {
4759         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4760 }
4761
4762 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4763 {
4764         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4765 }
4766
4767 static unsigned long emulator_get_cached_segment_base(
4768         struct x86_emulate_ctxt *ctxt, int seg)
4769 {
4770         return get_segment_base(emul_to_vcpu(ctxt), seg);
4771 }
4772
4773 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4774                                  struct desc_struct *desc, u32 *base3,
4775                                  int seg)
4776 {
4777         struct kvm_segment var;
4778
4779         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4780         *selector = var.selector;
4781
4782         if (var.unusable) {
4783                 memset(desc, 0, sizeof(*desc));
4784                 return false;
4785         }
4786
4787         if (var.g)
4788                 var.limit >>= 12;
4789         set_desc_limit(desc, var.limit);
4790         set_desc_base(desc, (unsigned long)var.base);
4791 #ifdef CONFIG_X86_64
4792         if (base3)
4793                 *base3 = var.base >> 32;
4794 #endif
4795         desc->type = var.type;
4796         desc->s = var.s;
4797         desc->dpl = var.dpl;
4798         desc->p = var.present;
4799         desc->avl = var.avl;
4800         desc->l = var.l;
4801         desc->d = var.db;
4802         desc->g = var.g;
4803
4804         return true;
4805 }
4806
4807 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4808                                  struct desc_struct *desc, u32 base3,
4809                                  int seg)
4810 {
4811         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4812         struct kvm_segment var;
4813
4814         var.selector = selector;
4815         var.base = get_desc_base(desc);
4816 #ifdef CONFIG_X86_64
4817         var.base |= ((u64)base3) << 32;
4818 #endif
4819         var.limit = get_desc_limit(desc);
4820         if (desc->g)
4821                 var.limit = (var.limit << 12) | 0xfff;
4822         var.type = desc->type;
4823         var.dpl = desc->dpl;
4824         var.db = desc->d;
4825         var.s = desc->s;
4826         var.l = desc->l;
4827         var.g = desc->g;
4828         var.avl = desc->avl;
4829         var.present = desc->p;
4830         var.unusable = !var.present;
4831         var.padding = 0;
4832
4833         kvm_set_segment(vcpu, &var, seg);
4834         return;
4835 }
4836
4837 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4838                             u32 msr_index, u64 *pdata)
4839 {
4840         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4841 }
4842
4843 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4844                             u32 msr_index, u64 data)
4845 {
4846         struct msr_data msr;
4847
4848         msr.data = data;
4849         msr.index = msr_index;
4850         msr.host_initiated = false;
4851         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4852 }
4853
4854 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4855                               u32 pmc)
4856 {
4857         return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4858 }
4859
4860 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4861                              u32 pmc, u64 *pdata)
4862 {
4863         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4864 }
4865
4866 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4867 {
4868         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4869 }
4870
4871 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4872 {
4873         preempt_disable();
4874         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4875         /*
4876          * CR0.TS may reference the host fpu state, not the guest fpu state,
4877          * so it may be clear at this point.
4878          */
4879         clts();
4880 }
4881
4882 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4883 {
4884         preempt_enable();
4885 }
4886
4887 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4888                               struct x86_instruction_info *info,
4889                               enum x86_intercept_stage stage)
4890 {
4891         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4892 }
4893
4894 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4895                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4896 {
4897         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4898 }
4899
4900 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4901 {
4902         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4903 }
4904
4905 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4906 {
4907         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4908 }
4909
4910 static const struct x86_emulate_ops emulate_ops = {
4911         .read_gpr            = emulator_read_gpr,
4912         .write_gpr           = emulator_write_gpr,
4913         .read_std            = kvm_read_guest_virt_system,
4914         .write_std           = kvm_write_guest_virt_system,
4915         .fetch               = kvm_fetch_guest_virt,
4916         .read_emulated       = emulator_read_emulated,
4917         .write_emulated      = emulator_write_emulated,
4918         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4919         .invlpg              = emulator_invlpg,
4920         .pio_in_emulated     = emulator_pio_in_emulated,
4921         .pio_out_emulated    = emulator_pio_out_emulated,
4922         .get_segment         = emulator_get_segment,
4923         .set_segment         = emulator_set_segment,
4924         .get_cached_segment_base = emulator_get_cached_segment_base,
4925         .get_gdt             = emulator_get_gdt,
4926         .get_idt             = emulator_get_idt,
4927         .set_gdt             = emulator_set_gdt,
4928         .set_idt             = emulator_set_idt,
4929         .get_cr              = emulator_get_cr,
4930         .set_cr              = emulator_set_cr,
4931         .cpl                 = emulator_get_cpl,
4932         .get_dr              = emulator_get_dr,
4933         .set_dr              = emulator_set_dr,
4934         .set_msr             = emulator_set_msr,
4935         .get_msr             = emulator_get_msr,
4936         .check_pmc           = emulator_check_pmc,
4937         .read_pmc            = emulator_read_pmc,
4938         .halt                = emulator_halt,
4939         .wbinvd              = emulator_wbinvd,
4940         .fix_hypercall       = emulator_fix_hypercall,
4941         .get_fpu             = emulator_get_fpu,
4942         .put_fpu             = emulator_put_fpu,
4943         .intercept           = emulator_intercept,
4944         .get_cpuid           = emulator_get_cpuid,
4945 };
4946
4947 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4948 {
4949         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4950         /*
4951          * an sti; sti; sequence only disable interrupts for the first
4952          * instruction. So, if the last instruction, be it emulated or
4953          * not, left the system with the INT_STI flag enabled, it
4954          * means that the last instruction is an sti. We should not
4955          * leave the flag on in this case. The same goes for mov ss
4956          */
4957         if (int_shadow & mask)
4958                 mask = 0;
4959         if (unlikely(int_shadow || mask)) {
4960                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4961                 if (!mask)
4962                         kvm_make_request(KVM_REQ_EVENT, vcpu);
4963         }
4964 }
4965
4966 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4967 {
4968         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4969         if (ctxt->exception.vector == PF_VECTOR)
4970                 return kvm_propagate_fault(vcpu, &ctxt->exception);
4971
4972         if (ctxt->exception.error_code_valid)
4973                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4974                                       ctxt->exception.error_code);
4975         else
4976                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4977         return false;
4978 }
4979
4980 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4981 {
4982         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4983         int cs_db, cs_l;
4984
4985         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4986
4987         ctxt->eflags = kvm_get_rflags(vcpu);
4988         ctxt->eip = kvm_rip_read(vcpu);
4989         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4990                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4991                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
4992                      cs_db                              ? X86EMUL_MODE_PROT32 :
4993                                                           X86EMUL_MODE_PROT16;
4994         ctxt->guest_mode = is_guest_mode(vcpu);
4995
4996         init_decode_cache(ctxt);
4997         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4998 }
4999
5000 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5001 {
5002         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5003         int ret;
5004
5005         init_emulate_ctxt(vcpu);
5006
5007         ctxt->op_bytes = 2;
5008         ctxt->ad_bytes = 2;
5009         ctxt->_eip = ctxt->eip + inc_eip;
5010         ret = emulate_int_real(ctxt, irq);
5011
5012         if (ret != X86EMUL_CONTINUE)
5013                 return EMULATE_FAIL;
5014
5015         ctxt->eip = ctxt->_eip;
5016         kvm_rip_write(vcpu, ctxt->eip);
5017         kvm_set_rflags(vcpu, ctxt->eflags);
5018
5019         if (irq == NMI_VECTOR)
5020                 vcpu->arch.nmi_pending = 0;
5021         else
5022                 vcpu->arch.interrupt.pending = false;
5023
5024         return EMULATE_DONE;
5025 }
5026 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5027
5028 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5029 {
5030         int r = EMULATE_DONE;
5031
5032         ++vcpu->stat.insn_emulation_fail;
5033         trace_kvm_emulate_insn_failed(vcpu);
5034         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5035                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5036                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5037                 vcpu->run->internal.ndata = 0;
5038                 r = EMULATE_FAIL;
5039         }
5040         kvm_queue_exception(vcpu, UD_VECTOR);
5041
5042         return r;
5043 }
5044
5045 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5046                                   bool write_fault_to_shadow_pgtable,
5047                                   int emulation_type)
5048 {
5049         gpa_t gpa = cr2;
5050         pfn_t pfn;
5051
5052         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5053                 return false;
5054
5055         if (!vcpu->arch.mmu.direct_map) {
5056                 /*
5057                  * Write permission should be allowed since only
5058                  * write access need to be emulated.
5059                  */
5060                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5061
5062                 /*
5063                  * If the mapping is invalid in guest, let cpu retry
5064                  * it to generate fault.
5065                  */
5066                 if (gpa == UNMAPPED_GVA)
5067                         return true;
5068         }
5069
5070         /*
5071          * Do not retry the unhandleable instruction if it faults on the
5072          * readonly host memory, otherwise it will goto a infinite loop:
5073          * retry instruction -> write #PF -> emulation fail -> retry
5074          * instruction -> ...
5075          */
5076         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5077
5078         /*
5079          * If the instruction failed on the error pfn, it can not be fixed,
5080          * report the error to userspace.
5081          */
5082         if (is_error_noslot_pfn(pfn))
5083                 return false;
5084
5085         kvm_release_pfn_clean(pfn);
5086
5087         /* The instructions are well-emulated on direct mmu. */
5088         if (vcpu->arch.mmu.direct_map) {
5089                 unsigned int indirect_shadow_pages;
5090
5091                 spin_lock(&vcpu->kvm->mmu_lock);
5092                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5093                 spin_unlock(&vcpu->kvm->mmu_lock);
5094
5095                 if (indirect_shadow_pages)
5096                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5097
5098                 return true;
5099         }
5100
5101         /*
5102          * if emulation was due to access to shadowed page table
5103          * and it failed try to unshadow page and re-enter the
5104          * guest to let CPU execute the instruction.
5105          */
5106         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5107
5108         /*
5109          * If the access faults on its page table, it can not
5110          * be fixed by unprotecting shadow page and it should
5111          * be reported to userspace.
5112          */
5113         return !write_fault_to_shadow_pgtable;
5114 }
5115
5116 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5117                               unsigned long cr2,  int emulation_type)
5118 {
5119         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5120         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5121
5122         last_retry_eip = vcpu->arch.last_retry_eip;
5123         last_retry_addr = vcpu->arch.last_retry_addr;
5124
5125         /*
5126          * If the emulation is caused by #PF and it is non-page_table
5127          * writing instruction, it means the VM-EXIT is caused by shadow
5128          * page protected, we can zap the shadow page and retry this
5129          * instruction directly.
