Merge branches 'clk-ingenic', 'clk-mtk-mux', 'clk-qcom-sdm845-pcie', 'clk-mtk-crit...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 /*
23  * Hyper-V requires all of these, so mark them as supported even though
24  * they are just treated the same as all-context.
25  */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
27         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
28         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
29         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
30         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34 enum {
35         VMX_VMREAD_BITMAP,
36         VMX_VMWRITE_BITMAP,
37         VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44 static u16 shadow_read_only_fields[] = {
45 #define SHADOW_FIELD_RO(x) x,
46 #include "vmcs_shadow_fields.h"
47 };
48 static int max_shadow_read_only_fields =
49         ARRAY_SIZE(shadow_read_only_fields);
50
51 static u16 shadow_read_write_fields[] = {
52 #define SHADOW_FIELD_RW(x) x,
53 #include "vmcs_shadow_fields.h"
54 };
55 static int max_shadow_read_write_fields =
56         ARRAY_SIZE(shadow_read_write_fields);
57
58 static void init_vmcs_shadow_fields(void)
59 {
60         int i, j;
61
62         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64
65         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66                 u16 field = shadow_read_only_fields[i];
67
68                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69                     (i + 1 == max_shadow_read_only_fields ||
70                      shadow_read_only_fields[i + 1] != field + 1))
71                         pr_err("Missing field from shadow_read_only_field %x\n",
72                                field + 1);
73
74                 clear_bit(field, vmx_vmread_bitmap);
75 #ifdef CONFIG_X86_64
76                 if (field & 1)
77                         continue;
78 #endif
79                 if (j < i)
80                         shadow_read_only_fields[j] = field;
81                 j++;
82         }
83         max_shadow_read_only_fields = j;
84
85         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86                 u16 field = shadow_read_write_fields[i];
87
88                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89                     (i + 1 == max_shadow_read_write_fields ||
90                      shadow_read_write_fields[i + 1] != field + 1))
91                         pr_err("Missing field from shadow_read_write_field %x\n",
92                                field + 1);
93
94                 /*
95                  * PML and the preemption timer can be emulated, but the
96                  * processor cannot vmwrite to fields that don't exist
97                  * on bare metal.
98                  */
99                 switch (field) {
100                 case GUEST_PML_INDEX:
101                         if (!cpu_has_vmx_pml())
102                                 continue;
103                         break;
104                 case VMX_PREEMPTION_TIMER_VALUE:
105                         if (!cpu_has_vmx_preemption_timer())
106                                 continue;
107                         break;
108                 case GUEST_INTR_STATUS:
109                         if (!cpu_has_vmx_apicv())
110                                 continue;
111                         break;
112                 default:
113                         break;
114                 }
115
116                 clear_bit(field, vmx_vmwrite_bitmap);
117                 clear_bit(field, vmx_vmread_bitmap);
118 #ifdef CONFIG_X86_64
119                 if (field & 1)
120                         continue;
121 #endif
122                 if (j < i)
123                         shadow_read_write_fields[j] = field;
124                 j++;
125         }
126         max_shadow_read_write_fields = j;
127 }
128
129 /*
130  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131  * set the success or error code of an emulated VMX instruction (as specified
132  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133  * instruction.
134  */
135 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136 {
137         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140         return kvm_skip_emulated_instruction(vcpu);
141 }
142
143 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144 {
145         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147                             X86_EFLAGS_SF | X86_EFLAGS_OF))
148                         | X86_EFLAGS_CF);
149         return kvm_skip_emulated_instruction(vcpu);
150 }
151
152 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153                                 u32 vm_instruction_error)
154 {
155         struct vcpu_vmx *vmx = to_vmx(vcpu);
156
157         /*
158          * failValid writes the error number to the current VMCS, which
159          * can't be done if there isn't a current VMCS.
160          */
161         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162                 return nested_vmx_failInvalid(vcpu);
163
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_ZF);
168         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169         /*
170          * We don't need to force a shadow sync because
171          * VM_INSTRUCTION_ERROR is not shadowed
172          */
173         return kvm_skip_emulated_instruction(vcpu);
174 }
175
176 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177 {
178         /* TODO: not to reset guest simply here. */
179         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181 }
182
183 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184 {
185         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186         vmcs_write64(VMCS_LINK_POINTER, -1ull);
187 }
188
189 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190 {
191         struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193         if (!vmx->nested.hv_evmcs)
194                 return;
195
196         kunmap(vmx->nested.hv_evmcs_page);
197         kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
198         vmx->nested.hv_evmcs_vmptr = -1ull;
199         vmx->nested.hv_evmcs_page = NULL;
200         vmx->nested.hv_evmcs = NULL;
201 }
202
203 /*
204  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
205  * just stops using VMX.
206  */
207 static void free_nested(struct kvm_vcpu *vcpu)
208 {
209         struct vcpu_vmx *vmx = to_vmx(vcpu);
210
211         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
212                 return;
213
214         hrtimer_cancel(&vmx->nested.preemption_timer);
215         vmx->nested.vmxon = false;
216         vmx->nested.smm.vmxon = false;
217         free_vpid(vmx->nested.vpid02);
218         vmx->nested.posted_intr_nv = -1;
219         vmx->nested.current_vmptr = -1ull;
220         if (enable_shadow_vmcs) {
221                 vmx_disable_shadow_vmcs(vmx);
222                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
223                 free_vmcs(vmx->vmcs01.shadow_vmcs);
224                 vmx->vmcs01.shadow_vmcs = NULL;
225         }
226         kfree(vmx->nested.cached_vmcs12);
227         kfree(vmx->nested.cached_shadow_vmcs12);
228         /* Unpin physical memory we referred to in the vmcs02 */
229         if (vmx->nested.apic_access_page) {
230                 kvm_release_page_dirty(vmx->nested.apic_access_page);
231                 vmx->nested.apic_access_page = NULL;
232         }
233         if (vmx->nested.virtual_apic_page) {
234                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
235                 vmx->nested.virtual_apic_page = NULL;
236         }
237         if (vmx->nested.pi_desc_page) {
238                 kunmap(vmx->nested.pi_desc_page);
239                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
240                 vmx->nested.pi_desc_page = NULL;
241                 vmx->nested.pi_desc = NULL;
242         }
243
244         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
245
246         nested_release_evmcs(vcpu);
247
248         free_loaded_vmcs(&vmx->nested.vmcs02);
249 }
250
251 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
252 {
253         struct vcpu_vmx *vmx = to_vmx(vcpu);
254         int cpu;
255
256         if (vmx->loaded_vmcs == vmcs)
257                 return;
258
259         cpu = get_cpu();
260         vmx_vcpu_put(vcpu);
261         vmx->loaded_vmcs = vmcs;
262         vmx_vcpu_load(vcpu, cpu);
263         put_cpu();
264
265         vm_entry_controls_reset_shadow(vmx);
266         vm_exit_controls_reset_shadow(vmx);
267         vmx_segment_cache_clear(vmx);
268 }
269
270 /*
271  * Ensure that the current vmcs of the logical processor is the
272  * vmcs01 of the vcpu before calling free_nested().
273  */
274 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
275 {
276         vcpu_load(vcpu);
277         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
278         free_nested(vcpu);
279         vcpu_put(vcpu);
280 }
281
282 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
283                 struct x86_exception *fault)
284 {
285         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
286         struct vcpu_vmx *vmx = to_vmx(vcpu);
287         u32 exit_reason;
288         unsigned long exit_qualification = vcpu->arch.exit_qualification;
289
290         if (vmx->nested.pml_full) {
291                 exit_reason = EXIT_REASON_PML_FULL;
292                 vmx->nested.pml_full = false;
293                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
294         } else if (fault->error_code & PFERR_RSVD_MASK)
295                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
296         else
297                 exit_reason = EXIT_REASON_EPT_VIOLATION;
298
299         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
300         vmcs12->guest_physical_address = fault->address;
301 }
302
303 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
304 {
305         WARN_ON(mmu_is_nested(vcpu));
306
307         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
308         kvm_init_shadow_ept_mmu(vcpu,
309                         to_vmx(vcpu)->nested.msrs.ept_caps &
310                         VMX_EPT_EXECUTE_ONLY_BIT,
311                         nested_ept_ad_enabled(vcpu),
312                         nested_ept_get_cr3(vcpu));
313         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
314         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
315         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
316         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
317
318         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
319 }
320
321 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
322 {
323         vcpu->arch.mmu = &vcpu->arch.root_mmu;
324         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
325 }
326
327 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
328                                             u16 error_code)
329 {
330         bool inequality, bit;
331
332         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
333         inequality =
334                 (error_code & vmcs12->page_fault_error_code_mask) !=
335                  vmcs12->page_fault_error_code_match;
336         return inequality ^ bit;
337 }
338
339
340 /*
341  * KVM wants to inject page-faults which it got to the guest. This function
342  * checks whether in a nested guest, we need to inject them to L1 or L2.
343  */
344 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
345 {
346         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
347         unsigned int nr = vcpu->arch.exception.nr;
348         bool has_payload = vcpu->arch.exception.has_payload;
349         unsigned long payload = vcpu->arch.exception.payload;
350
351         if (nr == PF_VECTOR) {
352                 if (vcpu->arch.exception.nested_apf) {
353                         *exit_qual = vcpu->arch.apf.nested_apf_token;
354                         return 1;
355                 }
356                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
357                                                     vcpu->arch.exception.error_code)) {
358                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
359                         return 1;
360                 }
361         } else if (vmcs12->exception_bitmap & (1u << nr)) {
362                 if (nr == DB_VECTOR) {
363                         if (!has_payload) {
364                                 payload = vcpu->arch.dr6;
365                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
366                                 payload ^= DR6_RTM;
367                         }
368                         *exit_qual = payload;
369                 } else
370                         *exit_qual = 0;
371                 return 1;
372         }
373
374         return 0;
375 }
376
377
378 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
379                 struct x86_exception *fault)
380 {
381         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
382
383         WARN_ON(!is_guest_mode(vcpu));
384
385         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
386                 !to_vmx(vcpu)->nested.nested_run_pending) {
387                 vmcs12->vm_exit_intr_error_code = fault->error_code;
388                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
389                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
390                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
391                                   fault->address);
392         } else {
393                 kvm_inject_page_fault(vcpu, fault);
394         }
395 }
396
397 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
398 {
399         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
400 }
401
402 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
403                                                struct vmcs12 *vmcs12)
404 {
405         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
406                 return 0;
407
408         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
409             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
410                 return -EINVAL;
411
412         return 0;
413 }
414
415 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
416                                                 struct vmcs12 *vmcs12)
417 {
418         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
419                 return 0;
420
421         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
422                 return -EINVAL;
423
424         return 0;
425 }
426
427 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
428                                                 struct vmcs12 *vmcs12)
429 {
430         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
431                 return 0;
432
433         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
434                 return -EINVAL;
435
436         return 0;
437 }
438
439 /*
440  * Check if MSR is intercepted for L01 MSR bitmap.
441  */
442 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
443 {
444         unsigned long *msr_bitmap;
445         int f = sizeof(unsigned long);
446
447         if (!cpu_has_vmx_msr_bitmap())
448                 return true;
449
450         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
451
452         if (msr <= 0x1fff) {
453                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
454         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
455                 msr &= 0x1fff;
456                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
457         }
458
459         return true;
460 }
461
462 /*
463  * If a msr is allowed by L0, we should check whether it is allowed by L1.
464  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
465  */
466 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
467                                                unsigned long *msr_bitmap_nested,
468                                                u32 msr, int type)
469 {
470         int f = sizeof(unsigned long);
471
472         /*
473          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
474          * have the write-low and read-high bitmap offsets the wrong way round.
475          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
476          */
477         if (msr <= 0x1fff) {
478                 if (type & MSR_TYPE_R &&
479                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
480                         /* read-low */
481                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
482
483                 if (type & MSR_TYPE_W &&
484                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
485                         /* write-low */
486                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
487
488         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
489                 msr &= 0x1fff;
490                 if (type & MSR_TYPE_R &&
491                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
492                         /* read-high */
493                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
494
495                 if (type & MSR_TYPE_W &&
496                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
497                         /* write-high */
498                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
499
500         }
501 }
502
503 /*
504  * Merge L0's and L1's MSR bitmap, return false to indicate that
505  * we do not use the hardware.
506  */
507 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
508                                                  struct vmcs12 *vmcs12)
509 {
510         int msr;
511         struct page *page;
512         unsigned long *msr_bitmap_l1;
513         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
514         /*
515          * pred_cmd & spec_ctrl are trying to verify two things:
516          *
517          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
518          *    ensures that we do not accidentally generate an L02 MSR bitmap
519          *    from the L12 MSR bitmap that is too permissive.
520          * 2. That L1 or L2s have actually used the MSR. This avoids
521          *    unnecessarily merging of the bitmap if the MSR is unused. This
522          *    works properly because we only update the L01 MSR bitmap lazily.
523          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
524          *    updated to reflect this when L1 (or its L2s) actually write to
525          *    the MSR.
526          */
527         bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
528         bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
529
530         /* Nothing to do if the MSR bitmap is not in use.  */
531         if (!cpu_has_vmx_msr_bitmap() ||
532             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
533                 return false;
534
535         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
536             !pred_cmd && !spec_ctrl)
537                 return false;
538
539         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
540         if (is_error_page(page))
541                 return false;
542
543         msr_bitmap_l1 = (unsigned long *)kmap(page);
544         if (nested_cpu_has_apic_reg_virt(vmcs12)) {
545                 /*
546                  * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
547                  * just lets the processor take the value from the virtual-APIC page;
548                  * take those 256 bits directly from the L1 bitmap.
549                  */
550                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551                         unsigned word = msr / BITS_PER_LONG;
552                         msr_bitmap_l0[word] = msr_bitmap_l1[word];
553                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
554                 }
555         } else {
556                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
557                         unsigned word = msr / BITS_PER_LONG;
558                         msr_bitmap_l0[word] = ~0;
559                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
560                 }
561         }
562
563         nested_vmx_disable_intercept_for_msr(
564                 msr_bitmap_l1, msr_bitmap_l0,
565                 X2APIC_MSR(APIC_TASKPRI),
566                 MSR_TYPE_W);
567
568         if (nested_cpu_has_vid(vmcs12)) {
569                 nested_vmx_disable_intercept_for_msr(
570                         msr_bitmap_l1, msr_bitmap_l0,
571                         X2APIC_MSR(APIC_EOI),
572                         MSR_TYPE_W);
573                 nested_vmx_disable_intercept_for_msr(
574                         msr_bitmap_l1, msr_bitmap_l0,
575                         X2APIC_MSR(APIC_SELF_IPI),
576                         MSR_TYPE_W);
577         }
578
579         if (spec_ctrl)
580                 nested_vmx_disable_intercept_for_msr(
581                                         msr_bitmap_l1, msr_bitmap_l0,
582                                         MSR_IA32_SPEC_CTRL,
583                                         MSR_TYPE_R | MSR_TYPE_W);
584
585         if (pred_cmd)
586                 nested_vmx_disable_intercept_for_msr(
587                                         msr_bitmap_l1, msr_bitmap_l0,
588                                         MSR_IA32_PRED_CMD,
589                                         MSR_TYPE_W);
590
591         kunmap(page);
592         kvm_release_page_clean(page);
593
594         return true;
595 }
596
597 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
598                                        struct vmcs12 *vmcs12)
599 {
600         struct vmcs12 *shadow;
601         struct page *page;
602
603         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
604             vmcs12->vmcs_link_pointer == -1ull)
605                 return;
606
607         shadow = get_shadow_vmcs12(vcpu);
608         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
609
610         memcpy(shadow, kmap(page), VMCS12_SIZE);
611
612         kunmap(page);
613         kvm_release_page_clean(page);
614 }
615
616 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
617                                               struct vmcs12 *vmcs12)
618 {
619         struct vcpu_vmx *vmx = to_vmx(vcpu);
620
621         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
622             vmcs12->vmcs_link_pointer == -1ull)
623                 return;
624
625         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
626                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
627 }
628
629 /*
630  * In nested virtualization, check if L1 has set
631  * VM_EXIT_ACK_INTR_ON_EXIT
632  */
633 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
634 {
635         return get_vmcs12(vcpu)->vm_exit_controls &
636                 VM_EXIT_ACK_INTR_ON_EXIT;
637 }
638
639 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
640 {
641         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
642 }
643
644 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
645                                           struct vmcs12 *vmcs12)
646 {
647         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
648             !page_address_valid(vcpu, vmcs12->apic_access_addr))
649                 return -EINVAL;
650         else
651                 return 0;
652 }
653
654 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
655                                            struct vmcs12 *vmcs12)
656 {
657         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
658             !nested_cpu_has_apic_reg_virt(vmcs12) &&
659             !nested_cpu_has_vid(vmcs12) &&
660             !nested_cpu_has_posted_intr(vmcs12))
661                 return 0;
662
663         /*
664          * If virtualize x2apic mode is enabled,
665          * virtualize apic access must be disabled.
666          */
667         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
668             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
669                 return -EINVAL;
670
671         /*
672          * If virtual interrupt delivery is enabled,
673          * we must exit on external interrupts.
674          */
675         if (nested_cpu_has_vid(vmcs12) &&
676            !nested_exit_on_intr(vcpu))
677                 return -EINVAL;
678
679         /*
680          * bits 15:8 should be zero in posted_intr_nv,
681          * the descriptor address has been already checked
682          * in nested_get_vmcs12_pages.
683          *
684          * bits 5:0 of posted_intr_desc_addr should be zero.
