Merge tag 'for-5.6/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/devic...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22
23 #define CC(consistency_check)                                           \
24 ({                                                                      \
25         bool failed = (consistency_check);                              \
26         if (failed)                                                     \
27                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
28         failed;                                                         \
29 })
30
31 #define SET_MSR_OR_WARN(vcpu, idx, data)                                \
32 ({                                                                      \
33         bool failed = kvm_set_msr(vcpu, idx, data);                     \
34         if (failed)                                                     \
35                 pr_warn_ratelimited(                                    \
36                                 "%s cannot write MSR (0x%x, 0x%llx)\n", \
37                                 __func__, idx, data);                   \
38         failed;                                                         \
39 })
40
41 /*
42  * Hyper-V requires all of these, so mark them as supported even though
43  * they are just treated the same as all-context.
44  */
45 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
46         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
47         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
48         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
49         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
50
51 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
52
53 enum {
54         VMX_VMREAD_BITMAP,
55         VMX_VMWRITE_BITMAP,
56         VMX_BITMAP_NR
57 };
58 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
59
60 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
61 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
62
63 struct shadow_vmcs_field {
64         u16     encoding;
65         u16     offset;
66 };
67 static struct shadow_vmcs_field shadow_read_only_fields[] = {
68 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
69 #include "vmcs_shadow_fields.h"
70 };
71 static int max_shadow_read_only_fields =
72         ARRAY_SIZE(shadow_read_only_fields);
73
74 static struct shadow_vmcs_field shadow_read_write_fields[] = {
75 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
76 #include "vmcs_shadow_fields.h"
77 };
78 static int max_shadow_read_write_fields =
79         ARRAY_SIZE(shadow_read_write_fields);
80
81 static void init_vmcs_shadow_fields(void)
82 {
83         int i, j;
84
85         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
86         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
87
88         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
89                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
90                 u16 field = entry.encoding;
91
92                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
93                     (i + 1 == max_shadow_read_only_fields ||
94                      shadow_read_only_fields[i + 1].encoding != field + 1))
95                         pr_err("Missing field from shadow_read_only_field %x\n",
96                                field + 1);
97
98                 clear_bit(field, vmx_vmread_bitmap);
99                 if (field & 1)
100 #ifdef CONFIG_X86_64
101                         continue;
102 #else
103                         entry.offset += sizeof(u32);
104 #endif
105                 shadow_read_only_fields[j++] = entry;
106         }
107         max_shadow_read_only_fields = j;
108
109         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
110                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
111                 u16 field = entry.encoding;
112
113                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
114                     (i + 1 == max_shadow_read_write_fields ||
115                      shadow_read_write_fields[i + 1].encoding != field + 1))
116                         pr_err("Missing field from shadow_read_write_field %x\n",
117                                field + 1);
118
119                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
120                           field <= GUEST_TR_AR_BYTES,
121                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
122
123                 /*
124                  * PML and the preemption timer can be emulated, but the
125                  * processor cannot vmwrite to fields that don't exist
126                  * on bare metal.
127                  */
128                 switch (field) {
129                 case GUEST_PML_INDEX:
130                         if (!cpu_has_vmx_pml())
131                                 continue;
132                         break;
133                 case VMX_PREEMPTION_TIMER_VALUE:
134                         if (!cpu_has_vmx_preemption_timer())
135                                 continue;
136                         break;
137                 case GUEST_INTR_STATUS:
138                         if (!cpu_has_vmx_apicv())
139                                 continue;
140                         break;
141                 default:
142                         break;
143                 }
144
145                 clear_bit(field, vmx_vmwrite_bitmap);
146                 clear_bit(field, vmx_vmread_bitmap);
147                 if (field & 1)
148 #ifdef CONFIG_X86_64
149                         continue;
150 #else
151                         entry.offset += sizeof(u32);
152 #endif
153                 shadow_read_write_fields[j++] = entry;
154         }
155         max_shadow_read_write_fields = j;
156 }
157
158 /*
159  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
160  * set the success or error code of an emulated VMX instruction (as specified
161  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
162  * instruction.
163  */
164 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
165 {
166         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
167                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
168                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
169         return kvm_skip_emulated_instruction(vcpu);
170 }
171
172 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
173 {
174         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
175                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
176                             X86_EFLAGS_SF | X86_EFLAGS_OF))
177                         | X86_EFLAGS_CF);
178         return kvm_skip_emulated_instruction(vcpu);
179 }
180
181 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
182                                 u32 vm_instruction_error)
183 {
184         struct vcpu_vmx *vmx = to_vmx(vcpu);
185
186         /*
187          * failValid writes the error number to the current VMCS, which
188          * can't be done if there isn't a current VMCS.
189          */
190         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
191                 return nested_vmx_failInvalid(vcpu);
192
193         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
194                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
195                             X86_EFLAGS_SF | X86_EFLAGS_OF))
196                         | X86_EFLAGS_ZF);
197         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
198         /*
199          * We don't need to force a shadow sync because
200          * VM_INSTRUCTION_ERROR is not shadowed
201          */
202         return kvm_skip_emulated_instruction(vcpu);
203 }
204
205 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
206 {
207         /* TODO: not to reset guest simply here. */
208         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
209         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
210 }
211
212 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
213 {
214         return fixed_bits_valid(control, low, high);
215 }
216
217 static inline u64 vmx_control_msr(u32 low, u32 high)
218 {
219         return low | ((u64)high << 32);
220 }
221
222 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
223 {
224         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
225         vmcs_write64(VMCS_LINK_POINTER, -1ull);
226         vmx->nested.need_vmcs12_to_shadow_sync = false;
227 }
228
229 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
230 {
231         struct vcpu_vmx *vmx = to_vmx(vcpu);
232
233         if (!vmx->nested.hv_evmcs)
234                 return;
235
236         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
237         vmx->nested.hv_evmcs_vmptr = -1ull;
238         vmx->nested.hv_evmcs = NULL;
239 }
240
241 /*
242  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
243  * just stops using VMX.
244  */
245 static void free_nested(struct kvm_vcpu *vcpu)
246 {
247         struct vcpu_vmx *vmx = to_vmx(vcpu);
248
249         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
250                 return;
251
252         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
253
254         vmx->nested.vmxon = false;
255         vmx->nested.smm.vmxon = false;
256         free_vpid(vmx->nested.vpid02);
257         vmx->nested.posted_intr_nv = -1;
258         vmx->nested.current_vmptr = -1ull;
259         if (enable_shadow_vmcs) {
260                 vmx_disable_shadow_vmcs(vmx);
261                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
262                 free_vmcs(vmx->vmcs01.shadow_vmcs);
263                 vmx->vmcs01.shadow_vmcs = NULL;
264         }
265         kfree(vmx->nested.cached_vmcs12);
266         vmx->nested.cached_vmcs12 = NULL;
267         kfree(vmx->nested.cached_shadow_vmcs12);
268         vmx->nested.cached_shadow_vmcs12 = NULL;
269         /* Unpin physical memory we referred to in the vmcs02 */
270         if (vmx->nested.apic_access_page) {
271                 kvm_release_page_clean(vmx->nested.apic_access_page);
272                 vmx->nested.apic_access_page = NULL;
273         }
274         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
275         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
276         vmx->nested.pi_desc = NULL;
277
278         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
279
280         nested_release_evmcs(vcpu);
281
282         free_loaded_vmcs(&vmx->nested.vmcs02);
283 }
284
285 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
286                                      struct loaded_vmcs *prev)
287 {
288         struct vmcs_host_state *dest, *src;
289
290         if (unlikely(!vmx->guest_state_loaded))
291                 return;
292
293         src = &prev->host_state;
294         dest = &vmx->loaded_vmcs->host_state;
295
296         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
297         dest->ldt_sel = src->ldt_sel;
298 #ifdef CONFIG_X86_64
299         dest->ds_sel = src->ds_sel;
300         dest->es_sel = src->es_sel;
301 #endif
302 }
303
304 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
305 {
306         struct vcpu_vmx *vmx = to_vmx(vcpu);
307         struct loaded_vmcs *prev;
308         int cpu;
309
310         if (vmx->loaded_vmcs == vmcs)
311                 return;
312
313         cpu = get_cpu();
314         prev = vmx->loaded_vmcs;
315         vmx->loaded_vmcs = vmcs;
316         vmx_vcpu_load_vmcs(vcpu, cpu);
317         vmx_sync_vmcs_host_state(vmx, prev);
318         put_cpu();
319
320         vmx_segment_cache_clear(vmx);
321 }
322
323 /*
324  * Ensure that the current vmcs of the logical processor is the
325  * vmcs01 of the vcpu before calling free_nested().
326  */
327 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
328 {
329         vcpu_load(vcpu);
330         vmx_leave_nested(vcpu);
331         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
332         free_nested(vcpu);
333         vcpu_put(vcpu);
334 }
335
336 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
337                 struct x86_exception *fault)
338 {
339         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
340         struct vcpu_vmx *vmx = to_vmx(vcpu);
341         u32 exit_reason;
342         unsigned long exit_qualification = vcpu->arch.exit_qualification;
343
344         if (vmx->nested.pml_full) {
345                 exit_reason = EXIT_REASON_PML_FULL;
346                 vmx->nested.pml_full = false;
347                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
348         } else if (fault->error_code & PFERR_RSVD_MASK)
349                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
350         else
351                 exit_reason = EXIT_REASON_EPT_VIOLATION;
352
353         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
354         vmcs12->guest_physical_address = fault->address;
355 }
356
357 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
358 {
359         WARN_ON(mmu_is_nested(vcpu));
360
361         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
362         kvm_init_shadow_ept_mmu(vcpu,
363                         to_vmx(vcpu)->nested.msrs.ept_caps &
364                         VMX_EPT_EXECUTE_ONLY_BIT,
365                         nested_ept_ad_enabled(vcpu),
366                         nested_ept_get_cr3(vcpu));
367         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
368         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
369         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
370         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
371
372         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
373 }
374
375 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
376 {
377         vcpu->arch.mmu = &vcpu->arch.root_mmu;
378         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
379 }
380
381 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
382                                             u16 error_code)
383 {
384         bool inequality, bit;
385
386         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
387         inequality =
388                 (error_code & vmcs12->page_fault_error_code_mask) !=
389                  vmcs12->page_fault_error_code_match;
390         return inequality ^ bit;
391 }
392
393
394 /*
395  * KVM wants to inject page-faults which it got to the guest. This function
396  * checks whether in a nested guest, we need to inject them to L1 or L2.
397  */
398 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
399 {
400         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
401         unsigned int nr = vcpu->arch.exception.nr;
402         bool has_payload = vcpu->arch.exception.has_payload;
403         unsigned long payload = vcpu->arch.exception.payload;
404
405         if (nr == PF_VECTOR) {
406                 if (vcpu->arch.exception.nested_apf) {
407                         *exit_qual = vcpu->arch.apf.nested_apf_token;
408                         return 1;
409                 }
410                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
411                                                     vcpu->arch.exception.error_code)) {
412                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
413                         return 1;
414                 }
415         } else if (vmcs12->exception_bitmap & (1u << nr)) {
416                 if (nr == DB_VECTOR) {
417                         if (!has_payload) {
418                                 payload = vcpu->arch.dr6;
419                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
420                                 payload ^= DR6_RTM;
421                         }
422                         *exit_qual = payload;
423                 } else
424                         *exit_qual = 0;
425                 return 1;
426         }
427
428         return 0;
429 }
430
431
432 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
433                 struct x86_exception *fault)
434 {
435         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
436
437         WARN_ON(!is_guest_mode(vcpu));
438
439         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
440                 !to_vmx(vcpu)->nested.nested_run_pending) {
441                 vmcs12->vm_exit_intr_error_code = fault->error_code;
442                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
443                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
444                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
445                                   fault->address);
446         } else {
447                 kvm_inject_page_fault(vcpu, fault);
448         }
449 }
450
451 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
452 {
453         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
454 }
455
456 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
457                                                struct vmcs12 *vmcs12)
458 {
459         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
460                 return 0;
461
462         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
463             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
464                 return -EINVAL;
465
466         return 0;
467 }
468
469 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
470                                                 struct vmcs12 *vmcs12)
471 {
472         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
473                 return 0;
474
475         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
476                 return -EINVAL;
477
478         return 0;
479 }
480
481 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
482                                                 struct vmcs12 *vmcs12)
483 {
484         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
485                 return 0;
486
487         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
488                 return -EINVAL;
489
490         return 0;
491 }
492
493 /*
494  * Check if MSR is intercepted for L01 MSR bitmap.
495  */
496 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
497 {
498         unsigned long *msr_bitmap;
499         int f = sizeof(unsigned long);
500
501         if (!cpu_has_vmx_msr_bitmap())
502                 return true;
503
504         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
505
506         if (msr <= 0x1fff) {
507                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
508         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
509                 msr &= 0x1fff;
510                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
511         }
512
513         return true;
514 }
515
516 /*
517  * If a msr is allowed by L0, we should check whether it is allowed by L1.
518  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
519  */
520 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
521                                                unsigned long *msr_bitmap_nested,
522                                                u32 msr, int type)
523 {
524         int f = sizeof(unsigned long);
525
526         /*
527          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
528          * have the write-low and read-high bitmap offsets the wrong way round.
529          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
530          */
531         if (msr <= 0x1fff) {
532                 if (type & MSR_TYPE_R &&
533                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
534                         /* read-low */
535                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
536
537                 if (type & MSR_TYPE_W &&
538                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
539                         /* write-low */
540                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
541
542         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
543                 msr &= 0x1fff;
544                 if (type & MSR_TYPE_R &&
545                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
546                         /* read-high */
547                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
548
549                 if (type & MSR_TYPE_W &&
550                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
551                         /* write-high */
552                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
553
554         }
555 }
556
557 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
558         int msr;
559
560         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
561                 unsigned word = msr / BITS_PER_LONG;
562
563                 msr_bitmap[word] = ~0;
564                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
565         }
566 }
567
568 /*
569  * Merge L0's and L1's MSR bitmap, return false to indicate that
570  * we do not use the hardware.
571  */
572 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
573                                                  struct vmcs12 *vmcs12)
574 {
575         int msr;
576         unsigned long *msr_bitmap_l1;
577         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
578         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
579
580         /* Nothing to do if the MSR bitmap is not in use.  */
581         if (!cpu_has_vmx_msr_bitmap() ||
582             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
583                 return false;
584
585         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
586                 return false;
587
588         msr_bitmap_l1 = (unsigned long *)map->hva;
589
590         /*
591          * To keep the control flow simple, pay eight 8-byte writes (sixteen
592          * 4-byte writes on 32-bit systems) up front to enable intercepts for
593          * the x2APIC MSR range and selectively disable them below.
594          */
595         enable_x2apic_msr_intercepts(msr_bitmap_l0);
596
597         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
598                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
599                         /*
600                          * L0 need not intercept reads for MSRs between 0x800
601                          * and 0x8ff, it just lets the processor take the value
602                          * from the virtual-APIC page; take those 256 bits
603                          * directly from the L1 bitmap.
604                          */
605                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
606                                 unsigned word = msr / BITS_PER_LONG;
607
608                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
609                         }
610                 }
611
612                 nested_vmx_disable_intercept_for_msr(
613                         msr_bitmap_l1, msr_bitmap_l0,
614                         X2APIC_MSR(APIC_TASKPRI),
615                         MSR_TYPE_R | MSR_TYPE_W);
616
617                 if (nested_cpu_has_vid(vmcs12)) {
618                         nested_vmx_disable_intercept_for_msr(
619                                 msr_bitmap_l1, msr_bitmap_l0,
620                                 X2APIC_MSR(APIC_EOI),
621                                 MSR_TYPE_W);
622                         nested_vmx_disable_intercept_for_msr(
623                                 msr_bitmap_l1, msr_bitmap_l0,
624                                 X2APIC_MSR(APIC_SELF_IPI),
625                                 MSR_TYPE_W);
626                 }
627         }
628
629         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
630         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
631                                              MSR_FS_BASE, MSR_TYPE_RW);
632
633         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
634                                              MSR_GS_BASE, MSR_TYPE_RW);
635
636         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
637                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
638
639         /*
640          * Checking the L0->L1 bitmap is trying to verify two things:
641          *
642          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
643          *    ensures that we do not accidentally generate an L02 MSR bitmap
644          *    from the L12 MSR bitmap that is too permissive.
645          * 2. That L1 or L2s have actually used the MSR. This avoids
646          *    unnecessarily merging of the bitmap if the MSR is unused. This
647          *    works properly because we only update the L01 MSR bitmap lazily.
648          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
649          *    updated to reflect this when L1 (or its L2s) actually write to
650          *    the MSR.
651          */
652         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
653                 nested_vmx_disable_intercept_for_msr(
654                                         msr_bitmap_l1, msr_bitmap_l0,
655                                         MSR_IA32_SPEC_CTRL,
656                                         MSR_TYPE_R | MSR_TYPE_W);
657
658         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
659                 nested_vmx_disable_intercept_for_msr(
660                                         msr_bitmap_l1, msr_bitmap_l0,
661                                         MSR_IA32_PRED_CMD,
662                                         MSR_TYPE_W);
663
664         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
665
666         return true;
667 }
668
669 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
670                                        struct vmcs12 *vmcs12)
671 {
672         struct kvm_host_map map;
673         struct vmcs12 *shadow;
674
675         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
676             vmcs12->vmcs_link_pointer == -1ull)
677                 return;
678
679         shadow = get_shadow_vmcs12(vcpu);
680
681         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
682                 return;
683
684         memcpy(shadow, map.hva, VMCS12_SIZE);
685         kvm_vcpu_unmap(vcpu, &map, false);
686 }
687
688 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
689                                               struct vmcs12 *vmcs12)
690 {
691         struct vcpu_vmx *vmx = to_vmx(vcpu);
692
693         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
694             vmcs12->vmcs_link_pointer == -1ull)
695                 return;
696
697         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
698                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
699 }
700
701 /*
702  * In nested virtualization, check if L1 has set
703  * VM_EXIT_ACK_INTR_ON_EXIT
704  */
705 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
706 {
707         return get_vmcs12(vcpu)->vm_exit_controls &
708                 VM_EXIT_ACK_INTR_ON_EXIT;
709 }
710
711 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
712 {
713         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
714 }
715
716 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
717                                           struct vmcs12 *vmcs12)
718 {
719         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
720             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
721                 return -EINVAL;
722         else
723                 return 0;
724 }
725
726 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
727                                            struct vmcs12 *vmcs12)
728 {
729         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
730             !nested_cpu_has_apic_reg_virt(vmcs12) &&
731             !nested_cpu_has_vid(vmcs12) &&
732             !nested_cpu_has_posted_intr(vmcs12))
733                 return 0;
734
735         /*
736          * If virtualize x2apic mode is enabled,
737          * virtualize apic access must be disabled.
738          */
739         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
740                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
741                 return -EINVAL;
742
743         /*
744          * If virtual interrupt delivery is enabled,
745          * we must exit on external interrupts.
746          */
747         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
748                 return -EINVAL;
749
750         /*
751          * bits 15:8 should be zero in posted_intr_nv,
752          * the descriptor address has been already checked
753          * in nested_get_vmcs12_pages.
754          *
755          * bits 5:0 of posted_intr_desc_addr should be zero.