5130          *
5131          * Note: if the guest uses a non-page-table modifying instruction
5132          * on the PDE that points to the instruction, then we will unmap
5133          * the instruction and go to an infinite loop. So, we cache the
5134          * last retried eip and the last fault address, if we meet the eip
5135          * and the address again, we can break out of the potential infinite
5136          * loop.
5137          */
5138         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5139
5140         if (!(emulation_type & EMULTYPE_RETRY))
5141                 return false;
5142
5143         if (x86_page_table_writing_insn(ctxt))
5144                 return false;
5145
5146         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5147                 return false;
5148
5149         vcpu->arch.last_retry_eip = ctxt->eip;
5150         vcpu->arch.last_retry_addr = cr2;
5151
5152         if (!vcpu->arch.mmu.direct_map)
5153                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5154
5155         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5156
5157         return true;
5158 }
5159
5160 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5161 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5162
5163 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5164                                 unsigned long *db)
5165 {
5166         u32 dr6 = 0;
5167         int i;
5168         u32 enable, rwlen;
5169
5170         enable = dr7;
5171         rwlen = dr7 >> 16;
5172         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5173                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5174                         dr6 |= (1 << i);
5175         return dr6;
5176 }
5177
5178 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5179 {
5180         struct kvm_run *kvm_run = vcpu->run;
5181
5182         /*
5183          * rflags is the old, "raw" value of the flags.  The new value has
5184          * not been saved yet.
5185          *
5186          * This is correct even for TF set by the guest, because "the
5187          * processor will not generate this exception after the instruction
5188          * that sets the TF flag".
5189          */
5190         if (unlikely(rflags & X86_EFLAGS_TF)) {
5191                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5192                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5193                                                   DR6_RTM;
5194                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5195                         kvm_run->debug.arch.exception = DB_VECTOR;
5196                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5197                         *r = EMULATE_USER_EXIT;
5198                 } else {
5199                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5200                         /*
5201                          * "Certain debug exceptions may clear bit 0-3.  The
5202                          * remaining contents of the DR6 register are never
5203                          * cleared by the processor".
5204                          */
5205                         vcpu->arch.dr6 &= ~15;
5206                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5207                         kvm_queue_exception(vcpu, DB_VECTOR);
5208                 }
5209         }
5210 }
5211
5212 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5213 {
5214         struct kvm_run *kvm_run = vcpu->run;
5215         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5216         u32 dr6 = 0;
5217
5218         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5219             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5220                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5221                                            vcpu->arch.guest_debug_dr7,
5222                                            vcpu->arch.eff_db);
5223
5224                 if (dr6 != 0) {
5225                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5226                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5227                                 get_segment_base(vcpu, VCPU_SREG_CS);
5228
5229                         kvm_run->debug.arch.exception = DB_VECTOR;
5230                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5231                         *r = EMULATE_USER_EXIT;
5232                         return true;
5233                 }
5234         }
5235
5236         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5237             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5238                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5239                                            vcpu->arch.dr7,
5240                                            vcpu->arch.db);
5241
5242                 if (dr6 != 0) {
5243                         vcpu->arch.dr6 &= ~15;
5244                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5245                         kvm_queue_exception(vcpu, DB_VECTOR);
5246                         *r = EMULATE_DONE;
5247                         return true;
5248                 }
5249         }
5250
5251         return false;
5252 }
5253
5254 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5255                             unsigned long cr2,
5256                             int emulation_type,
5257                             void *insn,
5258                             int insn_len)
5259 {
5260         int r;
5261         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5262         bool writeback = true;
5263         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5264
5265         /*
5266          * Clear write_fault_to_shadow_pgtable here to ensure it is
5267          * never reused.
5268          */
5269         vcpu->arch.write_fault_to_shadow_pgtable = false;
5270         kvm_clear_exception_queue(vcpu);
5271
5272         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5273                 init_emulate_ctxt(vcpu);
5274
5275                 /*
5276                  * We will reenter on the same instruction since
5277                  * we do not set complete_userspace_io.  This does not
5278                  * handle watchpoints yet, those would be handled in
5279                  * the emulate_ops.
5280                  */
5281                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5282                         return r;
5283
5284                 ctxt->interruptibility = 0;
5285                 ctxt->have_exception = false;
5286                 ctxt->exception.vector = -1;
5287                 ctxt->perm_ok = false;
5288
5289                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5290
5291                 r = x86_decode_insn(ctxt, insn, insn_len);
5292
5293                 trace_kvm_emulate_insn_start(vcpu);
5294                 ++vcpu->stat.insn_emulation;
5295                 if (r != EMULATION_OK)  {
5296                         if (emulation_type & EMULTYPE_TRAP_UD)
5297                                 return EMULATE_FAIL;
5298                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5299                                                 emulation_type))
5300                                 return EMULATE_DONE;
5301                         if (emulation_type & EMULTYPE_SKIP)
5302                                 return EMULATE_FAIL;
5303                         return handle_emulation_failure(vcpu);
5304                 }
5305         }
5306
5307         if (emulation_type & EMULTYPE_SKIP) {
5308                 kvm_rip_write(vcpu, ctxt->_eip);
5309                 if (ctxt->eflags & X86_EFLAGS_RF)
5310                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5311                 return EMULATE_DONE;
5312         }
5313
5314         if (retry_instruction(ctxt, cr2, emulation_type))
5315                 return EMULATE_DONE;
5316
5317         /* this is needed for vmware backdoor interface to work since it
5318            changes registers values  during IO operation */
5319         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5320                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5321                 emulator_invalidate_register_cache(ctxt);
5322         }
5323
5324 restart:
5325         r = x86_emulate_insn(ctxt);
5326
5327         if (r == EMULATION_INTERCEPTED)
5328                 return EMULATE_DONE;
5329
5330         if (r == EMULATION_FAILED) {
5331                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5332                                         emulation_type))
5333                         return EMULATE_DONE;
5334
5335                 return handle_emulation_failure(vcpu);
5336         }
5337
5338         if (ctxt->have_exception) {
5339                 r = EMULATE_DONE;
5340                 if (inject_emulated_exception(vcpu))
5341                         return r;
5342         } else if (vcpu->arch.pio.count) {
5343                 if (!vcpu->arch.pio.in) {
5344                         /* FIXME: return into emulator if single-stepping.  */
5345                         vcpu->arch.pio.count = 0;
5346                 } else {
5347                         writeback = false;
5348                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5349                 }
5350                 r = EMULATE_USER_EXIT;
5351         } else if (vcpu->mmio_needed) {
5352                 if (!vcpu->mmio_is_write)
5353                         writeback = false;
5354                 r = EMULATE_USER_EXIT;
5355                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5356         } else if (r == EMULATION_RESTART)
5357                 goto restart;
5358         else
5359                 r = EMULATE_DONE;
5360
5361         if (writeback) {
5362                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5363                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5364                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5365                 kvm_rip_write(vcpu, ctxt->eip);
5366                 if (r == EMULATE_DONE)
5367                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5368                 __kvm_set_rflags(vcpu, ctxt->eflags);
5369
5370                 /*
5371                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5372                  * do nothing, and it will be requested again as soon as
5373                  * the shadow expires.  But we still need to check here,
5374                  * because POPF has no interrupt shadow.
5375                  */
5376                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5377                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5378         } else
5379                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5380
5381         return r;
5382 }
5383 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5384
5385 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5386 {
5387         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5388         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5389                                             size, port, &val, 1);
5390         /* do not return to emulator after return from userspace */
5391         vcpu->arch.pio.count = 0;
5392         return ret;
5393 }
5394 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5395
5396 static void tsc_bad(void *info)
5397 {
5398         __this_cpu_write(cpu_tsc_khz, 0);
5399 }
5400
5401 static void tsc_khz_changed(void *data)
5402 {
5403         struct cpufreq_freqs *freq = data;
5404         unsigned long khz = 0;
5405
5406         if (data)
5407                 khz = freq->new;
5408         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5409                 khz = cpufreq_quick_get(raw_smp_processor_id());
5410         if (!khz)
5411                 khz = tsc_khz;
5412         __this_cpu_write(cpu_tsc_khz, khz);
5413 }
5414
5415 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5416                                      void *data)
5417 {
5418         struct cpufreq_freqs *freq = data;
5419         struct kvm *kvm;
5420         struct kvm_vcpu *vcpu;
5421         int i, send_ipi = 0;
5422
5423         /*
5424          * We allow guests to temporarily run on slowing clocks,
5425          * provided we notify them after, or to run on accelerating
5426          * clocks, provided we notify them before.  Thus time never
5427          * goes backwards.
5428          *
5429          * However, we have a problem.  We can't atomically update
5430          * the frequency of a given CPU from this function; it is
5431          * merely a notifier, which can be called from any CPU.
5432          * Changing the TSC frequency at arbitrary points in time
5433          * requires a recomputation of local variables related to
5434          * the TSC for each VCPU.  We must flag these local variables
5435          * to be updated and be sure the update takes place with the
5436          * new frequency before any guests proceed.
5437          *
5438          * Unfortunately, the combination of hotplug CPU and frequency
5439          * change creates an intractable locking scenario; the order
5440          * of when these callouts happen is undefined with respect to
5441          * CPU hotplug, and they can race with each other.  As such,
5442          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5443          * undefined; you can actually have a CPU frequency change take
5444          * place in between the computation of X and the setting of the
5445          * variable.  To protect against this problem, all updates of
5446          * the per_cpu tsc_khz variable are done in an interrupt
5447          * protected IPI, and all callers wishing to update the value
5448          * must wait for a synchronous IPI to complete (which is trivial
5449          * if the caller is on the CPU already).  This establishes the
5450          * necessary total order on variable updates.
5451          *
5452          * Note that because a guest time update may take place
5453          * anytime after the setting of the VCPU's request bit, the
5454          * correct TSC value must be set before the request.  However,
5455          * to ensure the update actually makes it to any guest which
5456          * starts running in hardware virtualization between the set
5457          * and the acquisition of the spinlock, we must also ping the
5458          * CPU after setting the request bit.