685          */
686         if (nested_cpu_has_posted_intr(vmcs12) &&
687            (!nested_cpu_has_vid(vmcs12) ||
688             !nested_exit_intr_ack_set(vcpu) ||
689             (vmcs12->posted_intr_nv & 0xff00) ||
690             (vmcs12->posted_intr_desc_addr & 0x3f) ||
691             (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
692                 return -EINVAL;
693
694         /* tpr shadow is needed by all apicv features. */
695         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
696                 return -EINVAL;
697
698         return 0;
699 }
700
701 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
702                                        u32 count, u64 addr)
703 {
704         int maxphyaddr;
705
706         if (count == 0)
707                 return 0;
708         maxphyaddr = cpuid_maxphyaddr(vcpu);
709         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
710             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
711                 return -EINVAL;
712
713         return 0;
714 }
715
716 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
717                                                      struct vmcs12 *vmcs12)
718 {
719         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
720                                         vmcs12->vm_exit_msr_load_addr) ||
721             nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
722                                         vmcs12->vm_exit_msr_store_addr))
723                 return -EINVAL;
724
725         return 0;
726 }
727
728 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
729                                                       struct vmcs12 *vmcs12)
730 {
731         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
732                                         vmcs12->vm_entry_msr_load_addr))
733                 return -EINVAL;
734
735         return 0;
736 }
737
738 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
739                                          struct vmcs12 *vmcs12)
740 {
741         if (!nested_cpu_has_pml(vmcs12))
742                 return 0;
743
744         if (!nested_cpu_has_ept(vmcs12) ||
745             !page_address_valid(vcpu, vmcs12->pml_address))
746                 return -EINVAL;
747
748         return 0;
749 }
750
751 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
752                                                         struct vmcs12 *vmcs12)
753 {
754         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
755             !nested_cpu_has_ept(vmcs12))
756                 return -EINVAL;
757         return 0;
758 }
759
760 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
761                                                          struct vmcs12 *vmcs12)
762 {
763         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
764             !nested_cpu_has_ept(vmcs12))
765                 return -EINVAL;
766         return 0;
767 }
768
769 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
770                                                  struct vmcs12 *vmcs12)
771 {
772         if (!nested_cpu_has_shadow_vmcs(vmcs12))
773                 return 0;
774
775         if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
776             !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
777                 return -EINVAL;
778
779         return 0;
780 }
781
782 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
783                                        struct vmx_msr_entry *e)
784 {
785         /* x2APIC MSR accesses are not allowed */
786         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
787                 return -EINVAL;
788         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
789             e->index == MSR_IA32_UCODE_REV)
790                 return -EINVAL;
791         if (e->reserved != 0)
792                 return -EINVAL;
793         return 0;
794 }
795
796 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
797                                      struct vmx_msr_entry *e)
798 {
799         if (e->index == MSR_FS_BASE ||
800             e->index == MSR_GS_BASE ||
801             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
802             nested_vmx_msr_check_common(vcpu, e))
803                 return -EINVAL;
804         return 0;
805 }
806
807 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
808                                       struct vmx_msr_entry *e)
809 {
810         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
811             nested_vmx_msr_check_common(vcpu, e))
812                 return -EINVAL;
813         return 0;
814 }
815
816 /*
817  * Load guest's/host's msr at nested entry/exit.
818  * return 0 for success, entry index for failure.
819  */
820 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
821 {
822         u32 i;
823         struct vmx_msr_entry e;
824         struct msr_data msr;
825
826         msr.host_initiated = false;
827         for (i = 0; i < count; i++) {
828                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
829                                         &e, sizeof(e))) {
830                         pr_debug_ratelimited(
831                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
832                                 __func__, i, gpa + i * sizeof(e));
833                         goto fail;
834                 }
835                 if (nested_vmx_load_msr_check(vcpu, &e)) {
836                         pr_debug_ratelimited(
837                                 "%s check failed (%u, 0x%x, 0x%x)\n",
838                                 __func__, i, e.index, e.reserved);
839                         goto fail;
840                 }
841                 msr.index = e.index;
842                 msr.data = e.value;
843                 if (kvm_set_msr(vcpu, &msr)) {
844                         pr_debug_ratelimited(
845                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
846                                 __func__, i, e.index, e.value);
847                         goto fail;
848                 }
849         }
850         return 0;
851 fail:
852         return i + 1;
853 }
854
855 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
856 {
857         u32 i;
858         struct vmx_msr_entry e;
859
860         for (i = 0; i < count; i++) {
861                 struct msr_data msr_info;
862                 if (kvm_vcpu_read_guest(vcpu,
863                                         gpa + i * sizeof(e),
864                                         &e, 2 * sizeof(u32))) {
865                         pr_debug_ratelimited(
866                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
867                                 __func__, i, gpa + i * sizeof(e));
868                         return -EINVAL;
869                 }
870                 if (nested_vmx_store_msr_check(vcpu, &e)) {
871                         pr_debug_ratelimited(
872                                 "%s check failed (%u, 0x%x, 0x%x)\n",
873                                 __func__, i, e.index, e.reserved);
874                         return -EINVAL;
875                 }
876                 msr_info.host_initiated = false;
877                 msr_info.index = e.index;
878                 if (kvm_get_msr(vcpu, &msr_info)) {
879                         pr_debug_ratelimited(
880                                 "%s cannot read MSR (%u, 0x%x)\n",
881                                 __func__, i, e.index);
882                         return -EINVAL;
883                 }
884                 if (kvm_vcpu_write_guest(vcpu,
885                                          gpa + i * sizeof(e) +
886                                              offsetof(struct vmx_msr_entry, value),
887                                          &msr_info.data, sizeof(msr_info.data))) {
888                         pr_debug_ratelimited(
889                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
890                                 __func__, i, e.index, msr_info.data);
891                         return -EINVAL;
892                 }
893         }
894         return 0;
895 }
896
897 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
898 {
899         unsigned long invalid_mask;
900
901         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
902         return (val & invalid_mask) == 0;
903 }
904
905 /*
906  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
907  * emulating VM entry into a guest with EPT enabled.
908  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
909  * is assigned to entry_failure_code on failure.
910  */
911 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
912                                u32 *entry_failure_code)
913 {
914         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
915                 if (!nested_cr3_valid(vcpu, cr3)) {
916                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
917                         return 1;
918                 }
919
920                 /*
921                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
922                  * must not be dereferenced.
923                  */
924                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
925                     !nested_ept) {
926                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
927                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
928                                 return 1;
929                         }
930                 }
931         }
932
933         if (!nested_ept)
934                 kvm_mmu_new_cr3(vcpu, cr3, false);
935
936         vcpu->arch.cr3 = cr3;
937         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
938
939         kvm_init_mmu(vcpu, false);
940
941         return 0;
942 }
943
944 /*
945  * Returns if KVM is able to config CPU to tag TLB entries
946  * populated by L2 differently than TLB entries populated
947  * by L1.
948  *
949  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
950  *
951  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
952  * with different VPID (L1 entries are tagged with vmx->vpid
953  * while L2 entries are tagged with vmx->nested.vpid02).
954  */
955 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
956 {
957         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
958
959         return nested_cpu_has_ept(vmcs12) ||
960                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
961 }
962
963 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
964 {
965         struct vcpu_vmx *vmx = to_vmx(vcpu);
966
967         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
968 }
969
970
971 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
972 {
973         return fixed_bits_valid(control, low, high);
974 }
975
976 static inline u64 vmx_control_msr(u32 low, u32 high)
977 {
978         return low | ((u64)high << 32);
979 }
980
981 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
982 {
983         superset &= mask;
984         subset &= mask;
985
986         return (superset | subset) == superset;
987 }
988
989 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
990 {
991         const u64 feature_and_reserved =
992                 /* feature (except bit 48; see below) */
993                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
994                 /* reserved */
995                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
996         u64 vmx_basic = vmx->nested.msrs.basic;
997
998         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
999                 return -EINVAL;
1000
1001         /*
1002          * KVM does not emulate a version of VMX that constrains physical
1003          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1004          */
1005         if (data & BIT_ULL(48))
1006                 return -EINVAL;
1007
1008         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1009             vmx_basic_vmcs_revision_id(data))
1010                 return -EINVAL;
1011
1012         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1013                 return -EINVAL;
1014
1015         vmx->nested.msrs.basic = data;
1016         return 0;
1017 }
1018
1019 static int
1020 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1021 {
1022         u64 supported;
1023         u32 *lowp, *highp;
1024
1025         switch (msr_index) {
1026         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1027                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1028                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1029                 break;
1030         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1031                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1032                 highp = &vmx->nested.msrs.procbased_ctls_high;
1033                 break;
1034         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1035                 lowp = &vmx->nested.msrs.exit_ctls_low;
1036                 highp = &vmx->nested.msrs.exit_ctls_high;
1037                 break;
1038         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1039                 lowp = &vmx->nested.msrs.entry_ctls_low;
1040                 highp = &vmx->nested.msrs.entry_ctls_high;
1041                 break;
1042         case MSR_IA32_VMX_PROCBASED_CTLS2:
1043                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1044                 highp = &vmx->nested.msrs.secondary_ctls_high;
1045                 break;
1046         default:
1047                 BUG();
1048         }
1049
1050         supported = vmx_control_msr(*lowp, *highp);
1051
1052         /* Check must-be-1 bits are still 1. */
1053         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1054                 return -EINVAL;
1055
1056         /* Check must-be-0 bits are still 0. */
1057         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1058                 return -EINVAL;
1059
1060         *lowp = data;
1061         *highp = data >> 32;
1062         return 0;
1063 }
1064
1065 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1066 {
1067         const u64 feature_and_reserved_bits =
1068                 /* feature */
1069                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1070                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1071                 /* reserved */
1072                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1073         u64 vmx_misc;
1074
1075         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1076                                    vmx->nested.msrs.misc_high);
1077
1078         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1079                 return -EINVAL;
1080
1081         if ((vmx->nested.msrs.pinbased_ctls_high &
1082              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1083             vmx_misc_preemption_timer_rate(data) !=
1084             vmx_misc_preemption_timer_rate(vmx_misc))
1085                 return -EINVAL;
1086
1087         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1088                 return -EINVAL;
1089
1090         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1091                 return -EINVAL;
1092
1093         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1094                 return -EINVAL;
1095
1096         vmx->nested.msrs.misc_low = data;
1097         vmx->nested.msrs.misc_high = data >> 32;
1098
1099         /*
1100          * If L1 has read-only VM-exit information fields, use the
1101          * less permissive vmx_vmwrite_bitmap to specify write
1102          * permissions for the shadow VMCS.
1103          */
1104         if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1105                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1106
1107         return 0;
1108 }
1109
1110 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1111 {
1112         u64 vmx_ept_vpid_cap;
1113
1114         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1115                                            vmx->nested.msrs.vpid_caps);
1116
1117         /* Every bit is either reserved or a feature bit. */
1118         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1119                 return -EINVAL;
1120
1121         vmx->nested.msrs.ept_caps = data;
1122         vmx->nested.msrs.vpid_caps = data >> 32;
1123         return 0;
1124 }
1125
1126 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1127 {
1128         u64 *msr;
1129
1130         switch (msr_index) {
1131         case MSR_IA32_VMX_CR0_FIXED0:
1132                 msr = &vmx->nested.msrs.cr0_fixed0;
1133                 break;
1134         case MSR_IA32_VMX_CR4_FIXED0:
1135                 msr = &vmx->nested.msrs.cr4_fixed0;
1136                 break;
1137         default:
1138                 BUG();
1139         }
1140
1141         /*
1142          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1143          * must be 1 in the restored value.
1144          */
1145         if (!is_bitwise_subset(data, *msr, -1ULL))
1146                 return -EINVAL;
1147
1148         *msr = data;
1149         return 0;
1150 }
1151
1152 /*
1153  * Called when userspace is restoring VMX MSRs.
1154  *
1155  * Returns 0 on success, non-0 otherwise.
1156  */
1157 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1158 {
1159         struct vcpu_vmx *vmx = to_vmx(vcpu);
1160
1161         /*
1162          * Don't allow changes to the VMX capability MSRs while the vCPU
1163          * is in VMX operation.
1164          */
1165         if (vmx->nested.vmxon)
1166                 return -EBUSY;
1167
1168         switch (msr_index) {
1169         case MSR_IA32_VMX_BASIC:
1170                 return vmx_restore_vmx_basic(vmx, data);
1171         case MSR_IA32_VMX_PINBASED_CTLS:
1172         case MSR_IA32_VMX_PROCBASED_CTLS:
1173         case MSR_IA32_VMX_EXIT_CTLS:
1174         case MSR_IA32_VMX_ENTRY_CTLS:
1175                 /*
1176                  * The "non-true" VMX capability MSRs are generated from the
1177                  * "true" MSRs, so we do not support restoring them directly.
1178                  *
1179                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1180                  * should restore the "true" MSRs with the must-be-1 bits
1181                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1182                  * DEFAULT SETTINGS".
1183                  */
1184                 return -EINVAL;
1185         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1186         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1187         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1188         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1189         case MSR_IA32_VMX_PROCBASED_CTLS2:
1190                 return vmx_restore_control_msr(vmx, msr_index, data);
1191         case MSR_IA32_VMX_MISC:
1192                 return vmx_restore_vmx_misc(vmx, data);
1193         case MSR_IA32_VMX_CR0_FIXED0:
1194         case MSR_IA32_VMX_CR4_FIXED0:
1195                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1196         case MSR_IA32_VMX_CR0_FIXED1:
1197         case MSR_IA32_VMX_CR4_FIXED1:
1198                 /*
1199                  * These MSRs are generated based on the vCPU's CPUID, so we
1200                  * do not support restoring them directly.
1201                  */
1202                 return -EINVAL;
1203         case MSR_IA32_VMX_EPT_VPID_CAP:
1204                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1205         case MSR_IA32_VMX_VMCS_ENUM:
1206                 vmx->nested.msrs.vmcs_enum = data;
1207                 return 0;
1208         default:
1209                 /*
1210                  * The rest of the VMX capability MSRs do not support restore.
1211                  */
1212                 return -EINVAL;
1213         }
1214 }
1215
1216 /* Returns 0 on success, non-0 otherwise. */
1217 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1218 {
1219         switch (msr_index) {
1220         case MSR_IA32_VMX_BASIC:
1221                 *pdata = msrs->basic;
1222                 break;
1223         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1224         case MSR_IA32_VMX_PINBASED_CTLS:
1225                 *pdata = vmx_control_msr(
1226                         msrs->pinbased_ctls_low,
1227                         msrs->pinbased_ctls_high);
1228                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1229                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1230                 break;
1231         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1232         case MSR_IA32_VMX_PROCBASED_CTLS:
1233                 *pdata = vmx_control_msr(
1234                         msrs->procbased_ctls_low,
1235                         msrs->procbased_ctls_high);
1236                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1237                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1238                 break;
1239         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1240         case MSR_IA32_VMX_EXIT_CTLS:
1241                 *pdata = vmx_control_msr(
1242                         msrs->exit_ctls_low,
1243                         msrs->exit_ctls_high);
1244                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1245                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1246                 break;
1247         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248         case MSR_IA32_VMX_ENTRY_CTLS:
1249                 *pdata = vmx_control_msr(
1250                         msrs->entry_ctls_low,
1251                         msrs->entry_ctls_high);
1252                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1253                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1254                 break;
1255         case MSR_IA32_VMX_MISC:
1256                 *pdata = vmx_control_msr(
1257                         msrs->misc_low,
1258                         msrs->misc_high);
1259                 break;
1260         case MSR_IA32_VMX_CR0_FIXED0:
1261                 *pdata = msrs->cr0_fixed0;
1262                 break;
1263         case MSR_IA32_VMX_CR0_FIXED1:
1264                 *pdata = msrs->cr0_fixed1;
1265                 break;
1266         case MSR_IA32_VMX_CR4_FIXED0:
1267                 *pdata = msrs->cr4_fixed0;
1268                 break;
1269         case MSR_IA32_VMX_CR4_FIXED1:
1270                 *pdata = msrs->cr4_fixed1;
1271                 break;
1272         case MSR_IA32_VMX_VMCS_ENUM:
1273                 *pdata = msrs->vmcs_enum;
1274                 break;
1275         case MSR_IA32_VMX_PROCBASED_CTLS2:
1276                 *pdata = vmx_control_msr(
1277                         msrs->secondary_ctls_low,
1278                         msrs->secondary_ctls_high);
1279                 break;
1280         case MSR_IA32_VMX_EPT_VPID_CAP:
1281                 *pdata = msrs->ept_caps |
1282                         ((u64)msrs->vpid_caps << 32);
1283                 break;
1284         case MSR_IA32_VMX_VMFUNC:
1285                 *pdata = msrs->vmfunc_controls;
1286                 break;
1287         default:
1288                 return 1;
1289         }
1290
1291         return 0;
1292 }
1293
1294 /*
1295  * Copy the writable VMCS shadow fields back to the VMCS12, in case
1296  * they have been modified by the L1 guest. Note that the "read-only"
1297  * VM-exit information fields are actually writable if the vCPU is
1298  * configured to support "VMWRITE to any supported field in the VMCS."
1299  */
1300 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1301 {
1302         const u16 *fields[] = {
1303                 shadow_read_write_fields,
1304                 shadow_read_only_fields
1305         };
1306         const int max_fields[] = {
1307                 max_shadow_read_write_fields,
1308                 max_shadow_read_only_fields
1309         };
1310         int i, q;
1311         unsigned long field;
1312         u64 field_value;
1313         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1314
1315         preempt_disable();
1316
1317         vmcs_load(shadow_vmcs);
1318
1319         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1320                 for (i = 0; i < max_fields[q]; i++) {
1321                         field = fields[q][i];
1322                         field_value = __vmcs_readl(field);
1323                         vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1324                 }
1325                 /*
1326                  * Skip the VM-exit information fields if they are read-only.