756          */
757         if (nested_cpu_has_posted_intr(vmcs12) &&
758            (CC(!nested_cpu_has_vid(vmcs12)) ||
759             CC(!nested_exit_intr_ack_set(vcpu)) ||
760             CC((vmcs12->posted_intr_nv & 0xff00)) ||
761             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
762             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
763                 return -EINVAL;
764
765         /* tpr shadow is needed by all apicv features. */
766         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
767                 return -EINVAL;
768
769         return 0;
770 }
771
772 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
773                                        u32 count, u64 addr)
774 {
775         int maxphyaddr;
776
777         if (count == 0)
778                 return 0;
779         maxphyaddr = cpuid_maxphyaddr(vcpu);
780         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
781             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
782                 return -EINVAL;
783
784         return 0;
785 }
786
787 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
788                                                      struct vmcs12 *vmcs12)
789 {
790         if (CC(nested_vmx_check_msr_switch(vcpu,
791                                            vmcs12->vm_exit_msr_load_count,
792                                            vmcs12->vm_exit_msr_load_addr)) ||
793             CC(nested_vmx_check_msr_switch(vcpu,
794                                            vmcs12->vm_exit_msr_store_count,
795                                            vmcs12->vm_exit_msr_store_addr)))
796                 return -EINVAL;
797
798         return 0;
799 }
800
801 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
802                                                       struct vmcs12 *vmcs12)
803 {
804         if (CC(nested_vmx_check_msr_switch(vcpu,
805                                            vmcs12->vm_entry_msr_load_count,
806                                            vmcs12->vm_entry_msr_load_addr)))
807                 return -EINVAL;
808
809         return 0;
810 }
811
812 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
813                                          struct vmcs12 *vmcs12)
814 {
815         if (!nested_cpu_has_pml(vmcs12))
816                 return 0;
817
818         if (CC(!nested_cpu_has_ept(vmcs12)) ||
819             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
820                 return -EINVAL;
821
822         return 0;
823 }
824
825 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
826                                                         struct vmcs12 *vmcs12)
827 {
828         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
829                !nested_cpu_has_ept(vmcs12)))
830                 return -EINVAL;
831         return 0;
832 }
833
834 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
835                                                          struct vmcs12 *vmcs12)
836 {
837         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
838                !nested_cpu_has_ept(vmcs12)))
839                 return -EINVAL;
840         return 0;
841 }
842
843 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
844                                                  struct vmcs12 *vmcs12)
845 {
846         if (!nested_cpu_has_shadow_vmcs(vmcs12))
847                 return 0;
848
849         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
850             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
851                 return -EINVAL;
852
853         return 0;
854 }
855
856 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
857                                        struct vmx_msr_entry *e)
858 {
859         /* x2APIC MSR accesses are not allowed */
860         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
861                 return -EINVAL;
862         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
863             CC(e->index == MSR_IA32_UCODE_REV))
864                 return -EINVAL;
865         if (CC(e->reserved != 0))
866                 return -EINVAL;
867         return 0;
868 }
869
870 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
871                                      struct vmx_msr_entry *e)
872 {
873         if (CC(e->index == MSR_FS_BASE) ||
874             CC(e->index == MSR_GS_BASE) ||
875             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
876             nested_vmx_msr_check_common(vcpu, e))
877                 return -EINVAL;
878         return 0;
879 }
880
881 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
882                                       struct vmx_msr_entry *e)
883 {
884         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
885             nested_vmx_msr_check_common(vcpu, e))
886                 return -EINVAL;
887         return 0;
888 }
889
890 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
891 {
892         struct vcpu_vmx *vmx = to_vmx(vcpu);
893         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
894                                        vmx->nested.msrs.misc_high);
895
896         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
897 }
898
899 /*
900  * Load guest's/host's msr at nested entry/exit.
901  * return 0 for success, entry index for failure.
902  *
903  * One of the failure modes for MSR load/store is when a list exceeds the
904  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
905  * as possible, process all valid entries before failing rather than precheck
906  * for a capacity violation.
907  */
908 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
909 {
910         u32 i;
911         struct vmx_msr_entry e;
912         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
913
914         for (i = 0; i < count; i++) {
915                 if (unlikely(i >= max_msr_list_size))
916                         goto fail;
917
918                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
919                                         &e, sizeof(e))) {
920                         pr_debug_ratelimited(
921                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
922                                 __func__, i, gpa + i * sizeof(e));
923                         goto fail;
924                 }
925                 if (nested_vmx_load_msr_check(vcpu, &e)) {
926                         pr_debug_ratelimited(
927                                 "%s check failed (%u, 0x%x, 0x%x)\n",
928                                 __func__, i, e.index, e.reserved);
929                         goto fail;
930                 }
931                 if (kvm_set_msr(vcpu, e.index, e.value)) {
932                         pr_debug_ratelimited(
933                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
934                                 __func__, i, e.index, e.value);
935                         goto fail;
936                 }
937         }
938         return 0;
939 fail:
940         return i + 1;
941 }
942
943 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
944                                             u32 msr_index,
945                                             u64 *data)
946 {
947         struct vcpu_vmx *vmx = to_vmx(vcpu);
948
949         /*
950          * If the L0 hypervisor stored a more accurate value for the TSC that
951          * does not include the time taken for emulation of the L2->L1
952          * VM-exit in L0, use the more accurate value.
953          */
954         if (msr_index == MSR_IA32_TSC) {
955                 int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
956                                                MSR_IA32_TSC);
957
958                 if (index >= 0) {
959                         u64 val = vmx->msr_autostore.guest.val[index].value;
960
961                         *data = kvm_read_l1_tsc(vcpu, val);
962                         return true;
963                 }
964         }
965
966         if (kvm_get_msr(vcpu, msr_index, data)) {
967                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
968                         msr_index);
969                 return false;
970         }
971         return true;
972 }
973
974 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
975                                      struct vmx_msr_entry *e)
976 {
977         if (kvm_vcpu_read_guest(vcpu,
978                                 gpa + i * sizeof(*e),
979                                 e, 2 * sizeof(u32))) {
980                 pr_debug_ratelimited(
981                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
982                         __func__, i, gpa + i * sizeof(*e));
983                 return false;
984         }
985         if (nested_vmx_store_msr_check(vcpu, e)) {
986                 pr_debug_ratelimited(
987                         "%s check failed (%u, 0x%x, 0x%x)\n",
988                         __func__, i, e->index, e->reserved);
989                 return false;
990         }
991         return true;
992 }
993
994 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
995 {
996         u64 data;
997         u32 i;
998         struct vmx_msr_entry e;
999         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1000
1001         for (i = 0; i < count; i++) {
1002                 if (unlikely(i >= max_msr_list_size))
1003                         return -EINVAL;
1004
1005                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1006                         return -EINVAL;
1007
1008                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1009                         return -EINVAL;
1010
1011                 if (kvm_vcpu_write_guest(vcpu,
1012                                          gpa + i * sizeof(e) +
1013                                              offsetof(struct vmx_msr_entry, value),
1014                                          &data, sizeof(data))) {
1015                         pr_debug_ratelimited(
1016                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1017                                 __func__, i, e.index, data);
1018                         return -EINVAL;
1019                 }
1020         }
1021         return 0;
1022 }
1023
1024 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1025 {
1026         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1027         u32 count = vmcs12->vm_exit_msr_store_count;
1028         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1029         struct vmx_msr_entry e;
1030         u32 i;
1031
1032         for (i = 0; i < count; i++) {
1033                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1034                         return false;
1035
1036                 if (e.index == msr_index)
1037                         return true;
1038         }
1039         return false;
1040 }
1041
1042 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1043                                            u32 msr_index)
1044 {
1045         struct vcpu_vmx *vmx = to_vmx(vcpu);
1046         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1047         bool in_vmcs12_store_list;
1048         int msr_autostore_index;
1049         bool in_autostore_list;
1050         int last;
1051
1052         msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1053         in_autostore_list = msr_autostore_index >= 0;
1054         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1055
1056         if (in_vmcs12_store_list && !in_autostore_list) {
1057                 if (autostore->nr == NR_LOADSTORE_MSRS) {
1058                         /*
1059                          * Emulated VMEntry does not fail here.  Instead a less
1060                          * accurate value will be returned by
1061                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1062                          * instead of reading the value from the vmcs02 VMExit
1063                          * MSR-store area.
1064                          */
1065                         pr_warn_ratelimited(
1066                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1067                                 msr_index);
1068                         return;
1069                 }
1070                 last = autostore->nr++;
1071                 autostore->val[last].index = msr_index;
1072         } else if (!in_vmcs12_store_list && in_autostore_list) {
1073                 last = --autostore->nr;
1074                 autostore->val[msr_autostore_index] = autostore->val[last];
1075         }
1076 }
1077
1078 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1079 {
1080         unsigned long invalid_mask;
1081
1082         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1083         return (val & invalid_mask) == 0;
1084 }
1085
1086 /*
1087  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
1088  * emulating VM entry into a guest with EPT enabled.
1089  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
1090  * is assigned to entry_failure_code on failure.
1091  */
1092 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1093                                u32 *entry_failure_code)
1094 {
1095         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1096                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
1097                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
1098                         return -EINVAL;
1099                 }
1100
1101                 /*
1102                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1103                  * must not be dereferenced.
1104                  */
1105                 if (is_pae_paging(vcpu) && !nested_ept) {
1106                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1107                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1108                                 return -EINVAL;
1109                         }
1110                 }
1111         }
1112
1113         if (!nested_ept)
1114                 kvm_mmu_new_cr3(vcpu, cr3, false);
1115
1116         vcpu->arch.cr3 = cr3;
1117         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1118
1119         kvm_init_mmu(vcpu, false);
1120
1121         return 0;
1122 }
1123
1124 /*
1125  * Returns if KVM is able to config CPU to tag TLB entries
1126  * populated by L2 differently than TLB entries populated
1127  * by L1.
1128  *
1129  * If L0 uses EPT, L1 and L2 run with different EPTP because
1130  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1131  * are tagged with different EPTP.
1132  *
1133  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1134  * with different VPID (L1 entries are tagged with vmx->vpid
1135  * while L2 entries are tagged with vmx->nested.vpid02).
1136  */
1137 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1138 {
1139         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1140
1141         return enable_ept ||
1142                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1143 }
1144
1145 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1146 {
1147         struct vcpu_vmx *vmx = to_vmx(vcpu);
1148
1149         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1150 }
1151
1152 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1153 {
1154         superset &= mask;
1155         subset &= mask;
1156
1157         return (superset | subset) == superset;
1158 }
1159
1160 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1161 {
1162         const u64 feature_and_reserved =
1163                 /* feature (except bit 48; see below) */
1164                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1165                 /* reserved */
1166                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1167         u64 vmx_basic = vmx->nested.msrs.basic;
1168
1169         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1170                 return -EINVAL;
1171
1172         /*
1173          * KVM does not emulate a version of VMX that constrains physical
1174          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1175          */
1176         if (data & BIT_ULL(48))
1177                 return -EINVAL;
1178
1179         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1180             vmx_basic_vmcs_revision_id(data))
1181                 return -EINVAL;
1182
1183         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1184                 return -EINVAL;
1185
1186         vmx->nested.msrs.basic = data;
1187         return 0;
1188 }
1189
1190 static int
1191 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1192 {
1193         u64 supported;
1194         u32 *lowp, *highp;
1195
1196         switch (msr_index) {
1197         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1198                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1199                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1200                 break;
1201         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1202                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1203                 highp = &vmx->nested.msrs.procbased_ctls_high;
1204                 break;
1205         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1206                 lowp = &vmx->nested.msrs.exit_ctls_low;
1207                 highp = &vmx->nested.msrs.exit_ctls_high;
1208                 break;
1209         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1210                 lowp = &vmx->nested.msrs.entry_ctls_low;
1211                 highp = &vmx->nested.msrs.entry_ctls_high;
1212                 break;
1213         case MSR_IA32_VMX_PROCBASED_CTLS2:
1214                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1215                 highp = &vmx->nested.msrs.secondary_ctls_high;
1216                 break;
1217         default:
1218                 BUG();
1219         }
1220
1221         supported = vmx_control_msr(*lowp, *highp);
1222
1223         /* Check must-be-1 bits are still 1. */
1224         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1225                 return -EINVAL;
1226
1227         /* Check must-be-0 bits are still 0. */
1228         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1229                 return -EINVAL;
1230
1231         *lowp = data;
1232         *highp = data >> 32;
1233         return 0;
1234 }
1235
1236 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1237 {
1238         const u64 feature_and_reserved_bits =
1239                 /* feature */
1240                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1241                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1242                 /* reserved */
1243                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1244         u64 vmx_misc;
1245
1246         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1247                                    vmx->nested.msrs.misc_high);
1248
1249         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1250                 return -EINVAL;
1251
1252         if ((vmx->nested.msrs.pinbased_ctls_high &
1253              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1254             vmx_misc_preemption_timer_rate(data) !=
1255             vmx_misc_preemption_timer_rate(vmx_misc))
1256                 return -EINVAL;
1257
1258         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1259                 return -EINVAL;
1260
1261         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1262                 return -EINVAL;
1263
1264         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1265                 return -EINVAL;
1266
1267         vmx->nested.msrs.misc_low = data;
1268         vmx->nested.msrs.misc_high = data >> 32;
1269
1270         return 0;
1271 }
1272
1273 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1274 {
1275         u64 vmx_ept_vpid_cap;
1276
1277         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1278                                            vmx->nested.msrs.vpid_caps);
1279
1280         /* Every bit is either reserved or a feature bit. */
1281         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1282                 return -EINVAL;
1283
1284         vmx->nested.msrs.ept_caps = data;
1285         vmx->nested.msrs.vpid_caps = data >> 32;
1286         return 0;
1287 }
1288
1289 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1290 {
1291         u64 *msr;
1292
1293         switch (msr_index) {
1294         case MSR_IA32_VMX_CR0_FIXED0:
1295                 msr = &vmx->nested.msrs.cr0_fixed0;
1296                 break;
1297         case MSR_IA32_VMX_CR4_FIXED0:
1298                 msr = &vmx->nested.msrs.cr4_fixed0;
1299                 break;
1300         default:
1301                 BUG();
1302         }
1303
1304         /*
1305          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1306          * must be 1 in the restored value.
1307          */
1308         if (!is_bitwise_subset(data, *msr, -1ULL))
1309                 return -EINVAL;
1310
1311         *msr = data;
1312         return 0;
1313 }
1314
1315 /*
1316  * Called when userspace is restoring VMX MSRs.
1317  *
1318  * Returns 0 on success, non-0 otherwise.
1319  */
1320 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1321 {
1322         struct vcpu_vmx *vmx = to_vmx(vcpu);
1323
1324         /*
1325          * Don't allow changes to the VMX capability MSRs while the vCPU
1326          * is in VMX operation.
1327          */
1328         if (vmx->nested.vmxon)
1329                 return -EBUSY;
1330
1331         switch (msr_index) {
1332         case MSR_IA32_VMX_BASIC:
1333                 return vmx_restore_vmx_basic(vmx, data);
1334         case MSR_IA32_VMX_PINBASED_CTLS:
1335         case MSR_IA32_VMX_PROCBASED_CTLS:
1336         case MSR_IA32_VMX_EXIT_CTLS:
1337         case MSR_IA32_VMX_ENTRY_CTLS:
1338                 /*
1339                  * The "non-true" VMX capability MSRs are generated from the
1340                  * "true" MSRs, so we do not support restoring them directly.
1341                  *
1342                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1343                  * should restore the "true" MSRs with the must-be-1 bits
1344                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1345                  * DEFAULT SETTINGS".
1346                  */
1347                 return -EINVAL;
1348         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1349         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1350         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1351         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1352         case MSR_IA32_VMX_PROCBASED_CTLS2:
1353                 return vmx_restore_control_msr(vmx, msr_index, data);
1354         case MSR_IA32_VMX_MISC:
1355                 return vmx_restore_vmx_misc(vmx, data);
1356         case MSR_IA32_VMX_CR0_FIXED0:
1357         case MSR_IA32_VMX_CR4_FIXED0:
1358                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1359         case MSR_IA32_VMX_CR0_FIXED1:
1360         case MSR_IA32_VMX_CR4_FIXED1:
1361                 /*
1362                  * These MSRs are generated based on the vCPU's CPUID, so we
1363                  * do not support restoring them directly.
1364                  */
1365                 return -EINVAL;
1366         case MSR_IA32_VMX_EPT_VPID_CAP:
1367                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1368         case MSR_IA32_VMX_VMCS_ENUM:
1369                 vmx->nested.msrs.vmcs_enum = data;
1370                 return 0;
1371         case MSR_IA32_VMX_VMFUNC:
1372                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1373                         return -EINVAL;
1374                 vmx->nested.msrs.vmfunc_controls = data;
1375                 return 0;
1376         default:
1377                 /*
1378                  * The rest of the VMX capability MSRs do not support restore.
1379                  */
1380                 return -EINVAL;
1381         }
1382 }
1383
1384 /* Returns 0 on success, non-0 otherwise. */
1385 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1386 {
1387         switch (msr_index) {
1388         case MSR_IA32_VMX_BASIC:
1389                 *pdata = msrs->basic;
1390                 break;
1391         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1392         case MSR_IA32_VMX_PINBASED_CTLS:
1393                 *pdata = vmx_control_msr(
1394                         msrs->pinbased_ctls_low,
1395                         msrs->pinbased_ctls_high);
1396                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1397                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1398                 break;
1399         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1400         case MSR_IA32_VMX_PROCBASED_CTLS:
1401                 *pdata = vmx_control_msr(
1402                         msrs->procbased_ctls_low,
1403                         msrs->procbased_ctls_high);
1404                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1405                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1406                 break;
1407         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1408         case MSR_IA32_VMX_EXIT_CTLS:
1409                 *pdata = vmx_control_msr(
1410                         msrs->exit_ctls_low,
1411                         msrs->exit_ctls_high);
1412                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1413                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1414                 break;
1415         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1416         case MSR_IA32_VMX_ENTRY_CTLS:
1417                 *pdata = vmx_control_msr(
1418                         msrs->entry_ctls_low,
1419                         msrs->entry_ctls_high);
1420                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1421                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1422                 break;
1423         case MSR_IA32_VMX_MISC:
1424                 *pdata = vmx_control_msr(
1425                         msrs->misc_low,
1426                         msrs->misc_high);
1427                 break;
1428         case MSR_IA32_VMX_CR0_FIXED0:
1429                 *pdata = msrs->cr0_fixed0;
1430                 break;
1431         case MSR_IA32_VMX_CR0_FIXED1:
1432                 *pdata = msrs->cr0_fixed1;
1433                 break;
1434         case MSR_IA32_VMX_CR4_FIXED0:
1435                 *pdata = msrs->cr4_fixed0;
1436                 break;
1437         case MSR_IA32_VMX_CR4_FIXED1:
1438                 *pdata = msrs->cr4_fixed1;
1439                 break;
1440         case MSR_IA32_VMX_VMCS_ENUM:
1441                 *pdata = msrs->vmcs_enum;
1442                 break;
1443         case MSR_IA32_VMX_PROCBASED_CTLS2:
1444                 *pdata = vmx_control_msr(
1445                         msrs->secondary_ctls_low,
1446                         msrs->secondary_ctls_high);
1447                 break;
1448         case MSR_IA32_VMX_EPT_VPID_CAP:
1449                 *pdata = msrs->ept_caps |
1450                         ((u64)msrs->vpid_caps << 32);
1451                 break;
1452         case MSR_IA32_VMX_VMFUNC:
1453                 *pdata = msrs->vmfunc_controls;
1454                 break;
1455         default:
1456                 return 1;
1457         }
1458
1459         return 0;
1460 }
1461
1462 /*
1463  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1464  * been modified by the L1 guest.  Note, "writable" in this context means
1465  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1466  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1467  * VM-exit information fields (which are actually writable if the vCPU is
1468  * configured to support "VMWRITE to any supported field in the VMCS").