5459          *
5460          */
5461
5462         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5463                 return 0;
5464         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5465                 return 0;
5466
5467         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5468
5469         spin_lock(&kvm_lock);
5470         list_for_each_entry(kvm, &vm_list, vm_list) {
5471                 kvm_for_each_vcpu(i, vcpu, kvm) {
5472                         if (vcpu->cpu != freq->cpu)
5473                                 continue;
5474                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5475                         if (vcpu->cpu != smp_processor_id())
5476                                 send_ipi = 1;
5477                 }
5478         }
5479         spin_unlock(&kvm_lock);
5480
5481         if (freq->old < freq->new && send_ipi) {
5482                 /*
5483                  * We upscale the frequency.  Must make the guest
5484                  * doesn't see old kvmclock values while running with
5485                  * the new frequency, otherwise we risk the guest sees
5486                  * time go backwards.
5487                  *
5488                  * In case we update the frequency for another cpu
5489                  * (which might be in guest context) send an interrupt
5490                  * to kick the cpu out of guest context.  Next time
5491                  * guest context is entered kvmclock will be updated,
5492                  * so the guest will not see stale values.
5493                  */
5494                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5495         }
5496         return 0;
5497 }
5498
5499 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5500         .notifier_call  = kvmclock_cpufreq_notifier
5501 };
5502
5503 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5504                                         unsigned long action, void *hcpu)
5505 {
5506         unsigned int cpu = (unsigned long)hcpu;
5507
5508         switch (action) {
5509                 case CPU_ONLINE:
5510                 case CPU_DOWN_FAILED:
5511                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5512                         break;
5513                 case CPU_DOWN_PREPARE:
5514                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5515                         break;
5516         }
5517         return NOTIFY_OK;
5518 }
5519
5520 static struct notifier_block kvmclock_cpu_notifier_block = {
5521         .notifier_call  = kvmclock_cpu_notifier,
5522         .priority = -INT_MAX
5523 };
5524
5525 static void kvm_timer_init(void)
5526 {
5527         int cpu;
5528
5529         max_tsc_khz = tsc_khz;
5530
5531         cpu_notifier_register_begin();
5532         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5533 #ifdef CONFIG_CPU_FREQ
5534                 struct cpufreq_policy policy;
5535                 memset(&policy, 0, sizeof(policy));
5536                 cpu = get_cpu();
5537                 cpufreq_get_policy(&policy, cpu);
5538                 if (policy.cpuinfo.max_freq)
5539                         max_tsc_khz = policy.cpuinfo.max_freq;
5540                 put_cpu();
5541 #endif
5542                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5543                                           CPUFREQ_TRANSITION_NOTIFIER);
5544         }
5545         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5546         for_each_online_cpu(cpu)
5547                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5548
5549         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5550         cpu_notifier_register_done();
5551
5552 }
5553
5554 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5555
5556 int kvm_is_in_guest(void)
5557 {
5558         return __this_cpu_read(current_vcpu) != NULL;
5559 }
5560
5561 static int kvm_is_user_mode(void)
5562 {
5563         int user_mode = 3;
5564
5565         if (__this_cpu_read(current_vcpu))
5566                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5567
5568         return user_mode != 0;
5569 }
5570
5571 static unsigned long kvm_get_guest_ip(void)
5572 {
5573         unsigned long ip = 0;
5574
5575         if (__this_cpu_read(current_vcpu))
5576                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5577
5578         return ip;
5579 }
5580
5581 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5582         .is_in_guest            = kvm_is_in_guest,
5583         .is_user_mode           = kvm_is_user_mode,
5584         .get_guest_ip           = kvm_get_guest_ip,
5585 };
5586
5587 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5588 {
5589         __this_cpu_write(current_vcpu, vcpu);
5590 }
5591 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5592
5593 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5594 {
5595         __this_cpu_write(current_vcpu, NULL);
5596 }
5597 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5598
5599 static void kvm_set_mmio_spte_mask(void)
5600 {
5601         u64 mask;
5602         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5603
5604         /*
5605          * Set the reserved bits and the present bit of an paging-structure
5606          * entry to generate page fault with PFER.RSV = 1.
5607          */
5608          /* Mask the reserved physical address bits. */
5609         mask = rsvd_bits(maxphyaddr, 51);
5610
5611         /* Bit 62 is always reserved for 32bit host. */
5612         mask |= 0x3ull << 62;
5613
5614         /* Set the present bit. */
5615         mask |= 1ull;
5616
5617 #ifdef CONFIG_X86_64
5618         /*
5619          * If reserved bit is not supported, clear the present bit to disable
5620          * mmio page fault.
5621          */
5622         if (maxphyaddr == 52)
5623                 mask &= ~1ull;
5624 #endif
5625
5626         kvm_mmu_set_mmio_spte_mask(mask);
5627 }
5628
5629 #ifdef CONFIG_X86_64
5630 static void pvclock_gtod_update_fn(struct work_struct *work)
5631 {
5632         struct kvm *kvm;
5633
5634         struct kvm_vcpu *vcpu;
5635         int i;
5636
5637         spin_lock(&kvm_lock);
5638         list_for_each_entry(kvm, &vm_list, vm_list)
5639                 kvm_for_each_vcpu(i, vcpu, kvm)
5640                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5641         atomic_set(&kvm_guest_has_master_clock, 0);
5642         spin_unlock(&kvm_lock);
5643 }
5644
5645 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5646
5647 /*
5648  * Notification about pvclock gtod data update.
5649  */
5650 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5651                                void *priv)
5652 {
5653         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5654         struct timekeeper *tk = priv;
5655
5656         update_pvclock_gtod(tk);
5657
5658         /* disable master clock if host does not trust, or does not
5659          * use, TSC clocksource
5660          */
5661         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5662             atomic_read(&kvm_guest_has_master_clock) != 0)
5663                 queue_work(system_long_wq, &pvclock_gtod_work);
5664
5665         return 0;
5666 }
5667
5668 static struct notifier_block pvclock_gtod_notifier = {
5669         .notifier_call = pvclock_gtod_notify,
5670 };
5671 #endif
5672
5673 int kvm_arch_init(void *opaque)
5674 {
5675         int r;
5676         struct kvm_x86_ops *ops = opaque;
5677
5678         if (kvm_x86_ops) {
5679                 printk(KERN_ERR "kvm: already loaded the other module\n");
5680                 r = -EEXIST;
5681                 goto out;
5682         }
5683
5684         if (!ops->cpu_has_kvm_support()) {
5685                 printk(KERN_ERR "kvm: no hardware support\n");
5686                 r = -EOPNOTSUPP;
5687                 goto out;
5688         }
5689         if (ops->disabled_by_bios()) {
5690                 printk(KERN_ERR "kvm: disabled by bios\n");
5691                 r = -EOPNOTSUPP;
5692                 goto out;
5693         }
5694
5695         r = -ENOMEM;
5696         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5697         if (!shared_msrs) {
5698                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5699                 goto out;
5700         }
5701
5702         r = kvm_mmu_module_init();
5703         if (r)
5704                 goto out_free_percpu;
5705
5706         kvm_set_mmio_spte_mask();
5707
5708         kvm_x86_ops = ops;
5709         kvm_init_msr_list();
5710
5711         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5712                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5713
5714         kvm_timer_init();
5715
5716         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5717
5718         if (cpu_has_xsave)
5719                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5720
5721         kvm_lapic_init();
5722 #ifdef CONFIG_X86_64
5723         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5724 #endif
5725
5726         return 0;
5727
5728 out_free_percpu:
5729         free_percpu(shared_msrs);
5730 out:
5731         return r;
5732 }
5733
5734 void kvm_arch_exit(void)
5735 {
5736         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5737
5738         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5739                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5740                                             CPUFREQ_TRANSITION_NOTIFIER);
5741         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5742 #ifdef CONFIG_X86_64
5743         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5744 #endif
5745         kvm_x86_ops = NULL;
5746         kvm_mmu_module_exit();
5747         free_percpu(shared_msrs);
5748 }
5749
5750 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5751 {
5752         ++vcpu->stat.halt_exits;
5753         if (irqchip_in_kernel(vcpu->kvm)) {
5754                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5755                 return 1;
5756         } else {
5757                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5758                 return 0;
5759         }
5760 }
5761 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5762
5763 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5764 {
5765         u64 param, ingpa, outgpa, ret;
5766         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5767         bool fast, longmode;
5768
5769         /*
5770          * hypercall generates UD from non zero cpl and real mode
5771          * per HYPER-V spec
5772          */
5773         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5774                 kvm_queue_exception(vcpu, UD_VECTOR);
5775                 return 0;
5776         }
5777
5778         longmode = is_64_bit_mode(vcpu);
5779
5780         if (!longmode) {
5781                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5782                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5783                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5784                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5785                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5786                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5787         }
5788 #ifdef CONFIG_X86_64
5789         else {
5790                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5791                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5792                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5793         }
5794 #endif
5795
5796         code = param & 0xffff;
5797         fast = (param >> 16) & 0x1;
5798         rep_cnt = (param >> 32) & 0xfff;
5799         rep_idx = (param >> 48) & 0xfff;
5800
5801         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5802
5803         switch (code) {
5804         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5805                 kvm_vcpu_on_spin(vcpu);
5806                 break;
5807         default:
5808                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5809                 break;
5810         }
5811
5812         ret = res | (((u64)rep_done & 0xfff) << 32);
5813         if (longmode) {
5814                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5815         } else {
5816                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5817                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5818         }
5819
5820         return 1;
5821 }
5822
5823 /*
5824  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5825  *
5826  * @apicid - apicid of vcpu to be kicked.
5827  */
5828 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5829 {
5830         struct kvm_lapic_irq lapic_irq;
5831
5832         lapic_irq.shorthand = 0;
5833         lapic_irq.dest_mode = 0;
5834         lapic_irq.dest_id = apicid;
5835
5836         lapic_irq.delivery_mode = APIC_DM_REMRD;
5837         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5838 }
5839
5840 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5841 {
5842         unsigned long nr, a0, a1, a2, a3, ret;
5843         int op_64_bit, r = 1;
5844
5845         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5846                 return kvm_hv_hypercall(vcpu);
5847
5848         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5849         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5850         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5851         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5852         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5853
5854         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5855
5856         op_64_bit = is_64_bit_mode(vcpu);
5857         if (!op_64_bit) {
5858                 nr &= 0xFFFFFFFF;
5859                 a0 &= 0xFFFFFFFF;
5860                 a1 &= 0xFFFFFFFF;
5861                 a2 &= 0xFFFFFFFF;
5862                 a3 &= 0xFFFFFFFF;
5863         }
5864
5865         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5866                 ret = -KVM_EPERM;
5867                 goto out;
5868         }
5869
5870         switch (nr) {
5871         case KVM_HC_VAPIC_POLL_IRQ:
5872                 ret = 0;
5873                 break;
5874         case KVM_HC_KICK_CPU:
5875                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5876                 ret = 0;
5877                 break;
5878         default:
5879                 ret = -KVM_ENOSYS;
5880                 break;
5881         }
5882 out:
5883         if (!op_64_bit)
5884                 ret = (u32)ret;
5885         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5886         ++vcpu->stat.hypercalls;
5887         return r;
5888 }
5889 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5890
5891 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5892 {
5893         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5894         char instruction[3];
5895         unsigned long rip = kvm_rip_read(vcpu);
5896
5897         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5898
5899         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5900 }
5901
5902 /*
5903  * Check if userspace requested an interrupt window, and that the
5904  * interrupt window is open.