1327                  */
1328                 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1329                         break;
1330         }
1331
1332         vmcs_clear(shadow_vmcs);
1333         vmcs_load(vmx->loaded_vmcs->vmcs);
1334
1335         preempt_enable();
1336 }
1337
1338 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1339 {
1340         const u16 *fields[] = {
1341                 shadow_read_write_fields,
1342                 shadow_read_only_fields
1343         };
1344         const int max_fields[] = {
1345                 max_shadow_read_write_fields,
1346                 max_shadow_read_only_fields
1347         };
1348         int i, q;
1349         unsigned long field;
1350         u64 field_value = 0;
1351         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1352
1353         vmcs_load(shadow_vmcs);
1354
1355         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1356                 for (i = 0; i < max_fields[q]; i++) {
1357                         field = fields[q][i];
1358                         vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1359                         __vmcs_writel(field, field_value);
1360                 }
1361         }
1362
1363         vmcs_clear(shadow_vmcs);
1364         vmcs_load(vmx->loaded_vmcs->vmcs);
1365 }
1366
1367 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1368 {
1369         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1370         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1371
1372         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1373         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1374         vmcs12->guest_rip = evmcs->guest_rip;
1375
1376         if (unlikely(!(evmcs->hv_clean_fields &
1377                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1378                 vmcs12->guest_rsp = evmcs->guest_rsp;
1379                 vmcs12->guest_rflags = evmcs->guest_rflags;
1380                 vmcs12->guest_interruptibility_info =
1381                         evmcs->guest_interruptibility_info;
1382         }
1383
1384         if (unlikely(!(evmcs->hv_clean_fields &
1385                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1386                 vmcs12->cpu_based_vm_exec_control =
1387                         evmcs->cpu_based_vm_exec_control;
1388         }
1389
1390         if (unlikely(!(evmcs->hv_clean_fields &
1391                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1392                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1393         }
1394
1395         if (unlikely(!(evmcs->hv_clean_fields &
1396                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1397                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1398         }
1399
1400         if (unlikely(!(evmcs->hv_clean_fields &
1401                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1402                 vmcs12->vm_entry_intr_info_field =
1403                         evmcs->vm_entry_intr_info_field;
1404                 vmcs12->vm_entry_exception_error_code =
1405                         evmcs->vm_entry_exception_error_code;
1406                 vmcs12->vm_entry_instruction_len =
1407                         evmcs->vm_entry_instruction_len;
1408         }
1409
1410         if (unlikely(!(evmcs->hv_clean_fields &
1411                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1412                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1413                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1414                 vmcs12->host_cr0 = evmcs->host_cr0;
1415                 vmcs12->host_cr3 = evmcs->host_cr3;
1416                 vmcs12->host_cr4 = evmcs->host_cr4;
1417                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1418                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1419                 vmcs12->host_rip = evmcs->host_rip;
1420                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1421                 vmcs12->host_es_selector = evmcs->host_es_selector;
1422                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1423                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1424                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1425                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1426                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1427                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1428         }
1429
1430         if (unlikely(!(evmcs->hv_clean_fields &
1431                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1432                 vmcs12->pin_based_vm_exec_control =
1433                         evmcs->pin_based_vm_exec_control;
1434                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1435                 vmcs12->secondary_vm_exec_control =
1436                         evmcs->secondary_vm_exec_control;
1437         }
1438
1439         if (unlikely(!(evmcs->hv_clean_fields &
1440                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1441                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1442                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1443         }
1444
1445         if (unlikely(!(evmcs->hv_clean_fields &
1446                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1447                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1448         }
1449
1450         if (unlikely(!(evmcs->hv_clean_fields &
1451                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1452                 vmcs12->guest_es_base = evmcs->guest_es_base;
1453                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1454                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1455                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1456                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1457                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1458                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1459                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1460                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1461                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1462                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1463                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1464                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1465                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1466                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1467                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1468                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1469                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1470                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1471                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1472                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1473                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1474                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1475                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1476                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1477                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1478                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1479                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1480                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1481                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1482                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1483                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1484                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1485                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1486                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1487                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1488         }
1489
1490         if (unlikely(!(evmcs->hv_clean_fields &
1491                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1492                 vmcs12->tsc_offset = evmcs->tsc_offset;
1493                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1494                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1495         }
1496
1497         if (unlikely(!(evmcs->hv_clean_fields &
1498                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1499                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1500                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1501                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1502                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1503                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1504                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1505                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1506                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1507         }
1508
1509         if (unlikely(!(evmcs->hv_clean_fields &
1510                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1511                 vmcs12->host_fs_base = evmcs->host_fs_base;
1512                 vmcs12->host_gs_base = evmcs->host_gs_base;
1513                 vmcs12->host_tr_base = evmcs->host_tr_base;
1514                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1515                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1516                 vmcs12->host_rsp = evmcs->host_rsp;
1517         }
1518
1519         if (unlikely(!(evmcs->hv_clean_fields &
1520                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1521                 vmcs12->ept_pointer = evmcs->ept_pointer;
1522                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1523         }
1524
1525         if (unlikely(!(evmcs->hv_clean_fields &
1526                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1527                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1528                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1529                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1530                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1531                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1532                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1533                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1534                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1535                 vmcs12->guest_pending_dbg_exceptions =
1536                         evmcs->guest_pending_dbg_exceptions;
1537                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1538                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1539                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1540                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1541                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1542         }
1543
1544         /*
1545          * Not used?
1546          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1547          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1548          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1549          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1550          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1551          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1552          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1553          * vmcs12->page_fault_error_code_mask =
1554          *              evmcs->page_fault_error_code_mask;
1555          * vmcs12->page_fault_error_code_match =
1556          *              evmcs->page_fault_error_code_match;
1557          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1558          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1559          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1560          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1561          */
1562
1563         /*
1564          * Read only fields:
1565          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1566          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1567          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1568          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1569          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1570          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1571          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1572          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1573          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1574          * vmcs12->exit_qualification = evmcs->exit_qualification;
1575          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1576          *
1577          * Not present in struct vmcs12:
1578          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1579          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1580          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1581          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1582          */
1583
1584         return 0;
1585 }
1586
1587 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1588 {
1589         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1590         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1591
1592         /*
1593          * Should not be changed by KVM:
1594          *
1595          * evmcs->host_es_selector = vmcs12->host_es_selector;
1596          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1597          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1598          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1599          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1600          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1601          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1602          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1603          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1604          * evmcs->host_cr0 = vmcs12->host_cr0;
1605          * evmcs->host_cr3 = vmcs12->host_cr3;
1606          * evmcs->host_cr4 = vmcs12->host_cr4;
1607          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1608          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1609          * evmcs->host_rip = vmcs12->host_rip;
1610          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1611          * evmcs->host_fs_base = vmcs12->host_fs_base;
1612          * evmcs->host_gs_base = vmcs12->host_gs_base;
1613          * evmcs->host_tr_base = vmcs12->host_tr_base;
1614          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1615          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1616          * evmcs->host_rsp = vmcs12->host_rsp;
1617          * sync_vmcs12() doesn't read these:
1618          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1619          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1620          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1621          * evmcs->ept_pointer = vmcs12->ept_pointer;
1622          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1623          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1624          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1625          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1626          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1627          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1628          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1629          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1630          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1631          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1632          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1633          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1634          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1635          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1636          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1637          * evmcs->page_fault_error_code_mask =
1638          *              vmcs12->page_fault_error_code_mask;
1639          * evmcs->page_fault_error_code_match =
1640          *              vmcs12->page_fault_error_code_match;
1641          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1642          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1643          * evmcs->tsc_offset = vmcs12->tsc_offset;
1644          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1645          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1646          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1647          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1648          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1649          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1650          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1651          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1652          *
1653          * Not present in struct vmcs12:
1654          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1655          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1656          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1657          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1658          */
1659
1660         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1661         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1662         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1663         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1664         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1665         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1666         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1667         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1668
1669         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1670         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1671         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1672         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1673         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1674         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1675         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1676         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1677         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1678         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1679
1680         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1681         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1682         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1683         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1684         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1685         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1686         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1687         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1688
1689         evmcs->guest_es_base = vmcs12->guest_es_base;
1690         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1691         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1692         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1693         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1694         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1695         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1696         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1697         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1698         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1699
1700         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1701         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1702
1703         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1704         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1705         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1706         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1707
1708         evmcs->guest_pending_dbg_exceptions =
1709                 vmcs12->guest_pending_dbg_exceptions;
1710         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1711         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1712
1713         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1714         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1715
1716         evmcs->guest_cr0 = vmcs12->guest_cr0;
1717         evmcs->guest_cr3 = vmcs12->guest_cr3;
1718         evmcs->guest_cr4 = vmcs12->guest_cr4;
1719         evmcs->guest_dr7 = vmcs12->guest_dr7;
1720
1721         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1722
1723         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1724         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1725         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1726         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1727         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1728         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1729         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1730         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1731
1732         evmcs->exit_qualification = vmcs12->exit_qualification;
1733
1734         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1735         evmcs->guest_rsp = vmcs12->guest_rsp;
1736         evmcs->guest_rflags = vmcs12->guest_rflags;
1737
1738         evmcs->guest_interruptibility_info =
1739                 vmcs12->guest_interruptibility_info;
1740         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1741         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1742         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1743         evmcs->vm_entry_exception_error_code =
1744                 vmcs12->vm_entry_exception_error_code;
1745         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1746
1747         evmcs->guest_rip = vmcs12->guest_rip;
1748
1749         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1750
1751         return 0;
1752 }
1753
1754 /*
1755  * This is an equivalent of the nested hypervisor executing the vmptrld
1756  * instruction.
1757  */
1758 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1759                                                  bool from_launch)
1760 {
1761         struct vcpu_vmx *vmx = to_vmx(vcpu);
1762         struct hv_vp_assist_page assist_page;
1763
1764         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1765                 return 1;
1766
1767         if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1768                 return 1;
1769
1770         if (unlikely(!assist_page.enlighten_vmentry))
1771                 return 1;
1772
1773         if (unlikely(assist_page.current_nested_vmcs !=
1774                      vmx->nested.hv_evmcs_vmptr)) {
1775
1776                 if (!vmx->nested.hv_evmcs)
1777                         vmx->nested.current_vmptr = -1ull;
1778
1779                 nested_release_evmcs(vcpu);
1780
1781                 vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
1782                         vcpu, assist_page.current_nested_vmcs);
1783
1784                 if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
1785                         return 0;
1786
1787                 vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
1788
1789                 /*
1790                  * Currently, KVM only supports eVMCS version 1
1791                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1792                  * value to first u32 field of eVMCS which should specify eVMCS
1793                  * VersionNumber.
1794                  *
1795                  * Guest should be aware of supported eVMCS versions by host by
1796                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1797                  * expected to set this CPUID leaf according to the value
1798                  * returned in vmcs_version from nested_enable_evmcs().
1799                  *
1800                  * However, it turns out that Microsoft Hyper-V fails to comply
1801                  * to their own invented interface: When Hyper-V use eVMCS, it
1802                  * just sets first u32 field of eVMCS to revision_id specified
1803                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1804                  * which is one of the supported versions specified in
1805                  * CPUID.0x4000000A.EAX[0:15].
1806                  *
1807                  * To overcome Hyper-V bug, we accept here either a supported
1808                  * eVMCS version or VMCS12 revision_id as valid values for first
1809                  * u32 field of eVMCS.
1810                  */
1811                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1812                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1813                         nested_release_evmcs(vcpu);
1814                         return 0;
1815                 }
1816
1817                 vmx->nested.dirty_vmcs12 = true;
1818                 /*
1819                  * As we keep L2 state for one guest only 'hv_clean_fields' mask
1820                  * can't be used when we switch between them. Reset it here for
1821                  * simplicity.
1822                  */
1823                 vmx->nested.hv_evmcs->hv_clean_fields &=
1824                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1825                 vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1826
1827                 /*
1828                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1829                  * reloaded from guest's memory (read only fields, fields not
1830                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1831                  * are no leftovers.
1832                  */
1833                 if (from_launch) {
1834                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1835                         memset(vmcs12, 0, sizeof(*vmcs12));
1836                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1837                 }
1838
1839         }
1840         return 1;
1841 }
1842
1843 void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1844 {
1845         struct vcpu_vmx *vmx = to_vmx(vcpu);
1846
1847         /*
1848          * hv_evmcs may end up being not mapped after migration (when
1849          * L2 was running), map it here to make sure vmcs12 changes are
1850          * properly reflected.
1851          */
1852         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1853                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1854
1855         if (vmx->nested.hv_evmcs) {
1856                 copy_vmcs12_to_enlightened(vmx);
1857                 /* All fields are clean */
1858                 vmx->nested.hv_evmcs->hv_clean_fields |=
1859                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1860         } else {
1861                 copy_vmcs12_to_shadow(vmx);
1862         }
1863
1864         vmx->nested.need_vmcs12_sync = false;
1865 }
1866
1867 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1868 {
1869         struct vcpu_vmx *vmx =
1870                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1871
1872         vmx->nested.preemption_timer_expired = true;
1873         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1874         kvm_vcpu_kick(&vmx->vcpu);
1875
1876         return HRTIMER_NORESTART;
1877 }
1878
1879 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1880 {
1881         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1882         struct vcpu_vmx *vmx = to_vmx(vcpu);
1883
1884         /*
1885          * A timer value of zero is architecturally guaranteed to cause
1886          * a VMExit prior to executing any instructions in the guest.
1887          */
1888         if (preemption_timeout == 0) {
1889                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1890                 return;
1891         }
1892
1893         if (vcpu->arch.virtual_tsc_khz == 0)
1894                 return;
1895
1896         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1897         preemption_timeout *= 1000000;
1898         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1899         hrtimer_start(&vmx->nested.preemption_timer,
1900                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1901 }
1902
1903 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1904 {
1905         if (vmx->nested.nested_run_pending &&
1906             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1907                 return vmcs12->guest_ia32_efer;
1908         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1909                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1910         else
1911                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1912 }
1913
1914 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1915 {
1916         /*
1917          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1918          * according to L0's settings (vmcs12 is irrelevant here).  Host
1919          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1920          * will be set as needed prior to VMLAUNCH/VMRESUME.
1921          */
1922         if (vmx->nested.vmcs02_initialized)
1923                 return;
1924         vmx->nested.vmcs02_initialized = true;
1925
1926         /*
1927          * We don't care what the EPTP value is we just need to guarantee
1928          * it's valid so we don't get a false positive when doing early
1929          * consistency checks.
1930          */
1931         if (enable_ept && nested_early_check)
1932                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1933
1934         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1935         if (cpu_has_vmx_vmfunc())
1936                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1937
1938         if (cpu_has_vmx_posted_intr())
1939                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1940
1941         if (cpu_has_vmx_msr_bitmap())
1942                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1943
1944         if (enable_pml)
1945                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1946
1947         /*
1948          * Set the MSR load/store lists to match L0's settings.  Only the
1949          * addresses are constant (for vmcs02), the counts can change based
1950          * on L2's behavior, e.g. switching to/from long mode.
1951          */
1952         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1953         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1954         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1955
1956         vmx_set_constant_host_state(vmx);
1957 }
1958
1959 static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1960                                       struct vmcs12 *vmcs12)
1961 {
1962         prepare_vmcs02_constant_state(vmx);
1963
1964         vmcs_write64(VMCS_LINK_POINTER, -1ull);
1965
1966         if (enable_vpid) {
1967                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1968                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1969                 else
1970                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1971         }
1972 }
1973
1974 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1975 {
1976         u32 exec_control, vmcs12_exec_ctrl;
1977         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1978
1979         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1980                 prepare_vmcs02_early_full(vmx, vmcs12);
1981
1982         /*
1983          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
1984          * entry, but only if the current (host) sp changed from the value
1985          * we wrote last (vmx->host_rsp).  This cache is no longer relevant
1986          * if we switch vmcs, and rather than hold a separate cache per vmcs,
1987          * here we just force the write to happen on entry.  host_rsp will
1988          * also be written unconditionally by nested_vmx_check_vmentry_hw()
1989          * if we are doing early consistency checks via hardware.
1990          */
1991         vmx->host_rsp = 0;
1992
1993         /*
1994          * PIN CONTROLS
1995          */
1996         exec_control = vmcs12->pin_based_vm_exec_control;
1997
1998         /* Preemption timer setting is computed directly in vmx_vcpu_run.  */
1999         exec_control |= vmcs_config.pin_based_exec_ctrl;
2000         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2001         vmx->loaded_vmcs->hv_timer_armed = false;
2002
2003         /* Posted interrupts setting is only taken from vmcs12.  */
2004         if (nested_cpu_has_posted_intr(vmcs12)) {
2005                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2006                 vmx->nested.pi_pending = false;
2007         } else {
2008                 exec_control &= ~PIN_BASED_POSTED_INTR;
2009         }
2010         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2011
2012         /*
2013          * EXEC CONTROLS
2014          */
2015         exec_control = vmx_exec_control(vmx); /* L0's desires */
2016         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2017         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2018         exec_control &= ~CPU_BASED_TPR_SHADOW;
2019         exec_control |= vmcs12->cpu_based_vm_exec_control;
2020
2021         /*
2022          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2023          * nested_get_vmcs12_pages can't fix it up, the illegal value
2024          * will result in a VM entry failure.
2025          */
2026         if (exec_control & CPU_BASED_TPR_SHADOW) {
2027                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2028                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2029         } else {
2030 #ifdef CONFIG_X86_64
2031                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2032                                 CPU_BASED_CR8_STORE_EXITING;
2033 #endif
2034         }
2035
2036         /*
2037          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2038          * for I/O port accesses.
2039          */
2040         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2041         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2042         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2043
2044         /*
2045          * SECONDARY EXEC CONTROLS
2046          */
2047         if (cpu_has_secondary_exec_ctrls()) {
2048                 exec_control = vmx->secondary_exec_control;
2049
2050                 /* Take the following fields only from vmcs12 */
2051                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2052                                   SECONDARY_EXEC_ENABLE_INVPCID |
2053                                   SECONDARY_EXEC_RDTSCP |
2054                                   SECONDARY_EXEC_XSAVES |
2055                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2056                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2057                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2058                 if (nested_cpu_has(vmcs12,
2059                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2060                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2061                                 ~SECONDARY_EXEC_ENABLE_PML;
2062                         exec_control |= vmcs12_exec_ctrl;
2063                 }
2064
2065                 /* VMCS shadowing for L2 is emulated for now */
2066                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2067
2068                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2069                         vmcs_write16(GUEST_INTR_STATUS,
2070                                 vmcs12->guest_intr_status);
2071
2072                 /*
2073                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
2074                  * nested_get_vmcs12_pages will either fix it up or
2075                  * remove the VM execution control.