1469  */
1470 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1471 {
1472         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1473         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1474         struct shadow_vmcs_field field;
1475         unsigned long val;
1476         int i;
1477
1478         if (WARN_ON(!shadow_vmcs))
1479                 return;
1480
1481         preempt_disable();
1482
1483         vmcs_load(shadow_vmcs);
1484
1485         for (i = 0; i < max_shadow_read_write_fields; i++) {
1486                 field = shadow_read_write_fields[i];
1487                 val = __vmcs_readl(field.encoding);
1488                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1489         }
1490
1491         vmcs_clear(shadow_vmcs);
1492         vmcs_load(vmx->loaded_vmcs->vmcs);
1493
1494         preempt_enable();
1495 }
1496
1497 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1498 {
1499         const struct shadow_vmcs_field *fields[] = {
1500                 shadow_read_write_fields,
1501                 shadow_read_only_fields
1502         };
1503         const int max_fields[] = {
1504                 max_shadow_read_write_fields,
1505                 max_shadow_read_only_fields
1506         };
1507         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1508         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1509         struct shadow_vmcs_field field;
1510         unsigned long val;
1511         int i, q;
1512
1513         if (WARN_ON(!shadow_vmcs))
1514                 return;
1515
1516         vmcs_load(shadow_vmcs);
1517
1518         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1519                 for (i = 0; i < max_fields[q]; i++) {
1520                         field = fields[q][i];
1521                         val = vmcs12_read_any(vmcs12, field.encoding,
1522                                               field.offset);
1523                         __vmcs_writel(field.encoding, val);
1524                 }
1525         }
1526
1527         vmcs_clear(shadow_vmcs);
1528         vmcs_load(vmx->loaded_vmcs->vmcs);
1529 }
1530
1531 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1532 {
1533         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1534         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1535
1536         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1537         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1538         vmcs12->guest_rip = evmcs->guest_rip;
1539
1540         if (unlikely(!(evmcs->hv_clean_fields &
1541                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1542                 vmcs12->guest_rsp = evmcs->guest_rsp;
1543                 vmcs12->guest_rflags = evmcs->guest_rflags;
1544                 vmcs12->guest_interruptibility_info =
1545                         evmcs->guest_interruptibility_info;
1546         }
1547
1548         if (unlikely(!(evmcs->hv_clean_fields &
1549                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1550                 vmcs12->cpu_based_vm_exec_control =
1551                         evmcs->cpu_based_vm_exec_control;
1552         }
1553
1554         if (unlikely(!(evmcs->hv_clean_fields &
1555                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1556                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1557         }
1558
1559         if (unlikely(!(evmcs->hv_clean_fields &
1560                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1561                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1562         }
1563
1564         if (unlikely(!(evmcs->hv_clean_fields &
1565                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1566                 vmcs12->vm_entry_intr_info_field =
1567                         evmcs->vm_entry_intr_info_field;
1568                 vmcs12->vm_entry_exception_error_code =
1569                         evmcs->vm_entry_exception_error_code;
1570                 vmcs12->vm_entry_instruction_len =
1571                         evmcs->vm_entry_instruction_len;
1572         }
1573
1574         if (unlikely(!(evmcs->hv_clean_fields &
1575                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1576                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1577                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1578                 vmcs12->host_cr0 = evmcs->host_cr0;
1579                 vmcs12->host_cr3 = evmcs->host_cr3;
1580                 vmcs12->host_cr4 = evmcs->host_cr4;
1581                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1582                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1583                 vmcs12->host_rip = evmcs->host_rip;
1584                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1585                 vmcs12->host_es_selector = evmcs->host_es_selector;
1586                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1587                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1588                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1589                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1590                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1591                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1592         }
1593
1594         if (unlikely(!(evmcs->hv_clean_fields &
1595                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1596                 vmcs12->pin_based_vm_exec_control =
1597                         evmcs->pin_based_vm_exec_control;
1598                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1599                 vmcs12->secondary_vm_exec_control =
1600                         evmcs->secondary_vm_exec_control;
1601         }
1602
1603         if (unlikely(!(evmcs->hv_clean_fields &
1604                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1605                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1606                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1607         }
1608
1609         if (unlikely(!(evmcs->hv_clean_fields &
1610                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1611                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1612         }
1613
1614         if (unlikely(!(evmcs->hv_clean_fields &
1615                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1616                 vmcs12->guest_es_base = evmcs->guest_es_base;
1617                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1618                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1619                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1620                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1621                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1622                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1623                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1624                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1625                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1626                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1627                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1628                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1629                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1630                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1631                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1632                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1633                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1634                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1635                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1636                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1637                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1638                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1639                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1640                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1641                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1642                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1643                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1644                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1645                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1646                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1647                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1648                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1649                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1650                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1651                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1652         }
1653
1654         if (unlikely(!(evmcs->hv_clean_fields &
1655                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1656                 vmcs12->tsc_offset = evmcs->tsc_offset;
1657                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1658                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1659         }
1660
1661         if (unlikely(!(evmcs->hv_clean_fields &
1662                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1663                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1664                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1665                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1666                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1667                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1668                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1669                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1670                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1671         }
1672
1673         if (unlikely(!(evmcs->hv_clean_fields &
1674                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1675                 vmcs12->host_fs_base = evmcs->host_fs_base;
1676                 vmcs12->host_gs_base = evmcs->host_gs_base;
1677                 vmcs12->host_tr_base = evmcs->host_tr_base;
1678                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1679                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1680                 vmcs12->host_rsp = evmcs->host_rsp;
1681         }
1682
1683         if (unlikely(!(evmcs->hv_clean_fields &
1684                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1685                 vmcs12->ept_pointer = evmcs->ept_pointer;
1686                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1687         }
1688
1689         if (unlikely(!(evmcs->hv_clean_fields &
1690                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1691                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1692                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1693                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1694                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1695                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1696                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1697                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1698                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1699                 vmcs12->guest_pending_dbg_exceptions =
1700                         evmcs->guest_pending_dbg_exceptions;
1701                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1702                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1703                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1704                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1705                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1706         }
1707
1708         /*
1709          * Not used?
1710          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1711          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1712          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1713          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1714          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1715          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1716          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1717          * vmcs12->page_fault_error_code_mask =
1718          *              evmcs->page_fault_error_code_mask;
1719          * vmcs12->page_fault_error_code_match =
1720          *              evmcs->page_fault_error_code_match;
1721          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1722          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1723          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1724          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1725          */
1726
1727         /*
1728          * Read only fields:
1729          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1730          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1731          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1732          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1733          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1734          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1735          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1736          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1737          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1738          * vmcs12->exit_qualification = evmcs->exit_qualification;
1739          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1740          *
1741          * Not present in struct vmcs12:
1742          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1743          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1744          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1745          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1746          */
1747
1748         return 0;
1749 }
1750
1751 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1752 {
1753         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1754         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1755
1756         /*
1757          * Should not be changed by KVM:
1758          *
1759          * evmcs->host_es_selector = vmcs12->host_es_selector;
1760          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1761          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1762          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1763          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1764          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1765          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1766          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1767          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1768          * evmcs->host_cr0 = vmcs12->host_cr0;
1769          * evmcs->host_cr3 = vmcs12->host_cr3;
1770          * evmcs->host_cr4 = vmcs12->host_cr4;
1771          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1772          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1773          * evmcs->host_rip = vmcs12->host_rip;
1774          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1775          * evmcs->host_fs_base = vmcs12->host_fs_base;
1776          * evmcs->host_gs_base = vmcs12->host_gs_base;
1777          * evmcs->host_tr_base = vmcs12->host_tr_base;
1778          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1779          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1780          * evmcs->host_rsp = vmcs12->host_rsp;
1781          * sync_vmcs02_to_vmcs12() doesn't read these:
1782          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1783          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1784          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1785          * evmcs->ept_pointer = vmcs12->ept_pointer;
1786          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1787          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1788          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1789          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1790          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1791          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1792          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1793          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1794          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1795          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1796          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1797          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1798          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1799          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1800          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1801          * evmcs->page_fault_error_code_mask =
1802          *              vmcs12->page_fault_error_code_mask;
1803          * evmcs->page_fault_error_code_match =
1804          *              vmcs12->page_fault_error_code_match;
1805          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1806          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1807          * evmcs->tsc_offset = vmcs12->tsc_offset;
1808          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1809          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1810          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1811          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1812          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1813          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1814          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1815          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1816          *
1817          * Not present in struct vmcs12:
1818          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1819          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1820          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1821          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1822          */
1823
1824         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1825         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1826         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1827         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1828         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1829         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1830         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1831         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1832
1833         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1834         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1835         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1836         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1837         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1838         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1839         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1840         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1841         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1842         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1843
1844         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1845         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1846         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1847         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1848         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1849         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1850         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1851         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1852
1853         evmcs->guest_es_base = vmcs12->guest_es_base;
1854         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1855         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1856         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1857         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1858         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1859         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1860         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1861         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1862         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1863
1864         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1865         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1866
1867         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1868         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1869         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1870         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1871
1872         evmcs->guest_pending_dbg_exceptions =
1873                 vmcs12->guest_pending_dbg_exceptions;
1874         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1875         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1876
1877         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1878         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1879
1880         evmcs->guest_cr0 = vmcs12->guest_cr0;
1881         evmcs->guest_cr3 = vmcs12->guest_cr3;
1882         evmcs->guest_cr4 = vmcs12->guest_cr4;
1883         evmcs->guest_dr7 = vmcs12->guest_dr7;
1884
1885         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1886
1887         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1888         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1889         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1890         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1891         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1892         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1893         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1894         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1895
1896         evmcs->exit_qualification = vmcs12->exit_qualification;
1897
1898         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1899         evmcs->guest_rsp = vmcs12->guest_rsp;
1900         evmcs->guest_rflags = vmcs12->guest_rflags;
1901
1902         evmcs->guest_interruptibility_info =
1903                 vmcs12->guest_interruptibility_info;
1904         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1905         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1906         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1907         evmcs->vm_entry_exception_error_code =
1908                 vmcs12->vm_entry_exception_error_code;
1909         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1910
1911         evmcs->guest_rip = vmcs12->guest_rip;
1912
1913         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1914
1915         return 0;
1916 }
1917
1918 /*
1919  * This is an equivalent of the nested hypervisor executing the vmptrld
1920  * instruction.
1921  */
1922 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1923                                                  bool from_launch)
1924 {
1925         struct vcpu_vmx *vmx = to_vmx(vcpu);
1926         bool evmcs_gpa_changed = false;
1927         u64 evmcs_gpa;
1928
1929         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1930                 return 1;
1931
1932         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1933                 return 1;
1934
1935         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1936                 if (!vmx->nested.hv_evmcs)
1937                         vmx->nested.current_vmptr = -1ull;
1938
1939                 nested_release_evmcs(vcpu);
1940
1941                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1942                                  &vmx->nested.hv_evmcs_map))
1943                         return 0;
1944
1945                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1946
1947                 /*
1948                  * Currently, KVM only supports eVMCS version 1
1949                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1950                  * value to first u32 field of eVMCS which should specify eVMCS
1951                  * VersionNumber.
1952                  *
1953                  * Guest should be aware of supported eVMCS versions by host by
1954                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1955                  * expected to set this CPUID leaf according to the value
1956                  * returned in vmcs_version from nested_enable_evmcs().
1957                  *
1958                  * However, it turns out that Microsoft Hyper-V fails to comply
1959                  * to their own invented interface: When Hyper-V use eVMCS, it
1960                  * just sets first u32 field of eVMCS to revision_id specified
1961                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1962                  * which is one of the supported versions specified in
1963                  * CPUID.0x4000000A.EAX[0:15].
1964                  *
1965                  * To overcome Hyper-V bug, we accept here either a supported
1966                  * eVMCS version or VMCS12 revision_id as valid values for first
1967                  * u32 field of eVMCS.
1968                  */
1969                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1970                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1971                         nested_release_evmcs(vcpu);
1972                         return 0;
1973                 }
1974
1975                 vmx->nested.dirty_vmcs12 = true;
1976                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1977
1978                 evmcs_gpa_changed = true;
1979                 /*
1980                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1981                  * reloaded from guest's memory (read only fields, fields not
1982                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1983                  * are no leftovers.
1984                  */
1985                 if (from_launch) {
1986                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1987                         memset(vmcs12, 0, sizeof(*vmcs12));
1988                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1989                 }
1990
1991         }
1992
1993         /*
1994          * Clean fields data can't de used on VMLAUNCH and when we switch
1995          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1996          */
1997         if (from_launch || evmcs_gpa_changed)
1998                 vmx->nested.hv_evmcs->hv_clean_fields &=
1999                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2000
2001         return 1;
2002 }
2003
2004 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2005 {
2006         struct vcpu_vmx *vmx = to_vmx(vcpu);
2007
2008         /*
2009          * hv_evmcs may end up being not mapped after migration (when
2010          * L2 was running), map it here to make sure vmcs12 changes are
2011          * properly reflected.
2012          */
2013         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
2014                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
2015
2016         if (vmx->nested.hv_evmcs) {
2017                 copy_vmcs12_to_enlightened(vmx);
2018                 /* All fields are clean */
2019                 vmx->nested.hv_evmcs->hv_clean_fields |=
2020                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2021         } else {
2022                 copy_vmcs12_to_shadow(vmx);
2023         }
2024
2025         vmx->nested.need_vmcs12_to_shadow_sync = false;
2026 }
2027
2028 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2029 {
2030         struct vcpu_vmx *vmx =
2031                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2032
2033         vmx->nested.preemption_timer_expired = true;
2034         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2035         kvm_vcpu_kick(&vmx->vcpu);
2036
2037         return HRTIMER_NORESTART;
2038 }
2039
2040 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
2041 {
2042         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
2043         struct vcpu_vmx *vmx = to_vmx(vcpu);
2044
2045         /*
2046          * A timer value of zero is architecturally guaranteed to cause
2047          * a VMExit prior to executing any instructions in the guest.
2048          */
2049         if (preemption_timeout == 0) {
2050                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2051                 return;
2052         }
2053
2054         if (vcpu->arch.virtual_tsc_khz == 0)
2055                 return;
2056
2057         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2058         preemption_timeout *= 1000000;
2059         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2060         hrtimer_start(&vmx->nested.preemption_timer,
2061                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
2062 }
2063
2064 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2065 {
2066         if (vmx->nested.nested_run_pending &&
2067             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2068                 return vmcs12->guest_ia32_efer;
2069         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2070                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2071         else
2072                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2073 }
2074
2075 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2076 {
2077         /*
2078          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2079          * according to L0's settings (vmcs12 is irrelevant here).  Host
2080          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2081          * will be set as needed prior to VMLAUNCH/VMRESUME.
2082          */
2083         if (vmx->nested.vmcs02_initialized)
2084                 return;
2085         vmx->nested.vmcs02_initialized = true;
2086
2087         /*
2088          * We don't care what the EPTP value is we just need to guarantee
2089          * it's valid so we don't get a false positive when doing early
2090          * consistency checks.
2091          */
2092         if (enable_ept && nested_early_check)
2093                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
2094
2095         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2096         if (cpu_has_vmx_vmfunc())
2097                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2098
2099         if (cpu_has_vmx_posted_intr())
2100                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2101
2102         if (cpu_has_vmx_msr_bitmap())
2103                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2104
2105         /*
2106          * The PML address never changes, so it is constant in vmcs02.
2107          * Conceptually we want to copy the PML index from vmcs01 here,
2108          * and then back to vmcs01 on nested vmexit.  But since we flush
2109          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2110          * index is also effectively constant in vmcs02.
2111          */
2112         if (enable_pml) {
2113                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2114                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2115         }
2116
2117         if (cpu_has_vmx_encls_vmexit())
2118                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2119
2120         /*
2121          * Set the MSR load/store lists to match L0's settings.  Only the
2122          * addresses are constant (for vmcs02), the counts can change based
2123          * on L2's behavior, e.g. switching to/from long mode.
2124          */
2125         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2126         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2127         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2128
2129         vmx_set_constant_host_state(vmx);
2130 }
2131
2132 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2133                                       struct vmcs12 *vmcs12)
2134 {
2135         prepare_vmcs02_constant_state(vmx);
2136
2137         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2138
2139         if (enable_vpid) {
2140                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2141                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2142                 else
2143                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2144         }
2145 }
2146
2147 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2148 {
2149         u32 exec_control, vmcs12_exec_ctrl;
2150         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2151
2152         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2153                 prepare_vmcs02_early_rare(vmx, vmcs12);
2154
2155         /*
2156          * PIN CONTROLS
2157          */
2158         exec_control = vmx_pin_based_exec_ctrl(vmx);
2159         exec_control |= (vmcs12->pin_based_vm_exec_control &
2160                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2161
2162         /* Posted interrupts setting is only taken from vmcs12.  */
2163         if (nested_cpu_has_posted_intr(vmcs12)) {
2164                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2165                 vmx->nested.pi_pending = false;
2166         } else {
2167                 exec_control &= ~PIN_BASED_POSTED_INTR;
2168         }
2169         pin_controls_set(vmx, exec_control);
2170
2171         /*
2172          * EXEC CONTROLS
2173          */
2174         exec_control = vmx_exec_control(vmx); /* L0's desires */
2175         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2176         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2177         exec_control &= ~CPU_BASED_TPR_SHADOW;
2178         exec_control |= vmcs12->cpu_based_vm_exec_control;
2179
2180         vmx->nested.l1_tpr_threshold = -1;
2181         if (exec_control & CPU_BASED_TPR_SHADOW)
2182                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2183 #ifdef CONFIG_X86_64
2184         else
2185                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2186                                 CPU_BASED_CR8_STORE_EXITING;
2187 #endif
2188
2189         /*
2190          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2191          * for I/O port accesses.
2192          */
2193         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2194         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2195
2196         /*
2197          * This bit will be computed in nested_get_vmcs12_pages, because
2198          * we do not have access to L1's MSR bitmap yet.  For now, keep
2199          * the same bit as before, hoping to avoid multiple VMWRITEs that
2200          * only set/clear this bit.
2201          */
2202         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2203         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2204
2205         exec_controls_set(vmx, exec_control);
2206
2207         /*
2208          * SECONDARY EXEC CONTROLS
2209          */
2210         if (cpu_has_secondary_exec_ctrls()) {
2211                 exec_control = vmx->secondary_exec_control;
2212
2213                 /* Take the following fields only from vmcs12 */
2214                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2215                                   SECONDARY_EXEC_ENABLE_INVPCID |
2216                                   SECONDARY_EXEC_RDTSCP |
2217                                   SECONDARY_EXEC_XSAVES |
2218                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2219                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2220                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2221                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2222                 if (nested_cpu_has(vmcs12,
2223                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2224                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2225                                 ~SECONDARY_EXEC_ENABLE_PML;
2226                         exec_control |= vmcs12_exec_ctrl;
2227                 }
2228
2229                 /* VMCS shadowing for L2 is emulated for now */
2230                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2231
2232                 /*
2233                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2234                  * will not have to rewrite the controls just for this bit.
2235                  */
2236                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2237                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2238                         exec_control |= SECONDARY_EXEC_DESC;
2239
2240                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2241                         vmcs_write16(GUEST_INTR_STATUS,
2242                                 vmcs12->guest_intr_status);
2243
2244                 secondary_exec_controls_set(vmx, exec_control);
2245         }
2246
2247         /*
2248          * ENTRY CONTROLS
2249          *
2250          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2251          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2252          * on the related bits (if supported by the CPU) in the hope that
2253          * we can avoid VMWrites during vmx_set_efer().
2254          */
2255         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2256                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2257         if (cpu_has_load_ia32_efer()) {
2258                 if (guest_efer & EFER_LMA)
2259                         exec_control |= VM_ENTRY_IA32E_MODE;
2260                 if (guest_efer != host_efer)
2261                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2262         }
2263         vm_entry_controls_set(vmx, exec_control);
2264
2265         /*
2266          * EXIT CONTROLS
2267          *
2268          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2269          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2270          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2271          */
2272         exec_control = vmx_vmexit_ctrl();
2273         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2274                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2275         vm_exit_controls_set(vmx, exec_control);
2276
2277         /*
2278          * Interrupt/Exception Fields
2279          */
2280         if (vmx->nested.nested_run_pending) {
2281                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2282                              vmcs12->vm_entry_intr_info_field);
2283                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2284                              vmcs12->vm_entry_exception_error_code);
2285                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2286                              vmcs12->vm_entry_instruction_len);
2287                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2288                              vmcs12->guest_interruptibility_info);
2289                 vmx->loaded_vmcs->nmi_known_unmasked =
2290                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2291         } else {
2292                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2293         }
2294 }
2295
2296 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2297 {
2298         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2299
2300         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2301                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2302                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2303                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2304                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2305                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2306                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2307                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2308                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2309                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2310                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2311                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2312                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2313                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2314                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2315                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2316                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2317                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2318                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2319                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2320                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2321                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2322                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2323                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2324                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2325                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2326                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2327                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2328                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2329                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2330                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2331                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2332                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2333                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2334                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2335                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2336                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2337                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2338         }
2339
2340         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2341                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2342                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2343                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2344                             vmcs12->guest_pending_dbg_exceptions);
2345                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2346                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2347
2348                 /*
2349                  * L1 may access the L2's PDPTR, so save them to construct
2350                  * vmcs12
2351                  */
2352                 if (enable_ept) {
2353                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2354                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2355                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2356                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2357                 }
2358
2359                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2360                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2361                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2362         }
2363
2364         if (nested_cpu_has_xsaves(vmcs12))
2365                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2366
2367         /*
2368          * Whether page-faults are trapped is determined by a combination of
2369          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2370          * If enable_ept, L0 doesn't care about page faults and we should
2371          * set all of these to L1's desires. However, if !enable_ept, L0 does
2372          * care about (at least some) page faults, and because it is not easy
2373          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2374          * to exit on each and every L2 page fault. This is done by setting
2375          * MASK=MATCH=0 and (see below) EB.PF=1.
2376          * Note that below we don't need special code to set EB.PF beyond the
2377          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2378          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2379          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2380          */
2381         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2382                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2383         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2384                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2385
2386         if (cpu_has_vmx_apicv()) {
2387                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2388                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2389                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2390                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2391         }
2392
2393         /*
2394          * Make sure the msr_autostore list is up to date before we set the
2395          * count in the vmcs02.
2396          */
2397         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2398
2399         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2400         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2401         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2402
2403         set_cr4_guest_host_mask(vmx);
2404 }
2405
2406 /*
2407  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2408  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2409  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2410  * guest in a way that will both be appropriate to L1's requests, and our
2411  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2412  * function also has additional necessary side-effects, like setting various
2413  * vcpu->arch fields.
2414  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2415  * is assigned to entry_failure_code on failure.
2416  */
2417 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2418                           u32 *entry_failure_code)
2419 {
2420         struct vcpu_vmx *vmx = to_vmx(vcpu);
2421         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2422         bool load_guest_pdptrs_vmcs12 = false;
2423
2424         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2425                 prepare_vmcs02_rare(vmx, vmcs12);
2426                 vmx->nested.dirty_vmcs12 = false;
2427
2428                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2429                         !(hv_evmcs->hv_clean_fields &
2430                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2431         }
2432
2433         if (vmx->nested.nested_run_pending &&
2434             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2435                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2436                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2437         } else {
2438                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2439                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2440         }
2441         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2442             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2443                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2444         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2445
2446         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2447          * bitwise-or of what L1 wants to trap for L2, and what we want to
2448          * trap. Note that CR0.TS also needs updating - we do this later.