5905  *
5906  * No need to exit to userspace if we already have an interrupt queued.
5907  */
5908 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5909 {
5910         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5911                 vcpu->run->request_interrupt_window &&
5912                 kvm_arch_interrupt_allowed(vcpu));
5913 }
5914
5915 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5916 {
5917         struct kvm_run *kvm_run = vcpu->run;
5918
5919         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5920         kvm_run->cr8 = kvm_get_cr8(vcpu);
5921         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5922         if (irqchip_in_kernel(vcpu->kvm))
5923                 kvm_run->ready_for_interrupt_injection = 1;
5924         else
5925                 kvm_run->ready_for_interrupt_injection =
5926                         kvm_arch_interrupt_allowed(vcpu) &&
5927                         !kvm_cpu_has_interrupt(vcpu) &&
5928                         !kvm_event_needs_reinjection(vcpu);
5929 }
5930
5931 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5932 {
5933         int max_irr, tpr;
5934
5935         if (!kvm_x86_ops->update_cr8_intercept)
5936                 return;
5937
5938         if (!vcpu->arch.apic)
5939                 return;
5940
5941         if (!vcpu->arch.apic->vapic_addr)
5942                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5943         else
5944                 max_irr = -1;
5945
5946         if (max_irr != -1)
5947                 max_irr >>= 4;
5948
5949         tpr = kvm_lapic_get_cr8(vcpu);
5950
5951         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5952 }
5953
5954 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5955 {
5956         int r;
5957
5958         /* try to reinject previous events if any */
5959         if (vcpu->arch.exception.pending) {
5960                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5961                                         vcpu->arch.exception.has_error_code,
5962                                         vcpu->arch.exception.error_code);
5963
5964                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5965                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5966                                              X86_EFLAGS_RF);
5967
5968                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5969                                           vcpu->arch.exception.has_error_code,
5970                                           vcpu->arch.exception.error_code,
5971                                           vcpu->arch.exception.reinject);
5972                 return 0;
5973         }
5974
5975         if (vcpu->arch.nmi_injected) {
5976                 kvm_x86_ops->set_nmi(vcpu);
5977                 return 0;
5978         }
5979
5980         if (vcpu->arch.interrupt.pending) {
5981                 kvm_x86_ops->set_irq(vcpu);
5982                 return 0;
5983         }
5984
5985         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5986                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5987                 if (r != 0)
5988                         return r;
5989         }
5990
5991         /* try to inject new event if pending */
5992         if (vcpu->arch.nmi_pending) {
5993                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5994                         --vcpu->arch.nmi_pending;
5995                         vcpu->arch.nmi_injected = true;
5996                         kvm_x86_ops->set_nmi(vcpu);
5997                 }
5998         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5999                 /*
6000                  * Because interrupts can be injected asynchronously, we are
6001                  * calling check_nested_events again here to avoid a race condition.
6002                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6003                  * proposal and current concerns.  Perhaps we should be setting
6004                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6005                  */
6006                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6007                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6008                         if (r != 0)
6009                                 return r;
6010                 }
6011                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6012                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6013                                             false);
6014                         kvm_x86_ops->set_irq(vcpu);
6015                 }
6016         }
6017         return 0;
6018 }
6019
6020 static void process_nmi(struct kvm_vcpu *vcpu)
6021 {
6022         unsigned limit = 2;
6023
6024         /*
6025          * x86 is limited to one NMI running, and one NMI pending after it.
6026          * If an NMI is already in progress, limit further NMIs to just one.
6027          * Otherwise, allow two (and we'll inject the first one immediately).
6028          */
6029         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6030                 limit = 1;
6031
6032         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6033         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6034         kvm_make_request(KVM_REQ_EVENT, vcpu);
6035 }
6036
6037 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6038 {
6039         u64 eoi_exit_bitmap[4];
6040         u32 tmr[8];
6041
6042         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6043                 return;
6044
6045         memset(eoi_exit_bitmap, 0, 32);
6046         memset(tmr, 0, 32);
6047
6048         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6049         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6050         kvm_apic_update_tmr(vcpu, tmr);
6051 }
6052
6053 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6054 {
6055         ++vcpu->stat.tlb_flush;
6056         kvm_x86_ops->tlb_flush(vcpu);
6057 }
6058
6059 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6060 {
6061         struct page *page = NULL;
6062
6063         if (!irqchip_in_kernel(vcpu->kvm))
6064                 return;
6065
6066         if (!kvm_x86_ops->set_apic_access_page_addr)
6067                 return;
6068
6069         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6070         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6071
6072         /*
6073          * Do not pin apic access page in memory, the MMU notifier
6074          * will call us again if it is migrated or swapped out.
6075          */
6076         put_page(page);
6077 }
6078 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6079
6080 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6081                                            unsigned long address)
6082 {
6083         /*
6084          * The physical address of apic access page is stored in the VMCS.
6085          * Update it when it becomes invalid.
6086          */
6087         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6088                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6089 }
6090
6091 /*
6092  * Returns 1 to let __vcpu_run() continue the guest execution loop without
6093  * exiting to the userspace.  Otherwise, the value will be returned to the
6094  * userspace.
6095  */
6096 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6097 {
6098         int r;
6099         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6100                 vcpu->run->request_interrupt_window;
6101         bool req_immediate_exit = false;
6102
6103         if (vcpu->requests) {
6104                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6105                         kvm_mmu_unload(vcpu);
6106                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6107                         __kvm_migrate_timers(vcpu);
6108                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6109                         kvm_gen_update_masterclock(vcpu->kvm);
6110                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6111                         kvm_gen_kvmclock_update(vcpu);
6112                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6113                         r = kvm_guest_time_update(vcpu);
6114                         if (unlikely(r))
6115                                 goto out;
6116                 }
6117                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6118                         kvm_mmu_sync_roots(vcpu);
6119                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6120                         kvm_vcpu_flush_tlb(vcpu);
6121                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6122                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6123                         r = 0;
6124                         goto out;
6125                 }
6126                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6127                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6128                         r = 0;
6129                         goto out;
6130                 }
6131                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6132                         vcpu->fpu_active = 0;
6133                         kvm_x86_ops->fpu_deactivate(vcpu);
6134                 }
6135                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6136                         /* Page is swapped out. Do synthetic halt */
6137                         vcpu->arch.apf.halted = true;
6138                         r = 1;
6139                         goto out;
6140                 }
6141                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6142                         record_steal_time(vcpu);
6143                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6144                         process_nmi(vcpu);
6145                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6146                         kvm_handle_pmu_event(vcpu);
6147                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6148                         kvm_deliver_pmi(vcpu);
6149                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6150                         vcpu_scan_ioapic(vcpu);
6151                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6152                         kvm_vcpu_reload_apic_access_page(vcpu);
6153         }
6154
6155         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6156                 kvm_apic_accept_events(vcpu);
6157                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6158                         r = 1;
6159                         goto out;
6160                 }
6161
6162                 if (inject_pending_event(vcpu, req_int_win) != 0)
6163                         req_immediate_exit = true;
6164                 /* enable NMI/IRQ window open exits if needed */
6165                 else if (vcpu->arch.nmi_pending)
6166                         kvm_x86_ops->enable_nmi_window(vcpu);
6167                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6168                         kvm_x86_ops->enable_irq_window(vcpu);
6169
6170                 if (kvm_lapic_enabled(vcpu)) {
6171                         /*
6172                          * Update architecture specific hints for APIC
6173                          * virtual interrupt delivery.
6174                          */
6175                         if (kvm_x86_ops->hwapic_irr_update)
6176                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6177                                         kvm_lapic_find_highest_irr(vcpu));
6178                         update_cr8_intercept(vcpu);
6179                         kvm_lapic_sync_to_vapic(vcpu);
6180                 }
6181         }
6182
6183         r = kvm_mmu_reload(vcpu);
6184         if (unlikely(r)) {
6185                 goto cancel_injection;
6186         }
6187
6188         preempt_disable();
6189
6190         kvm_x86_ops->prepare_guest_switch(vcpu);
6191         if (vcpu->fpu_active)
6192                 kvm_load_guest_fpu(vcpu);
6193         kvm_load_guest_xcr0(vcpu);
6194
6195         vcpu->mode = IN_GUEST_MODE;
6196
6197         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6198
6199         /* We should set ->mode before check ->requests,
6200          * see the comment in make_all_cpus_request.
6201          */
6202         smp_mb__after_srcu_read_unlock();
6203
6204         local_irq_disable();
6205
6206         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6207             || need_resched() || signal_pending(current)) {
6208                 vcpu->mode = OUTSIDE_GUEST_MODE;
6209                 smp_wmb();
6210                 local_irq_enable();
6211                 preempt_enable();
6212                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6213                 r = 1;
6214                 goto cancel_injection;
6215         }
6216
6217         if (req_immediate_exit)
6218                 smp_send_reschedule(vcpu->cpu);
6219
6220         kvm_guest_enter();
6221
6222         if (unlikely(vcpu->arch.switch_db_regs)) {
6223                 set_debugreg(0, 7);
6224                 set_debugreg(vcpu->arch.eff_db[0], 0);
6225                 set_debugreg(vcpu->arch.eff_db[1], 1);
6226                 set_debugreg(vcpu->arch.eff_db[2], 2);
6227                 set_debugreg(vcpu->arch.eff_db[3], 3);
6228                 set_debugreg(vcpu->arch.dr6, 6);
6229         }
6230
6231         trace_kvm_entry(vcpu->vcpu_id);
6232         kvm_x86_ops->run(vcpu);
6233
6234         /*
6235          * Do this here before restoring debug registers on the host.  And
6236          * since we do this before handling the vmexit, a DR access vmexit
6237          * can (a) read the correct value of the debug registers, (b) set
6238          * KVM_DEBUGREG_WONT_EXIT again.