2076                  */
2077                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2078                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2079
2080                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2081                         vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2082
2083                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2084         }
2085
2086         /*
2087          * ENTRY CONTROLS
2088          *
2089          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2090          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2091          * on the related bits (if supported by the CPU) in the hope that
2092          * we can avoid VMWrites during vmx_set_efer().
2093          */
2094         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2095                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2096         if (cpu_has_load_ia32_efer()) {
2097                 if (guest_efer & EFER_LMA)
2098                         exec_control |= VM_ENTRY_IA32E_MODE;
2099                 if (guest_efer != host_efer)
2100                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2101         }
2102         vm_entry_controls_init(vmx, exec_control);
2103
2104         /*
2105          * EXIT CONTROLS
2106          *
2107          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2108          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2109          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2110          */
2111         exec_control = vmx_vmexit_ctrl();
2112         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2113                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2114         vm_exit_controls_init(vmx, exec_control);
2115
2116         /*
2117          * Conceptually we want to copy the PML address and index from
2118          * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2119          * since we always flush the log on each vmexit and never change
2120          * the PML address (once set), this happens to be equivalent to
2121          * simply resetting the index in vmcs02.
2122          */
2123         if (enable_pml)
2124                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2125
2126         /*
2127          * Interrupt/Exception Fields
2128          */
2129         if (vmx->nested.nested_run_pending) {
2130                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2131                              vmcs12->vm_entry_intr_info_field);
2132                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2133                              vmcs12->vm_entry_exception_error_code);
2134                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2135                              vmcs12->vm_entry_instruction_len);
2136                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2137                              vmcs12->guest_interruptibility_info);
2138                 vmx->loaded_vmcs->nmi_known_unmasked =
2139                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2140         } else {
2141                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2142         }
2143 }
2144
2145 static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2146 {
2147         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2148
2149         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2150                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2151                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2152                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2153                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2154                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2155                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2156                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2157                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2158                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2159                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2160                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2161                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2162                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2163                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2164                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2165                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2166                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2167                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2168                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2169                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2170                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2171                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2172                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2173                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2174                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2175                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2176                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2177                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2178                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2179                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2180                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2181                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2182                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2183                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2184                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2185         }
2186
2187         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2188                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2189                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2190                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2191                             vmcs12->guest_pending_dbg_exceptions);
2192                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2193                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2194
2195                 /*
2196                  * L1 may access the L2's PDPTR, so save them to construct
2197                  * vmcs12
2198                  */
2199                 if (enable_ept) {
2200                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2201                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2202                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2203                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2204                 }
2205         }
2206
2207         if (nested_cpu_has_xsaves(vmcs12))
2208                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2209
2210         /*
2211          * Whether page-faults are trapped is determined by a combination of
2212          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2213          * If enable_ept, L0 doesn't care about page faults and we should
2214          * set all of these to L1's desires. However, if !enable_ept, L0 does
2215          * care about (at least some) page faults, and because it is not easy
2216          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2217          * to exit on each and every L2 page fault. This is done by setting
2218          * MASK=MATCH=0 and (see below) EB.PF=1.
2219          * Note that below we don't need special code to set EB.PF beyond the
2220          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2221          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2222          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2223          */
2224         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2225                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2226         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2227                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2228
2229         if (cpu_has_vmx_apicv()) {
2230                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2231                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2232                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2233                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2234         }
2235
2236         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2237         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2238
2239         set_cr4_guest_host_mask(vmx);
2240
2241         if (kvm_mpx_supported()) {
2242                 if (vmx->nested.nested_run_pending &&
2243                         (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2244                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2245                 else
2246                         vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2247         }
2248 }
2249
2250 /*
2251  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2252  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2253  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2254  * guest in a way that will both be appropriate to L1's requests, and our
2255  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2256  * function also has additional necessary side-effects, like setting various
2257  * vcpu->arch fields.
2258  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2259  * is assigned to entry_failure_code on failure.
2260  */
2261 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2262                           u32 *entry_failure_code)
2263 {
2264         struct vcpu_vmx *vmx = to_vmx(vcpu);
2265         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2266
2267         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2268                 prepare_vmcs02_full(vmx, vmcs12);
2269                 vmx->nested.dirty_vmcs12 = false;
2270         }
2271
2272         /*
2273          * First, the fields that are shadowed.  This must be kept in sync
2274          * with vmcs_shadow_fields.h.
2275          */
2276         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2277                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2278                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2279                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2280         }
2281
2282         if (vmx->nested.nested_run_pending &&
2283             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2284                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2285                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2286         } else {
2287                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2288                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2289         }
2290         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2291
2292         vmx->nested.preemption_timer_expired = false;
2293         if (nested_cpu_has_preemption_timer(vmcs12))
2294                 vmx_start_preemption_timer(vcpu);
2295
2296         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2297          * bitwise-or of what L1 wants to trap for L2, and what we want to
2298          * trap. Note that CR0.TS also needs updating - we do this later.
2299          */
2300         update_exception_bitmap(vcpu);
2301         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2302         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2303
2304         if (vmx->nested.nested_run_pending &&
2305             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2306                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2307                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2308         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2309                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2310         }
2311
2312         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2313
2314         if (kvm_has_tsc_control)
2315                 decache_tsc_multiplier(vmx);
2316
2317         if (enable_vpid) {
2318                 /*
2319                  * There is no direct mapping between vpid02 and vpid12, the
2320                  * vpid02 is per-vCPU for L0 and reused while the value of
2321                  * vpid12 is changed w/ one invvpid during nested vmentry.
2322                  * The vpid12 is allocated by L1 for L2, so it will not
2323                  * influence global bitmap(for vpid01 and vpid02 allocation)
2324                  * even if spawn a lot of nested vCPUs.
2325                  */
2326                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2327                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2328                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2329                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2330                         }
2331                 } else {
2332                         /*
2333                          * If L1 use EPT, then L0 needs to execute INVEPT on
2334                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2335                          * flush until vmcs02->eptp is fully updated by
2336                          * KVM_REQ_LOAD_CR3. Note that this assumes
2337                          * KVM_REQ_TLB_FLUSH is evaluated after
2338                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2339                          */
2340                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2341                 }
2342         }
2343
2344         if (nested_cpu_has_ept(vmcs12))
2345                 nested_ept_init_mmu_context(vcpu);
2346         else if (nested_cpu_has2(vmcs12,
2347                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2348                 vmx_flush_tlb(vcpu, true);
2349
2350         /*
2351          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2352          * bits which we consider mandatory enabled.
2353          * The CR0_READ_SHADOW is what L2 should have expected to read given
2354          * the specifications by L1; It's not enough to take
2355          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2356          * have more bits than L1 expected.
2357          */
2358         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2359         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2360
2361         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2362         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2363
2364         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2365         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2366         vmx_set_efer(vcpu, vcpu->arch.efer);
2367
2368         /*
2369          * Guest state is invalid and unrestricted guest is disabled,
2370          * which means L1 attempted VMEntry to L2 with invalid state.
2371          * Fail the VMEntry.
2372          */
2373         if (vmx->emulation_required) {
2374                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2375                 return 1;
2376         }
2377
2378         /* Shadow page tables on either EPT or shadow page tables. */
2379         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2380                                 entry_failure_code))
2381                 return 1;
2382
2383         if (!enable_ept)
2384                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2385
2386         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
2387         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
2388         return 0;
2389 }
2390
2391 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2392 {
2393         if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2394             nested_cpu_has_virtual_nmis(vmcs12))
2395                 return -EINVAL;
2396
2397         if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2398             nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2399                 return -EINVAL;
2400
2401         return 0;
2402 }
2403
2404 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2405 {
2406         struct vcpu_vmx *vmx = to_vmx(vcpu);
2407         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2408
2409         /* Check for memory type validity */
2410         switch (address & VMX_EPTP_MT_MASK) {
2411         case VMX_EPTP_MT_UC:
2412                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2413                         return false;
2414                 break;
2415         case VMX_EPTP_MT_WB:
2416                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2417                         return false;
2418                 break;
2419         default:
2420                 return false;
2421         }
2422
2423         /* only 4 levels page-walk length are valid */
2424         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2425                 return false;
2426
2427         /* Reserved bits should not be set */
2428         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2429                 return false;
2430
2431         /* AD, if set, should be supported */
2432         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2433                 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2434                         return false;
2435         }
2436
2437         return true;
2438 }
2439
2440 /*
2441  * Checks related to VM-Execution Control Fields
2442  */
2443 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2444                                               struct vmcs12 *vmcs12)
2445 {
2446         struct vcpu_vmx *vmx = to_vmx(vcpu);
2447
2448         if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2449                                 vmx->nested.msrs.pinbased_ctls_low,
2450                                 vmx->nested.msrs.pinbased_ctls_high) ||
2451             !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2452                                 vmx->nested.msrs.procbased_ctls_low,
2453                                 vmx->nested.msrs.procbased_ctls_high))
2454                 return -EINVAL;
2455
2456         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2457             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2458                                  vmx->nested.msrs.secondary_ctls_low,
2459                                  vmx->nested.msrs.secondary_ctls_high))
2460                 return -EINVAL;
2461
2462         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2463             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2464             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2465             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2466             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2467             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2468             nested_vmx_check_nmi_controls(vmcs12) ||
2469             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2470             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2471             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2472             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2473             (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2474                 return -EINVAL;
2475
2476         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2477             nested_cpu_has_save_preemption_timer(vmcs12))
2478                 return -EINVAL;
2479
2480         if (nested_cpu_has_ept(vmcs12) &&
2481             !valid_ept_address(vcpu, vmcs12->ept_pointer))
2482                 return -EINVAL;
2483
2484         if (nested_cpu_has_vmfunc(vmcs12)) {
2485                 if (vmcs12->vm_function_control &
2486                     ~vmx->nested.msrs.vmfunc_controls)
2487                         return -EINVAL;
2488
2489                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2490                         if (!nested_cpu_has_ept(vmcs12) ||
2491                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
2492                                 return -EINVAL;
2493                 }
2494         }
2495
2496         return 0;
2497 }
2498
2499 /*
2500  * Checks related to VM-Exit Control Fields
2501  */
2502 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2503                                          struct vmcs12 *vmcs12)
2504 {
2505         struct vcpu_vmx *vmx = to_vmx(vcpu);
2506
2507         if (!vmx_control_verify(vmcs12->vm_exit_controls,
2508                                 vmx->nested.msrs.exit_ctls_low,
2509                                 vmx->nested.msrs.exit_ctls_high) ||
2510             nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2511                 return -EINVAL;
2512
2513         return 0;
2514 }
2515
2516 /*
2517  * Checks related to VM-Entry Control Fields
2518  */
2519 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2520                                           struct vmcs12 *vmcs12)
2521 {
2522         struct vcpu_vmx *vmx = to_vmx(vcpu);
2523
2524         if (!vmx_control_verify(vmcs12->vm_entry_controls,
2525                                 vmx->nested.msrs.entry_ctls_low,
2526                                 vmx->nested.msrs.entry_ctls_high))
2527                 return -EINVAL;
2528
2529         /*
2530          * From the Intel SDM, volume 3:
2531          * Fields relevant to VM-entry event injection must be set properly.
2532          * These fields are the VM-entry interruption-information field, the
2533          * VM-entry exception error code, and the VM-entry instruction length.
2534          */
2535         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2536                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2537                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2538                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2539                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2540                 bool should_have_error_code;
2541                 bool urg = nested_cpu_has2(vmcs12,
2542                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2543                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2544
2545                 /* VM-entry interruption-info field: interruption type */
2546                 if (intr_type == INTR_TYPE_RESERVED ||
2547                     (intr_type == INTR_TYPE_OTHER_EVENT &&
2548                      !nested_cpu_supports_monitor_trap_flag(vcpu)))
2549                         return -EINVAL;
2550
2551                 /* VM-entry interruption-info field: vector */
2552                 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2553                     (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2554                     (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2555                         return -EINVAL;
2556
2557                 /* VM-entry interruption-info field: deliver error code */
2558                 should_have_error_code =
2559                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2560                         x86_exception_has_error_code(vector);
2561                 if (has_error_code != should_have_error_code)
2562                         return -EINVAL;
2563
2564                 /* VM-entry exception error code */
2565                 if (has_error_code &&
2566                     vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2567                         return -EINVAL;
2568
2569                 /* VM-entry interruption-info field: reserved bits */
2570                 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2571                         return -EINVAL;
2572
2573                 /* VM-entry instruction length */
2574                 switch (intr_type) {
2575                 case INTR_TYPE_SOFT_EXCEPTION:
2576                 case INTR_TYPE_SOFT_INTR:
2577                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2578                         if ((vmcs12->vm_entry_instruction_len > 15) ||
2579                             (vmcs12->vm_entry_instruction_len == 0 &&
2580                              !nested_cpu_has_zero_length_injection(vcpu)))
2581                                 return -EINVAL;
2582                 }
2583         }
2584
2585         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2586                 return -EINVAL;
2587
2588         return 0;
2589 }
2590
2591 /*
2592  * Checks related to Host Control Registers and MSRs
2593  */
2594 static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
2595                                           struct vmcs12 *vmcs12)
2596 {
2597         bool ia32e;
2598
2599         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2600             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2601             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2602                 return -EINVAL;
2603         /*
2604          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2605          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2606          * the values of the LMA and LME bits in the field must each be that of
2607          * the host address-space size VM-exit control.
2608          */
2609         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2610                 ia32e = (vmcs12->vm_exit_controls &
2611                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2612                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2613                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2614                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2615                         return -EINVAL;
2616         }
2617
2618         return 0;
2619 }
2620
2621 /*
2622  * Checks related to Guest Non-register State
2623  */
2624 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2625 {
2626         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2627             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2628                 return -EINVAL;
2629
2630         return 0;
2631 }
2632
2633 static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
2634                                             struct vmcs12 *vmcs12)
2635 {
2636         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2637             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2638             nested_check_vm_entry_controls(vcpu, vmcs12))
2639                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2640
2641         if (nested_check_host_control_regs(vcpu, vmcs12))
2642                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
2643
2644         if (nested_check_guest_non_reg_state(vmcs12))
2645                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2646
2647         return 0;
2648 }
2649
2650 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2651                                           struct vmcs12 *vmcs12)
2652 {
2653         int r;
2654         struct page *page;
2655         struct vmcs12 *shadow;
2656
2657         if (vmcs12->vmcs_link_pointer == -1ull)
2658                 return 0;
2659
2660         if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2661                 return -EINVAL;
2662
2663         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
2664         if (is_error_page(page))
2665                 return -EINVAL;
2666
2667         r = 0;
2668         shadow = kmap(page);
2669         if (shadow->hdr.revision_id != VMCS12_REVISION ||
2670             shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2671                 r = -EINVAL;
2672         kunmap(page);
2673         kvm_release_page_clean(page);
2674         return r;
2675 }
2676
2677 static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
2678                                              struct vmcs12 *vmcs12,
2679                                              u32 *exit_qual)
2680 {
2681         bool ia32e;
2682
2683         *exit_qual = ENTRY_FAIL_DEFAULT;
2684
2685         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2686             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2687                 return 1;
2688
2689         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2690                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2691                 return 1;
2692         }
2693
2694         /*
2695          * If the load IA32_EFER VM-entry control is 1, the following checks
2696          * are performed on the field for the IA32_EFER MSR:
2697          * - Bits reserved in the IA32_EFER MSR must be 0.
2698          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2699          *   the IA-32e mode guest VM-exit control. It must also be identical
2700          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2701          *   CR0.PG) is 1.
2702          */
2703         if (to_vmx(vcpu)->nested.nested_run_pending &&
2704             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2705                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2706                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2707                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2708                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2709                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2710                         return 1;
2711         }
2712
2713         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2714                 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2715                 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2716                         return 1;
2717
2718         return 0;
2719 }
2720
2721 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2722 {
2723         struct vcpu_vmx *vmx = to_vmx(vcpu);
2724         unsigned long cr3, cr4;
2725
2726         if (!nested_early_check)
2727                 return 0;
2728
2729         if (vmx->msr_autoload.host.nr)
2730                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2731         if (vmx->msr_autoload.guest.nr)
2732                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2733
2734         preempt_disable();
2735
2736         vmx_prepare_switch_to_guest(vcpu);
2737
2738         /*
2739          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2740          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2741          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2742          * there is no need to preserve other bits or save/restore the field.
2743          */
2744         vmcs_writel(GUEST_RFLAGS, 0);
2745
2746         cr3 = __get_current_cr3_fast();
2747         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2748                 vmcs_writel(HOST_CR3, cr3);
2749                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2750         }
2751
2752         cr4 = cr4_read_shadow();
2753         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2754                 vmcs_writel(HOST_CR4, cr4);
2755                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2756         }
2757
2758         vmx->__launched = vmx->loaded_vmcs->launched;
2759
2760         asm(
2761                 /* Set HOST_RSP */
2762                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2763                 __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
2764                 "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t"
2765                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2766
2767                 /* Check if vmlaunch or vmresume is needed */
2768                 "cmpl $0, %c[launched](%% " _ASM_CX")\n\t"
2769
2770                 "call vmx_vmenter\n\t"
2771
2772                 /* Set vmx->fail accordingly */
2773                 "setbe %c[fail](%% " _ASM_CX")\n\t"
2774               : ASM_CALL_CONSTRAINT
2775               : "c"(vmx), "d"((unsigned long)HOST_RSP),
2776                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
2777                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2778                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
2779                 [wordsize]"i"(sizeof(ulong))
2780               : "rax", "cc", "memory"
2781         );
2782
2783         preempt_enable();
2784
2785         if (vmx->msr_autoload.host.nr)
2786                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2787         if (vmx->msr_autoload.guest.nr)
2788                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2789
2790         if (vmx->fail) {
2791                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2792                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2793                 vmx->fail = 0;
2794                 return 1;
2795         }
2796
2797         /*
2798          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2799          */
2800         local_irq_enable();
2801         if (hw_breakpoint_active())
2802                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2803
2804         /*
2805          * A non-failing VMEntry means we somehow entered guest mode with
2806          * an illegal RIP, and that's just the tip of the iceberg.  There
2807          * is no telling what memory has been modified or what state has
2808          * been exposed to unknown code.  Hitting this all but guarantees
2809          * a (very critical) hardware issue.