2449          */
2450         update_exception_bitmap(vcpu);
2451         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2452         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2453
2454         if (vmx->nested.nested_run_pending &&
2455             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2456                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2457                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2458         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2459                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2460         }
2461
2462         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2463
2464         if (kvm_has_tsc_control)
2465                 decache_tsc_multiplier(vmx);
2466
2467         if (enable_vpid) {
2468                 /*
2469                  * There is no direct mapping between vpid02 and vpid12, the
2470                  * vpid02 is per-vCPU for L0 and reused while the value of
2471                  * vpid12 is changed w/ one invvpid during nested vmentry.
2472                  * The vpid12 is allocated by L1 for L2, so it will not
2473                  * influence global bitmap(for vpid01 and vpid02 allocation)
2474                  * even if spawn a lot of nested vCPUs.
2475                  */
2476                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2477                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2478                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2479                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2480                         }
2481                 } else {
2482                         /*
2483                          * If L1 use EPT, then L0 needs to execute INVEPT on
2484                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2485                          * flush until vmcs02->eptp is fully updated by
2486                          * KVM_REQ_LOAD_CR3. Note that this assumes
2487                          * KVM_REQ_TLB_FLUSH is evaluated after
2488                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2489                          */
2490                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2491                 }
2492         }
2493
2494         if (nested_cpu_has_ept(vmcs12))
2495                 nested_ept_init_mmu_context(vcpu);
2496
2497         /*
2498          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2499          * bits which we consider mandatory enabled.
2500          * The CR0_READ_SHADOW is what L2 should have expected to read given
2501          * the specifications by L1; It's not enough to take
2502          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2503          * have more bits than L1 expected.
2504          */
2505         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2506         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2507
2508         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2509         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2510
2511         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2512         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2513         vmx_set_efer(vcpu, vcpu->arch.efer);
2514
2515         /*
2516          * Guest state is invalid and unrestricted guest is disabled,
2517          * which means L1 attempted VMEntry to L2 with invalid state.
2518          * Fail the VMEntry.
2519          */
2520         if (vmx->emulation_required) {
2521                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2522                 return -EINVAL;
2523         }
2524
2525         /* Shadow page tables on either EPT or shadow page tables. */
2526         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2527                                 entry_failure_code))
2528                 return -EINVAL;
2529
2530         /*
2531          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2532          * on nested VM-Exit, which can occur without actually running L2 and
2533          * thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with
2534          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2535          * transition to HLT instead of running L2.
2536          */
2537         if (enable_ept)
2538                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2539
2540         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2541         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2542             is_pae_paging(vcpu)) {
2543                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2544                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2545                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2546                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2547         }
2548
2549         if (!enable_ept)
2550                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2551
2552         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2553             SET_MSR_OR_WARN(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2554                             vmcs12->guest_ia32_perf_global_ctrl))
2555                 return -EINVAL;
2556
2557         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2558         kvm_rip_write(vcpu, vmcs12->guest_rip);
2559         return 0;
2560 }
2561
2562 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2563 {
2564         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2565                nested_cpu_has_virtual_nmis(vmcs12)))
2566                 return -EINVAL;
2567
2568         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2569                nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)))
2570                 return -EINVAL;
2571
2572         return 0;
2573 }
2574
2575 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2576 {
2577         struct vcpu_vmx *vmx = to_vmx(vcpu);
2578         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2579
2580         /* Check for memory type validity */
2581         switch (address & VMX_EPTP_MT_MASK) {
2582         case VMX_EPTP_MT_UC:
2583                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2584                         return false;
2585                 break;
2586         case VMX_EPTP_MT_WB:
2587                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2588                         return false;
2589                 break;
2590         default:
2591                 return false;
2592         }
2593
2594         /* only 4 levels page-walk length are valid */
2595         if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2596                 return false;
2597
2598         /* Reserved bits should not be set */
2599         if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2600                 return false;
2601
2602         /* AD, if set, should be supported */
2603         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2604                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2605                         return false;
2606         }
2607
2608         return true;
2609 }
2610
2611 /*
2612  * Checks related to VM-Execution Control Fields
2613  */
2614 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2615                                               struct vmcs12 *vmcs12)
2616 {
2617         struct vcpu_vmx *vmx = to_vmx(vcpu);
2618
2619         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2620                                    vmx->nested.msrs.pinbased_ctls_low,
2621                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2622             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2623                                    vmx->nested.msrs.procbased_ctls_low,
2624                                    vmx->nested.msrs.procbased_ctls_high)))
2625                 return -EINVAL;
2626
2627         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2628             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2629                                    vmx->nested.msrs.secondary_ctls_low,
2630                                    vmx->nested.msrs.secondary_ctls_high)))
2631                 return -EINVAL;
2632
2633         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2634             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2635             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2636             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2637             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2638             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2639             nested_vmx_check_nmi_controls(vmcs12) ||
2640             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2641             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2642             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2643             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2644             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2645                 return -EINVAL;
2646
2647         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2648             nested_cpu_has_save_preemption_timer(vmcs12))
2649                 return -EINVAL;
2650
2651         if (nested_cpu_has_ept(vmcs12) &&
2652             CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2653                 return -EINVAL;
2654
2655         if (nested_cpu_has_vmfunc(vmcs12)) {
2656                 if (CC(vmcs12->vm_function_control &
2657                        ~vmx->nested.msrs.vmfunc_controls))
2658                         return -EINVAL;
2659
2660                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2661                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2662                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2663                                 return -EINVAL;
2664                 }
2665         }
2666
2667         return 0;
2668 }
2669
2670 /*
2671  * Checks related to VM-Exit Control Fields
2672  */
2673 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2674                                          struct vmcs12 *vmcs12)
2675 {
2676         struct vcpu_vmx *vmx = to_vmx(vcpu);
2677
2678         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2679                                     vmx->nested.msrs.exit_ctls_low,
2680                                     vmx->nested.msrs.exit_ctls_high)) ||
2681             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2682                 return -EINVAL;
2683
2684         return 0;
2685 }
2686
2687 /*
2688  * Checks related to VM-Entry Control Fields
2689  */
2690 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2691                                           struct vmcs12 *vmcs12)
2692 {
2693         struct vcpu_vmx *vmx = to_vmx(vcpu);
2694
2695         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2696                                     vmx->nested.msrs.entry_ctls_low,
2697                                     vmx->nested.msrs.entry_ctls_high)))
2698                 return -EINVAL;
2699
2700         /*
2701          * From the Intel SDM, volume 3:
2702          * Fields relevant to VM-entry event injection must be set properly.
2703          * These fields are the VM-entry interruption-information field, the
2704          * VM-entry exception error code, and the VM-entry instruction length.
2705          */
2706         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2707                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2708                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2709                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2710                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2711                 bool should_have_error_code;
2712                 bool urg = nested_cpu_has2(vmcs12,
2713                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2714                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2715
2716                 /* VM-entry interruption-info field: interruption type */
2717                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2718                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2719                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2720                         return -EINVAL;
2721
2722                 /* VM-entry interruption-info field: vector */
2723                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2724                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2725                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2726                         return -EINVAL;
2727
2728                 /* VM-entry interruption-info field: deliver error code */
2729                 should_have_error_code =
2730                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2731                         x86_exception_has_error_code(vector);
2732                 if (CC(has_error_code != should_have_error_code))
2733                         return -EINVAL;
2734
2735                 /* VM-entry exception error code */
2736                 if (CC(has_error_code &&
2737                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2738                         return -EINVAL;
2739
2740                 /* VM-entry interruption-info field: reserved bits */
2741                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2742                         return -EINVAL;
2743
2744                 /* VM-entry instruction length */
2745                 switch (intr_type) {
2746                 case INTR_TYPE_SOFT_EXCEPTION:
2747                 case INTR_TYPE_SOFT_INTR:
2748                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2749                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2750                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2751                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2752                                 return -EINVAL;
2753                 }
2754         }
2755
2756         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2757                 return -EINVAL;
2758
2759         return 0;
2760 }
2761
2762 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2763                                      struct vmcs12 *vmcs12)
2764 {
2765         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2766             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2767             nested_check_vm_entry_controls(vcpu, vmcs12))
2768                 return -EINVAL;
2769
2770         return 0;
2771 }
2772
2773 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2774                                        struct vmcs12 *vmcs12)
2775 {
2776         bool ia32e;
2777
2778         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2779             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2780             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2781                 return -EINVAL;
2782
2783         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2784             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2785                 return -EINVAL;
2786
2787         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2788             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2789                 return -EINVAL;
2790
2791         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2792             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2793                                            vmcs12->host_ia32_perf_global_ctrl)))
2794                 return -EINVAL;
2795
2796 #ifdef CONFIG_X86_64
2797         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2798 #else
2799         ia32e = false;
2800 #endif
2801
2802         if (ia32e) {
2803                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2804                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2805                         return -EINVAL;
2806         } else {
2807                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2808                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2809                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2810                     CC((vmcs12->host_rip) >> 32))
2811                         return -EINVAL;
2812         }
2813
2814         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2815             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2816             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2817             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2818             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2819             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2820             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2821             CC(vmcs12->host_cs_selector == 0) ||
2822             CC(vmcs12->host_tr_selector == 0) ||
2823             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2824                 return -EINVAL;
2825
2826 #ifdef CONFIG_X86_64
2827         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2828             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2829             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2830             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2831             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2832             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2833                 return -EINVAL;
2834 #endif
2835
2836         /*
2837          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2838          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2839          * the values of the LMA and LME bits in the field must each be that of
2840          * the host address-space size VM-exit control.
2841          */
2842         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2843                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2844                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2845                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2846                         return -EINVAL;
2847         }
2848
2849         return 0;
2850 }
2851
2852 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2853                                           struct vmcs12 *vmcs12)
2854 {
2855         int r = 0;
2856         struct vmcs12 *shadow;
2857         struct kvm_host_map map;
2858
2859         if (vmcs12->vmcs_link_pointer == -1ull)
2860                 return 0;
2861
2862         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2863                 return -EINVAL;
2864
2865         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2866                 return -EINVAL;
2867
2868         shadow = map.hva;
2869
2870         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2871             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2872                 r = -EINVAL;
2873
2874         kvm_vcpu_unmap(vcpu, &map, false);
2875         return r;
2876 }
2877
2878 /*
2879  * Checks related to Guest Non-register State
2880  */
2881 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2882 {
2883         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2884                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2885                 return -EINVAL;
2886
2887         return 0;
2888 }
2889
2890 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2891                                         struct vmcs12 *vmcs12,
2892                                         u32 *exit_qual)
2893 {
2894         bool ia32e;
2895
2896         *exit_qual = ENTRY_FAIL_DEFAULT;
2897
2898         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2899             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2900                 return -EINVAL;
2901
2902         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2903             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2904                 return -EINVAL;
2905
2906         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2907                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2908                 return -EINVAL;
2909         }
2910
2911         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2912             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2913                                            vmcs12->guest_ia32_perf_global_ctrl)))
2914                 return -EINVAL;
2915
2916         /*
2917          * If the load IA32_EFER VM-entry control is 1, the following checks
2918          * are performed on the field for the IA32_EFER MSR:
2919          * - Bits reserved in the IA32_EFER MSR must be 0.
2920          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2921          *   the IA-32e mode guest VM-exit control. It must also be identical
2922          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2923          *   CR0.PG) is 1.
2924          */
2925         if (to_vmx(vcpu)->nested.nested_run_pending &&
2926             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2927                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2928                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2929                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2930                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2931                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2932                         return -EINVAL;
2933         }
2934
2935         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2936             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2937              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2938                 return -EINVAL;
2939
2940         if (nested_check_guest_non_reg_state(vmcs12))
2941                 return -EINVAL;
2942
2943         return 0;
2944 }
2945
2946 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2947 {
2948         struct vcpu_vmx *vmx = to_vmx(vcpu);
2949         unsigned long cr3, cr4;
2950         bool vm_fail;
2951
2952         if (!nested_early_check)
2953                 return 0;
2954
2955         if (vmx->msr_autoload.host.nr)
2956                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2957         if (vmx->msr_autoload.guest.nr)
2958                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2959
2960         preempt_disable();
2961
2962         vmx_prepare_switch_to_guest(vcpu);
2963
2964         /*
2965          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2966          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2967          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2968          * there is no need to preserve other bits or save/restore the field.
2969          */
2970         vmcs_writel(GUEST_RFLAGS, 0);
2971
2972         cr3 = __get_current_cr3_fast();
2973         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2974                 vmcs_writel(HOST_CR3, cr3);
2975                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2976         }
2977
2978         cr4 = cr4_read_shadow();
2979         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2980                 vmcs_writel(HOST_CR4, cr4);
2981                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2982         }
2983
2984         asm(
2985                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2986                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2987                 "je 1f \n\t"
2988                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2989                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2990                 "1: \n\t"
2991                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2992
2993                 /* Check if vmlaunch or vmresume is needed */
2994                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2995
2996                 /*
2997                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2998                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2999                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
3000                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
3001                  */
3002                 "call vmx_vmenter\n\t"
3003
3004                 CC_SET(be)
3005               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3006               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3007                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
3008                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3009                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3010                 [wordsize]"i"(sizeof(ulong))
3011               : "memory"
3012         );
3013
3014         if (vmx->msr_autoload.host.nr)
3015                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3016         if (vmx->msr_autoload.guest.nr)
3017                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3018
3019         if (vm_fail) {
3020                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3021
3022                 preempt_enable();
3023
3024                 trace_kvm_nested_vmenter_failed(
3025                         "early hardware check VM-instruction error: ", error);
3026                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3027                 return 1;
3028         }
3029
3030         /*
3031          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3032          */
3033         local_irq_enable();
3034         if (hw_breakpoint_active())
3035                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3036         preempt_enable();
3037
3038         /*
3039          * A non-failing VMEntry means we somehow entered guest mode with
3040          * an illegal RIP, and that's just the tip of the iceberg.  There
3041          * is no telling what memory has been modified or what state has
3042          * been exposed to unknown code.  Hitting this all but guarantees
3043          * a (very critical) hardware issue.
3044          */
3045         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3046                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3047
3048         return 0;
3049 }
3050
3051 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
3052                                                  struct vmcs12 *vmcs12);
3053
3054 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3055 {
3056         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3057         struct vcpu_vmx *vmx = to_vmx(vcpu);
3058         struct kvm_host_map *map;
3059         struct page *page;
3060         u64 hpa;
3061
3062         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3063                 /*
3064                  * Translate L1 physical address to host physical
3065                  * address for vmcs02. Keep the page pinned, so this
3066                  * physical address remains valid. We keep a reference
3067                  * to it so we can release it later.
3068                  */
3069                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3070                         kvm_release_page_clean(vmx->nested.apic_access_page);
3071                         vmx->nested.apic_access_page = NULL;
3072                 }
3073                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3074                 if (!is_error_page(page)) {
3075                         vmx->nested.apic_access_page = page;
3076                         hpa = page_to_phys(vmx->nested.apic_access_page);
3077                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3078                 } else {
3079                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3080                                              __func__);
3081                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3082                         vcpu->run->internal.suberror =
3083                                 KVM_INTERNAL_ERROR_EMULATION;
3084                         vcpu->run->internal.ndata = 0;
3085                         return false;
3086                 }
3087         }
3088
3089         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3090                 map = &vmx->nested.virtual_apic_map;
3091
3092                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3093                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3094                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3095                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3096                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3097                         /*
3098                          * The processor will never use the TPR shadow, simply
3099                          * clear the bit from the execution control.  Such a
3100                          * configuration is useless, but it happens in tests.
3101                          * For any other configuration, failing the vm entry is
3102                          * _not_ what the processor does but it's basically the
3103                          * only possibility we have.
3104                          */
3105                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3106                 } else {
3107                         /*
3108                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3109                          * force VM-Entry to fail.
3110                          */
3111                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3112                 }
3113         }
3114
3115         if (nested_cpu_has_posted_intr(vmcs12)) {
3116                 map = &vmx->nested.pi_desc_map;
3117
3118                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3119                         vmx->nested.pi_desc =
3120                                 (struct pi_desc *)(((void *)map->hva) +
3121                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3122                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3123                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3124                 }
3125         }
3126         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3127                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3128         else
3129                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3130         return true;
3131 }
3132
3133 /*
3134  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3135  * for running VMX instructions (except VMXON, whose prerequisites are
3136  * slightly different). It also specifies what exception to inject otherwise.
3137  * Note that many of these exceptions have priority over VM exits, so they
3138  * don't have to be checked again here.
3139  */
3140 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3141 {
3142         if (!to_vmx(vcpu)->nested.vmxon) {
3143                 kvm_queue_exception(vcpu, UD_VECTOR);
3144                 return 0;
3145         }
3146
3147         if (vmx_get_cpl(vcpu)) {
3148                 kvm_inject_gp(vcpu, 0);
3149                 return 0;
3150         }
3151
3152         return 1;
3153 }
3154
3155 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3156 {
3157         u8 rvi = vmx_get_rvi();
3158         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3159
3160         return ((rvi & 0xf0) > (vppr & 0xf0));
3161 }
3162
3163 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3164                                    struct vmcs12 *vmcs12);
3165
3166 /*
3167  * If from_vmentry is false, this is being called from state restore (either RSM
3168  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3169  *
3170  * Returns:
3171  *      NVMX_ENTRY_SUCCESS: Entered VMX non-root mode
3172  *      NVMX_ENTRY_VMFAIL:  Consistency check VMFail
3173  *      NVMX_ENTRY_VMEXIT:  Consistency check VMExit
3174  *      NVMX_ENTRY_KVM_INTERNAL_ERROR: KVM internal error
3175  */
3176 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3177                                                         bool from_vmentry)
3178 {
3179         struct vcpu_vmx *vmx = to_vmx(vcpu);
3180         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3181         bool evaluate_pending_interrupts;
3182         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3183         u32 exit_qual;
3184
3185         evaluate_pending_interrupts = exec_controls_get(vmx) &
3186                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
3187         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3188                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3189
3190         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3191                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3192         if (kvm_mpx_supported() &&
3193                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3194                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3195
3196         /*
3197          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3198          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3199          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3200          * software model to the pre-VMEntry host state.  When EPT is disabled,
3201          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3202          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3203          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3204          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3205          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3206          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3207          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3208          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3209          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3210          * path would need to manually save/restore vmcs01.GUEST_CR3.
3211          */
3212         if (!enable_ept && !nested_early_check)
3213                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3214
3215         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3216
3217         prepare_vmcs02_early(vmx, vmcs12);
3218
3219         if (from_vmentry) {
3220                 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3221                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3222
3223                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3224                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3225                         return NVMX_VMENTRY_VMFAIL;
3226                 }
3227
3228                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3229                         goto vmentry_fail_vmexit;
3230         }
3231
3232         enter_guest_mode(vcpu);
3233         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3234                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3235
3236         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3237                 goto vmentry_fail_vmexit_guest_mode;
3238
3239         if (from_vmentry) {
3240                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3241                 exit_qual = nested_vmx_load_msr(vcpu,
3242                                                 vmcs12->vm_entry_msr_load_addr,
3243                                                 vmcs12->vm_entry_msr_load_count);
3244                 if (exit_qual)
3245                         goto vmentry_fail_vmexit_guest_mode;
3246         } else {
3247                 /*
3248                  * The MMU is not initialized to point at the right entities yet and
3249                  * "get pages" would need to read data from the guest (i.e. we will
3250                  * need to perform gpa to hpa translation). Request a call
3251                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3252                  * have already been set at vmentry time and should not be reset.
3253                  */
3254                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3255         }
3256
3257         /*
3258          * If L1 had a pending IRQ/NMI until it executed
3259          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3260          * disallowed (e.g. interrupts disabled), L0 needs to
3261          * evaluate if this pending event should cause an exit from L2
3262          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3263          * intercept EXTERNAL_INTERRUPT).
3264          *
3265          * Usually this would be handled by the processor noticing an
3266          * IRQ/NMI window request, or checking RVI during evaluation of
3267          * pending virtual interrupts.  However, this setting was done
3268          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3269          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3270          */
3271         if (unlikely(evaluate_pending_interrupts))
3272                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3273
3274         /*
3275          * Do not start the preemption timer hrtimer until after we know
3276          * we are successful, so that only nested_vmx_vmexit needs to cancel
3277          * the timer.
3278          */
3279         vmx->nested.preemption_timer_expired = false;
3280         if (nested_cpu_has_preemption_timer(vmcs12))
3281                 vmx_start_preemption_timer(vcpu);
3282
3283         /*
3284          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3285          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3286          * returned as far as L1 is concerned. It will only return (and set
3287          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3288          */
3289         return NVMX_VMENTRY_SUCCESS;
3290
3291         /*
3292          * A failed consistency check that leads to a VMExit during L1's
3293          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3294          * 26.7 "VM-entry failures during or after loading guest state".