6239          */
6240         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6241                 int i;
6242
6243                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6244                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6245                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6246                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6247         }
6248
6249         /*
6250          * If the guest has used debug registers, at least dr7
6251          * will be disabled while returning to the host.
6252          * If we don't have active breakpoints in the host, we don't
6253          * care about the messed up debug address registers. But if
6254          * we have some of them active, restore the old state.
6255          */
6256         if (hw_breakpoint_active())
6257                 hw_breakpoint_restore();
6258
6259         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6260                                                            native_read_tsc());
6261
6262         vcpu->mode = OUTSIDE_GUEST_MODE;
6263         smp_wmb();
6264
6265         /* Interrupt is enabled by handle_external_intr() */
6266         kvm_x86_ops->handle_external_intr(vcpu);
6267
6268         ++vcpu->stat.exits;
6269
6270         /*
6271          * We must have an instruction between local_irq_enable() and
6272          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6273          * the interrupt shadow.  The stat.exits increment will do nicely.
6274          * But we need to prevent reordering, hence this barrier():
6275          */
6276         barrier();
6277
6278         kvm_guest_exit();
6279
6280         preempt_enable();
6281
6282         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6283
6284         /*
6285          * Profile KVM exit RIPs:
6286          */
6287         if (unlikely(prof_on == KVM_PROFILING)) {
6288                 unsigned long rip = kvm_rip_read(vcpu);
6289                 profile_hit(KVM_PROFILING, (void *)rip);
6290         }
6291
6292         if (unlikely(vcpu->arch.tsc_always_catchup))
6293                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6294
6295         if (vcpu->arch.apic_attention)
6296                 kvm_lapic_sync_from_vapic(vcpu);
6297
6298         r = kvm_x86_ops->handle_exit(vcpu);
6299         return r;
6300
6301 cancel_injection:
6302         kvm_x86_ops->cancel_injection(vcpu);
6303         if (unlikely(vcpu->arch.apic_attention))
6304                 kvm_lapic_sync_from_vapic(vcpu);
6305 out:
6306         return r;
6307 }
6308
6309
6310 static int __vcpu_run(struct kvm_vcpu *vcpu)
6311 {
6312         int r;
6313         struct kvm *kvm = vcpu->kvm;
6314
6315         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6316
6317         r = 1;
6318         while (r > 0) {
6319                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6320                     !vcpu->arch.apf.halted)
6321                         r = vcpu_enter_guest(vcpu);
6322                 else {
6323                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6324                         kvm_vcpu_block(vcpu);
6325                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6326                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6327                                 kvm_apic_accept_events(vcpu);
6328                                 switch(vcpu->arch.mp_state) {
6329                                 case KVM_MP_STATE_HALTED:
6330                                         vcpu->arch.pv.pv_unhalted = false;
6331                                         vcpu->arch.mp_state =
6332                                                 KVM_MP_STATE_RUNNABLE;
6333                                 case KVM_MP_STATE_RUNNABLE:
6334                                         vcpu->arch.apf.halted = false;
6335                                         break;
6336                                 case KVM_MP_STATE_INIT_RECEIVED:
6337                                         break;
6338                                 default:
6339                                         r = -EINTR;
6340                                         break;
6341                                 }
6342                         }
6343                 }
6344
6345                 if (r <= 0)
6346                         break;
6347
6348                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6349                 if (kvm_cpu_has_pending_timer(vcpu))
6350                         kvm_inject_pending_timer_irqs(vcpu);
6351
6352                 if (dm_request_for_irq_injection(vcpu)) {
6353                         r = -EINTR;
6354                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6355                         ++vcpu->stat.request_irq_exits;
6356                 }
6357
6358                 kvm_check_async_pf_completion(vcpu);
6359
6360                 if (signal_pending(current)) {
6361                         r = -EINTR;
6362                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6363                         ++vcpu->stat.signal_exits;
6364                 }
6365                 if (need_resched()) {
6366                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6367                         cond_resched();
6368                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6369                 }
6370         }
6371
6372         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6373
6374         return r;
6375 }
6376
6377 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6378 {
6379         int r;
6380         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6381         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6382         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6383         if (r != EMULATE_DONE)
6384                 return 0;
6385         return 1;
6386 }
6387
6388 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6389 {
6390         BUG_ON(!vcpu->arch.pio.count);
6391
6392         return complete_emulated_io(vcpu);
6393 }
6394
6395 /*
6396  * Implements the following, as a state machine:
6397  *
6398  * read:
6399  *   for each fragment
6400  *     for each mmio piece in the fragment
6401  *       write gpa, len
6402  *       exit
6403  *       copy data
6404  *   execute insn
6405  *
6406  * write:
6407  *   for each fragment
6408  *     for each mmio piece in the fragment
6409  *       write gpa, len
6410  *       copy data
6411  *       exit
6412  */
6413 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6414 {
6415         struct kvm_run *run = vcpu->run;
6416         struct kvm_mmio_fragment *frag;
6417         unsigned len;
6418
6419         BUG_ON(!vcpu->mmio_needed);
6420
6421         /* Complete previous fragment */
6422         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6423         len = min(8u, frag->len);
6424         if (!vcpu->mmio_is_write)
6425                 memcpy(frag->data, run->mmio.data, len);
6426
6427         if (frag->len <= 8) {
6428                 /* Switch to the next fragment. */
6429                 frag++;
6430                 vcpu->mmio_cur_fragment++;
6431         } else {
6432                 /* Go forward to the next mmio piece. */
6433                 frag->data += len;
6434                 frag->gpa += len;
6435                 frag->len -= len;
6436         }
6437
6438         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6439                 vcpu->mmio_needed = 0;
6440
6441                 /* FIXME: return into emulator if single-stepping.  */
6442                 if (vcpu->mmio_is_write)
6443                         return 1;
6444                 vcpu->mmio_read_completed = 1;
6445                 return complete_emulated_io(vcpu);
6446         }
6447
6448         run->exit_reason = KVM_EXIT_MMIO;
6449         run->mmio.phys_addr = frag->gpa;
6450         if (vcpu->mmio_is_write)
6451                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6452         run->mmio.len = min(8u, frag->len);
6453         run->mmio.is_write = vcpu->mmio_is_write;
6454         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6455         return 0;
6456 }
6457
6458
6459 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6460 {
6461         int r;
6462         sigset_t sigsaved;
6463
6464         if (!tsk_used_math(current) && init_fpu(current))
6465                 return -ENOMEM;
6466
6467         if (vcpu->sigset_active)
6468                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6469
6470         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6471                 kvm_vcpu_block(vcpu);
6472                 kvm_apic_accept_events(vcpu);
6473                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6474                 r = -EAGAIN;
6475                 goto out;
6476         }
6477
6478         /* re-sync apic's tpr */
6479         if (!irqchip_in_kernel(vcpu->kvm)) {
6480                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6481                         r = -EINVAL;
6482                         goto out;
6483                 }
6484         }
6485
6486         if (unlikely(vcpu->arch.complete_userspace_io)) {
6487                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6488                 vcpu->arch.complete_userspace_io = NULL;
6489                 r = cui(vcpu);
6490                 if (r <= 0)
6491                         goto out;
6492         } else
6493                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6494
6495         r = __vcpu_run(vcpu);
6496
6497 out:
6498         post_kvm_run_save(vcpu);
6499         if (vcpu->sigset_active)
6500                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6501
6502         return r;
6503 }
6504
6505 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6506 {
6507         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6508                 /*
6509                  * We are here if userspace calls get_regs() in the middle of
6510                  * instruction emulation. Registers state needs to be copied
6511                  * back from emulation context to vcpu. Userspace shouldn't do
6512                  * that usually, but some bad designed PV devices (vmware
6513                  * backdoor interface) need this to work
6514                  */
6515                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6516                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6517         }
6518         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6519         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6520         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6521         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6522         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6523         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6524         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6525         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6526 #ifdef CONFIG_X86_64
6527         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6528         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6529         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6530         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6531         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6532         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6533         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6534         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6535 #endif
6536
6537         regs->rip = kvm_rip_read(vcpu);
6538         regs->rflags = kvm_get_rflags(vcpu);
6539
6540         return 0;
6541 }
6542
6543 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6544 {
6545         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6546         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6547
6548         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6549         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6550         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6551         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6552         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6553         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6554         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6555         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6556 #ifdef CONFIG_X86_64
6557         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6558         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6559         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6560         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6561         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6562         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6563         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6564         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6565 #endif
6566
6567         kvm_rip_write(vcpu, regs->rip);
6568         kvm_set_rflags(vcpu, regs->rflags);
6569
6570         vcpu->arch.exception.pending = false;
6571
6572         kvm_make_request(KVM_REQ_EVENT, vcpu);
6573
6574         return 0;
6575 }
6576
6577 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6578 {
6579         struct kvm_segment cs;
6580
6581         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6582         *db = cs.db;
6583         *l = cs.l;
6584 }
6585 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6586
6587 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6588                                   struct kvm_sregs *sregs)
6589 {
6590         struct desc_ptr dt;
6591
6592         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6593         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6594         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6595         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6596         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6597         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6598
6599         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6600         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6601
6602         kvm_x86_ops->get_idt(vcpu, &dt);
6603         sregs->idt.limit = dt.size;
6604         sregs->idt.base = dt.address;
6605         kvm_x86_ops->get_gdt(vcpu, &dt);
6606         sregs->gdt.limit = dt.size;
6607         sregs->gdt.base = dt.address;
6608
6609         sregs->cr0 = kvm_read_cr0(vcpu);
6610         sregs->cr2 = vcpu->arch.cr2;
6611         sregs->cr3 = kvm_read_cr3(vcpu);
6612         sregs->cr4 = kvm_read_cr4(vcpu);
6613         sregs->cr8 = kvm_get_cr8(vcpu);
6614         sregs->efer = vcpu->arch.efer;
6615         sregs->apic_base = kvm_get_apic_base(vcpu);
6616
6617         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6618
6619         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6620                 set_bit(vcpu->arch.interrupt.nr,
6621                         (unsigned long *)sregs->interrupt_bitmap);
6622
6623         return 0;
6624 }
6625
6626 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6627                                     struct kvm_mp_state *mp_state)
6628 {
6629         kvm_apic_accept_events(vcpu);
6630         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6631                                         vcpu->arch.pv.pv_unhalted)
6632                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6633         else
6634                 mp_state->mp_state = vcpu->arch.mp_state;