2810          */
2811         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2812                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2813
2814         return 0;
2815 }
2816 STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
2817
2818
2819 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2820                                                  struct vmcs12 *vmcs12);
2821
2822 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2823 {
2824         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2825         struct vcpu_vmx *vmx = to_vmx(vcpu);
2826         struct page *page;
2827         u64 hpa;
2828
2829         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2830                 /*
2831                  * Translate L1 physical address to host physical
2832                  * address for vmcs02. Keep the page pinned, so this
2833                  * physical address remains valid. We keep a reference
2834                  * to it so we can release it later.
2835                  */
2836                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2837                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2838                         vmx->nested.apic_access_page = NULL;
2839                 }
2840                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2841                 /*
2842                  * If translation failed, no matter: This feature asks
2843                  * to exit when accessing the given address, and if it
2844                  * can never be accessed, this feature won't do
2845                  * anything anyway.
2846                  */
2847                 if (!is_error_page(page)) {
2848                         vmx->nested.apic_access_page = page;
2849                         hpa = page_to_phys(vmx->nested.apic_access_page);
2850                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2851                 } else {
2852                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2853                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2854                 }
2855         }
2856
2857         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2858                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
2859                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
2860                         vmx->nested.virtual_apic_page = NULL;
2861                 }
2862                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
2863
2864                 /*
2865                  * If translation failed, VM entry will fail because
2866                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2867                  * Failing the vm entry is _not_ what the processor
2868                  * does but it's basically the only possibility we
2869                  * have.  We could still enter the guest if CR8 load
2870                  * exits are enabled, CR8 store exits are enabled, and
2871                  * virtualize APIC access is disabled; in this case
2872                  * the processor would never use the TPR shadow and we
2873                  * could simply clear the bit from the execution
2874                  * control.  But such a configuration is useless, so
2875                  * let's keep the code simple.
2876                  */
2877                 if (!is_error_page(page)) {
2878                         vmx->nested.virtual_apic_page = page;
2879                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
2880                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
2881                 }
2882         }
2883
2884         if (nested_cpu_has_posted_intr(vmcs12)) {
2885                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
2886                         kunmap(vmx->nested.pi_desc_page);
2887                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
2888                         vmx->nested.pi_desc_page = NULL;
2889                         vmx->nested.pi_desc = NULL;
2890                         vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
2891                 }
2892                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
2893                 if (is_error_page(page))
2894                         return;
2895                 vmx->nested.pi_desc_page = page;
2896                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
2897                 vmx->nested.pi_desc =
2898                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
2899                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2900                         (PAGE_SIZE - 1)));
2901                 vmcs_write64(POSTED_INTR_DESC_ADDR,
2902                         page_to_phys(vmx->nested.pi_desc_page) +
2903                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2904                         (PAGE_SIZE - 1)));
2905         }
2906         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2907                 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2908                               CPU_BASED_USE_MSR_BITMAPS);
2909         else
2910                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2911                                 CPU_BASED_USE_MSR_BITMAPS);
2912 }
2913
2914 /*
2915  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2916  * for running VMX instructions (except VMXON, whose prerequisites are
2917  * slightly different). It also specifies what exception to inject otherwise.
2918  * Note that many of these exceptions have priority over VM exits, so they
2919  * don't have to be checked again here.
2920  */
2921 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2922 {
2923         if (!to_vmx(vcpu)->nested.vmxon) {
2924                 kvm_queue_exception(vcpu, UD_VECTOR);
2925                 return 0;
2926         }
2927
2928         if (vmx_get_cpl(vcpu)) {
2929                 kvm_inject_gp(vcpu, 0);
2930                 return 0;
2931         }
2932
2933         return 1;
2934 }
2935
2936 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2937 {
2938         u8 rvi = vmx_get_rvi();
2939         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2940
2941         return ((rvi & 0xf0) > (vppr & 0xf0));
2942 }
2943
2944 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2945                                    struct vmcs12 *vmcs12);
2946
2947 /*
2948  * If from_vmentry is false, this is being called from state restore (either RSM
2949  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2950 + *
2951 + * Returns:
2952 + *   0 - success, i.e. proceed with actual VMEnter
2953 + *   1 - consistency check VMExit
2954 + *  -1 - consistency check VMFail
2955  */
2956 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2957 {
2958         struct vcpu_vmx *vmx = to_vmx(vcpu);
2959         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2960         bool evaluate_pending_interrupts;
2961         u32 exit_reason = EXIT_REASON_INVALID_STATE;
2962         u32 exit_qual;
2963
2964         evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2965                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2966         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2967                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2968
2969         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2970                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2971         if (kvm_mpx_supported() &&
2972                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2973                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2974
2975         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2976
2977         prepare_vmcs02_early(vmx, vmcs12);
2978
2979         if (from_vmentry) {
2980                 nested_get_vmcs12_pages(vcpu);
2981
2982                 if (nested_vmx_check_vmentry_hw(vcpu)) {
2983                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2984                         return -1;
2985                 }
2986
2987                 if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
2988                         goto vmentry_fail_vmexit;
2989         }
2990
2991         enter_guest_mode(vcpu);
2992         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2993                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2994
2995         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2996                 goto vmentry_fail_vmexit_guest_mode;
2997
2998         if (from_vmentry) {
2999                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3000                 exit_qual = nested_vmx_load_msr(vcpu,
3001                                                 vmcs12->vm_entry_msr_load_addr,
3002                                                 vmcs12->vm_entry_msr_load_count);
3003                 if (exit_qual)
3004                         goto vmentry_fail_vmexit_guest_mode;
3005         } else {
3006                 /*
3007                  * The MMU is not initialized to point at the right entities yet and
3008                  * "get pages" would need to read data from the guest (i.e. we will
3009                  * need to perform gpa to hpa translation). Request a call
3010                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3011                  * have already been set at vmentry time and should not be reset.
3012                  */
3013                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3014         }
3015
3016         /*
3017          * If L1 had a pending IRQ/NMI until it executed
3018          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3019          * disallowed (e.g. interrupts disabled), L0 needs to
3020          * evaluate if this pending event should cause an exit from L2
3021          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3022          * intercept EXTERNAL_INTERRUPT).
3023          *
3024          * Usually this would be handled by the processor noticing an
3025          * IRQ/NMI window request, or checking RVI during evaluation of
3026          * pending virtual interrupts.  However, this setting was done
3027          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3028          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3029          */
3030         if (unlikely(evaluate_pending_interrupts))
3031                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3032
3033         /*
3034          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3035          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3036          * returned as far as L1 is concerned. It will only return (and set
3037          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3038          */
3039         return 0;
3040
3041         /*
3042          * A failed consistency check that leads to a VMExit during L1's
3043          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3044          * 26.7 "VM-entry failures during or after loading guest state".
3045          */
3046 vmentry_fail_vmexit_guest_mode:
3047         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3048                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3049         leave_guest_mode(vcpu);
3050
3051 vmentry_fail_vmexit:
3052         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3053
3054         if (!from_vmentry)
3055                 return 1;
3056
3057         load_vmcs12_host_state(vcpu, vmcs12);
3058         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3059         vmcs12->exit_qualification = exit_qual;
3060         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3061                 vmx->nested.need_vmcs12_sync = true;
3062         return 1;
3063 }
3064
3065 /*
3066  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3067  * for running an L2 nested guest.
3068  */
3069 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3070 {
3071         struct vmcs12 *vmcs12;
3072         struct vcpu_vmx *vmx = to_vmx(vcpu);
3073         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3074         int ret;
3075
3076         if (!nested_vmx_check_permission(vcpu))
3077                 return 1;
3078
3079         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3080                 return 1;
3081
3082         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3083                 return nested_vmx_failInvalid(vcpu);
3084
3085         vmcs12 = get_vmcs12(vcpu);
3086
3087         /*
3088          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3089          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3090          * rather than RFLAGS.ZF, and no error number is stored to the
3091          * VM-instruction error field.
3092          */
3093         if (vmcs12->hdr.shadow_vmcs)
3094                 return nested_vmx_failInvalid(vcpu);
3095
3096         if (vmx->nested.hv_evmcs) {
3097                 copy_enlightened_to_vmcs12(vmx);
3098                 /* Enlightened VMCS doesn't have launch state */
3099                 vmcs12->launch_state = !launch;
3100         } else if (enable_shadow_vmcs) {
3101                 copy_shadow_to_vmcs12(vmx);
3102         }
3103
3104         /*
3105          * The nested entry process starts with enforcing various prerequisites
3106          * on vmcs12 as required by the Intel SDM, and act appropriately when
3107          * they fail: As the SDM explains, some conditions should cause the
3108          * instruction to fail, while others will cause the instruction to seem
3109          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3110          * To speed up the normal (success) code path, we should avoid checking
3111          * for misconfigurations which will anyway be caught by the processor
3112          * when using the merged vmcs02.
3113          */
3114         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3115                 return nested_vmx_failValid(vcpu,
3116                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3117
3118         if (vmcs12->launch_state == launch)
3119                 return nested_vmx_failValid(vcpu,
3120                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3121                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3122
3123         ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
3124         if (ret)
3125                 return nested_vmx_failValid(vcpu, ret);
3126
3127         /*
3128          * We're finally done with prerequisite checking, and can start with
3129          * the nested entry.
3130          */
3131         vmx->nested.nested_run_pending = 1;
3132         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3133         vmx->nested.nested_run_pending = !ret;
3134         if (ret > 0)
3135                 return 1;
3136         else if (ret)
3137                 return nested_vmx_failValid(vcpu,
3138                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3139
3140         /* Hide L1D cache contents from the nested guest.  */
3141         vmx->vcpu.arch.l1tf_flush_l1d = true;
3142
3143         /*
3144          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3145          * also be used as part of restoring nVMX state for
3146          * snapshot restore (migration).
3147          *
3148          * In this flow, it is assumed that vmcs12 cache was
3149          * trasferred as part of captured nVMX state and should
3150          * therefore not be read from guest memory (which may not
3151          * exist on destination host yet).
3152          */
3153         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3154
3155         /*
3156          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3157          * awakened by event injection or by an NMI-window VM-exit or
3158          * by an interrupt-window VM-exit, halt the vcpu.
3159          */
3160         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3161             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3162             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3163             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3164               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3165                 vmx->nested.nested_run_pending = 0;
3166                 return kvm_vcpu_halt(vcpu);
3167         }
3168         return 1;
3169 }
3170
3171 /*
3172  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3173  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3174  * This function returns the new value we should put in vmcs12.guest_cr0.
3175  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3176  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3177  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3178  *     didn't trap the bit, because if L1 did, so would L0).
3179  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3180  *     been modified by L2, and L1 knows it. So just leave the old value of
3181  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3182  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3183  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3184  *     changed these bits, and therefore they need to be updated, but L0
3185  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3186  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3187  */
3188 static inline unsigned long
3189 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3190 {
3191         return
3192         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3193         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3194         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3195                         vcpu->arch.cr0_guest_owned_bits));
3196 }
3197
3198 static inline unsigned long
3199 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3200 {
3201         return
3202         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3203         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3204         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3205                         vcpu->arch.cr4_guest_owned_bits));
3206 }
3207
3208 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3209                                       struct vmcs12 *vmcs12)
3210 {
3211         u32 idt_vectoring;
3212         unsigned int nr;
3213
3214         if (vcpu->arch.exception.injected) {
3215                 nr = vcpu->arch.exception.nr;
3216                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3217
3218                 if (kvm_exception_is_soft(nr)) {
3219                         vmcs12->vm_exit_instruction_len =
3220                                 vcpu->arch.event_exit_inst_len;
3221                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3222                 } else
3223                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3224
3225                 if (vcpu->arch.exception.has_error_code) {
3226                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3227                         vmcs12->idt_vectoring_error_code =
3228                                 vcpu->arch.exception.error_code;
3229                 }
3230
3231                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3232         } else if (vcpu->arch.nmi_injected) {
3233                 vmcs12->idt_vectoring_info_field =
3234                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3235         } else if (vcpu->arch.interrupt.injected) {
3236                 nr = vcpu->arch.interrupt.nr;
3237                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3238
3239                 if (vcpu->arch.interrupt.soft) {
3240                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3241                         vmcs12->vm_entry_instruction_len =
3242                                 vcpu->arch.event_exit_inst_len;
3243                 } else
3244                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3245
3246                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3247         }
3248 }
3249
3250
3251 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3252 {
3253         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3254         gfn_t gfn;
3255
3256         /*
3257          * Don't need to mark the APIC access page dirty; it is never
3258          * written to by the CPU during APIC virtualization.
3259          */
3260
3261         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3262                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3263                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3264         }
3265
3266         if (nested_cpu_has_posted_intr(vmcs12)) {
3267                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3268                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3269         }
3270 }
3271
3272 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3273 {
3274         struct vcpu_vmx *vmx = to_vmx(vcpu);
3275         int max_irr;
3276         void *vapic_page;
3277         u16 status;
3278
3279         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3280                 return;
3281
3282         vmx->nested.pi_pending = false;
3283         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3284                 return;
3285
3286         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3287         if (max_irr != 256) {
3288                 vapic_page = kmap(vmx->nested.virtual_apic_page);
3289                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3290                         vapic_page, &max_irr);
3291                 kunmap(vmx->nested.virtual_apic_page);
3292
3293                 status = vmcs_read16(GUEST_INTR_STATUS);
3294                 if ((u8)max_irr > ((u8)status & 0xff)) {
3295                         status &= ~0xff;
3296                         status |= (u8)max_irr;
3297                         vmcs_write16(GUEST_INTR_STATUS, status);
3298                 }
3299         }
3300
3301         nested_mark_vmcs12_pages_dirty(vcpu);
3302 }
3303
3304 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3305                                                unsigned long exit_qual)
3306 {
3307         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3308         unsigned int nr = vcpu->arch.exception.nr;
3309         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3310
3311         if (vcpu->arch.exception.has_error_code) {
3312                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3313                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3314         }
3315
3316         if (kvm_exception_is_soft(nr))
3317                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3318         else
3319                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3320
3321         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3322             vmx_get_nmi_mask(vcpu))
3323                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3324
3325         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3326 }
3327
3328 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3329 {
3330         struct vcpu_vmx *vmx = to_vmx(vcpu);
3331         unsigned long exit_qual;
3332         bool block_nested_events =
3333             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3334
3335         if (vcpu->arch.exception.pending &&
3336                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3337                 if (block_nested_events)
3338                         return -EBUSY;
3339                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3340                 return 0;
3341         }
3342
3343         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3344             vmx->nested.preemption_timer_expired) {
3345                 if (block_nested_events)
3346                         return -EBUSY;
3347                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3348                 return 0;
3349         }
3350
3351         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3352                 if (block_nested_events)
3353                         return -EBUSY;
3354                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3355                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3356                                   INTR_INFO_VALID_MASK, 0);
3357                 /*
3358                  * The NMI-triggered VM exit counts as injection:
3359                  * clear this one and block further NMIs.
3360                  */
3361                 vcpu->arch.nmi_pending = 0;
3362                 vmx_set_nmi_mask(vcpu, true);
3363                 return 0;
3364         }
3365
3366         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3367             nested_exit_on_intr(vcpu)) {
3368                 if (block_nested_events)
3369                         return -EBUSY;
3370                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3371                 return 0;
3372         }
3373
3374         vmx_complete_nested_posted_interrupt(vcpu);
3375         return 0;
3376 }
3377
3378 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3379 {
3380         ktime_t remaining =
3381                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3382         u64 value;
3383
3384         if (ktime_to_ns(remaining) <= 0)
3385                 return 0;
3386
3387         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3388         do_div(value, 1000000);
3389         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3390 }
3391
3392 /*
3393  * Update the guest state fields of vmcs12 to reflect changes that
3394  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3395  * VM-entry controls is also updated, since this is really a guest
3396  * state bit.)
3397  */
3398 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3399 {
3400         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3401         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3402
3403         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3404         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
3405         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3406
3407         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3408         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3409         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3410         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3411         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3412         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3413         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3414         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3415         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3416         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3417         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3418         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3419         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3420         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3421         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3422         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3423         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3424         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3425         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3426         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3427         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3428         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3429         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3430         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3431         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3432         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3433         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3434         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3435         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3436         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3437         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3438         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3439         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3440         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3441         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3442         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3443
3444         vmcs12->guest_interruptibility_info =
3445                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3446         vmcs12->guest_pending_dbg_exceptions =
3447                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3448         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3449                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3450         else
3451                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3452
3453         if (nested_cpu_has_preemption_timer(vmcs12)) {
3454                 if (vmcs12->vm_exit_controls &
3455                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3456                         vmcs12->vmx_preemption_timer_value =
3457                                 vmx_get_preemption_timer_value(vcpu);
3458                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3459         }
3460
3461         /*
3462          * In some cases (usually, nested EPT), L2 is allowed to change its
3463          * own CR3 without exiting. If it has changed it, we must keep it.
3464          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3465          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3466          *
3467          * Additionally, restore L2's PDPTR to vmcs12.
3468          */
3469         if (enable_ept) {
3470                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3471                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3472                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3473                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3474                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3475         }
3476
3477         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3478
3479         if (nested_cpu_has_vid(vmcs12))
3480                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3481
3482         vmcs12->vm_entry_controls =
3483                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3484                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3485
3486         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3487                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3488                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3489         }
3490
3491         /* TODO: These cannot have changed unless we have MSR bitmaps and
3492          * the relevant bit asks not to trap the change */
3493         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3494                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3495         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3496                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3497         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3498         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3499         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3500         if (kvm_mpx_supported())
3501                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3502 }
3503
3504 /*
3505  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3506  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3507  * and this function updates it to reflect the changes to the guest state while
3508  * L2 was running (and perhaps made some exits which were handled directly by L0
3509  * without going back to L1), and to reflect the exit reason.
3510  * Note that we do not have to copy here all VMCS fields, just those that
3511  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3512  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3513  * which already writes to vmcs12 directly.