3295          */
3296 vmentry_fail_vmexit_guest_mode:
3297         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3298                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3299         leave_guest_mode(vcpu);
3300
3301 vmentry_fail_vmexit:
3302         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3303
3304         if (!from_vmentry)
3305                 return NVMX_VMENTRY_VMEXIT;
3306
3307         load_vmcs12_host_state(vcpu, vmcs12);
3308         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3309         vmcs12->exit_qualification = exit_qual;
3310         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3311                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3312         return NVMX_VMENTRY_VMEXIT;
3313 }
3314
3315 /*
3316  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3317  * for running an L2 nested guest.
3318  */
3319 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3320 {
3321         struct vmcs12 *vmcs12;
3322         enum nvmx_vmentry_status status;
3323         struct vcpu_vmx *vmx = to_vmx(vcpu);
3324         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3325
3326         if (!nested_vmx_check_permission(vcpu))
3327                 return 1;
3328
3329         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3330                 return 1;
3331
3332         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3333                 return nested_vmx_failInvalid(vcpu);
3334
3335         vmcs12 = get_vmcs12(vcpu);
3336
3337         /*
3338          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3339          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3340          * rather than RFLAGS.ZF, and no error number is stored to the
3341          * VM-instruction error field.
3342          */
3343         if (vmcs12->hdr.shadow_vmcs)
3344                 return nested_vmx_failInvalid(vcpu);
3345
3346         if (vmx->nested.hv_evmcs) {
3347                 copy_enlightened_to_vmcs12(vmx);
3348                 /* Enlightened VMCS doesn't have launch state */
3349                 vmcs12->launch_state = !launch;
3350         } else if (enable_shadow_vmcs) {
3351                 copy_shadow_to_vmcs12(vmx);
3352         }
3353
3354         /*
3355          * The nested entry process starts with enforcing various prerequisites
3356          * on vmcs12 as required by the Intel SDM, and act appropriately when
3357          * they fail: As the SDM explains, some conditions should cause the
3358          * instruction to fail, while others will cause the instruction to seem
3359          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3360          * To speed up the normal (success) code path, we should avoid checking
3361          * for misconfigurations which will anyway be caught by the processor
3362          * when using the merged vmcs02.
3363          */
3364         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3365                 return nested_vmx_failValid(vcpu,
3366                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3367
3368         if (vmcs12->launch_state == launch)
3369                 return nested_vmx_failValid(vcpu,
3370                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3371                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3372
3373         if (nested_vmx_check_controls(vcpu, vmcs12))
3374                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3375
3376         if (nested_vmx_check_host_state(vcpu, vmcs12))
3377                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3378
3379         /*
3380          * We're finally done with prerequisite checking, and can start with
3381          * the nested entry.
3382          */
3383         vmx->nested.nested_run_pending = 1;
3384         status = nested_vmx_enter_non_root_mode(vcpu, true);
3385         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3386                 goto vmentry_failed;
3387
3388         /* Hide L1D cache contents from the nested guest.  */
3389         vmx->vcpu.arch.l1tf_flush_l1d = true;
3390
3391         /*
3392          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3393          * also be used as part of restoring nVMX state for
3394          * snapshot restore (migration).
3395          *
3396          * In this flow, it is assumed that vmcs12 cache was
3397          * trasferred as part of captured nVMX state and should
3398          * therefore not be read from guest memory (which may not
3399          * exist on destination host yet).
3400          */
3401         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3402
3403         /*
3404          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3405          * awakened by event injection or by an NMI-window VM-exit or
3406          * by an interrupt-window VM-exit, halt the vcpu.
3407          */
3408         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3409             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3410             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3411             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3412               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3413                 vmx->nested.nested_run_pending = 0;
3414                 return kvm_vcpu_halt(vcpu);
3415         }
3416         return 1;
3417
3418 vmentry_failed:
3419         vmx->nested.nested_run_pending = 0;
3420         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3421                 return 0;
3422         if (status == NVMX_VMENTRY_VMEXIT)
3423                 return 1;
3424         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3425         return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3426 }
3427
3428 /*
3429  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3430  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3431  * This function returns the new value we should put in vmcs12.guest_cr0.
3432  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3433  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3434  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3435  *     didn't trap the bit, because if L1 did, so would L0).
3436  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3437  *     been modified by L2, and L1 knows it. So just leave the old value of
3438  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3439  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3440  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3441  *     changed these bits, and therefore they need to be updated, but L0
3442  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3443  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3444  */
3445 static inline unsigned long
3446 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3447 {
3448         return
3449         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3450         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3451         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3452                         vcpu->arch.cr0_guest_owned_bits));
3453 }
3454
3455 static inline unsigned long
3456 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3457 {
3458         return
3459         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3460         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3461         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3462                         vcpu->arch.cr4_guest_owned_bits));
3463 }
3464
3465 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3466                                       struct vmcs12 *vmcs12)
3467 {
3468         u32 idt_vectoring;
3469         unsigned int nr;
3470
3471         if (vcpu->arch.exception.injected) {
3472                 nr = vcpu->arch.exception.nr;
3473                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3474
3475                 if (kvm_exception_is_soft(nr)) {
3476                         vmcs12->vm_exit_instruction_len =
3477                                 vcpu->arch.event_exit_inst_len;
3478                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3479                 } else
3480                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3481
3482                 if (vcpu->arch.exception.has_error_code) {
3483                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3484                         vmcs12->idt_vectoring_error_code =
3485                                 vcpu->arch.exception.error_code;
3486                 }
3487
3488                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3489         } else if (vcpu->arch.nmi_injected) {
3490                 vmcs12->idt_vectoring_info_field =
3491                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3492         } else if (vcpu->arch.interrupt.injected) {
3493                 nr = vcpu->arch.interrupt.nr;
3494                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3495
3496                 if (vcpu->arch.interrupt.soft) {
3497                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3498                         vmcs12->vm_entry_instruction_len =
3499                                 vcpu->arch.event_exit_inst_len;
3500                 } else
3501                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3502
3503                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3504         }
3505 }
3506
3507
3508 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3509 {
3510         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3511         gfn_t gfn;
3512
3513         /*
3514          * Don't need to mark the APIC access page dirty; it is never
3515          * written to by the CPU during APIC virtualization.
3516          */
3517
3518         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3519                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3520                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3521         }
3522
3523         if (nested_cpu_has_posted_intr(vmcs12)) {
3524                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3525                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3526         }
3527 }
3528
3529 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3530 {
3531         struct vcpu_vmx *vmx = to_vmx(vcpu);
3532         int max_irr;
3533         void *vapic_page;
3534         u16 status;
3535
3536         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3537                 return;
3538
3539         vmx->nested.pi_pending = false;
3540         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3541                 return;
3542
3543         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3544         if (max_irr != 256) {
3545                 vapic_page = vmx->nested.virtual_apic_map.hva;
3546                 if (!vapic_page)
3547                         return;
3548
3549                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3550                         vapic_page, &max_irr);
3551                 status = vmcs_read16(GUEST_INTR_STATUS);
3552                 if ((u8)max_irr > ((u8)status & 0xff)) {
3553                         status &= ~0xff;
3554                         status |= (u8)max_irr;
3555                         vmcs_write16(GUEST_INTR_STATUS, status);
3556                 }
3557         }
3558
3559         nested_mark_vmcs12_pages_dirty(vcpu);
3560 }
3561
3562 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3563                                                unsigned long exit_qual)
3564 {
3565         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3566         unsigned int nr = vcpu->arch.exception.nr;
3567         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3568
3569         if (vcpu->arch.exception.has_error_code) {
3570                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3571                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3572         }
3573
3574         if (kvm_exception_is_soft(nr))
3575                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3576         else
3577                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3578
3579         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3580             vmx_get_nmi_mask(vcpu))
3581                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3582
3583         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3584 }
3585
3586 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3587 {
3588         struct vcpu_vmx *vmx = to_vmx(vcpu);
3589         unsigned long exit_qual;
3590         bool block_nested_events =
3591             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3592         struct kvm_lapic *apic = vcpu->arch.apic;
3593
3594         if (lapic_in_kernel(vcpu) &&
3595                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3596                 if (block_nested_events)
3597                         return -EBUSY;
3598                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3599                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3600                 return 0;
3601         }
3602
3603         if (vcpu->arch.exception.pending &&
3604                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3605                 if (block_nested_events)
3606                         return -EBUSY;
3607                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3608                 return 0;
3609         }
3610
3611         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3612             vmx->nested.preemption_timer_expired) {
3613                 if (block_nested_events)
3614                         return -EBUSY;
3615                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3616                 return 0;
3617         }
3618
3619         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3620                 if (block_nested_events)
3621                         return -EBUSY;
3622                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3623                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3624                                   INTR_INFO_VALID_MASK, 0);
3625                 /*
3626                  * The NMI-triggered VM exit counts as injection:
3627                  * clear this one and block further NMIs.
3628                  */
3629                 vcpu->arch.nmi_pending = 0;
3630                 vmx_set_nmi_mask(vcpu, true);
3631                 return 0;
3632         }
3633
3634         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3635             nested_exit_on_intr(vcpu)) {
3636                 if (block_nested_events)
3637                         return -EBUSY;
3638                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3639                 return 0;
3640         }
3641
3642         vmx_complete_nested_posted_interrupt(vcpu);
3643         return 0;
3644 }
3645
3646 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3647 {
3648         ktime_t remaining =
3649                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3650         u64 value;
3651
3652         if (ktime_to_ns(remaining) <= 0)
3653                 return 0;
3654
3655         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3656         do_div(value, 1000000);
3657         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3658 }
3659
3660 static bool is_vmcs12_ext_field(unsigned long field)
3661 {
3662         switch (field) {
3663         case GUEST_ES_SELECTOR:
3664         case GUEST_CS_SELECTOR:
3665         case GUEST_SS_SELECTOR:
3666         case GUEST_DS_SELECTOR:
3667         case GUEST_FS_SELECTOR:
3668         case GUEST_GS_SELECTOR:
3669         case GUEST_LDTR_SELECTOR:
3670         case GUEST_TR_SELECTOR:
3671         case GUEST_ES_LIMIT:
3672         case GUEST_CS_LIMIT:
3673         case GUEST_SS_LIMIT:
3674         case GUEST_DS_LIMIT:
3675         case GUEST_FS_LIMIT:
3676         case GUEST_GS_LIMIT:
3677         case GUEST_LDTR_LIMIT:
3678         case GUEST_TR_LIMIT:
3679         case GUEST_GDTR_LIMIT:
3680         case GUEST_IDTR_LIMIT:
3681         case GUEST_ES_AR_BYTES:
3682         case GUEST_DS_AR_BYTES:
3683         case GUEST_FS_AR_BYTES:
3684         case GUEST_GS_AR_BYTES:
3685         case GUEST_LDTR_AR_BYTES:
3686         case GUEST_TR_AR_BYTES:
3687         case GUEST_ES_BASE:
3688         case GUEST_CS_BASE:
3689         case GUEST_SS_BASE:
3690         case GUEST_DS_BASE:
3691         case GUEST_FS_BASE:
3692         case GUEST_GS_BASE:
3693         case GUEST_LDTR_BASE:
3694         case GUEST_TR_BASE:
3695         case GUEST_GDTR_BASE:
3696         case GUEST_IDTR_BASE:
3697         case GUEST_PENDING_DBG_EXCEPTIONS:
3698         case GUEST_BNDCFGS:
3699                 return true;
3700         default:
3701                 break;
3702         }
3703
3704         return false;
3705 }
3706
3707 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3708                                        struct vmcs12 *vmcs12)
3709 {
3710         struct vcpu_vmx *vmx = to_vmx(vcpu);
3711
3712         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3713         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3714         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3715         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3716         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3717         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3718         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3719         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3720         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3721         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3722         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3723         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3724         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3725         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3726         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3727         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3728         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3729         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3730         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3731         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3732         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3733         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3734         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3735         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3736         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3737         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3738         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3739         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3740         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3741         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3742         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3743         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3744         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3745         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3746         vmcs12->guest_pending_dbg_exceptions =
3747                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3748         if (kvm_mpx_supported())
3749                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3750
3751         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3752 }
3753
3754 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3755                                        struct vmcs12 *vmcs12)
3756 {
3757         struct vcpu_vmx *vmx = to_vmx(vcpu);
3758         int cpu;
3759
3760         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3761                 return;
3762
3763
3764         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3765
3766         cpu = get_cpu();
3767         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3768         vmx_vcpu_load(&vmx->vcpu, cpu);
3769
3770         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3771
3772         vmx->loaded_vmcs = &vmx->vmcs01;
3773         vmx_vcpu_load(&vmx->vcpu, cpu);
3774         put_cpu();
3775 }
3776
3777 /*
3778  * Update the guest state fields of vmcs12 to reflect changes that
3779  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3780  * VM-entry controls is also updated, since this is really a guest
3781  * state bit.)
3782  */
3783 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3784 {
3785         struct vcpu_vmx *vmx = to_vmx(vcpu);
3786
3787         if (vmx->nested.hv_evmcs)
3788                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3789
3790         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3791
3792         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3793         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3794
3795         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3796         vmcs12->guest_rip = kvm_rip_read(vcpu);
3797         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3798
3799         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3800         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3801
3802         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3803         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3804         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3805
3806         vmcs12->guest_interruptibility_info =
3807                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3808
3809         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3810                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3811         else
3812                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3813
3814         if (nested_cpu_has_preemption_timer(vmcs12) &&
3815             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3816                         vmcs12->vmx_preemption_timer_value =
3817                                 vmx_get_preemption_timer_value(vcpu);
3818
3819         /*
3820          * In some cases (usually, nested EPT), L2 is allowed to change its
3821          * own CR3 without exiting. If it has changed it, we must keep it.
3822          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3823          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3824          *
3825          * Additionally, restore L2's PDPTR to vmcs12.
3826          */
3827         if (enable_ept) {
3828                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3829                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3830                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3831                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3832                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3833                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3834                 }
3835         }
3836
3837         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3838
3839         if (nested_cpu_has_vid(vmcs12))
3840                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3841
3842         vmcs12->vm_entry_controls =
3843                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3844                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3845
3846         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3847                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3848
3849         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3850                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3851 }
3852
3853 /*
3854  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3855  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3856  * and this function updates it to reflect the changes to the guest state while
3857  * L2 was running (and perhaps made some exits which were handled directly by L0
3858  * without going back to L1), and to reflect the exit reason.
3859  * Note that we do not have to copy here all VMCS fields, just those that
3860  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3861  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3862  * which already writes to vmcs12 directly.
3863  */
3864 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3865                            u32 exit_reason, u32 exit_intr_info,
3866                            unsigned long exit_qualification)
3867 {
3868         /* update exit information fields: */
3869         vmcs12->vm_exit_reason = exit_reason;
3870         vmcs12->exit_qualification = exit_qualification;
3871         vmcs12->vm_exit_intr_info = exit_intr_info;
3872
3873         vmcs12->idt_vectoring_info_field = 0;
3874         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3875         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3876
3877         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3878                 vmcs12->launch_state = 1;
3879
3880                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3881                  * instead of reading the real value. */
3882                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3883
3884                 /*
3885                  * Transfer the event that L0 or L1 may wanted to inject into
3886                  * L2 to IDT_VECTORING_INFO_FIELD.
3887                  */
3888                 vmcs12_save_pending_event(vcpu, vmcs12);
3889
3890                 /*
3891                  * According to spec, there's no need to store the guest's
3892                  * MSRs if the exit is due to a VM-entry failure that occurs
3893                  * during or after loading the guest state. Since this exit
3894                  * does not fall in that category, we need to save the MSRs.
3895                  */
3896                 if (nested_vmx_store_msr(vcpu,
3897                                          vmcs12->vm_exit_msr_store_addr,
3898                                          vmcs12->vm_exit_msr_store_count))
3899                         nested_vmx_abort(vcpu,
3900                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3901         }
3902
3903         /*
3904          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3905          * preserved above and would only end up incorrectly in L1.
3906          */
3907         vcpu->arch.nmi_injected = false;
3908         kvm_clear_exception_queue(vcpu);
3909         kvm_clear_interrupt_queue(vcpu);
3910 }
3911
3912 /*
3913  * A part of what we need to when the nested L2 guest exits and we want to
3914  * run its L1 parent, is to reset L1's guest state to the host state specified
3915  * in vmcs12.
3916  * This function is to be called not only on normal nested exit, but also on
3917  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3918  * Failures During or After Loading Guest State").
3919  * This function should be called when the active VMCS is L1's (vmcs01).
3920  */
3921 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3922                                    struct vmcs12 *vmcs12)
3923 {
3924         struct kvm_segment seg;
3925         u32 entry_failure_code;
3926
3927         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3928                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3929         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3930                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3931         else
3932                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3933         vmx_set_efer(vcpu, vcpu->arch.efer);
3934
3935         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3936         kvm_rip_write(vcpu, vmcs12->host_rip);
3937         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3938         vmx_set_interrupt_shadow(vcpu, 0);
3939
3940         /*
3941          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3942          * actually changed, because vmx_set_cr0 refers to efer set above.
3943          *
3944          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3945          * (KVM doesn't change it);
3946          */
3947         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3948         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3949
3950         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3951         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3952         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3953
3954         nested_ept_uninit_mmu_context(vcpu);
3955
3956         /*
3957          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3958          * couldn't have changed.
3959          */
3960         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3961                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3962
3963         if (!enable_ept)
3964                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3965
3966         /*
3967          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3968          * VMEntry/VMExit. Thus, no need to flush TLB.
3969          *
3970          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3971          * flushed on every VMEntry/VMExit.
3972          *
3973          * Otherwise, we can preserve TLB entries as long as we are
3974          * able to tag L1 TLB entries differently than L2 TLB entries.
3975          *
3976          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3977          * and therefore we request the TLB flush to happen only after VMCS EPTP
3978          * has been set by KVM_REQ_LOAD_CR3.
3979          */
3980         if (enable_vpid &&
3981             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3982                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3983         }
3984
3985         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3986         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3987         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3988         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3989         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3990         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3991         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3992
3993         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3994         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3995                 vmcs_write64(GUEST_BNDCFGS, 0);
3996
3997         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3998                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3999                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4000         }
4001         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4002                 SET_MSR_OR_WARN(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4003                                 vmcs12->host_ia32_perf_global_ctrl);
4004
4005         /* Set L1 segment info according to Intel SDM
4006             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4007         seg = (struct kvm_segment) {
4008                 .base = 0,
4009                 .limit = 0xFFFFFFFF,
4010                 .selector = vmcs12->host_cs_selector,
4011                 .type = 11,
4012                 .present = 1,
4013                 .s = 1,
4014                 .g = 1
4015         };
4016         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4017                 seg.l = 1;
4018         else
4019                 seg.db = 1;
4020         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4021         seg = (struct kvm_segment) {
4022                 .base = 0,
4023                 .limit = 0xFFFFFFFF,
4024                 .type = 3,
4025                 .present = 1,
4026                 .s = 1,
4027                 .db = 1,
4028                 .g = 1
4029         };
4030         seg.selector = vmcs12->host_ds_selector;
4031         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4032         seg.selector = vmcs12->host_es_selector;
4033         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4034         seg.selector = vmcs12->host_ss_selector;
4035         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4036         seg.selector = vmcs12->host_fs_selector;
4037         seg.base = vmcs12->host_fs_base;
4038         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4039         seg.selector = vmcs12->host_gs_selector;
4040         seg.base = vmcs12->host_gs_base;
4041         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4042         seg = (struct kvm_segment) {
4043                 .base = vmcs12->host_tr_base,
4044                 .limit = 0x67,
4045                 .selector = vmcs12->host_tr_selector,
4046                 .type = 11,
4047                 .present = 1
4048         };
4049         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4050
4051         kvm_set_dr(vcpu, 7, 0x400);
4052         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4053
4054         if (cpu_has_vmx_msr_bitmap())
4055                 vmx_update_msr_bitmap(vcpu);
4056
4057         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4058                                 vmcs12->vm_exit_msr_load_count))
4059                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4060 }
4061
4062 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4063 {
4064         struct shared_msr_entry *efer_msr;
4065         unsigned int i;
4066
4067         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4068                 return vmcs_read64(GUEST_IA32_EFER);
4069
4070         if (cpu_has_load_ia32_efer())
4071                 return host_efer;
4072
4073         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4074                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4075                         return vmx->msr_autoload.guest.val[i].value;
4076         }
4077
4078         efer_msr = find_msr_entry(vmx, MSR_EFER);
4079         if (efer_msr)
4080                 return efer_msr->data;
4081
4082         return host_efer;
4083 }
4084
4085 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4086 {
4087         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4088         struct vcpu_vmx *vmx = to_vmx(vcpu);
4089         struct vmx_msr_entry g, h;
4090         gpa_t gpa;
4091         u32 i, j;
4092
4093         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4094
4095         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4096                 /*
4097                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4098                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4099                  * and vcpu->arch.dr7 is not squirreled away before the
4100                  * nested VMENTER (not worth adding a variable in nested_vmx).