6635
6636         return 0;
6637 }
6638
6639 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6640                                     struct kvm_mp_state *mp_state)
6641 {
6642         if (!kvm_vcpu_has_lapic(vcpu) &&
6643             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6644                 return -EINVAL;
6645
6646         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6647                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6648                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6649         } else
6650                 vcpu->arch.mp_state = mp_state->mp_state;
6651         kvm_make_request(KVM_REQ_EVENT, vcpu);
6652         return 0;
6653 }
6654
6655 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6656                     int reason, bool has_error_code, u32 error_code)
6657 {
6658         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6659         int ret;
6660
6661         init_emulate_ctxt(vcpu);
6662
6663         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6664                                    has_error_code, error_code);
6665
6666         if (ret)
6667                 return EMULATE_FAIL;
6668
6669         kvm_rip_write(vcpu, ctxt->eip);
6670         kvm_set_rflags(vcpu, ctxt->eflags);
6671         kvm_make_request(KVM_REQ_EVENT, vcpu);
6672         return EMULATE_DONE;
6673 }
6674 EXPORT_SYMBOL_GPL(kvm_task_switch);
6675
6676 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6677                                   struct kvm_sregs *sregs)
6678 {
6679         struct msr_data apic_base_msr;
6680         int mmu_reset_needed = 0;
6681         int pending_vec, max_bits, idx;
6682         struct desc_ptr dt;
6683
6684         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6685                 return -EINVAL;
6686
6687         dt.size = sregs->idt.limit;
6688         dt.address = sregs->idt.base;
6689         kvm_x86_ops->set_idt(vcpu, &dt);
6690         dt.size = sregs->gdt.limit;
6691         dt.address = sregs->gdt.base;
6692         kvm_x86_ops->set_gdt(vcpu, &dt);
6693
6694         vcpu->arch.cr2 = sregs->cr2;
6695         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6696         vcpu->arch.cr3 = sregs->cr3;
6697         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6698
6699         kvm_set_cr8(vcpu, sregs->cr8);
6700
6701         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6702         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6703         apic_base_msr.data = sregs->apic_base;
6704         apic_base_msr.host_initiated = true;
6705         kvm_set_apic_base(vcpu, &apic_base_msr);
6706
6707         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6708         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6709         vcpu->arch.cr0 = sregs->cr0;
6710
6711         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6712         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6713         if (sregs->cr4 & X86_CR4_OSXSAVE)
6714                 kvm_update_cpuid(vcpu);
6715
6716         idx = srcu_read_lock(&vcpu->kvm->srcu);
6717         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6718                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6719                 mmu_reset_needed = 1;
6720         }
6721         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6722
6723         if (mmu_reset_needed)
6724                 kvm_mmu_reset_context(vcpu);
6725
6726         max_bits = KVM_NR_INTERRUPTS;
6727         pending_vec = find_first_bit(
6728                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6729         if (pending_vec < max_bits) {
6730                 kvm_queue_interrupt(vcpu, pending_vec, false);
6731                 pr_debug("Set back pending irq %d\n", pending_vec);
6732         }
6733
6734         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6735         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6736         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6737         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6738         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6739         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6740
6741         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6742         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6743
6744         update_cr8_intercept(vcpu);
6745
6746         /* Older userspace won't unhalt the vcpu on reset. */
6747         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6748             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6749             !is_protmode(vcpu))
6750                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6751
6752         kvm_make_request(KVM_REQ_EVENT, vcpu);
6753
6754         return 0;
6755 }
6756
6757 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6758                                         struct kvm_guest_debug *dbg)
6759 {
6760         unsigned long rflags;
6761         int i, r;
6762
6763         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6764                 r = -EBUSY;
6765                 if (vcpu->arch.exception.pending)
6766                         goto out;
6767                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6768                         kvm_queue_exception(vcpu, DB_VECTOR);
6769                 else
6770                         kvm_queue_exception(vcpu, BP_VECTOR);
6771         }
6772
6773         /*
6774          * Read rflags as long as potentially injected trace flags are still
6775          * filtered out.
6776          */
6777         rflags = kvm_get_rflags(vcpu);
6778
6779         vcpu->guest_debug = dbg->control;
6780         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6781                 vcpu->guest_debug = 0;
6782
6783         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6784                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6785                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6786                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6787         } else {
6788                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6789                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6790         }
6791         kvm_update_dr7(vcpu);
6792
6793         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6794                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6795                         get_segment_base(vcpu, VCPU_SREG_CS);
6796
6797         /*
6798          * Trigger an rflags update that will inject or remove the trace
6799          * flags.
6800          */
6801         kvm_set_rflags(vcpu, rflags);
6802
6803         kvm_x86_ops->update_db_bp_intercept(vcpu);
6804
6805         r = 0;
6806
6807 out:
6808
6809         return r;
6810 }
6811
6812 /*
6813  * Translate a guest virtual address to a guest physical address.
6814  */
6815 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6816                                     struct kvm_translation *tr)
6817 {
6818         unsigned long vaddr = tr->linear_address;
6819         gpa_t gpa;
6820         int idx;
6821
6822         idx = srcu_read_lock(&vcpu->kvm->srcu);
6823         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6824         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6825         tr->physical_address = gpa;
6826         tr->valid = gpa != UNMAPPED_GVA;
6827         tr->writeable = 1;
6828         tr->usermode = 0;
6829
6830         return 0;
6831 }
6832
6833 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6834 {
6835         struct i387_fxsave_struct *fxsave =
6836                         &vcpu->arch.guest_fpu.state->fxsave;
6837
6838         memcpy(fpu->fpr, fxsave->st_space, 128);
6839         fpu->fcw = fxsave->cwd;
6840         fpu->fsw = fxsave->swd;
6841         fpu->ftwx = fxsave->twd;
6842         fpu->last_opcode = fxsave->fop;
6843         fpu->last_ip = fxsave->rip;
6844         fpu->last_dp = fxsave->rdp;
6845         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6846
6847         return 0;
6848 }
6849
6850 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6851 {
6852         struct i387_fxsave_struct *fxsave =
6853                         &vcpu->arch.guest_fpu.state->fxsave;
6854
6855         memcpy(fxsave->st_space, fpu->fpr, 128);
6856         fxsave->cwd = fpu->fcw;
6857         fxsave->swd = fpu->fsw;
6858         fxsave->twd = fpu->ftwx;
6859         fxsave->fop = fpu->last_opcode;
6860         fxsave->rip = fpu->last_ip;
6861         fxsave->rdp = fpu->last_dp;
6862         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6863
6864         return 0;
6865 }
6866
6867 int fx_init(struct kvm_vcpu *vcpu)
6868 {
6869         int err;
6870
6871         err = fpu_alloc(&vcpu->arch.guest_fpu);
6872         if (err)
6873                 return err;
6874
6875         fpu_finit(&vcpu->arch.guest_fpu);
6876
6877         /*
6878          * Ensure guest xcr0 is valid for loading
6879          */
6880         vcpu->arch.xcr0 = XSTATE_FP;
6881
6882         vcpu->arch.cr0 |= X86_CR0_ET;
6883
6884         return 0;
6885 }
6886 EXPORT_SYMBOL_GPL(fx_init);
6887
6888 static void fx_free(struct kvm_vcpu *vcpu)
6889 {
6890         fpu_free(&vcpu->arch.guest_fpu);
6891 }
6892
6893 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6894 {
6895         if (vcpu->guest_fpu_loaded)
6896                 return;
6897
6898         /*
6899          * Restore all possible states in the guest,
6900          * and assume host would use all available bits.
6901          * Guest xcr0 would be loaded later.
6902          */
6903         kvm_put_guest_xcr0(vcpu);
6904         vcpu->guest_fpu_loaded = 1;
6905         __kernel_fpu_begin();
6906         fpu_restore_checking(&vcpu->arch.guest_fpu);
6907         trace_kvm_fpu(1);
6908 }
6909
6910 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6911 {
6912         kvm_put_guest_xcr0(vcpu);
6913
6914         if (!vcpu->guest_fpu_loaded)
6915                 return;
6916
6917         vcpu->guest_fpu_loaded = 0;
6918         fpu_save_init(&vcpu->arch.guest_fpu);
6919         __kernel_fpu_end();
6920         ++vcpu->stat.fpu_reload;
6921         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6922         trace_kvm_fpu(0);
6923 }
6924
6925 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6926 {
6927         kvmclock_reset(vcpu);
6928
6929         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6930         fx_free(vcpu);
6931         kvm_x86_ops->vcpu_free(vcpu);
6932 }
6933
6934 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6935                                                 unsigned int id)
6936 {
6937         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6938                 printk_once(KERN_WARNING
6939                 "kvm: SMP vm created on host with unstable TSC; "
6940                 "guest TSC will not be reliable\n");
6941         return kvm_x86_ops->vcpu_create(kvm, id);
6942 }
6943
6944 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6945 {
6946         int r;
6947
6948         vcpu->arch.mtrr_state.have_fixed = 1;
6949         r = vcpu_load(vcpu);
6950         if (r)
6951                 return r;
6952         kvm_vcpu_reset(vcpu);
6953         kvm_mmu_setup(vcpu);
6954         vcpu_put(vcpu);
6955
6956         return r;
6957 }
6958
6959 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6960 {
6961         int r;
6962         struct msr_data msr;
6963         struct kvm *kvm = vcpu->kvm;
6964
6965         r = vcpu_load(vcpu);
6966         if (r)
6967                 return r;
6968         msr.data = 0x0;
6969         msr.index = MSR_IA32_TSC;
6970         msr.host_initiated = true;
6971         kvm_write_tsc(vcpu, &msr);
6972         vcpu_put(vcpu);
6973
6974         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6975                                         KVMCLOCK_SYNC_PERIOD);
6976
6977         return r;
6978 }
6979
6980 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6981 {
6982         int r;
6983         vcpu->arch.apf.msr_val = 0;
6984
6985         r = vcpu_load(vcpu);
6986         BUG_ON(r);
6987         kvm_mmu_unload(vcpu);
6988         vcpu_put(vcpu);
6989
6990         fx_free(vcpu);
6991         kvm_x86_ops->vcpu_free(vcpu);
6992 }
6993
6994 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6995 {
6996         atomic_set(&vcpu->arch.nmi_queued, 0);
6997         vcpu->arch.nmi_pending = 0;
6998         vcpu->arch.nmi_injected = false;
6999         kvm_clear_interrupt_queue(vcpu);
7000         kvm_clear_exception_queue(vcpu);
7001
7002         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7003         vcpu->arch.dr6 = DR6_INIT;
7004         kvm_update_dr6(vcpu);
7005         vcpu->arch.dr7 = DR7_FIXED_1;
7006         kvm_update_dr7(vcpu);
7007
7008         kvm_make_request(KVM_REQ_EVENT, vcpu);
7009         vcpu->arch.apf.msr_val = 0;
7010         vcpu->arch.st.msr_val = 0;
7011
7012         kvmclock_reset(vcpu);
7013
7014         kvm_clear_async_pf_completion_queue(vcpu);
7015         kvm_async_pf_hash_reset(vcpu);
7016         vcpu->arch.apf.halted = false;
7017
7018         kvm_pmu_reset(vcpu);
7019
7020         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7021         vcpu->arch.regs_avail = ~0;
7022         vcpu->arch.regs_dirty = ~0;
7023
7024         kvm_x86_ops->vcpu_reset(vcpu);
7025 }
7026
7027 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
7028 {
7029         struct kvm_segment cs;
7030
7031         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7032         cs.selector = vector << 8;
7033         cs.base = vector << 12;
7034         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7035         kvm_rip_write(vcpu, 0);
7036 }
7037
7038 int kvm_arch_hardware_enable(void)
7039 {
7040         struct kvm *kvm;
7041         struct kvm_vcpu *vcpu;
7042         int i;
7043         int ret;
7044         u64 local_tsc;
7045         u64 max_tsc = 0;
7046         bool stable, backwards_tsc = false;
7047
7048         kvm_shared_msr_cpu_online();
7049         ret = kvm_x86_ops->hardware_enable();
7050         if (ret != 0)
7051                 return ret;
7052
7053         local_tsc = native_read_tsc();
7054         stable = !check_tsc_unstable();
7055         list_for_each_entry(kvm, &vm_list, vm_list) {
7056                 kvm_for_each_vcpu(i, vcpu, kvm) {
7057                         if (!stable && vcpu->cpu == smp_processor_id())
7058                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7059                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7060                                 backwards_tsc = true;
7061                                 if (vcpu->arch.last_host_tsc > max_tsc)
7062                                         max_tsc = vcpu->arch.last_host_tsc;
7063                         }
7064                 }
7065         }
7066
7067         /*
7068          * Sometimes, even reliable TSCs go backwards.  This happens on
7069          * platforms that reset TSC during suspend or hibernate actions, but
7070          * maintain synchronization.  We must compensate.  Fortunately, we can
7071          * detect that condition here, which happens early in CPU bringup,
7072          * before any KVM threads can be running.  Unfortunately, we can't
7073          * bring the TSCs fully up to date with real time, as we aren't yet far
7074          * enough into CPU bringup that we know how much real time has actually
7075          * elapsed; our helper function, get_kernel_ns() will be using boot
7076          * variables that haven't been updated yet.