3514  */
3515 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3516                            u32 exit_reason, u32 exit_intr_info,
3517                            unsigned long exit_qualification)
3518 {
3519         /* update guest state fields: */
3520         sync_vmcs12(vcpu, vmcs12);
3521
3522         /* update exit information fields: */
3523
3524         vmcs12->vm_exit_reason = exit_reason;
3525         vmcs12->exit_qualification = exit_qualification;
3526         vmcs12->vm_exit_intr_info = exit_intr_info;
3527
3528         vmcs12->idt_vectoring_info_field = 0;
3529         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3530         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3531
3532         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3533                 vmcs12->launch_state = 1;
3534
3535                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3536                  * instead of reading the real value. */
3537                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3538
3539                 /*
3540                  * Transfer the event that L0 or L1 may wanted to inject into
3541                  * L2 to IDT_VECTORING_INFO_FIELD.
3542                  */
3543                 vmcs12_save_pending_event(vcpu, vmcs12);
3544
3545                 /*
3546                  * According to spec, there's no need to store the guest's
3547                  * MSRs if the exit is due to a VM-entry failure that occurs
3548                  * during or after loading the guest state. Since this exit
3549                  * does not fall in that category, we need to save the MSRs.
3550                  */
3551                 if (nested_vmx_store_msr(vcpu,
3552                                          vmcs12->vm_exit_msr_store_addr,
3553                                          vmcs12->vm_exit_msr_store_count))
3554                         nested_vmx_abort(vcpu,
3555                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3556         }
3557
3558         /*
3559          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3560          * preserved above and would only end up incorrectly in L1.
3561          */
3562         vcpu->arch.nmi_injected = false;
3563         kvm_clear_exception_queue(vcpu);
3564         kvm_clear_interrupt_queue(vcpu);
3565 }
3566
3567 /*
3568  * A part of what we need to when the nested L2 guest exits and we want to
3569  * run its L1 parent, is to reset L1's guest state to the host state specified
3570  * in vmcs12.
3571  * This function is to be called not only on normal nested exit, but also on
3572  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3573  * Failures During or After Loading Guest State").
3574  * This function should be called when the active VMCS is L1's (vmcs01).
3575  */
3576 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3577                                    struct vmcs12 *vmcs12)
3578 {
3579         struct kvm_segment seg;
3580         u32 entry_failure_code;
3581
3582         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3583                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3584         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3585                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3586         else
3587                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3588         vmx_set_efer(vcpu, vcpu->arch.efer);
3589
3590         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
3591         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
3592         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3593         vmx_set_interrupt_shadow(vcpu, 0);
3594
3595         /*
3596          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3597          * actually changed, because vmx_set_cr0 refers to efer set above.
3598          *
3599          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3600          * (KVM doesn't change it);
3601          */
3602         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3603         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3604
3605         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3606         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3607         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3608
3609         nested_ept_uninit_mmu_context(vcpu);
3610
3611         /*
3612          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3613          * couldn't have changed.
3614          */
3615         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3616                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3617
3618         if (!enable_ept)
3619                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3620
3621         /*
3622          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3623          * VMEntry/VMExit. Thus, no need to flush TLB.
3624          *
3625          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3626          * flushed on every VMEntry/VMExit.
3627          *
3628          * Otherwise, we can preserve TLB entries as long as we are
3629          * able to tag L1 TLB entries differently than L2 TLB entries.
3630          *
3631          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3632          * and therefore we request the TLB flush to happen only after VMCS EPTP
3633          * has been set by KVM_REQ_LOAD_CR3.
3634          */
3635         if (enable_vpid &&
3636             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3637                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3638         }
3639
3640         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3641         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3642         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3643         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3644         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3645         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3646         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3647
3648         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3649         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3650                 vmcs_write64(GUEST_BNDCFGS, 0);
3651
3652         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3653                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3654                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3655         }
3656         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3657                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3658                         vmcs12->host_ia32_perf_global_ctrl);
3659
3660         /* Set L1 segment info according to Intel SDM
3661             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3662         seg = (struct kvm_segment) {
3663                 .base = 0,
3664                 .limit = 0xFFFFFFFF,
3665                 .selector = vmcs12->host_cs_selector,
3666                 .type = 11,
3667                 .present = 1,
3668                 .s = 1,
3669                 .g = 1
3670         };
3671         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3672                 seg.l = 1;
3673         else
3674                 seg.db = 1;
3675         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3676         seg = (struct kvm_segment) {
3677                 .base = 0,
3678                 .limit = 0xFFFFFFFF,
3679                 .type = 3,
3680                 .present = 1,
3681                 .s = 1,
3682                 .db = 1,
3683                 .g = 1
3684         };
3685         seg.selector = vmcs12->host_ds_selector;
3686         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3687         seg.selector = vmcs12->host_es_selector;
3688         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3689         seg.selector = vmcs12->host_ss_selector;
3690         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3691         seg.selector = vmcs12->host_fs_selector;
3692         seg.base = vmcs12->host_fs_base;
3693         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3694         seg.selector = vmcs12->host_gs_selector;
3695         seg.base = vmcs12->host_gs_base;
3696         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3697         seg = (struct kvm_segment) {
3698                 .base = vmcs12->host_tr_base,
3699                 .limit = 0x67,
3700                 .selector = vmcs12->host_tr_selector,
3701                 .type = 11,
3702                 .present = 1
3703         };
3704         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3705
3706         kvm_set_dr(vcpu, 7, 0x400);
3707         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3708
3709         if (cpu_has_vmx_msr_bitmap())
3710                 vmx_update_msr_bitmap(vcpu);
3711
3712         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3713                                 vmcs12->vm_exit_msr_load_count))
3714                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3715 }
3716
3717 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3718 {
3719         struct shared_msr_entry *efer_msr;
3720         unsigned int i;
3721
3722         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3723                 return vmcs_read64(GUEST_IA32_EFER);
3724
3725         if (cpu_has_load_ia32_efer())
3726                 return host_efer;
3727
3728         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3729                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3730                         return vmx->msr_autoload.guest.val[i].value;
3731         }
3732
3733         efer_msr = find_msr_entry(vmx, MSR_EFER);
3734         if (efer_msr)
3735                 return efer_msr->data;
3736
3737         return host_efer;
3738 }
3739
3740 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3741 {
3742         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3743         struct vcpu_vmx *vmx = to_vmx(vcpu);
3744         struct vmx_msr_entry g, h;
3745         struct msr_data msr;
3746         gpa_t gpa;
3747         u32 i, j;
3748
3749         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3750
3751         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3752                 /*
3753                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3754                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3755                  * and vcpu->arch.dr7 is not squirreled away before the
3756                  * nested VMENTER (not worth adding a variable in nested_vmx).
3757                  */
3758                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3759                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3760                 else
3761                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3762         }
3763
3764         /*
3765          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3766          * handle a variety of side effects to KVM's software model.
3767          */
3768         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3769
3770         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3771         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3772
3773         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3774         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3775
3776         nested_ept_uninit_mmu_context(vcpu);
3777         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3778         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3779
3780         /*
3781          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3782          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3783          * VMFail, like everything else we just need to ensure our
3784          * software model is up-to-date.
3785          */
3786         ept_save_pdptrs(vcpu);
3787
3788         kvm_mmu_reset_context(vcpu);
3789
3790         if (cpu_has_vmx_msr_bitmap())
3791                 vmx_update_msr_bitmap(vcpu);
3792
3793         /*
3794          * This nasty bit of open coding is a compromise between blindly
3795          * loading L1's MSRs using the exit load lists (incorrect emulation
3796          * of VMFail), leaving the nested VM's MSRs in the software model
3797          * (incorrect behavior) and snapshotting the modified MSRs (too
3798          * expensive since the lists are unbound by hardware).  For each
3799          * MSR that was (prematurely) loaded from the nested VMEntry load
3800          * list, reload it from the exit load list if it exists and differs
3801          * from the guest value.  The intent is to stuff host state as
3802          * silently as possible, not to fully process the exit load list.
3803          */
3804         msr.host_initiated = false;
3805         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3806                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3807                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3808                         pr_debug_ratelimited(
3809                                 "%s read MSR index failed (%u, 0x%08llx)\n",
3810                                 __func__, i, gpa);
3811                         goto vmabort;
3812                 }
3813
3814                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3815                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3816                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3817                                 pr_debug_ratelimited(
3818                                         "%s read MSR failed (%u, 0x%08llx)\n",
3819                                         __func__, j, gpa);
3820                                 goto vmabort;
3821                         }
3822                         if (h.index != g.index)
3823                                 continue;
3824                         if (h.value == g.value)
3825                                 break;
3826
3827                         if (nested_vmx_load_msr_check(vcpu, &h)) {
3828                                 pr_debug_ratelimited(
3829                                         "%s check failed (%u, 0x%x, 0x%x)\n",
3830                                         __func__, j, h.index, h.reserved);
3831                                 goto vmabort;
3832                         }
3833
3834                         msr.index = h.index;
3835                         msr.data = h.value;
3836                         if (kvm_set_msr(vcpu, &msr)) {
3837                                 pr_debug_ratelimited(
3838                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3839                                         __func__, j, h.index, h.value);
3840                                 goto vmabort;
3841                         }
3842                 }
3843         }
3844
3845         return;
3846
3847 vmabort:
3848         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3849 }
3850
3851 /*
3852  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3853  * and modify vmcs12 to make it see what it would expect to see there if
3854  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3855  */
3856 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3857                        u32 exit_intr_info, unsigned long exit_qualification)
3858 {
3859         struct vcpu_vmx *vmx = to_vmx(vcpu);
3860         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3861
3862         /* trying to cancel vmlaunch/vmresume is a bug */
3863         WARN_ON_ONCE(vmx->nested.nested_run_pending);
3864
3865         leave_guest_mode(vcpu);
3866
3867         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3868                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3869
3870         if (likely(!vmx->fail)) {
3871                 if (exit_reason == -1)
3872                         sync_vmcs12(vcpu, vmcs12);
3873                 else
3874                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3875                                        exit_qualification);
3876
3877                 /*
3878                  * Must happen outside of sync_vmcs12() as it will
3879                  * also be used to capture vmcs12 cache as part of
3880                  * capturing nVMX state for snapshot (migration).
3881                  *
3882                  * Otherwise, this flush will dirty guest memory at a
3883                  * point it is already assumed by user-space to be
3884                  * immutable.
3885                  */
3886                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
3887         } else {
3888                 /*
3889                  * The only expected VM-instruction error is "VM entry with
3890                  * invalid control field(s)." Anything else indicates a
3891                  * problem with L0.  And we should never get here with a
3892                  * VMFail of any type if early consistency checks are enabled.
3893                  */
3894                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3895                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3896                 WARN_ON_ONCE(nested_early_check);
3897         }
3898
3899         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3900
3901         /* Update any VMCS fields that might have changed while L2 ran */
3902         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3903         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3904         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3905
3906         if (kvm_has_tsc_control)
3907                 decache_tsc_multiplier(vmx);
3908
3909         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3910                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
3911                 vmx_set_virtual_apic_mode(vcpu);
3912         } else if (!nested_cpu_has_ept(vmcs12) &&
3913                    nested_cpu_has2(vmcs12,
3914                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3915                 vmx_flush_tlb(vcpu, true);
3916         }
3917
3918         /* This is needed for same reason as it was needed in prepare_vmcs02 */
3919         vmx->host_rsp = 0;
3920
3921         /* Unpin physical memory we referred to in vmcs02 */
3922         if (vmx->nested.apic_access_page) {
3923                 kvm_release_page_dirty(vmx->nested.apic_access_page);
3924                 vmx->nested.apic_access_page = NULL;
3925         }
3926         if (vmx->nested.virtual_apic_page) {
3927                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
3928                 vmx->nested.virtual_apic_page = NULL;
3929         }
3930         if (vmx->nested.pi_desc_page) {
3931                 kunmap(vmx->nested.pi_desc_page);
3932                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
3933                 vmx->nested.pi_desc_page = NULL;
3934                 vmx->nested.pi_desc = NULL;
3935         }
3936
3937         /*
3938          * We are now running in L2, mmu_notifier will force to reload the
3939          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3940          */
3941         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3942
3943         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3944                 vmx->nested.need_vmcs12_sync = true;
3945
3946         /* in case we halted in L2 */
3947         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3948
3949         if (likely(!vmx->fail)) {
3950                 /*
3951                  * TODO: SDM says that with acknowledge interrupt on
3952                  * exit, bit 31 of the VM-exit interrupt information
3953                  * (valid interrupt) is always set to 1 on
3954                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3955                  * need kvm_cpu_has_interrupt().  See the commit
3956                  * message for details.
3957                  */
3958                 if (nested_exit_intr_ack_set(vcpu) &&
3959                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3960                     kvm_cpu_has_interrupt(vcpu)) {
3961                         int irq = kvm_cpu_get_interrupt(vcpu);
3962                         WARN_ON(irq < 0);
3963                         vmcs12->vm_exit_intr_info = irq |
3964                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3965                 }
3966
3967                 if (exit_reason != -1)
3968                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3969                                                        vmcs12->exit_qualification,
3970                                                        vmcs12->idt_vectoring_info_field,
3971                                                        vmcs12->vm_exit_intr_info,
3972                                                        vmcs12->vm_exit_intr_error_code,
3973                                                        KVM_ISA_VMX);
3974
3975                 load_vmcs12_host_state(vcpu, vmcs12);
3976
3977                 return;
3978         }
3979
3980         /*
3981          * After an early L2 VM-entry failure, we're now back
3982          * in L1 which thinks it just finished a VMLAUNCH or
3983          * VMRESUME instruction, so we need to set the failure
3984          * flag and the VM-instruction error field of the VMCS
3985          * accordingly, and skip the emulated instruction.
3986          */
3987         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3988
3989         /*
3990          * Restore L1's host state to KVM's software model.  We're here
3991          * because a consistency check was caught by hardware, which
3992          * means some amount of guest state has been propagated to KVM's
3993          * model and needs to be unwound to the host's state.
3994          */
3995         nested_vmx_restore_host_state(vcpu);
3996
3997         vmx->fail = 0;
3998 }
3999
4000 /*
4001  * Decode the memory-address operand of a vmx instruction, as recorded on an
4002  * exit caused by such an instruction (run by a guest hypervisor).
4003  * On success, returns 0. When the operand is invalid, returns 1 and throws
4004  * #UD or #GP.
4005  */
4006 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4007                         u32 vmx_instruction_info, bool wr, gva_t *ret)
4008 {
4009         gva_t off;
4010         bool exn;
4011         struct kvm_segment s;
4012
4013         /*
4014          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4015          * Execution", on an exit, vmx_instruction_info holds most of the
4016          * addressing components of the operand. Only the displacement part
4017          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4018          * For how an actual address is calculated from all these components,
4019          * refer to Vol. 1, "Operand Addressing".
4020          */
4021         int  scaling = vmx_instruction_info & 3;
4022         int  addr_size = (vmx_instruction_info >> 7) & 7;
4023         bool is_reg = vmx_instruction_info & (1u << 10);
4024         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4025         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4026         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4027         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4028         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4029
4030         if (is_reg) {
4031                 kvm_queue_exception(vcpu, UD_VECTOR);
4032                 return 1;
4033         }
4034
4035         /* Addr = segment_base + offset */
4036         /* offset = base + [index * scale] + displacement */
4037         off = exit_qualification; /* holds the displacement */
4038         if (base_is_valid)
4039                 off += kvm_register_read(vcpu, base_reg);
4040         if (index_is_valid)
4041                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4042         vmx_get_segment(vcpu, &s, seg_reg);
4043         *ret = s.base + off;
4044
4045         if (addr_size == 1) /* 32 bit */
4046                 *ret &= 0xffffffff;
4047
4048         /* Checks for #GP/#SS exceptions. */
4049         exn = false;
4050         if (is_long_mode(vcpu)) {
4051                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4052                  * non-canonical form. This is the only check on the memory
4053                  * destination for long mode!
4054                  */
4055                 exn = is_noncanonical_address(*ret, vcpu);
4056         } else if (is_protmode(vcpu)) {
4057                 /* Protected mode: apply checks for segment validity in the
4058                  * following order:
4059                  * - segment type check (#GP(0) may be thrown)
4060                  * - usability check (#GP(0)/#SS(0))
4061                  * - limit check (#GP(0)/#SS(0))
4062                  */
4063                 if (wr)
4064                         /* #GP(0) if the destination operand is located in a
4065                          * read-only data segment or any code segment.
4066                          */
4067                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4068                 else
4069                         /* #GP(0) if the source operand is located in an
4070                          * execute-only code segment
4071                          */
4072                         exn = ((s.type & 0xa) == 8);
4073                 if (exn) {
4074                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4075                         return 1;
4076                 }
4077                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4078                  */
4079                 exn = (s.unusable != 0);
4080                 /* Protected mode: #GP(0)/#SS(0) if the memory
4081                  * operand is outside the segment limit.
4082                  */
4083                 exn = exn || (off + sizeof(u64) > s.limit);
4084         }
4085         if (exn) {
4086                 kvm_queue_exception_e(vcpu,
4087                                       seg_reg == VCPU_SREG_SS ?
4088                                                 SS_VECTOR : GP_VECTOR,
4089                                       0);
4090                 return 1;
4091         }
4092
4093         return 0;
4094 }
4095
4096 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4097 {
4098         gva_t gva;
4099         struct x86_exception e;
4100
4101         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4102                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4103                 return 1;
4104
4105         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4106                 kvm_inject_page_fault(vcpu, &e);
4107                 return 1;
4108         }
4109
4110         return 0;
4111 }
4112
4113 /*
4114  * Allocate a shadow VMCS and associate it with the currently loaded
4115  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4116  * VMCS is also VMCLEARed, so that it is ready for use.
4117  */
4118 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4119 {
4120         struct vcpu_vmx *vmx = to_vmx(vcpu);
4121         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4122
4123         /*
4124          * We should allocate a shadow vmcs for vmcs01 only when L1
4125          * executes VMXON and free it when L1 executes VMXOFF.
4126          * As it is invalid to execute VMXON twice, we shouldn't reach
4127          * here when vmcs01 already have an allocated shadow vmcs.