4101                  */
4102                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4103                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4104                 else
4105                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4106         }
4107
4108         /*
4109          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4110          * handle a variety of side effects to KVM's software model.
4111          */
4112         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4113
4114         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4115         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4116
4117         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4118         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4119
4120         nested_ept_uninit_mmu_context(vcpu);
4121         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4122         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4123
4124         /*
4125          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4126          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4127          * VMFail, like everything else we just need to ensure our
4128          * software model is up-to-date.
4129          */
4130         if (enable_ept)
4131                 ept_save_pdptrs(vcpu);
4132
4133         kvm_mmu_reset_context(vcpu);
4134
4135         if (cpu_has_vmx_msr_bitmap())
4136                 vmx_update_msr_bitmap(vcpu);
4137
4138         /*
4139          * This nasty bit of open coding is a compromise between blindly
4140          * loading L1's MSRs using the exit load lists (incorrect emulation
4141          * of VMFail), leaving the nested VM's MSRs in the software model
4142          * (incorrect behavior) and snapshotting the modified MSRs (too
4143          * expensive since the lists are unbound by hardware).  For each
4144          * MSR that was (prematurely) loaded from the nested VMEntry load
4145          * list, reload it from the exit load list if it exists and differs
4146          * from the guest value.  The intent is to stuff host state as
4147          * silently as possible, not to fully process the exit load list.
4148          */
4149         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4150                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4151                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4152                         pr_debug_ratelimited(
4153                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4154                                 __func__, i, gpa);
4155                         goto vmabort;
4156                 }
4157
4158                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4159                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4160                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4161                                 pr_debug_ratelimited(
4162                                         "%s read MSR failed (%u, 0x%08llx)\n",
4163                                         __func__, j, gpa);
4164                                 goto vmabort;
4165                         }
4166                         if (h.index != g.index)
4167                                 continue;
4168                         if (h.value == g.value)
4169                                 break;
4170
4171                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4172                                 pr_debug_ratelimited(
4173                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4174                                         __func__, j, h.index, h.reserved);
4175                                 goto vmabort;
4176                         }
4177
4178                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4179                                 pr_debug_ratelimited(
4180                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4181                                         __func__, j, h.index, h.value);
4182                                 goto vmabort;
4183                         }
4184                 }
4185         }
4186
4187         return;
4188
4189 vmabort:
4190         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4191 }
4192
4193 /*
4194  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4195  * and modify vmcs12 to make it see what it would expect to see there if
4196  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4197  */
4198 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4199                        u32 exit_intr_info, unsigned long exit_qualification)
4200 {
4201         struct vcpu_vmx *vmx = to_vmx(vcpu);
4202         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4203
4204         /* trying to cancel vmlaunch/vmresume is a bug */
4205         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4206
4207         leave_guest_mode(vcpu);
4208
4209         if (nested_cpu_has_preemption_timer(vmcs12))
4210                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4211
4212         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4213                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4214
4215         if (likely(!vmx->fail)) {
4216                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4217
4218                 if (exit_reason != -1)
4219                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4220                                        exit_qualification);
4221
4222                 /*
4223                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4224                  * also be used to capture vmcs12 cache as part of
4225                  * capturing nVMX state for snapshot (migration).
4226                  *
4227                  * Otherwise, this flush will dirty guest memory at a
4228                  * point it is already assumed by user-space to be
4229                  * immutable.
4230                  */
4231                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4232         } else {
4233                 /*
4234                  * The only expected VM-instruction error is "VM entry with
4235                  * invalid control field(s)." Anything else indicates a
4236                  * problem with L0.  And we should never get here with a
4237                  * VMFail of any type if early consistency checks are enabled.
4238                  */
4239                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4240                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4241                 WARN_ON_ONCE(nested_early_check);
4242         }
4243
4244         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4245
4246         /* Update any VMCS fields that might have changed while L2 ran */
4247         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4248         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4249         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4250         if (vmx->nested.l1_tpr_threshold != -1)
4251                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4252
4253         if (kvm_has_tsc_control)
4254                 decache_tsc_multiplier(vmx);
4255
4256         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4257                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4258                 vmx_set_virtual_apic_mode(vcpu);
4259         }
4260
4261         /* Unpin physical memory we referred to in vmcs02 */
4262         if (vmx->nested.apic_access_page) {
4263                 kvm_release_page_clean(vmx->nested.apic_access_page);
4264                 vmx->nested.apic_access_page = NULL;
4265         }
4266         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4267         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4268         vmx->nested.pi_desc = NULL;
4269
4270         /*
4271          * We are now running in L2, mmu_notifier will force to reload the
4272          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4273          */
4274         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4275
4276         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4277                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4278
4279         /* in case we halted in L2 */
4280         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4281
4282         if (likely(!vmx->fail)) {
4283                 /*
4284                  * TODO: SDM says that with acknowledge interrupt on
4285                  * exit, bit 31 of the VM-exit interrupt information
4286                  * (valid interrupt) is always set to 1 on
4287                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4288                  * need kvm_cpu_has_interrupt().  See the commit
4289                  * message for details.
4290                  */
4291                 if (nested_exit_intr_ack_set(vcpu) &&
4292                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4293                     kvm_cpu_has_interrupt(vcpu)) {
4294                         int irq = kvm_cpu_get_interrupt(vcpu);
4295                         WARN_ON(irq < 0);
4296                         vmcs12->vm_exit_intr_info = irq |
4297                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4298                 }
4299
4300                 if (exit_reason != -1)
4301                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4302                                                        vmcs12->exit_qualification,
4303                                                        vmcs12->idt_vectoring_info_field,
4304                                                        vmcs12->vm_exit_intr_info,
4305                                                        vmcs12->vm_exit_intr_error_code,
4306                                                        KVM_ISA_VMX);
4307
4308                 load_vmcs12_host_state(vcpu, vmcs12);
4309
4310                 return;
4311         }
4312
4313         /*
4314          * After an early L2 VM-entry failure, we're now back
4315          * in L1 which thinks it just finished a VMLAUNCH or
4316          * VMRESUME instruction, so we need to set the failure
4317          * flag and the VM-instruction error field of the VMCS
4318          * accordingly, and skip the emulated instruction.
4319          */
4320         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4321
4322         /*
4323          * Restore L1's host state to KVM's software model.  We're here
4324          * because a consistency check was caught by hardware, which
4325          * means some amount of guest state has been propagated to KVM's
4326          * model and needs to be unwound to the host's state.
4327          */
4328         nested_vmx_restore_host_state(vcpu);
4329
4330         vmx->fail = 0;
4331 }
4332
4333 /*
4334  * Decode the memory-address operand of a vmx instruction, as recorded on an
4335  * exit caused by such an instruction (run by a guest hypervisor).
4336  * On success, returns 0. When the operand is invalid, returns 1 and throws
4337  * #UD or #GP.
4338  */
4339 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4340                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4341 {
4342         gva_t off;
4343         bool exn;
4344         struct kvm_segment s;
4345
4346         /*
4347          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4348          * Execution", on an exit, vmx_instruction_info holds most of the
4349          * addressing components of the operand. Only the displacement part
4350          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4351          * For how an actual address is calculated from all these components,
4352          * refer to Vol. 1, "Operand Addressing".
4353          */
4354         int  scaling = vmx_instruction_info & 3;
4355         int  addr_size = (vmx_instruction_info >> 7) & 7;
4356         bool is_reg = vmx_instruction_info & (1u << 10);
4357         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4358         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4359         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4360         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4361         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4362
4363         if (is_reg) {
4364                 kvm_queue_exception(vcpu, UD_VECTOR);
4365                 return 1;
4366         }
4367
4368         /* Addr = segment_base + offset */
4369         /* offset = base + [index * scale] + displacement */
4370         off = exit_qualification; /* holds the displacement */
4371         if (addr_size == 1)
4372                 off = (gva_t)sign_extend64(off, 31);
4373         else if (addr_size == 0)
4374                 off = (gva_t)sign_extend64(off, 15);
4375         if (base_is_valid)
4376                 off += kvm_register_read(vcpu, base_reg);
4377         if (index_is_valid)
4378                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4379         vmx_get_segment(vcpu, &s, seg_reg);
4380
4381         /*
4382          * The effective address, i.e. @off, of a memory operand is truncated
4383          * based on the address size of the instruction.  Note that this is
4384          * the *effective address*, i.e. the address prior to accounting for
4385          * the segment's base.
4386          */
4387         if (addr_size == 1) /* 32 bit */
4388                 off &= 0xffffffff;
4389         else if (addr_size == 0) /* 16 bit */
4390                 off &= 0xffff;
4391
4392         /* Checks for #GP/#SS exceptions. */
4393         exn = false;
4394         if (is_long_mode(vcpu)) {
4395                 /*
4396                  * The virtual/linear address is never truncated in 64-bit
4397                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4398                  * address when using FS/GS with a non-zero base.
4399                  */
4400                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4401                         *ret = s.base + off;
4402                 else
4403                         *ret = off;
4404
4405                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4406                  * non-canonical form. This is the only check on the memory
4407                  * destination for long mode!
4408                  */
4409                 exn = is_noncanonical_address(*ret, vcpu);
4410         } else {
4411                 /*
4412                  * When not in long mode, the virtual/linear address is
4413                  * unconditionally truncated to 32 bits regardless of the
4414                  * address size.
4415                  */
4416                 *ret = (s.base + off) & 0xffffffff;
4417
4418                 /* Protected mode: apply checks for segment validity in the
4419                  * following order:
4420                  * - segment type check (#GP(0) may be thrown)
4421                  * - usability check (#GP(0)/#SS(0))
4422                  * - limit check (#GP(0)/#SS(0))
4423                  */
4424                 if (wr)
4425                         /* #GP(0) if the destination operand is located in a
4426                          * read-only data segment or any code segment.
4427                          */
4428                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4429                 else
4430                         /* #GP(0) if the source operand is located in an
4431                          * execute-only code segment
4432                          */
4433                         exn = ((s.type & 0xa) == 8);
4434                 if (exn) {
4435                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4436                         return 1;
4437                 }
4438                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4439                  */
4440                 exn = (s.unusable != 0);
4441
4442                 /*
4443                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4444                  * outside the segment limit.  All CPUs that support VMX ignore
4445                  * limit checks for flat segments, i.e. segments with base==0,
4446                  * limit==0xffffffff and of type expand-up data or code.
4447                  */
4448                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4449                      ((s.type & 8) || !(s.type & 4))))
4450                         exn = exn || ((u64)off + len - 1 > s.limit);
4451         }
4452         if (exn) {
4453                 kvm_queue_exception_e(vcpu,
4454                                       seg_reg == VCPU_SREG_SS ?
4455                                                 SS_VECTOR : GP_VECTOR,
4456                                       0);
4457                 return 1;
4458         }
4459
4460         return 0;
4461 }
4462
4463 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4464 {
4465         struct vcpu_vmx *vmx;
4466
4467         if (!nested_vmx_allowed(vcpu))
4468                 return;
4469
4470         vmx = to_vmx(vcpu);
4471         if (kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4472                 vmx->nested.msrs.entry_ctls_high |=
4473                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4474                 vmx->nested.msrs.exit_ctls_high |=
4475                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4476         } else {
4477                 vmx->nested.msrs.entry_ctls_high &=
4478                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4479                 vmx->nested.msrs.exit_ctls_high &=
4480                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4481         }
4482 }
4483
4484 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4485 {
4486         gva_t gva;
4487         struct x86_exception e;
4488
4489         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4490                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4491                                 sizeof(*vmpointer), &gva))
4492                 return 1;
4493
4494         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4495                 kvm_inject_page_fault(vcpu, &e);
4496                 return 1;
4497         }
4498
4499         return 0;
4500 }
4501
4502 /*
4503  * Allocate a shadow VMCS and associate it with the currently loaded
4504  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4505  * VMCS is also VMCLEARed, so that it is ready for use.
4506  */
4507 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4508 {
4509         struct vcpu_vmx *vmx = to_vmx(vcpu);
4510         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4511
4512         /*
4513          * We should allocate a shadow vmcs for vmcs01 only when L1
4514          * executes VMXON and free it when L1 executes VMXOFF.
4515          * As it is invalid to execute VMXON twice, we shouldn't reach
4516          * here when vmcs01 already have an allocated shadow vmcs.
4517          */
4518         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4519
4520         if (!loaded_vmcs->shadow_vmcs) {
4521                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4522                 if (loaded_vmcs->shadow_vmcs)
4523                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4524         }
4525         return loaded_vmcs->shadow_vmcs;
4526 }
4527
4528 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4529 {
4530         struct vcpu_vmx *vmx = to_vmx(vcpu);
4531         int r;
4532
4533         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4534         if (r < 0)
4535                 goto out_vmcs02;
4536
4537         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4538         if (!vmx->nested.cached_vmcs12)
4539                 goto out_cached_vmcs12;
4540
4541         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4542         if (!vmx->nested.cached_shadow_vmcs12)
4543                 goto out_cached_shadow_vmcs12;
4544
4545         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4546                 goto out_shadow_vmcs;
4547
4548         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4549                      HRTIMER_MODE_REL_PINNED);
4550         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4551
4552         vmx->nested.vpid02 = allocate_vpid();
4553
4554         vmx->nested.vmcs02_initialized = false;
4555         vmx->nested.vmxon = true;
4556
4557         if (pt_mode == PT_MODE_HOST_GUEST) {
4558                 vmx->pt_desc.guest.ctl = 0;
4559                 pt_update_intercept_for_msr(vmx);
4560         }
4561
4562         return 0;
4563
4564 out_shadow_vmcs:
4565         kfree(vmx->nested.cached_shadow_vmcs12);
4566
4567 out_cached_shadow_vmcs12:
4568         kfree(vmx->nested.cached_vmcs12);
4569
4570 out_cached_vmcs12:
4571         free_loaded_vmcs(&vmx->nested.vmcs02);
4572
4573 out_vmcs02:
4574         return -ENOMEM;
4575 }
4576
4577 /*
4578  * Emulate the VMXON instruction.
4579  * Currently, we just remember that VMX is active, and do not save or even
4580  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4581  * do not currently need to store anything in that guest-allocated memory
4582  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4583  * argument is different from the VMXON pointer (which the spec says they do).
4584  */
4585 static int handle_vmon(struct kvm_vcpu *vcpu)
4586 {
4587         int ret;
4588         gpa_t vmptr;
4589         uint32_t revision;
4590         struct vcpu_vmx *vmx = to_vmx(vcpu);
4591         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4592                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4593
4594         /*
4595          * The Intel VMX Instruction Reference lists a bunch of bits that are
4596          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4597          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4598          * Otherwise, we should fail with #UD.  But most faulting conditions
4599          * have already been checked by hardware, prior to the VM-exit for
4600          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4601          * that bit set to 1 in non-root mode.
4602          */
4603         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4604                 kvm_queue_exception(vcpu, UD_VECTOR);
4605                 return 1;
4606         }
4607
4608         /* CPL=0 must be checked manually. */
4609         if (vmx_get_cpl(vcpu)) {
4610                 kvm_inject_gp(vcpu, 0);
4611                 return 1;
4612         }
4613
4614         if (vmx->nested.vmxon)
4615                 return nested_vmx_failValid(vcpu,
4616                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4617
4618         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4619                         != VMXON_NEEDED_FEATURES) {
4620                 kvm_inject_gp(vcpu, 0);
4621                 return 1;
4622         }
4623
4624         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4625                 return 1;
4626
4627         /*
4628          * SDM 3: 24.11.5
4629          * The first 4 bytes of VMXON region contain the supported
4630          * VMCS revision identifier
4631          *
4632          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4633          * which replaces physical address width with 32
4634          */
4635         if (!page_address_valid(vcpu, vmptr))
4636                 return nested_vmx_failInvalid(vcpu);
4637
4638         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4639             revision != VMCS12_REVISION)
4640                 return nested_vmx_failInvalid(vcpu);
4641
4642         vmx->nested.vmxon_ptr = vmptr;
4643         ret = enter_vmx_operation(vcpu);
4644         if (ret)
4645                 return ret;
4646
4647         return nested_vmx_succeed(vcpu);
4648 }
4649
4650 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4651 {
4652         struct vcpu_vmx *vmx = to_vmx(vcpu);
4653
4654         if (vmx->nested.current_vmptr == -1ull)
4655                 return;
4656
4657         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4658
4659         if (enable_shadow_vmcs) {
4660                 /* copy to memory all shadowed fields in case
4661                    they were modified */
4662                 copy_shadow_to_vmcs12(vmx);
4663                 vmx_disable_shadow_vmcs(vmx);
4664         }
4665         vmx->nested.posted_intr_nv = -1;
4666
4667         /* Flush VMCS12 to guest memory */
4668         kvm_vcpu_write_guest_page(vcpu,
4669                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4670                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4671
4672         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4673
4674         vmx->nested.current_vmptr = -1ull;
4675 }
4676
4677 /* Emulate the VMXOFF instruction */
4678 static int handle_vmoff(struct kvm_vcpu *vcpu)
4679 {
4680         if (!nested_vmx_check_permission(vcpu))
4681                 return 1;
4682
4683         free_nested(vcpu);
4684
4685         /* Process a latched INIT during time CPU was in VMX operation */
4686         kvm_make_request(KVM_REQ_EVENT, vcpu);
4687
4688         return nested_vmx_succeed(vcpu);
4689 }
4690
4691 /* Emulate the VMCLEAR instruction */
4692 static int handle_vmclear(struct kvm_vcpu *vcpu)
4693 {
4694         struct vcpu_vmx *vmx = to_vmx(vcpu);
4695         u32 zero = 0;
4696         gpa_t vmptr;
4697         u64 evmcs_gpa;
4698
4699         if (!nested_vmx_check_permission(vcpu))
4700                 return 1;
4701
4702         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4703                 return 1;
4704
4705         if (!page_address_valid(vcpu, vmptr))
4706                 return nested_vmx_failValid(vcpu,
4707                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4708
4709         if (vmptr == vmx->nested.vmxon_ptr)
4710                 return nested_vmx_failValid(vcpu,
4711                         VMXERR_VMCLEAR_VMXON_POINTER);
4712
4713         /*
4714          * When Enlightened VMEntry is enabled on the calling CPU we treat
4715          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4716          * way to distinguish it from VMCS12) and we must not corrupt it by
4717          * writing to the non-existent 'launch_state' field. The area doesn't
4718          * have to be the currently active EVMCS on the calling CPU and there's
4719          * nothing KVM has to do to transition it from 'active' to 'non-active'
4720          * state. It is possible that the area will stay mapped as
4721          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4722          */
4723         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4724                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4725                 if (vmptr == vmx->nested.current_vmptr)
4726                         nested_release_vmcs12(vcpu);
4727
4728                 kvm_vcpu_write_guest(vcpu,
4729                                      vmptr + offsetof(struct vmcs12,
4730                                                       launch_state),
4731                                      &zero, sizeof(zero));
4732         }
4733
4734         return nested_vmx_succeed(vcpu);
4735 }
4736
4737 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4738
4739 /* Emulate the VMLAUNCH instruction */
4740 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4741 {
4742         return nested_vmx_run(vcpu, true);
4743 }
4744
4745 /* Emulate the VMRESUME instruction */
4746 static int handle_vmresume(struct kvm_vcpu *vcpu)
4747 {
4748
4749         return nested_vmx_run(vcpu, false);
4750 }
4751
4752 static int handle_vmread(struct kvm_vcpu *vcpu)
4753 {
4754         unsigned long field;
4755         u64 field_value;
4756         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4757         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4758         int len;
4759         gva_t gva = 0;
4760         struct vmcs12 *vmcs12;
4761         struct x86_exception e;
4762         short offset;
4763
4764         if (!nested_vmx_check_permission(vcpu))
4765                 return 1;
4766
4767         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4768                 return nested_vmx_failInvalid(vcpu);
4769
4770         if (!is_guest_mode(vcpu))
4771                 vmcs12 = get_vmcs12(vcpu);
4772         else {
4773                 /*
4774                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4775                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4776                  */
4777                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4778                         return nested_vmx_failInvalid(vcpu);
4779                 vmcs12 = get_shadow_vmcs12(vcpu);
4780         }
4781
4782         /* Decode instruction info and find the field to read */
4783         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4784
4785         offset = vmcs_field_to_offset(field);
4786         if (offset < 0)
4787                 return nested_vmx_failValid(vcpu,
4788                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4789
4790         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4791                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4792
4793         /* Read the field, zero-extended to a u64 field_value */
4794         field_value = vmcs12_read_any(vmcs12, field, offset);
4795
4796         /*
4797          * Now copy part of this value to register or memory, as requested.