7077          *
7078          * So we simply find the maximum observed TSC above, then record the
7079          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7080          * the adjustment will be applied.  Note that we accumulate
7081          * adjustments, in case multiple suspend cycles happen before some VCPU
7082          * gets a chance to run again.  In the event that no KVM threads get a
7083          * chance to run, we will miss the entire elapsed period, as we'll have
7084          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7085          * loose cycle time.  This isn't too big a deal, since the loss will be
7086          * uniform across all VCPUs (not to mention the scenario is extremely
7087          * unlikely). It is possible that a second hibernate recovery happens
7088          * much faster than a first, causing the observed TSC here to be
7089          * smaller; this would require additional padding adjustment, which is
7090          * why we set last_host_tsc to the local tsc observed here.
7091          *
7092          * N.B. - this code below runs only on platforms with reliable TSC,
7093          * as that is the only way backwards_tsc is set above.  Also note
7094          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7095          * have the same delta_cyc adjustment applied if backwards_tsc
7096          * is detected.  Note further, this adjustment is only done once,
7097          * as we reset last_host_tsc on all VCPUs to stop this from being
7098          * called multiple times (one for each physical CPU bringup).
7099          *
7100          * Platforms with unreliable TSCs don't have to deal with this, they
7101          * will be compensated by the logic in vcpu_load, which sets the TSC to
7102          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7103          * guarantee that they stay in perfect synchronization.
7104          */
7105         if (backwards_tsc) {
7106                 u64 delta_cyc = max_tsc - local_tsc;
7107                 backwards_tsc_observed = true;
7108                 list_for_each_entry(kvm, &vm_list, vm_list) {
7109                         kvm_for_each_vcpu(i, vcpu, kvm) {
7110                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7111                                 vcpu->arch.last_host_tsc = local_tsc;
7112                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7113                         }
7114
7115                         /*
7116                          * We have to disable TSC offset matching.. if you were
7117                          * booting a VM while issuing an S4 host suspend....
7118                          * you may have some problem.  Solving this issue is
7119                          * left as an exercise to the reader.
7120                          */
7121                         kvm->arch.last_tsc_nsec = 0;
7122                         kvm->arch.last_tsc_write = 0;
7123                 }
7124
7125         }
7126         return 0;
7127 }
7128
7129 void kvm_arch_hardware_disable(void)
7130 {
7131         kvm_x86_ops->hardware_disable();
7132         drop_user_return_notifiers();
7133 }
7134
7135 int kvm_arch_hardware_setup(void)
7136 {
7137         return kvm_x86_ops->hardware_setup();
7138 }
7139
7140 void kvm_arch_hardware_unsetup(void)
7141 {
7142         kvm_x86_ops->hardware_unsetup();
7143 }
7144
7145 void kvm_arch_check_processor_compat(void *rtn)
7146 {
7147         kvm_x86_ops->check_processor_compatibility(rtn);
7148 }
7149
7150 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7151 {
7152         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7153 }
7154
7155 struct static_key kvm_no_apic_vcpu __read_mostly;
7156
7157 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7158 {
7159         struct page *page;
7160         struct kvm *kvm;
7161         int r;
7162
7163         BUG_ON(vcpu->kvm == NULL);
7164         kvm = vcpu->kvm;
7165
7166         vcpu->arch.pv.pv_unhalted = false;
7167         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7168         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7169                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7170         else
7171                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7172
7173         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7174         if (!page) {
7175                 r = -ENOMEM;
7176                 goto fail;
7177         }
7178         vcpu->arch.pio_data = page_address(page);
7179
7180         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7181
7182         r = kvm_mmu_create(vcpu);
7183         if (r < 0)
7184                 goto fail_free_pio_data;
7185
7186         if (irqchip_in_kernel(kvm)) {
7187                 r = kvm_create_lapic(vcpu);
7188                 if (r < 0)
7189                         goto fail_mmu_destroy;
7190         } else
7191                 static_key_slow_inc(&kvm_no_apic_vcpu);
7192
7193         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7194                                        GFP_KERNEL);
7195         if (!vcpu->arch.mce_banks) {
7196                 r = -ENOMEM;
7197                 goto fail_free_lapic;
7198         }
7199         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7200
7201         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7202                 r = -ENOMEM;
7203                 goto fail_free_mce_banks;
7204         }
7205
7206         r = fx_init(vcpu);
7207         if (r)
7208                 goto fail_free_wbinvd_dirty_mask;
7209
7210         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7211         vcpu->arch.pv_time_enabled = false;
7212
7213         vcpu->arch.guest_supported_xcr0 = 0;
7214         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7215
7216         kvm_async_pf_hash_reset(vcpu);
7217         kvm_pmu_init(vcpu);
7218
7219         return 0;
7220 fail_free_wbinvd_dirty_mask:
7221         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7222 fail_free_mce_banks:
7223         kfree(vcpu->arch.mce_banks);
7224 fail_free_lapic:
7225         kvm_free_lapic(vcpu);
7226 fail_mmu_destroy:
7227         kvm_mmu_destroy(vcpu);
7228 fail_free_pio_data:
7229         free_page((unsigned long)vcpu->arch.pio_data);
7230 fail:
7231         return r;
7232 }
7233
7234 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7235 {
7236         int idx;
7237
7238         kvm_pmu_destroy(vcpu);
7239         kfree(vcpu->arch.mce_banks);
7240         kvm_free_lapic(vcpu);
7241         idx = srcu_read_lock(&vcpu->kvm->srcu);
7242         kvm_mmu_destroy(vcpu);
7243         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7244         free_page((unsigned long)vcpu->arch.pio_data);
7245         if (!irqchip_in_kernel(vcpu->kvm))
7246                 static_key_slow_dec(&kvm_no_apic_vcpu);
7247 }
7248
7249 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7250 {
7251         kvm_x86_ops->sched_in(vcpu, cpu);
7252 }
7253
7254 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7255 {
7256         if (type)
7257                 return -EINVAL;
7258
7259         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7260         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7261         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7262         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7263
7264         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7265         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7266         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7267         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7268                 &kvm->arch.irq_sources_bitmap);
7269
7270         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7271         mutex_init(&kvm->arch.apic_map_lock);
7272         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7273
7274         pvclock_update_vm_gtod_copy(kvm);
7275
7276         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7277         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7278
7279         return 0;
7280 }
7281
7282 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7283 {
7284         int r;
7285         r = vcpu_load(vcpu);
7286         BUG_ON(r);
7287         kvm_mmu_unload(vcpu);
7288         vcpu_put(vcpu);
7289 }
7290
7291 static void kvm_free_vcpus(struct kvm *kvm)
7292 {
7293         unsigned int i;
7294         struct kvm_vcpu *vcpu;
7295
7296         /*
7297          * Unpin any mmu pages first.
7298          */
7299         kvm_for_each_vcpu(i, vcpu, kvm) {
7300                 kvm_clear_async_pf_completion_queue(vcpu);
7301                 kvm_unload_vcpu_mmu(vcpu);
7302         }
7303         kvm_for_each_vcpu(i, vcpu, kvm)
7304                 kvm_arch_vcpu_free(vcpu);
7305
7306         mutex_lock(&kvm->lock);
7307         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7308                 kvm->vcpus[i] = NULL;
7309
7310         atomic_set(&kvm->online_vcpus, 0);
7311         mutex_unlock(&kvm->lock);
7312 }
7313
7314 void kvm_arch_sync_events(struct kvm *kvm)
7315 {
7316         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7317         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7318         kvm_free_all_assigned_devices(kvm);
7319         kvm_free_pit(kvm);
7320 }
7321
7322 void kvm_arch_destroy_vm(struct kvm *kvm)
7323 {
7324         if (current->mm == kvm->mm) {
7325                 /*
7326                  * Free memory regions allocated on behalf of userspace,
7327                  * unless the the memory map has changed due to process exit
7328                  * or fd copying.