4128          */
4129         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4130
4131         if (!loaded_vmcs->shadow_vmcs) {
4132                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4133                 if (loaded_vmcs->shadow_vmcs)
4134                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4135         }
4136         return loaded_vmcs->shadow_vmcs;
4137 }
4138
4139 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4140 {
4141         struct vcpu_vmx *vmx = to_vmx(vcpu);
4142         int r;
4143
4144         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4145         if (r < 0)
4146                 goto out_vmcs02;
4147
4148         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4149         if (!vmx->nested.cached_vmcs12)
4150                 goto out_cached_vmcs12;
4151
4152         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4153         if (!vmx->nested.cached_shadow_vmcs12)
4154                 goto out_cached_shadow_vmcs12;
4155
4156         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4157                 goto out_shadow_vmcs;
4158
4159         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4160                      HRTIMER_MODE_REL_PINNED);
4161         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4162
4163         vmx->nested.vpid02 = allocate_vpid();
4164
4165         vmx->nested.vmcs02_initialized = false;
4166         vmx->nested.vmxon = true;
4167
4168         if (pt_mode == PT_MODE_HOST_GUEST) {
4169                 vmx->pt_desc.guest.ctl = 0;
4170                 pt_update_intercept_for_msr(vmx);
4171         }
4172
4173         return 0;
4174
4175 out_shadow_vmcs:
4176         kfree(vmx->nested.cached_shadow_vmcs12);
4177
4178 out_cached_shadow_vmcs12:
4179         kfree(vmx->nested.cached_vmcs12);
4180
4181 out_cached_vmcs12:
4182         free_loaded_vmcs(&vmx->nested.vmcs02);
4183
4184 out_vmcs02:
4185         return -ENOMEM;
4186 }
4187
4188 /*
4189  * Emulate the VMXON instruction.
4190  * Currently, we just remember that VMX is active, and do not save or even
4191  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4192  * do not currently need to store anything in that guest-allocated memory
4193  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4194  * argument is different from the VMXON pointer (which the spec says they do).
4195  */
4196 static int handle_vmon(struct kvm_vcpu *vcpu)
4197 {
4198         int ret;
4199         gpa_t vmptr;
4200         struct page *page;
4201         struct vcpu_vmx *vmx = to_vmx(vcpu);
4202         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4203                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4204
4205         /*
4206          * The Intel VMX Instruction Reference lists a bunch of bits that are
4207          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4208          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4209          * Otherwise, we should fail with #UD.  But most faulting conditions
4210          * have already been checked by hardware, prior to the VM-exit for
4211          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4212          * that bit set to 1 in non-root mode.
4213          */
4214         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4215                 kvm_queue_exception(vcpu, UD_VECTOR);
4216                 return 1;
4217         }
4218
4219         /* CPL=0 must be checked manually. */
4220         if (vmx_get_cpl(vcpu)) {
4221                 kvm_inject_gp(vcpu, 0);
4222                 return 1;
4223         }
4224
4225         if (vmx->nested.vmxon)
4226                 return nested_vmx_failValid(vcpu,
4227                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4228
4229         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4230                         != VMXON_NEEDED_FEATURES) {
4231                 kvm_inject_gp(vcpu, 0);
4232                 return 1;
4233         }
4234
4235         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4236                 return 1;
4237
4238         /*
4239          * SDM 3: 24.11.5
4240          * The first 4 bytes of VMXON region contain the supported
4241          * VMCS revision identifier
4242          *
4243          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4244          * which replaces physical address width with 32
4245          */
4246         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4247                 return nested_vmx_failInvalid(vcpu);
4248
4249         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4250         if (is_error_page(page))
4251                 return nested_vmx_failInvalid(vcpu);
4252
4253         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
4254                 kunmap(page);
4255                 kvm_release_page_clean(page);
4256                 return nested_vmx_failInvalid(vcpu);
4257         }
4258         kunmap(page);
4259         kvm_release_page_clean(page);
4260
4261         vmx->nested.vmxon_ptr = vmptr;
4262         ret = enter_vmx_operation(vcpu);
4263         if (ret)
4264                 return ret;
4265
4266         return nested_vmx_succeed(vcpu);
4267 }
4268
4269 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4270 {
4271         struct vcpu_vmx *vmx = to_vmx(vcpu);
4272
4273         if (vmx->nested.current_vmptr == -1ull)
4274                 return;
4275
4276         if (enable_shadow_vmcs) {
4277                 /* copy to memory all shadowed fields in case
4278                    they were modified */
4279                 copy_shadow_to_vmcs12(vmx);
4280                 vmx->nested.need_vmcs12_sync = false;
4281                 vmx_disable_shadow_vmcs(vmx);
4282         }
4283         vmx->nested.posted_intr_nv = -1;
4284
4285         /* Flush VMCS12 to guest memory */
4286         kvm_vcpu_write_guest_page(vcpu,
4287                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4288                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4289
4290         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4291
4292         vmx->nested.current_vmptr = -1ull;
4293 }
4294
4295 /* Emulate the VMXOFF instruction */
4296 static int handle_vmoff(struct kvm_vcpu *vcpu)
4297 {
4298         if (!nested_vmx_check_permission(vcpu))
4299                 return 1;
4300         free_nested(vcpu);
4301         return nested_vmx_succeed(vcpu);
4302 }
4303
4304 /* Emulate the VMCLEAR instruction */
4305 static int handle_vmclear(struct kvm_vcpu *vcpu)
4306 {
4307         struct vcpu_vmx *vmx = to_vmx(vcpu);
4308         u32 zero = 0;
4309         gpa_t vmptr;
4310
4311         if (!nested_vmx_check_permission(vcpu))
4312                 return 1;
4313
4314         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4315                 return 1;
4316
4317         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4318                 return nested_vmx_failValid(vcpu,
4319                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4320
4321         if (vmptr == vmx->nested.vmxon_ptr)
4322                 return nested_vmx_failValid(vcpu,
4323                         VMXERR_VMCLEAR_VMXON_POINTER);
4324
4325         if (vmx->nested.hv_evmcs_page) {
4326                 if (vmptr == vmx->nested.hv_evmcs_vmptr)
4327                         nested_release_evmcs(vcpu);
4328         } else {
4329                 if (vmptr == vmx->nested.current_vmptr)
4330                         nested_release_vmcs12(vcpu);
4331
4332                 kvm_vcpu_write_guest(vcpu,
4333                                      vmptr + offsetof(struct vmcs12,
4334                                                       launch_state),
4335                                      &zero, sizeof(zero));
4336         }
4337
4338         return nested_vmx_succeed(vcpu);
4339 }
4340
4341 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4342
4343 /* Emulate the VMLAUNCH instruction */
4344 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4345 {
4346         return nested_vmx_run(vcpu, true);
4347 }
4348
4349 /* Emulate the VMRESUME instruction */
4350 static int handle_vmresume(struct kvm_vcpu *vcpu)
4351 {
4352
4353         return nested_vmx_run(vcpu, false);
4354 }
4355
4356 static int handle_vmread(struct kvm_vcpu *vcpu)
4357 {
4358         unsigned long field;
4359         u64 field_value;
4360         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4361         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4362         gva_t gva = 0;
4363         struct vmcs12 *vmcs12;
4364
4365         if (!nested_vmx_check_permission(vcpu))
4366                 return 1;
4367
4368         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4369                 return nested_vmx_failInvalid(vcpu);
4370
4371         if (!is_guest_mode(vcpu))
4372                 vmcs12 = get_vmcs12(vcpu);
4373         else {
4374                 /*
4375                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4376                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4377                  */
4378                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4379                         return nested_vmx_failInvalid(vcpu);
4380                 vmcs12 = get_shadow_vmcs12(vcpu);
4381         }
4382
4383         /* Decode instruction info and find the field to read */
4384         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4385         /* Read the field, zero-extended to a u64 field_value */
4386         if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4387                 return nested_vmx_failValid(vcpu,
4388                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4389
4390         /*
4391          * Now copy part of this value to register or memory, as requested.
4392          * Note that the number of bits actually copied is 32 or 64 depending
4393          * on the guest's mode (32 or 64 bit), not on the given field's length.
4394          */
4395         if (vmx_instruction_info & (1u << 10)) {
4396                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4397                         field_value);
4398         } else {
4399                 if (get_vmx_mem_address(vcpu, exit_qualification,
4400                                 vmx_instruction_info, true, &gva))
4401                         return 1;
4402                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4403                 kvm_write_guest_virt_system(vcpu, gva, &field_value,
4404                                             (is_long_mode(vcpu) ? 8 : 4), NULL);
4405         }
4406
4407         return nested_vmx_succeed(vcpu);
4408 }
4409
4410
4411 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4412 {
4413         unsigned long field;
4414         gva_t gva;
4415         struct vcpu_vmx *vmx = to_vmx(vcpu);
4416         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4417         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4418
4419         /* The value to write might be 32 or 64 bits, depending on L1's long
4420          * mode, and eventually we need to write that into a field of several
4421          * possible lengths. The code below first zero-extends the value to 64
4422          * bit (field_value), and then copies only the appropriate number of
4423          * bits into the vmcs12 field.
4424          */
4425         u64 field_value = 0;
4426         struct x86_exception e;
4427         struct vmcs12 *vmcs12;
4428
4429         if (!nested_vmx_check_permission(vcpu))
4430                 return 1;
4431
4432         if (vmx->nested.current_vmptr == -1ull)
4433                 return nested_vmx_failInvalid(vcpu);
4434
4435         if (vmx_instruction_info & (1u << 10))
4436                 field_value = kvm_register_readl(vcpu,
4437                         (((vmx_instruction_info) >> 3) & 0xf));
4438         else {
4439                 if (get_vmx_mem_address(vcpu, exit_qualification,
4440                                 vmx_instruction_info, false, &gva))
4441                         return 1;
4442                 if (kvm_read_guest_virt(vcpu, gva, &field_value,
4443                                         (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4444                         kvm_inject_page_fault(vcpu, &e);
4445                         return 1;
4446                 }
4447         }
4448
4449
4450         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4451         /*
4452          * If the vCPU supports "VMWRITE to any supported field in the
4453          * VMCS," then the "read-only" fields are actually read/write.
4454          */
4455         if (vmcs_field_readonly(field) &&
4456             !nested_cpu_has_vmwrite_any_field(vcpu))
4457                 return nested_vmx_failValid(vcpu,
4458                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4459
4460         if (!is_guest_mode(vcpu))
4461                 vmcs12 = get_vmcs12(vcpu);
4462         else {
4463                 /*
4464                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4465                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4466                  */
4467                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4468                         return nested_vmx_failInvalid(vcpu);
4469                 vmcs12 = get_shadow_vmcs12(vcpu);
4470         }
4471
4472         if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4473                 return nested_vmx_failValid(vcpu,
4474                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4475
4476         /*
4477          * Do not track vmcs12 dirty-state if in guest-mode
4478          * as we actually dirty shadow vmcs12 instead of vmcs12.
4479          */
4480         if (!is_guest_mode(vcpu)) {
4481                 switch (field) {
4482 #define SHADOW_FIELD_RW(x) case x:
4483 #include "vmcs_shadow_fields.h"
4484                         /*
4485                          * The fields that can be updated by L1 without a vmexit are
4486                          * always updated in the vmcs02, the others go down the slow
4487                          * path of prepare_vmcs02.
4488                          */
4489                         break;
4490                 default:
4491                         vmx->nested.dirty_vmcs12 = true;
4492                         break;
4493                 }
4494         }
4495
4496         return nested_vmx_succeed(vcpu);
4497 }
4498
4499 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4500 {
4501         vmx->nested.current_vmptr = vmptr;
4502         if (enable_shadow_vmcs) {
4503                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4504                               SECONDARY_EXEC_SHADOW_VMCS);
4505                 vmcs_write64(VMCS_LINK_POINTER,
4506                              __pa(vmx->vmcs01.shadow_vmcs));
4507                 vmx->nested.need_vmcs12_sync = true;
4508         }
4509         vmx->nested.dirty_vmcs12 = true;
4510 }
4511
4512 /* Emulate the VMPTRLD instruction */
4513 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4514 {
4515         struct vcpu_vmx *vmx = to_vmx(vcpu);
4516         gpa_t vmptr;
4517
4518         if (!nested_vmx_check_permission(vcpu))
4519                 return 1;
4520
4521         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4522                 return 1;
4523
4524         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4525                 return nested_vmx_failValid(vcpu,
4526                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4527
4528         if (vmptr == vmx->nested.vmxon_ptr)
4529                 return nested_vmx_failValid(vcpu,
4530                         VMXERR_VMPTRLD_VMXON_POINTER);
4531
4532         /* Forbid normal VMPTRLD if Enlightened version was used */
4533         if (vmx->nested.hv_evmcs)
4534                 return 1;
4535
4536         if (vmx->nested.current_vmptr != vmptr) {
4537                 struct vmcs12 *new_vmcs12;
4538                 struct page *page;
4539
4540                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4541                 if (is_error_page(page)) {
4542                         /*
4543                          * Reads from an unbacked page return all 1s,
4544                          * which means that the 32 bits located at the
4545                          * given physical address won't match the required
4546                          * VMCS12_REVISION identifier.
4547                          */
4548                         return nested_vmx_failValid(vcpu,
4549                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4550                 }
4551                 new_vmcs12 = kmap(page);
4552                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4553                     (new_vmcs12->hdr.shadow_vmcs &&
4554                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4555                         kunmap(page);
4556                         kvm_release_page_clean(page);
4557                         return nested_vmx_failValid(vcpu,
4558                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4559                 }
4560
4561                 nested_release_vmcs12(vcpu);
4562
4563                 /*
4564                  * Load VMCS12 from guest memory since it is not already
4565                  * cached.
4566                  */
4567                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4568                 kunmap(page);
4569                 kvm_release_page_clean(page);
4570
4571                 set_current_vmptr(vmx, vmptr);
4572         }
4573
4574         return nested_vmx_succeed(vcpu);
4575 }
4576
4577 /* Emulate the VMPTRST instruction */
4578 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4579 {
4580         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4581         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4582         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4583         struct x86_exception e;
4584         gva_t gva;
4585
4586         if (!nested_vmx_check_permission(vcpu))
4587                 return 1;
4588
4589         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4590                 return 1;
4591
4592         if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4593                 return 1;
4594         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4595         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4596                                         sizeof(gpa_t), &e)) {
4597                 kvm_inject_page_fault(vcpu, &e);
4598                 return 1;
4599         }
4600         return nested_vmx_succeed(vcpu);
4601 }
4602
4603 /* Emulate the INVEPT instruction */
4604 static int handle_invept(struct kvm_vcpu *vcpu)
4605 {
4606         struct vcpu_vmx *vmx = to_vmx(vcpu);
4607         u32 vmx_instruction_info, types;
4608         unsigned long type;
4609         gva_t gva;
4610         struct x86_exception e;
4611         struct {
4612                 u64 eptp, gpa;
4613         } operand;
4614
4615         if (!(vmx->nested.msrs.secondary_ctls_high &
4616               SECONDARY_EXEC_ENABLE_EPT) ||
4617             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4618                 kvm_queue_exception(vcpu, UD_VECTOR);
4619                 return 1;
4620         }
4621
4622         if (!nested_vmx_check_permission(vcpu))
4623                 return 1;
4624
4625         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4626         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4627
4628         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4629
4630         if (type >= 32 || !(types & (1 << type)))
4631                 return nested_vmx_failValid(vcpu,
4632                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4633
4634         /* According to the Intel VMX instruction reference, the memory
4635          * operand is read even if it isn't needed (e.g., for type==global)
4636          */
4637         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4638                         vmx_instruction_info, false, &gva))
4639                 return 1;
4640         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4641                 kvm_inject_page_fault(vcpu, &e);
4642                 return 1;
4643         }
4644
4645         switch (type) {
4646         case VMX_EPT_EXTENT_GLOBAL:
4647         /*
4648          * TODO: track mappings and invalidate
4649          * single context requests appropriately
4650          */
4651         case VMX_EPT_EXTENT_CONTEXT:
4652                 kvm_mmu_sync_roots(vcpu);
4653                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4654                 break;
4655         default:
4656                 BUG_ON(1);
4657                 break;
4658         }
4659
4660         return nested_vmx_succeed(vcpu);
4661 }
4662
4663 static int handle_invvpid(struct kvm_vcpu *vcpu)
4664 {
4665         struct vcpu_vmx *vmx = to_vmx(vcpu);
4666         u32 vmx_instruction_info;
4667         unsigned long type, types;
4668         gva_t gva;
4669         struct x86_exception e;
4670         struct {
4671                 u64 vpid;
4672                 u64 gla;
4673         } operand;
4674         u16 vpid02;
4675
4676         if (!(vmx->nested.msrs.secondary_ctls_high &
4677               SECONDARY_EXEC_ENABLE_VPID) ||
4678                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4679                 kvm_queue_exception(vcpu, UD_VECTOR);
4680                 return 1;
4681         }
4682
4683         if (!nested_vmx_check_permission(vcpu))
4684                 return 1;
4685
4686         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4687         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4688
4689         types = (vmx->nested.msrs.vpid_caps &
4690                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4691
4692         if (type >= 32 || !(types & (1 << type)))
4693                 return nested_vmx_failValid(vcpu,
4694                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4695
4696         /* according to the intel vmx instruction reference, the memory
4697          * operand is read even if it isn't needed (e.g., for type==global)
4698          */
4699         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4700                         vmx_instruction_info, false, &gva))
4701                 return 1;
4702         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4703                 kvm_inject_page_fault(vcpu, &e);
4704                 return 1;
4705         }
4706         if (operand.vpid >> 16)
4707                 return nested_vmx_failValid(vcpu,
4708                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4709
4710         vpid02 = nested_get_vpid02(vcpu);
4711         switch (type) {
4712         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4713                 if (!operand.vpid ||
4714                     is_noncanonical_address(operand.gla, vcpu))
4715                         return nested_vmx_failValid(vcpu,
4716                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4717                 if (cpu_has_vmx_invvpid_individual_addr()) {
4718                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4719                                 vpid02, operand.gla);
4720                 } else
4721                         __vmx_flush_tlb(vcpu, vpid02, false);
4722                 break;
4723         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4724         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4725                 if (!operand.vpid)
4726                         return nested_vmx_failValid(vcpu,
4727                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4728                 __vmx_flush_tlb(vcpu, vpid02, false);
4729                 break;
4730         case VMX_VPID_EXTENT_ALL_CONTEXT:
4731                 __vmx_flush_tlb(vcpu, vpid02, false);
4732                 break;
4733         default:
4734                 WARN_ON_ONCE(1);
4735                 return kvm_skip_emulated_instruction(vcpu);
4736         }
4737
4738         return nested_vmx_succeed(vcpu);
4739 }
4740
4741 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4742                                      struct vmcs12 *vmcs12)
4743 {
4744         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
4745         u64 address;
4746         bool accessed_dirty;
4747         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4748
4749         if (!nested_cpu_has_eptp_switching(vmcs12) ||
4750             !nested_cpu_has_ept(vmcs12))
4751                 return 1;
4752
4753         if (index >= VMFUNC_EPTP_ENTRIES)
4754                 return 1;
4755
4756
4757         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4758                                      &address, index * 8, 8))
4759                 return 1;
4760
4761         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4762
4763         /*
4764          * If the (L2) guest does a vmfunc to the currently
4765          * active ept pointer, we don't have to do anything else
4766          */
4767         if (vmcs12->ept_pointer != address) {
4768                 if (!valid_ept_address(vcpu, address))
4769                         return 1;
4770
4771                 kvm_mmu_unload(vcpu);
4772                 mmu->ept_ad = accessed_dirty;
4773                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4774                 vmcs12->ept_pointer = address;
4775                 /*
4776                  * TODO: Check what's the correct approach in case
4777                  * mmu reload fails. Currently, we just let the next
4778                  * reload potentially fail
4779                  */
4780                 kvm_mmu_reload(vcpu);
4781         }
4782
4783         return 0;
4784 }
4785
4786 static int handle_vmfunc(struct kvm_vcpu *vcpu)
4787 {
4788         struct vcpu_vmx *vmx = to_vmx(vcpu);
4789         struct vmcs12 *vmcs12;
4790         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
4791
4792         /*
4793          * VMFUNC is only supported for nested guests, but we always enable the
4794          * secondary control for simplicity; for non-nested mode, fake that we
4795          * didn't by injecting #UD.