4798          * Note that the number of bits actually copied is 32 or 64 depending
4799          * on the guest's mode (32 or 64 bit), not on the given field's length.
4800          */
4801         if (vmx_instruction_info & (1u << 10)) {
4802                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4803                         field_value);
4804         } else {
4805                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4806                 if (get_vmx_mem_address(vcpu, exit_qualification,
4807                                 vmx_instruction_info, true, len, &gva))
4808                         return 1;
4809                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4810                 if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e))
4811                         kvm_inject_page_fault(vcpu, &e);
4812         }
4813
4814         return nested_vmx_succeed(vcpu);
4815 }
4816
4817 static bool is_shadow_field_rw(unsigned long field)
4818 {
4819         switch (field) {
4820 #define SHADOW_FIELD_RW(x, y) case x:
4821 #include "vmcs_shadow_fields.h"
4822                 return true;
4823         default:
4824                 break;
4825         }
4826         return false;
4827 }
4828
4829 static bool is_shadow_field_ro(unsigned long field)
4830 {
4831         switch (field) {
4832 #define SHADOW_FIELD_RO(x, y) case x:
4833 #include "vmcs_shadow_fields.h"
4834                 return true;
4835         default:
4836                 break;
4837         }
4838         return false;
4839 }
4840
4841 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4842 {
4843         unsigned long field;
4844         int len;
4845         gva_t gva;
4846         struct vcpu_vmx *vmx = to_vmx(vcpu);
4847         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4848         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4849
4850         /* The value to write might be 32 or 64 bits, depending on L1's long
4851          * mode, and eventually we need to write that into a field of several
4852          * possible lengths. The code below first zero-extends the value to 64
4853          * bit (field_value), and then copies only the appropriate number of
4854          * bits into the vmcs12 field.
4855          */
4856         u64 field_value = 0;
4857         struct x86_exception e;
4858         struct vmcs12 *vmcs12;
4859         short offset;
4860
4861         if (!nested_vmx_check_permission(vcpu))
4862                 return 1;
4863
4864         if (vmx->nested.current_vmptr == -1ull)
4865                 return nested_vmx_failInvalid(vcpu);
4866
4867         if (vmx_instruction_info & (1u << 10))
4868                 field_value = kvm_register_readl(vcpu,
4869                         (((vmx_instruction_info) >> 3) & 0xf));
4870         else {
4871                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4872                 if (get_vmx_mem_address(vcpu, exit_qualification,
4873                                 vmx_instruction_info, false, len, &gva))
4874                         return 1;
4875                 if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4876                         kvm_inject_page_fault(vcpu, &e);
4877                         return 1;
4878                 }
4879         }
4880
4881
4882         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4883         /*
4884          * If the vCPU supports "VMWRITE to any supported field in the
4885          * VMCS," then the "read-only" fields are actually read/write.
4886          */
4887         if (vmcs_field_readonly(field) &&
4888             !nested_cpu_has_vmwrite_any_field(vcpu))
4889                 return nested_vmx_failValid(vcpu,
4890                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4891
4892         if (!is_guest_mode(vcpu)) {
4893                 vmcs12 = get_vmcs12(vcpu);
4894
4895                 /*
4896                  * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4897                  * vmcs12, else we may crush a field or consume a stale value.
4898                  */
4899                 if (!is_shadow_field_rw(field))
4900                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4901         } else {
4902                 /*
4903                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4904                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4905                  */
4906                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4907                         return nested_vmx_failInvalid(vcpu);
4908                 vmcs12 = get_shadow_vmcs12(vcpu);
4909         }
4910
4911         offset = vmcs_field_to_offset(field);
4912         if (offset < 0)
4913                 return nested_vmx_failValid(vcpu,
4914                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4915
4916         /*
4917          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4918          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4919          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4920          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4921          * from L1 will return a different value than VMREAD from L2 (L1 sees
4922          * the stripped down value, L2 sees the full value as stored by KVM).
4923          */
4924         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4925                 field_value &= 0x1f0ff;
4926
4927         vmcs12_write_any(vmcs12, field, offset, field_value);
4928
4929         /*
4930          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4931          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4932          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4933          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4934          */
4935         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4936                 /*
4937                  * L1 can read these fields without exiting, ensure the
4938                  * shadow VMCS is up-to-date.
4939                  */
4940                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4941                         preempt_disable();
4942                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4943
4944                         __vmcs_writel(field, field_value);
4945
4946                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4947                         vmcs_load(vmx->loaded_vmcs->vmcs);
4948                         preempt_enable();
4949                 }
4950                 vmx->nested.dirty_vmcs12 = true;
4951         }
4952
4953         return nested_vmx_succeed(vcpu);
4954 }
4955
4956 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4957 {
4958         vmx->nested.current_vmptr = vmptr;
4959         if (enable_shadow_vmcs) {
4960                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4961                 vmcs_write64(VMCS_LINK_POINTER,
4962                              __pa(vmx->vmcs01.shadow_vmcs));
4963                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4964         }
4965         vmx->nested.dirty_vmcs12 = true;
4966 }
4967
4968 /* Emulate the VMPTRLD instruction */
4969 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4970 {
4971         struct vcpu_vmx *vmx = to_vmx(vcpu);
4972         gpa_t vmptr;
4973
4974         if (!nested_vmx_check_permission(vcpu))
4975                 return 1;
4976
4977         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4978                 return 1;
4979
4980         if (!page_address_valid(vcpu, vmptr))
4981                 return nested_vmx_failValid(vcpu,
4982                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4983
4984         if (vmptr == vmx->nested.vmxon_ptr)
4985                 return nested_vmx_failValid(vcpu,
4986                         VMXERR_VMPTRLD_VMXON_POINTER);
4987
4988         /* Forbid normal VMPTRLD if Enlightened version was used */
4989         if (vmx->nested.hv_evmcs)
4990                 return 1;
4991
4992         if (vmx->nested.current_vmptr != vmptr) {
4993                 struct kvm_host_map map;
4994                 struct vmcs12 *new_vmcs12;
4995
4996                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4997                         /*
4998                          * Reads from an unbacked page return all 1s,
4999                          * which means that the 32 bits located at the
5000                          * given physical address won't match the required
5001                          * VMCS12_REVISION identifier.
5002                          */
5003                         return nested_vmx_failValid(vcpu,
5004                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5005                 }
5006
5007                 new_vmcs12 = map.hva;
5008
5009                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5010                     (new_vmcs12->hdr.shadow_vmcs &&
5011                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5012                         kvm_vcpu_unmap(vcpu, &map, false);
5013                         return nested_vmx_failValid(vcpu,
5014                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5015                 }
5016
5017                 nested_release_vmcs12(vcpu);
5018
5019                 /*
5020                  * Load VMCS12 from guest memory since it is not already
5021                  * cached.
5022                  */
5023                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5024                 kvm_vcpu_unmap(vcpu, &map, false);
5025
5026                 set_current_vmptr(vmx, vmptr);
5027         }
5028
5029         return nested_vmx_succeed(vcpu);
5030 }
5031
5032 /* Emulate the VMPTRST instruction */
5033 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5034 {
5035         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
5036         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5037         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5038         struct x86_exception e;
5039         gva_t gva;
5040
5041         if (!nested_vmx_check_permission(vcpu))
5042                 return 1;
5043
5044         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5045                 return 1;
5046
5047         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5048                                 true, sizeof(gpa_t), &gva))
5049                 return 1;
5050         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5051         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5052                                         sizeof(gpa_t), &e)) {
5053                 kvm_inject_page_fault(vcpu, &e);
5054                 return 1;
5055         }
5056         return nested_vmx_succeed(vcpu);
5057 }
5058
5059 /* Emulate the INVEPT instruction */
5060 static int handle_invept(struct kvm_vcpu *vcpu)
5061 {
5062         struct vcpu_vmx *vmx = to_vmx(vcpu);
5063         u32 vmx_instruction_info, types;
5064         unsigned long type;
5065         gva_t gva;
5066         struct x86_exception e;
5067         struct {
5068                 u64 eptp, gpa;
5069         } operand;
5070
5071         if (!(vmx->nested.msrs.secondary_ctls_high &
5072               SECONDARY_EXEC_ENABLE_EPT) ||
5073             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5074                 kvm_queue_exception(vcpu, UD_VECTOR);
5075                 return 1;
5076         }
5077
5078         if (!nested_vmx_check_permission(vcpu))
5079                 return 1;
5080
5081         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5082         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5083
5084         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5085
5086         if (type >= 32 || !(types & (1 << type)))
5087                 return nested_vmx_failValid(vcpu,
5088                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5089
5090         /* According to the Intel VMX instruction reference, the memory
5091          * operand is read even if it isn't needed (e.g., for type==global)
5092          */
5093         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5094                         vmx_instruction_info, false, sizeof(operand), &gva))
5095                 return 1;
5096         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5097                 kvm_inject_page_fault(vcpu, &e);
5098                 return 1;
5099         }
5100
5101         switch (type) {
5102         case VMX_EPT_EXTENT_GLOBAL:
5103         case VMX_EPT_EXTENT_CONTEXT:
5104         /*
5105          * TODO: Sync the necessary shadow EPT roots here, rather than
5106          * at the next emulated VM-entry.
5107          */
5108                 break;
5109         default:
5110                 BUG_ON(1);
5111                 break;
5112         }
5113
5114         return nested_vmx_succeed(vcpu);
5115 }
5116
5117 static int handle_invvpid(struct kvm_vcpu *vcpu)
5118 {
5119         struct vcpu_vmx *vmx = to_vmx(vcpu);
5120         u32 vmx_instruction_info;
5121         unsigned long type, types;
5122         gva_t gva;
5123         struct x86_exception e;
5124         struct {
5125                 u64 vpid;
5126                 u64 gla;
5127         } operand;
5128         u16 vpid02;
5129
5130         if (!(vmx->nested.msrs.secondary_ctls_high &
5131               SECONDARY_EXEC_ENABLE_VPID) ||
5132                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5133                 kvm_queue_exception(vcpu, UD_VECTOR);
5134                 return 1;
5135         }
5136
5137         if (!nested_vmx_check_permission(vcpu))
5138                 return 1;
5139
5140         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5141         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5142
5143         types = (vmx->nested.msrs.vpid_caps &
5144                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5145
5146         if (type >= 32 || !(types & (1 << type)))
5147                 return nested_vmx_failValid(vcpu,
5148                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5149
5150         /* according to the intel vmx instruction reference, the memory
5151          * operand is read even if it isn't needed (e.g., for type==global)
5152          */
5153         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5154                         vmx_instruction_info, false, sizeof(operand), &gva))
5155                 return 1;
5156         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5157                 kvm_inject_page_fault(vcpu, &e);
5158                 return 1;
5159         }
5160         if (operand.vpid >> 16)
5161                 return nested_vmx_failValid(vcpu,
5162                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5163
5164         vpid02 = nested_get_vpid02(vcpu);
5165         switch (type) {
5166         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5167                 if (!operand.vpid ||
5168                     is_noncanonical_address(operand.gla, vcpu))
5169                         return nested_vmx_failValid(vcpu,
5170                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5171                 if (cpu_has_vmx_invvpid_individual_addr()) {
5172                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5173                                 vpid02, operand.gla);
5174                 } else
5175                         __vmx_flush_tlb(vcpu, vpid02, false);
5176                 break;
5177         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5178         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5179                 if (!operand.vpid)
5180                         return nested_vmx_failValid(vcpu,
5181                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5182                 __vmx_flush_tlb(vcpu, vpid02, false);
5183                 break;
5184         case VMX_VPID_EXTENT_ALL_CONTEXT:
5185                 __vmx_flush_tlb(vcpu, vpid02, false);
5186                 break;
5187         default:
5188                 WARN_ON_ONCE(1);
5189                 return kvm_skip_emulated_instruction(vcpu);
5190         }
5191
5192         return nested_vmx_succeed(vcpu);
5193 }
5194
5195 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5196                                      struct vmcs12 *vmcs12)
5197 {
5198         u32 index = kvm_rcx_read(vcpu);
5199         u64 address;
5200         bool accessed_dirty;
5201         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5202
5203         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5204             !nested_cpu_has_ept(vmcs12))
5205                 return 1;
5206
5207         if (index >= VMFUNC_EPTP_ENTRIES)
5208                 return 1;
5209
5210
5211         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5212                                      &address, index * 8, 8))
5213                 return 1;
5214
5215         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5216
5217         /*
5218          * If the (L2) guest does a vmfunc to the currently
5219          * active ept pointer, we don't have to do anything else
5220          */
5221         if (vmcs12->ept_pointer != address) {
5222                 if (!valid_ept_address(vcpu, address))
5223                         return 1;
5224
5225                 kvm_mmu_unload(vcpu);
5226                 mmu->ept_ad = accessed_dirty;
5227                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5228                 vmcs12->ept_pointer = address;
5229                 /*
5230                  * TODO: Check what's the correct approach in case
5231                  * mmu reload fails. Currently, we just let the next
5232                  * reload potentially fail
5233                  */
5234                 kvm_mmu_reload(vcpu);
5235         }
5236
5237         return 0;
5238 }
5239
5240 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5241 {
5242         struct vcpu_vmx *vmx = to_vmx(vcpu);
5243         struct vmcs12 *vmcs12;
5244         u32 function = kvm_rax_read(vcpu);
5245
5246         /*
5247          * VMFUNC is only supported for nested guests, but we always enable the
5248          * secondary control for simplicity; for non-nested mode, fake that we
5249          * didn't by injecting #UD.
5250          */
5251         if (!is_guest_mode(vcpu)) {
5252                 kvm_queue_exception(vcpu, UD_VECTOR);
5253                 return 1;
5254         }
5255
5256         vmcs12 = get_vmcs12(vcpu);
5257         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5258                 goto fail;
5259
5260         switch (function) {
5261         case 0:
5262                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5263                         goto fail;
5264                 break;
5265         default:
5266                 goto fail;
5267         }
5268         return kvm_skip_emulated_instruction(vcpu);
5269
5270 fail:
5271         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5272                           vmcs_read32(VM_EXIT_INTR_INFO),
5273                           vmcs_readl(EXIT_QUALIFICATION));
5274         return 1;
5275 }
5276
5277
5278 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5279                                        struct vmcs12 *vmcs12)
5280 {
5281         unsigned long exit_qualification;
5282         gpa_t bitmap, last_bitmap;
5283         unsigned int port;
5284         int size;
5285         u8 b;
5286
5287         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5288                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5289
5290         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5291
5292         port = exit_qualification >> 16;
5293         size = (exit_qualification & 7) + 1;
5294
5295         last_bitmap = (gpa_t)-1;
5296         b = -1;
5297
5298         while (size > 0) {
5299                 if (port < 0x8000)
5300                         bitmap = vmcs12->io_bitmap_a;
5301                 else if (port < 0x10000)
5302                         bitmap = vmcs12->io_bitmap_b;
5303                 else
5304                         return true;
5305                 bitmap += (port & 0x7fff) / 8;
5306
5307                 if (last_bitmap != bitmap)
5308                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5309                                 return true;
5310                 if (b & (1 << (port & 7)))
5311                         return true;
5312
5313                 port++;
5314                 size--;
5315                 last_bitmap = bitmap;
5316         }
5317
5318         return false;
5319 }
5320
5321 /*
5322  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5323  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5324  * disinterest in the current event (read or write a specific MSR) by using an
5325  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5326  */
5327 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5328         struct vmcs12 *vmcs12, u32 exit_reason)
5329 {
5330         u32 msr_index = kvm_rcx_read(vcpu);
5331         gpa_t bitmap;
5332
5333         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5334                 return true;
5335
5336         /*
5337          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5338          * for the four combinations of read/write and low/high MSR numbers.
5339          * First we need to figure out which of the four to use:
5340          */
5341         bitmap = vmcs12->msr_bitmap;
5342         if (exit_reason == EXIT_REASON_MSR_WRITE)
5343                 bitmap += 2048;
5344         if (msr_index >= 0xc0000000) {
5345                 msr_index -= 0xc0000000;
5346                 bitmap += 1024;
5347         }
5348
5349         /* Then read the msr_index'th bit from this bitmap: */
5350         if (msr_index < 1024*8) {
5351                 unsigned char b;
5352                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5353                         return true;
5354                 return 1 & (b >> (msr_index & 7));
5355         } else
5356                 return true; /* let L1 handle the wrong parameter */
5357 }
5358
5359 /*
5360  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5361  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5362  * intercept (via guest_host_mask etc.) the current event.
5363  */
5364 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5365         struct vmcs12 *vmcs12)
5366 {
5367         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5368         int cr = exit_qualification & 15;
5369         int reg;
5370         unsigned long val;
5371
5372         switch ((exit_qualification >> 4) & 3) {
5373         case 0: /* mov to cr */
5374                 reg = (exit_qualification >> 8) & 15;
5375                 val = kvm_register_readl(vcpu, reg);
5376                 switch (cr) {
5377                 case 0:
5378                         if (vmcs12->cr0_guest_host_mask &
5379                             (val ^ vmcs12->cr0_read_shadow))
5380                                 return true;
5381                         break;
5382                 case 3:
5383                         if ((vmcs12->cr3_target_count >= 1 &&
5384                                         vmcs12->cr3_target_value0 == val) ||
5385                                 (vmcs12->cr3_target_count >= 2 &&
5386                                         vmcs12->cr3_target_value1 == val) ||
5387                                 (vmcs12->cr3_target_count >= 3 &&
5388                                         vmcs12->cr3_target_value2 == val) ||
5389                                 (vmcs12->cr3_target_count >= 4 &&
5390                                         vmcs12->cr3_target_value3 == val))
5391                                 return false;
5392                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5393                                 return true;
5394                         break;
5395                 case 4:
5396                         if (vmcs12->cr4_guest_host_mask &
5397                             (vmcs12->cr4_read_shadow ^ val))
5398                                 return true;
5399                         break;
5400                 case 8:
5401                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5402                                 return true;
5403                         break;
5404                 }
5405                 break;
5406         case 2: /* clts */
5407                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5408                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5409                         return true;
5410                 break;
5411         case 1: /* mov from cr */
5412                 switch (cr) {
5413                 case 3:
5414                         if (vmcs12->cpu_based_vm_exec_control &
5415                             CPU_BASED_CR3_STORE_EXITING)
5416                                 return true;
5417                         break;
5418                 case 8:
5419                         if (vmcs12->cpu_based_vm_exec_control &
5420                             CPU_BASED_CR8_STORE_EXITING)
5421                                 return true;
5422                         break;
5423                 }
5424                 break;
5425         case 3: /* lmsw */
5426                 /*
5427                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5428                  * cr0. Other attempted changes are ignored, with no exit.
5429                  */
5430                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5431                 if (vmcs12->cr0_guest_host_mask & 0xe &
5432                     (val ^ vmcs12->cr0_read_shadow))
5433                         return true;
5434                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5435                     !(vmcs12->cr0_read_shadow & 0x1) &&
5436                     (val & 0x1))
5437                         return true;
5438                 break;
5439         }
5440         return false;
5441 }
5442
5443 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5444         struct vmcs12 *vmcs12, gpa_t bitmap)
5445 {
5446         u32 vmx_instruction_info;
5447         unsigned long field;
5448         u8 b;
5449
5450         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5451                 return true;
5452
5453         /* Decode instruction info and find the field to access */
5454         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5455         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5456
5457         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5458         if (field >> 15)
5459                 return true;
5460
5461         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5462                 return true;
5463
5464         return 1 & (b >> (field & 7));
5465 }
5466
5467 /*
5468  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5469  * should handle it ourselves in L0 (and then continue L2). Only call this
5470  * when in is_guest_mode (L2).
5471  */
5472 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5473 {
5474         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5475         struct vcpu_vmx *vmx = to_vmx(vcpu);
5476         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5477
5478         if (vmx->nested.nested_run_pending)
5479                 return false;
5480
5481         if (unlikely(vmx->fail)) {
5482                 trace_kvm_nested_vmenter_failed(
5483                         "hardware VM-instruction error: ",
5484                         vmcs_read32(VM_INSTRUCTION_ERROR));
5485                 return true;
5486         }
5487
5488         /*
5489          * The host physical addresses of some pages of guest memory
5490          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5491          * Page). The CPU may write to these pages via their host
5492          * physical address while L2 is running, bypassing any
5493          * address-translation-based dirty tracking (e.g. EPT write
5494          * protection).
5495          *
5496          * Mark them dirty on every exit from L2 to prevent them from
5497          * getting out of sync with dirty tracking.