7329                  */
7330                 struct kvm_userspace_memory_region mem;
7331                 memset(&mem, 0, sizeof(mem));
7332                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7333                 kvm_set_memory_region(kvm, &mem);
7334
7335                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7336                 kvm_set_memory_region(kvm, &mem);
7337
7338                 mem.slot = TSS_PRIVATE_MEMSLOT;
7339                 kvm_set_memory_region(kvm, &mem);
7340         }
7341         kvm_iommu_unmap_guest(kvm);
7342         kfree(kvm->arch.vpic);
7343         kfree(kvm->arch.vioapic);
7344         kvm_free_vcpus(kvm);
7345         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7346 }
7347
7348 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7349                            struct kvm_memory_slot *dont)
7350 {
7351         int i;
7352
7353         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7354                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7355                         kvm_kvfree(free->arch.rmap[i]);
7356                         free->arch.rmap[i] = NULL;
7357                 }
7358                 if (i == 0)
7359                         continue;
7360
7361                 if (!dont || free->arch.lpage_info[i - 1] !=
7362                              dont->arch.lpage_info[i - 1]) {
7363                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7364                         free->arch.lpage_info[i - 1] = NULL;
7365                 }
7366         }
7367 }
7368
7369 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7370                             unsigned long npages)
7371 {
7372         int i;
7373
7374         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7375                 unsigned long ugfn;
7376                 int lpages;
7377                 int level = i + 1;
7378
7379                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7380                                       slot->base_gfn, level) + 1;
7381
7382                 slot->arch.rmap[i] =
7383                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7384                 if (!slot->arch.rmap[i])
7385                         goto out_free;
7386                 if (i == 0)
7387                         continue;
7388
7389                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7390                                         sizeof(*slot->arch.lpage_info[i - 1]));
7391                 if (!slot->arch.lpage_info[i - 1])
7392                         goto out_free;
7393
7394                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7395                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7396                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7397                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7398                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7399                 /*
7400                  * If the gfn and userspace address are not aligned wrt each
7401                  * other, or if explicitly asked to, disable large page
7402                  * support for this slot
7403                  */
7404                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7405                     !kvm_largepages_enabled()) {
7406                         unsigned long j;
7407
7408                         for (j = 0; j < lpages; ++j)
7409                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7410                 }
7411         }
7412
7413         return 0;
7414
7415 out_free:
7416         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7417                 kvm_kvfree(slot->arch.rmap[i]);
7418                 slot->arch.rmap[i] = NULL;
7419                 if (i == 0)
7420                         continue;
7421
7422                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7423                 slot->arch.lpage_info[i - 1] = NULL;
7424         }
7425         return -ENOMEM;
7426 }
7427
7428 void kvm_arch_memslots_updated(struct kvm *kvm)
7429 {
7430         /*
7431          * memslots->generation has been incremented.
7432          * mmio generation may have reached its maximum value.
7433          */
7434         kvm_mmu_invalidate_mmio_sptes(kvm);
7435 }
7436
7437 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7438                                 struct kvm_memory_slot *memslot,
7439                                 struct kvm_userspace_memory_region *mem,
7440                                 enum kvm_mr_change change)
7441 {
7442         /*
7443          * Only private memory slots need to be mapped here since
7444          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7445          */
7446         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7447                 unsigned long userspace_addr;
7448
7449                 /*
7450                  * MAP_SHARED to prevent internal slot pages from being moved
7451                  * by fork()/COW.
7452                  */
7453                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7454                                          PROT_READ | PROT_WRITE,
7455                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7456
7457                 if (IS_ERR((void *)userspace_addr))
7458                         return PTR_ERR((void *)userspace_addr);
7459
7460                 memslot->userspace_addr = userspace_addr;
7461         }
7462
7463         return 0;
7464 }
7465
7466 void kvm_arch_commit_memory_region(struct kvm *kvm,
7467                                 struct kvm_userspace_memory_region *mem,
7468                                 const struct kvm_memory_slot *old,
7469                                 enum kvm_mr_change change)
7470 {
7471
7472         int nr_mmu_pages = 0;
7473
7474         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7475                 int ret;
7476
7477                 ret = vm_munmap(old->userspace_addr,
7478                                 old->npages * PAGE_SIZE);
7479                 if (ret < 0)
7480                         printk(KERN_WARNING
7481                                "kvm_vm_ioctl_set_memory_region: "
7482                                "failed to munmap memory\n");
7483         }
7484
7485         if (!kvm->arch.n_requested_mmu_pages)
7486                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7487
7488         if (nr_mmu_pages)
7489                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7490         /*
7491          * Write protect all pages for dirty logging.
7492          *
7493          * All the sptes including the large sptes which point to this
7494          * slot are set to readonly. We can not create any new large
7495          * spte on this slot until the end of the logging.
7496          *
7497          * See the comments in fast_page_fault().
7498          */
7499         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7500                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7501 }
7502
7503 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7504 {
7505         kvm_mmu_invalidate_zap_all_pages(kvm);
7506 }
7507
7508 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7509                                    struct kvm_memory_slot *slot)
7510 {
7511         kvm_mmu_invalidate_zap_all_pages(kvm);
7512 }
7513
7514 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7515 {
7516         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7517                 kvm_x86_ops->check_nested_events(vcpu, false);
7518
7519         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7520                 !vcpu->arch.apf.halted)
7521                 || !list_empty_careful(&vcpu->async_pf.done)
7522                 || kvm_apic_has_events(vcpu)
7523                 || vcpu->arch.pv.pv_unhalted
7524                 || atomic_read(&vcpu->arch.nmi_queued) ||
7525                 (kvm_arch_interrupt_allowed(vcpu) &&
7526                  kvm_cpu_has_interrupt(vcpu));
7527 }
7528
7529 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7530 {
7531         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7532 }
7533
7534 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7535 {
7536         return kvm_x86_ops->interrupt_allowed(vcpu);
7537 }
7538
7539 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7540 {
7541         unsigned long current_rip = kvm_rip_read(vcpu) +
7542                 get_segment_base(vcpu, VCPU_SREG_CS);
7543
7544         return current_rip == linear_rip;
7545 }
7546 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7547
7548 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7549 {
7550         unsigned long rflags;
7551
7552         rflags = kvm_x86_ops->get_rflags(vcpu);
7553         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7554                 rflags &= ~X86_EFLAGS_TF;
7555         return rflags;
7556 }
7557 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7558
7559 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7560 {
7561         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7562             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7563                 rflags |= X86_EFLAGS_TF;
7564         kvm_x86_ops->set_rflags(vcpu, rflags);
7565 }
7566
7567 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7568 {
7569         __kvm_set_rflags(vcpu, rflags);
7570         kvm_make_request(KVM_REQ_EVENT, vcpu);
7571 }
7572 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7573
7574 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7575 {
7576         int r;
7577
7578         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7579               work->wakeup_all)
7580                 return;
7581
7582         r = kvm_mmu_reload(vcpu);
7583         if (unlikely(r))
7584                 return;
7585
7586         if (!vcpu->arch.mmu.direct_map &&
7587               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7588                 return;
7589
7590         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7591 }
7592
7593 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7594 {
7595         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7596 }
7597
7598 static inline u32 kvm_async_pf_next_probe(u32 key)
7599 {
7600         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7601 }
7602
7603 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7604 {
7605         u32 key = kvm_async_pf_hash_fn(gfn);
7606
7607         while (vcpu->arch.apf.gfns[key] != ~0)
7608                 key = kvm_async_pf_next_probe(key);
7609
7610         vcpu->arch.apf.gfns[key] = gfn;
7611 }
7612
7613 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7614 {
7615         int i;
7616         u32 key = kvm_async_pf_hash_fn(gfn);
7617
7618         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7619                      (vcpu->arch.apf.gfns[key] != gfn &&
7620                       vcpu->arch.apf.gfns[key] != ~0); i++)
7621                 key = kvm_async_pf_next_probe(key);
7622
7623         return key;
7624 }
7625
7626 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7627 {
7628         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7629 }
7630
7631 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7632 {
7633         u32 i, j, k;
7634
7635         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7636         while (true) {
7637                 vcpu->arch.apf.gfns[i] = ~0;
7638                 do {
7639                         j = kvm_async_pf_next_probe(j);
7640                         if (vcpu->arch.apf.gfns[j] == ~0)
7641                                 return;
7642                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7643                         /*
7644                          * k lies cyclically in ]i,j]
7645                          * |    i.k.j |
7646                          * |....j i.k.| or  |.k..j i...|
7647                          */
7648                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7649                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7650                 i = j;
7651         }
7652 }
7653
7654 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7655 {
7656
7657         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7658                                       sizeof(val));
7659 }
7660
7661 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7662                                      struct kvm_async_pf *work)
7663 {
7664         struct x86_exception fault;
7665
7666         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7667         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7668
7669         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7670             (vcpu->arch.apf.send_user_only &&
7671              kvm_x86_ops->get_cpl(vcpu) == 0))
7672                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7673         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7674                 fault.vector = PF_VECTOR;
7675                 fault.error_code_valid = true;
7676                 fault.error_code = 0;
7677                 fault.nested_page_fault = false;
7678                 fault.address = work->arch.token;
7679                 kvm_inject_page_fault(vcpu, &fault);
7680         }
7681 }
7682
7683 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7684                                  struct kvm_async_pf *work)
7685 {
7686         struct x86_exception fault;
7687
7688         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7689         if (work->wakeup_all)
7690                 work->arch.token = ~0; /* broadcast wakeup */
7691         else
7692                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7693
7694         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7695             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7696                 fault.vector = PF_VECTOR;
7697                 fault.error_code_valid = true;
7698                 fault.error_code = 0;
7699                 fault.nested_page_fault = false;
7700                 fault.address = work->arch.token;
7701                 kvm_inject_page_fault(vcpu, &fault);
7702         }
7703         vcpu->arch.apf.halted = false;
7704         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7705 }
7706
7707 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7708 {
7709         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7710                 return true;
7711         else
7712                 return !kvm_event_needs_reinjection(vcpu) &&
7713                         kvm_x86_ops->interrupt_allowed(vcpu);
7714 }
7715
7716 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7717 {
7718         atomic_inc(&kvm->arch.noncoherent_dma_count);
7719 }
7720 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7721
7722 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7723 {
7724         atomic_dec(&kvm->arch.noncoherent_dma_count);
7725 }
7726 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7727
7728 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7729 {
7730         return atomic_read(&kvm->arch.noncoherent_dma_count);
7731 }
7732 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7733
7734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7745 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7746 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7747 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);