5498          */
5499         nested_mark_vmcs12_pages_dirty(vcpu);
5500
5501         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5502                                 vmcs_readl(EXIT_QUALIFICATION),
5503                                 vmx->idt_vectoring_info,
5504                                 intr_info,
5505                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5506                                 KVM_ISA_VMX);
5507
5508         switch (exit_reason) {
5509         case EXIT_REASON_EXCEPTION_NMI:
5510                 if (is_nmi(intr_info))
5511                         return false;
5512                 else if (is_page_fault(intr_info))
5513                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5514                 else if (is_debug(intr_info) &&
5515                          vcpu->guest_debug &
5516                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5517                         return false;
5518                 else if (is_breakpoint(intr_info) &&
5519                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5520                         return false;
5521                 return vmcs12->exception_bitmap &
5522                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5523         case EXIT_REASON_EXTERNAL_INTERRUPT:
5524                 return false;
5525         case EXIT_REASON_TRIPLE_FAULT:
5526                 return true;
5527         case EXIT_REASON_PENDING_INTERRUPT:
5528                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5529         case EXIT_REASON_NMI_WINDOW:
5530                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5531         case EXIT_REASON_TASK_SWITCH:
5532                 return true;
5533         case EXIT_REASON_CPUID:
5534                 return true;
5535         case EXIT_REASON_HLT:
5536                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5537         case EXIT_REASON_INVD:
5538                 return true;
5539         case EXIT_REASON_INVLPG:
5540                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5541         case EXIT_REASON_RDPMC:
5542                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5543         case EXIT_REASON_RDRAND:
5544                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5545         case EXIT_REASON_RDSEED:
5546                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5547         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5548                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5549         case EXIT_REASON_VMREAD:
5550                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5551                         vmcs12->vmread_bitmap);
5552         case EXIT_REASON_VMWRITE:
5553                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5554                         vmcs12->vmwrite_bitmap);
5555         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5556         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5557         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5558         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5559         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5560                 /*
5561                  * VMX instructions trap unconditionally. This allows L1 to
5562                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5563                  */
5564                 return true;
5565         case EXIT_REASON_CR_ACCESS:
5566                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5567         case EXIT_REASON_DR_ACCESS:
5568                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5569         case EXIT_REASON_IO_INSTRUCTION:
5570                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5571         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5572                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5573         case EXIT_REASON_MSR_READ:
5574         case EXIT_REASON_MSR_WRITE:
5575                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5576         case EXIT_REASON_INVALID_STATE:
5577                 return true;
5578         case EXIT_REASON_MWAIT_INSTRUCTION:
5579                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5580         case EXIT_REASON_MONITOR_TRAP_FLAG:
5581                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5582         case EXIT_REASON_MONITOR_INSTRUCTION:
5583                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5584         case EXIT_REASON_PAUSE_INSTRUCTION:
5585                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5586                         nested_cpu_has2(vmcs12,
5587                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5588         case EXIT_REASON_MCE_DURING_VMENTRY:
5589                 return false;
5590         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5591                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5592         case EXIT_REASON_APIC_ACCESS:
5593         case EXIT_REASON_APIC_WRITE:
5594         case EXIT_REASON_EOI_INDUCED:
5595                 /*
5596                  * The controls for "virtualize APIC accesses," "APIC-
5597                  * register virtualization," and "virtual-interrupt
5598                  * delivery" only come from vmcs12.
5599                  */
5600                 return true;
5601         case EXIT_REASON_EPT_VIOLATION:
5602                 /*
5603                  * L0 always deals with the EPT violation. If nested EPT is
5604                  * used, and the nested mmu code discovers that the address is
5605                  * missing in the guest EPT table (EPT12), the EPT violation
5606                  * will be injected with nested_ept_inject_page_fault()
5607                  */
5608                 return false;
5609         case EXIT_REASON_EPT_MISCONFIG:
5610                 /*
5611                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5612                  * table (shadow on EPT) or a merged EPT table that L0 built
5613                  * (EPT on EPT). So any problems with the structure of the
5614                  * table is L0's fault.
5615                  */
5616                 return false;
5617         case EXIT_REASON_INVPCID:
5618                 return
5619                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5620                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5621         case EXIT_REASON_WBINVD:
5622                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5623         case EXIT_REASON_XSETBV:
5624                 return true;
5625         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5626                 /*
5627                  * This should never happen, since it is not possible to
5628                  * set XSS to a non-zero value---neither in L1 nor in L2.
5629                  * If if it were, XSS would have to be checked against
5630                  * the XSS exit bitmap in vmcs12.
5631                  */
5632                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5633         case EXIT_REASON_PREEMPTION_TIMER:
5634                 return false;
5635         case EXIT_REASON_PML_FULL:
5636                 /* We emulate PML support to L1. */
5637                 return false;
5638         case EXIT_REASON_VMFUNC:
5639                 /* VM functions are emulated through L2->L0 vmexits. */
5640                 return false;
5641         case EXIT_REASON_ENCLS:
5642                 /* SGX is never exposed to L1 */
5643                 return false;
5644         case EXIT_REASON_UMWAIT:
5645         case EXIT_REASON_TPAUSE:
5646                 return nested_cpu_has2(vmcs12,
5647                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5648         default:
5649                 return true;
5650         }
5651 }
5652
5653
5654 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5655                                 struct kvm_nested_state __user *user_kvm_nested_state,
5656                                 u32 user_data_size)
5657 {
5658         struct vcpu_vmx *vmx;
5659         struct vmcs12 *vmcs12;
5660         struct kvm_nested_state kvm_state = {
5661                 .flags = 0,
5662                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5663                 .size = sizeof(kvm_state),
5664                 .hdr.vmx.vmxon_pa = -1ull,
5665                 .hdr.vmx.vmcs12_pa = -1ull,
5666         };
5667         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5668                 &user_kvm_nested_state->data.vmx[0];
5669
5670         if (!vcpu)
5671                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5672
5673         vmx = to_vmx(vcpu);
5674         vmcs12 = get_vmcs12(vcpu);
5675
5676         if (nested_vmx_allowed(vcpu) &&
5677             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5678                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5679                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5680
5681                 if (vmx_has_valid_vmcs12(vcpu)) {
5682                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5683
5684                         if (vmx->nested.hv_evmcs)
5685                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5686
5687                         if (is_guest_mode(vcpu) &&
5688                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5689                             vmcs12->vmcs_link_pointer != -1ull)
5690                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5691                 }
5692
5693                 if (vmx->nested.smm.vmxon)
5694                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5695
5696                 if (vmx->nested.smm.guest_mode)
5697                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5698
5699                 if (is_guest_mode(vcpu)) {
5700                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5701
5702                         if (vmx->nested.nested_run_pending)
5703                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5704                 }
5705         }
5706
5707         if (user_data_size < kvm_state.size)
5708                 goto out;
5709
5710         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5711                 return -EFAULT;
5712
5713         if (!vmx_has_valid_vmcs12(vcpu))
5714                 goto out;
5715
5716         /*
5717          * When running L2, the authoritative vmcs12 state is in the
5718          * vmcs02. When running L1, the authoritative vmcs12 state is
5719          * in the shadow or enlightened vmcs linked to vmcs01, unless
5720          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5721          * vmcs12 state is in the vmcs12 already.
5722          */
5723         if (is_guest_mode(vcpu)) {
5724                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5725                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5726         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5727                 if (vmx->nested.hv_evmcs)
5728                         copy_enlightened_to_vmcs12(vmx);
5729                 else if (enable_shadow_vmcs)
5730                         copy_shadow_to_vmcs12(vmx);
5731         }
5732
5733         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5734         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5735
5736         /*
5737          * Copy over the full allocated size of vmcs12 rather than just the size
5738          * of the struct.
5739          */
5740         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5741                 return -EFAULT;
5742
5743         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5744             vmcs12->vmcs_link_pointer != -1ull) {
5745                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5746                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5747                         return -EFAULT;
5748         }
5749
5750 out:
5751         return kvm_state.size;
5752 }
5753
5754 /*
5755  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5756  */
5757 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5758 {
5759         if (is_guest_mode(vcpu)) {
5760                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5761                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5762         }
5763         free_nested(vcpu);
5764 }
5765
5766 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5767                                 struct kvm_nested_state __user *user_kvm_nested_state,
5768                                 struct kvm_nested_state *kvm_state)
5769 {
5770         struct vcpu_vmx *vmx = to_vmx(vcpu);
5771         struct vmcs12 *vmcs12;
5772         u32 exit_qual;
5773         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5774                 &user_kvm_nested_state->data.vmx[0];
5775         int ret;
5776
5777         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5778                 return -EINVAL;
5779
5780         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5781                 if (kvm_state->hdr.vmx.smm.flags)
5782                         return -EINVAL;
5783
5784                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5785                         return -EINVAL;
5786
5787                 /*
5788                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5789                  * enable eVMCS capability on vCPU. However, since then
5790                  * code was changed such that flag signals vmcs12 should
5791                  * be copied into eVMCS in guest memory.
5792                  *
5793                  * To preserve backwards compatability, allow user
5794                  * to set this flag even when there is no VMXON region.
5795                  */
5796                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5797                         return -EINVAL;
5798         } else {
5799                 if (!nested_vmx_allowed(vcpu))
5800                         return -EINVAL;
5801
5802                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5803                         return -EINVAL;
5804         }
5805
5806         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5807             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5808                 return -EINVAL;
5809
5810         if (kvm_state->hdr.vmx.smm.flags &
5811             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5812                 return -EINVAL;
5813
5814         /*
5815          * SMM temporarily disables VMX, so we cannot be in guest mode,
5816          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5817          * must be zero.
5818          */
5819         if (is_smm(vcpu) ?
5820                 (kvm_state->flags &
5821                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5822                 : kvm_state->hdr.vmx.smm.flags)
5823                 return -EINVAL;
5824
5825         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5826             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5827                 return -EINVAL;
5828
5829         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5830                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5831                         return -EINVAL;
5832
5833         vmx_leave_nested(vcpu);
5834
5835         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5836                 return 0;
5837
5838         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5839         ret = enter_vmx_operation(vcpu);
5840         if (ret)
5841                 return ret;
5842
5843         /* Empty 'VMXON' state is permitted */
5844         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5845                 return 0;
5846
5847         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5848                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5849                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5850                         return -EINVAL;
5851
5852                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5853         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5854                 /*
5855                  * Sync eVMCS upon entry as we may not have
5856                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5857                  */
5858                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5859         } else {
5860                 return -EINVAL;
5861         }
5862
5863         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5864                 vmx->nested.smm.vmxon = true;
5865                 vmx->nested.vmxon = false;
5866
5867                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5868                         vmx->nested.smm.guest_mode = true;
5869         }
5870
5871         vmcs12 = get_vmcs12(vcpu);
5872         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5873                 return -EFAULT;
5874
5875         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5876                 return -EINVAL;
5877
5878         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5879                 return 0;
5880
5881         vmx->nested.nested_run_pending =
5882                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5883
5884         ret = -EINVAL;
5885         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5886             vmcs12->vmcs_link_pointer != -1ull) {
5887                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5888
5889                 if (kvm_state->size <
5890                     sizeof(*kvm_state) +
5891                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5892                         goto error_guest_mode;
5893
5894                 if (copy_from_user(shadow_vmcs12,
5895                                    user_vmx_nested_state->shadow_vmcs12,
5896                                    sizeof(*shadow_vmcs12))) {
5897                         ret = -EFAULT;
5898                         goto error_guest_mode;
5899                 }
5900
5901                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5902                     !shadow_vmcs12->hdr.shadow_vmcs)
5903                         goto error_guest_mode;
5904         }
5905
5906         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5907             nested_vmx_check_host_state(vcpu, vmcs12) ||
5908             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5909                 goto error_guest_mode;
5910
5911         vmx->nested.dirty_vmcs12 = true;
5912         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5913         if (ret)
5914                 goto error_guest_mode;
5915
5916         return 0;
5917
5918 error_guest_mode:
5919         vmx->nested.nested_run_pending = 0;
5920         return ret;
5921 }
5922
5923 void nested_vmx_set_vmcs_shadowing_bitmap(void)
5924 {
5925         if (enable_shadow_vmcs) {
5926                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5927                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5928         }
5929 }
5930
5931 /*
5932  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5933  * returned for the various VMX controls MSRs when nested VMX is enabled.
5934  * The same values should also be used to verify that vmcs12 control fields are
5935  * valid during nested entry from L1 to L2.
5936  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5937  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5938  * bit in the high half is on if the corresponding bit in the control field
5939  * may be on. See also vmx_control_verify().
5940  */
5941 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5942                                 bool apicv)
5943 {
5944         /*
5945          * Note that as a general rule, the high half of the MSRs (bits in
5946          * the control fields which may be 1) should be initialized by the
5947          * intersection of the underlying hardware's MSR (i.e., features which
5948          * can be supported) and the list of features we want to expose -
5949          * because they are known to be properly supported in our code.
5950          * Also, usually, the low half of the MSRs (bits which must be 1) can
5951          * be set to 0, meaning that L1 may turn off any of these bits. The
5952          * reason is that if one of these bits is necessary, it will appear
5953          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5954          * fields of vmcs01 and vmcs02, will turn these bits off - and
5955          * nested_vmx_exit_reflected() will not pass related exits to L1.
5956          * These rules have exceptions below.
5957          */
5958
5959         /* pin-based controls */
5960         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5961                 msrs->pinbased_ctls_low,
5962                 msrs->pinbased_ctls_high);
5963         msrs->pinbased_ctls_low |=
5964                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5965         msrs->pinbased_ctls_high &=
5966                 PIN_BASED_EXT_INTR_MASK |
5967                 PIN_BASED_NMI_EXITING |
5968                 PIN_BASED_VIRTUAL_NMIS |
5969                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5970         msrs->pinbased_ctls_high |=
5971                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5972                 PIN_BASED_VMX_PREEMPTION_TIMER;
5973
5974         /* exit controls */
5975         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5976                 msrs->exit_ctls_low,
5977                 msrs->exit_ctls_high);
5978         msrs->exit_ctls_low =
5979                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5980
5981         msrs->exit_ctls_high &=
5982 #ifdef CONFIG_X86_64
5983                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5984 #endif
5985                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5986         msrs->exit_ctls_high |=
5987                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5988                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5989                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5990
5991         /* We support free control of debug control saving. */
5992         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5993
5994         /* entry controls */
5995         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5996                 msrs->entry_ctls_low,
5997                 msrs->entry_ctls_high);
5998         msrs->entry_ctls_low =
5999                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6000         msrs->entry_ctls_high &=
6001 #ifdef CONFIG_X86_64
6002                 VM_ENTRY_IA32E_MODE |
6003 #endif
6004                 VM_ENTRY_LOAD_IA32_PAT;
6005         msrs->entry_ctls_high |=
6006                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6007
6008         /* We support free control of debug control loading. */
6009         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6010
6011         /* cpu-based controls */
6012         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6013                 msrs->procbased_ctls_low,
6014                 msrs->procbased_ctls_high);
6015         msrs->procbased_ctls_low =
6016                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6017         msrs->procbased_ctls_high &=
6018                 CPU_BASED_VIRTUAL_INTR_PENDING |
6019                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
6020                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6021                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6022                 CPU_BASED_CR3_STORE_EXITING |
6023 #ifdef CONFIG_X86_64
6024                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6025 #endif
6026                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6027                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6028                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6029                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6030                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6031         /*
6032          * We can allow some features even when not supported by the
6033          * hardware. For example, L1 can specify an MSR bitmap - and we
6034          * can use it to avoid exits to L1 - even when L0 runs L2
6035          * without MSR bitmaps.
6036          */
6037         msrs->procbased_ctls_high |=
6038                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6039                 CPU_BASED_USE_MSR_BITMAPS;
6040
6041         /* We support free control of CR3 access interception. */
6042         msrs->procbased_ctls_low &=
6043                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6044
6045         /*
6046          * secondary cpu-based controls.  Do not include those that
6047          * depend on CPUID bits, they are added later by vmx_cpuid_update.
6048          */
6049         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6050                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6051                       msrs->secondary_ctls_low,
6052                       msrs->secondary_ctls_high);
6053
6054         msrs->secondary_ctls_low = 0;
6055         msrs->secondary_ctls_high &=
6056                 SECONDARY_EXEC_DESC |
6057                 SECONDARY_EXEC_RDTSCP |
6058                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6059                 SECONDARY_EXEC_WBINVD_EXITING |
6060                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6061                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6062                 SECONDARY_EXEC_RDRAND_EXITING |
6063                 SECONDARY_EXEC_ENABLE_INVPCID |
6064                 SECONDARY_EXEC_RDSEED_EXITING |
6065                 SECONDARY_EXEC_XSAVES;
6066
6067         /*
6068          * We can emulate "VMCS shadowing," even if the hardware
6069          * doesn't support it.
6070          */
6071         msrs->secondary_ctls_high |=
6072                 SECONDARY_EXEC_SHADOW_VMCS;
6073
6074         if (enable_ept) {
6075                 /* nested EPT: emulate EPT also to L1 */
6076                 msrs->secondary_ctls_high |=
6077                         SECONDARY_EXEC_ENABLE_EPT;
6078                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
6079                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
6080                 if (cpu_has_vmx_ept_execute_only())
6081                         msrs->ept_caps |=
6082                                 VMX_EPT_EXECUTE_ONLY_BIT;
6083                 msrs->ept_caps &= ept_caps;
6084                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6085                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6086                         VMX_EPT_1GB_PAGE_BIT;
6087                 if (enable_ept_ad_bits) {
6088                         msrs->secondary_ctls_high |=
6089                                 SECONDARY_EXEC_ENABLE_PML;
6090                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6091                 }
6092         }
6093
6094         if (cpu_has_vmx_vmfunc()) {
6095                 msrs->secondary_ctls_high |=
6096                         SECONDARY_EXEC_ENABLE_VMFUNC;
6097                 /*
6098                  * Advertise EPTP switching unconditionally
6099                  * since we emulate it
6100                  */
6101                 if (enable_ept)
6102                         msrs->vmfunc_controls =
6103                                 VMX_VMFUNC_EPTP_SWITCHING;
6104         }
6105
6106         /*
6107          * Old versions of KVM use the single-context version without
6108          * checking for support, so declare that it is supported even
6109          * though it is treated as global context.  The alternative is
6110          * not failing the single-context invvpid, and it is worse.
6111          */
6112         if (enable_vpid) {
6113                 msrs->secondary_ctls_high |=
6114                         SECONDARY_EXEC_ENABLE_VPID;
6115                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6116                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6117         }
6118
6119         if (enable_unrestricted_guest)
6120                 msrs->secondary_ctls_high |=
6121                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6122
6123         if (flexpriority_enabled)
6124                 msrs->secondary_ctls_high |=
6125                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6126
6127         /* miscellaneous data */
6128         rdmsr(MSR_IA32_VMX_MISC,
6129                 msrs->misc_low,
6130                 msrs->misc_high);
6131         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6132         msrs->misc_low |=
6133                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6134                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6135                 VMX_MISC_ACTIVITY_HLT;
6136         msrs->misc_high = 0;
6137
6138         /*
6139          * This MSR reports some information about VMX support. We
6140          * should return information about the VMX we emulate for the
6141          * guest, and the VMCS structure we give it - not about the
6142          * VMX support of the underlying hardware.
6143          */
6144         msrs->basic =
6145                 VMCS12_REVISION |
6146                 VMX_BASIC_TRUE_CTLS |
6147                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6148                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6149
6150         if (cpu_has_vmx_basic_inout())
6151                 msrs->basic |= VMX_BASIC_INOUT;
6152
6153         /*
6154          * These MSRs specify bits which the guest must keep fixed on
6155          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6156          * We picked the standard core2 setting.
6157          */
6158 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6159 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6160         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6161         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6162
6163         /* These MSRs specify bits which the guest must keep fixed off. */
6164         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6165         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6166
6167         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6168         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6169 }
6170
6171 void nested_vmx_hardware_unsetup(void)
6172 {
6173         int i;
6174
6175         if (enable_shadow_vmcs) {
6176                 for (i = 0; i < VMX_BITMAP_NR; i++)
6177                         free_page((unsigned long)vmx_bitmap[i]);
6178         }
6179 }
6180
6181 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6182 {
6183         int i;
6184
6185         if (!cpu_has_vmx_shadow_vmcs())
6186                 enable_shadow_vmcs = 0;
6187         if (enable_shadow_vmcs) {
6188                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6189                         /*
6190                          * The vmx_bitmap is not tied to a VM and so should
6191                          * not be charged to a memcg.
6192                          */
6193                         vmx_bitmap[i] = (unsigned long *)
6194                                 __get_free_page(GFP_KERNEL);
6195                         if (!vmx_bitmap[i]) {
6196                                 nested_vmx_hardware_unsetup();
6197                                 return -ENOMEM;
6198                         }
6199                 }
6200
6201                 init_vmcs_shadow_fields();
6202         }
6203
6204         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6205         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6206         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6207         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6208         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6209         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6210         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6211         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6212         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6213         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6214         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6215         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6216
6217         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6218         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6219         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6220         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages;
6221         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6222         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6223
6224         return 0;
6225 }