4796          */
4797         if (!is_guest_mode(vcpu)) {
4798                 kvm_queue_exception(vcpu, UD_VECTOR);
4799                 return 1;
4800         }
4801
4802         vmcs12 = get_vmcs12(vcpu);
4803         if ((vmcs12->vm_function_control & (1 << function)) == 0)
4804                 goto fail;
4805
4806         switch (function) {
4807         case 0:
4808                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
4809                         goto fail;
4810                 break;
4811         default:
4812                 goto fail;
4813         }
4814         return kvm_skip_emulated_instruction(vcpu);
4815
4816 fail:
4817         nested_vmx_vmexit(vcpu, vmx->exit_reason,
4818                           vmcs_read32(VM_EXIT_INTR_INFO),
4819                           vmcs_readl(EXIT_QUALIFICATION));
4820         return 1;
4821 }
4822
4823
4824 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4825                                        struct vmcs12 *vmcs12)
4826 {
4827         unsigned long exit_qualification;
4828         gpa_t bitmap, last_bitmap;
4829         unsigned int port;
4830         int size;
4831         u8 b;
4832
4833         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4834                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4835
4836         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4837
4838         port = exit_qualification >> 16;
4839         size = (exit_qualification & 7) + 1;
4840
4841         last_bitmap = (gpa_t)-1;
4842         b = -1;
4843
4844         while (size > 0) {
4845                 if (port < 0x8000)
4846                         bitmap = vmcs12->io_bitmap_a;
4847                 else if (port < 0x10000)
4848                         bitmap = vmcs12->io_bitmap_b;
4849                 else
4850                         return true;
4851                 bitmap += (port & 0x7fff) / 8;
4852
4853                 if (last_bitmap != bitmap)
4854                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4855                                 return true;
4856                 if (b & (1 << (port & 7)))
4857                         return true;
4858
4859                 port++;
4860                 size--;
4861                 last_bitmap = bitmap;
4862         }
4863
4864         return false;
4865 }
4866
4867 /*
4868  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4869  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4870  * disinterest in the current event (read or write a specific MSR) by using an
4871  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4872  */
4873 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4874         struct vmcs12 *vmcs12, u32 exit_reason)
4875 {
4876         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
4877         gpa_t bitmap;
4878
4879         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4880                 return true;
4881
4882         /*
4883          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4884          * for the four combinations of read/write and low/high MSR numbers.
4885          * First we need to figure out which of the four to use:
4886          */
4887         bitmap = vmcs12->msr_bitmap;
4888         if (exit_reason == EXIT_REASON_MSR_WRITE)
4889                 bitmap += 2048;
4890         if (msr_index >= 0xc0000000) {
4891                 msr_index -= 0xc0000000;
4892                 bitmap += 1024;
4893         }
4894
4895         /* Then read the msr_index'th bit from this bitmap: */
4896         if (msr_index < 1024*8) {
4897                 unsigned char b;
4898                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4899                         return true;
4900                 return 1 & (b >> (msr_index & 7));
4901         } else
4902                 return true; /* let L1 handle the wrong parameter */
4903 }
4904
4905 /*
4906  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4907  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4908  * intercept (via guest_host_mask etc.) the current event.
4909  */
4910 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4911         struct vmcs12 *vmcs12)
4912 {
4913         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4914         int cr = exit_qualification & 15;
4915         int reg;
4916         unsigned long val;
4917
4918         switch ((exit_qualification >> 4) & 3) {
4919         case 0: /* mov to cr */
4920                 reg = (exit_qualification >> 8) & 15;
4921                 val = kvm_register_readl(vcpu, reg);
4922                 switch (cr) {
4923                 case 0:
4924                         if (vmcs12->cr0_guest_host_mask &
4925                             (val ^ vmcs12->cr0_read_shadow))
4926                                 return true;
4927                         break;
4928                 case 3:
4929                         if ((vmcs12->cr3_target_count >= 1 &&
4930                                         vmcs12->cr3_target_value0 == val) ||
4931                                 (vmcs12->cr3_target_count >= 2 &&
4932                                         vmcs12->cr3_target_value1 == val) ||
4933                                 (vmcs12->cr3_target_count >= 3 &&
4934                                         vmcs12->cr3_target_value2 == val) ||
4935                                 (vmcs12->cr3_target_count >= 4 &&
4936                                         vmcs12->cr3_target_value3 == val))
4937                                 return false;
4938                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4939                                 return true;
4940                         break;
4941                 case 4:
4942                         if (vmcs12->cr4_guest_host_mask &
4943                             (vmcs12->cr4_read_shadow ^ val))
4944                                 return true;
4945                         break;
4946                 case 8:
4947                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4948                                 return true;
4949                         break;
4950                 }
4951                 break;
4952         case 2: /* clts */
4953                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4954                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
4955                         return true;
4956                 break;
4957         case 1: /* mov from cr */
4958                 switch (cr) {
4959                 case 3:
4960                         if (vmcs12->cpu_based_vm_exec_control &
4961                             CPU_BASED_CR3_STORE_EXITING)
4962                                 return true;
4963                         break;
4964                 case 8:
4965                         if (vmcs12->cpu_based_vm_exec_control &
4966                             CPU_BASED_CR8_STORE_EXITING)
4967                                 return true;
4968                         break;
4969                 }
4970                 break;
4971         case 3: /* lmsw */
4972                 /*
4973                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
4974                  * cr0. Other attempted changes are ignored, with no exit.
4975                  */
4976                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4977                 if (vmcs12->cr0_guest_host_mask & 0xe &
4978                     (val ^ vmcs12->cr0_read_shadow))
4979                         return true;
4980                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
4981                     !(vmcs12->cr0_read_shadow & 0x1) &&
4982                     (val & 0x1))
4983                         return true;
4984                 break;
4985         }
4986         return false;
4987 }
4988
4989 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
4990         struct vmcs12 *vmcs12, gpa_t bitmap)
4991 {
4992         u32 vmx_instruction_info;
4993         unsigned long field;
4994         u8 b;
4995
4996         if (!nested_cpu_has_shadow_vmcs(vmcs12))
4997                 return true;
4998
4999         /* Decode instruction info and find the field to access */
5000         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5001         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5002
5003         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5004         if (field >> 15)
5005                 return true;
5006
5007         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5008                 return true;
5009
5010         return 1 & (b >> (field & 7));
5011 }
5012
5013 /*
5014  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5015  * should handle it ourselves in L0 (and then continue L2). Only call this
5016  * when in is_guest_mode (L2).
5017  */
5018 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5019 {
5020         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5021         struct vcpu_vmx *vmx = to_vmx(vcpu);
5022         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5023
5024         if (vmx->nested.nested_run_pending)
5025                 return false;
5026
5027         if (unlikely(vmx->fail)) {
5028                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5029                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5030                 return true;
5031         }
5032
5033         /*
5034          * The host physical addresses of some pages of guest memory
5035          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5036          * Page). The CPU may write to these pages via their host
5037          * physical address while L2 is running, bypassing any
5038          * address-translation-based dirty tracking (e.g. EPT write
5039          * protection).
5040          *
5041          * Mark them dirty on every exit from L2 to prevent them from
5042          * getting out of sync with dirty tracking.
5043          */
5044         nested_mark_vmcs12_pages_dirty(vcpu);
5045
5046         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5047                                 vmcs_readl(EXIT_QUALIFICATION),
5048                                 vmx->idt_vectoring_info,
5049                                 intr_info,
5050                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5051                                 KVM_ISA_VMX);
5052
5053         switch (exit_reason) {
5054         case EXIT_REASON_EXCEPTION_NMI:
5055                 if (is_nmi(intr_info))
5056                         return false;
5057                 else if (is_page_fault(intr_info))
5058                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5059                 else if (is_debug(intr_info) &&
5060                          vcpu->guest_debug &
5061                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5062                         return false;
5063                 else if (is_breakpoint(intr_info) &&
5064                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5065                         return false;
5066                 return vmcs12->exception_bitmap &
5067                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5068         case EXIT_REASON_EXTERNAL_INTERRUPT:
5069                 return false;
5070         case EXIT_REASON_TRIPLE_FAULT:
5071                 return true;
5072         case EXIT_REASON_PENDING_INTERRUPT:
5073                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5074         case EXIT_REASON_NMI_WINDOW:
5075                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5076         case EXIT_REASON_TASK_SWITCH:
5077                 return true;
5078         case EXIT_REASON_CPUID:
5079                 return true;
5080         case EXIT_REASON_HLT:
5081                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5082         case EXIT_REASON_INVD:
5083                 return true;
5084         case EXIT_REASON_INVLPG:
5085                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5086         case EXIT_REASON_RDPMC:
5087                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5088         case EXIT_REASON_RDRAND:
5089                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5090         case EXIT_REASON_RDSEED:
5091                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5092         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5093                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5094         case EXIT_REASON_VMREAD:
5095                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5096                         vmcs12->vmread_bitmap);
5097         case EXIT_REASON_VMWRITE:
5098                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5099                         vmcs12->vmwrite_bitmap);
5100         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5101         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5102         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5103         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5104         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5105                 /*
5106                  * VMX instructions trap unconditionally. This allows L1 to
5107                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5108                  */
5109                 return true;
5110         case EXIT_REASON_CR_ACCESS:
5111                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5112         case EXIT_REASON_DR_ACCESS:
5113                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5114         case EXIT_REASON_IO_INSTRUCTION:
5115                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5116         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5117                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5118         case EXIT_REASON_MSR_READ:
5119         case EXIT_REASON_MSR_WRITE:
5120                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5121         case EXIT_REASON_INVALID_STATE:
5122                 return true;
5123         case EXIT_REASON_MWAIT_INSTRUCTION:
5124                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5125         case EXIT_REASON_MONITOR_TRAP_FLAG:
5126                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5127         case EXIT_REASON_MONITOR_INSTRUCTION:
5128                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5129         case EXIT_REASON_PAUSE_INSTRUCTION:
5130                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5131                         nested_cpu_has2(vmcs12,
5132                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5133         case EXIT_REASON_MCE_DURING_VMENTRY:
5134                 return false;
5135         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5136                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5137         case EXIT_REASON_APIC_ACCESS:
5138         case EXIT_REASON_APIC_WRITE:
5139         case EXIT_REASON_EOI_INDUCED:
5140                 /*
5141                  * The controls for "virtualize APIC accesses," "APIC-
5142                  * register virtualization," and "virtual-interrupt
5143                  * delivery" only come from vmcs12.
5144                  */
5145                 return true;
5146         case EXIT_REASON_EPT_VIOLATION:
5147                 /*
5148                  * L0 always deals with the EPT violation. If nested EPT is
5149                  * used, and the nested mmu code discovers that the address is
5150                  * missing in the guest EPT table (EPT12), the EPT violation
5151                  * will be injected with nested_ept_inject_page_fault()
5152                  */
5153                 return false;
5154         case EXIT_REASON_EPT_MISCONFIG:
5155                 /*
5156                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5157                  * table (shadow on EPT) or a merged EPT table that L0 built
5158                  * (EPT on EPT). So any problems with the structure of the
5159                  * table is L0's fault.
5160                  */
5161                 return false;
5162         case EXIT_REASON_INVPCID:
5163                 return
5164                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5165                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5166         case EXIT_REASON_WBINVD:
5167                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5168         case EXIT_REASON_XSETBV:
5169                 return true;
5170         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5171                 /*
5172                  * This should never happen, since it is not possible to
5173                  * set XSS to a non-zero value---neither in L1 nor in L2.
5174                  * If if it were, XSS would have to be checked against
5175                  * the XSS exit bitmap in vmcs12.
5176                  */
5177                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5178         case EXIT_REASON_PREEMPTION_TIMER:
5179                 return false;
5180         case EXIT_REASON_PML_FULL:
5181                 /* We emulate PML support to L1. */
5182                 return false;
5183         case EXIT_REASON_VMFUNC:
5184                 /* VM functions are emulated through L2->L0 vmexits. */
5185                 return false;
5186         case EXIT_REASON_ENCLS:
5187                 /* SGX is never exposed to L1 */
5188                 return false;
5189         default:
5190                 return true;
5191         }
5192 }
5193
5194
5195 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5196                                 struct kvm_nested_state __user *user_kvm_nested_state,
5197                                 u32 user_data_size)
5198 {
5199         struct vcpu_vmx *vmx;
5200         struct vmcs12 *vmcs12;
5201         struct kvm_nested_state kvm_state = {
5202                 .flags = 0,
5203                 .format = 0,
5204                 .size = sizeof(kvm_state),
5205                 .vmx.vmxon_pa = -1ull,
5206                 .vmx.vmcs_pa = -1ull,
5207         };
5208
5209         if (!vcpu)
5210                 return kvm_state.size + 2 * VMCS12_SIZE;
5211
5212         vmx = to_vmx(vcpu);
5213         vmcs12 = get_vmcs12(vcpu);
5214
5215         if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5216                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5217
5218         if (nested_vmx_allowed(vcpu) &&
5219             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5220                 kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5221                 kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
5222
5223                 if (vmx_has_valid_vmcs12(vcpu)) {
5224                         kvm_state.size += VMCS12_SIZE;
5225
5226                         if (is_guest_mode(vcpu) &&
5227                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5228                             vmcs12->vmcs_link_pointer != -1ull)
5229                                 kvm_state.size += VMCS12_SIZE;
5230                 }
5231
5232                 if (vmx->nested.smm.vmxon)
5233                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5234
5235                 if (vmx->nested.smm.guest_mode)
5236                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5237
5238                 if (is_guest_mode(vcpu)) {
5239                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5240
5241                         if (vmx->nested.nested_run_pending)
5242                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5243                 }
5244         }
5245
5246         if (user_data_size < kvm_state.size)
5247                 goto out;
5248
5249         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5250                 return -EFAULT;
5251
5252         if (!vmx_has_valid_vmcs12(vcpu))
5253                 goto out;
5254
5255         /*
5256          * When running L2, the authoritative vmcs12 state is in the
5257          * vmcs02. When running L1, the authoritative vmcs12 state is
5258          * in the shadow or enlightened vmcs linked to vmcs01, unless
5259          * need_vmcs12_sync is set, in which case, the authoritative
5260          * vmcs12 state is in the vmcs12 already.
5261          */
5262         if (is_guest_mode(vcpu)) {
5263                 sync_vmcs12(vcpu, vmcs12);
5264         } else if (!vmx->nested.need_vmcs12_sync) {
5265                 if (vmx->nested.hv_evmcs)
5266                         copy_enlightened_to_vmcs12(vmx);
5267                 else if (enable_shadow_vmcs)
5268                         copy_shadow_to_vmcs12(vmx);
5269         }
5270
5271         /*
5272          * Copy over the full allocated size of vmcs12 rather than just the size
5273          * of the struct.
5274          */
5275         if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
5276                 return -EFAULT;
5277
5278         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5279             vmcs12->vmcs_link_pointer != -1ull) {
5280                 if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
5281                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5282                         return -EFAULT;
5283         }
5284
5285 out:
5286         return kvm_state.size;
5287 }
5288
5289 /*
5290  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5291  */
5292 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5293 {
5294         if (is_guest_mode(vcpu)) {
5295                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5296                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5297         }
5298         free_nested(vcpu);
5299 }
5300
5301 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5302                                 struct kvm_nested_state __user *user_kvm_nested_state,
5303                                 struct kvm_nested_state *kvm_state)
5304 {
5305         struct vcpu_vmx *vmx = to_vmx(vcpu);
5306         struct vmcs12 *vmcs12;
5307         u32 exit_qual;
5308         int ret;
5309
5310         if (kvm_state->format != 0)
5311                 return -EINVAL;
5312
5313         if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5314                 nested_enable_evmcs(vcpu, NULL);
5315
5316         if (!nested_vmx_allowed(vcpu))
5317                 return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5318
5319         if (kvm_state->vmx.vmxon_pa == -1ull) {
5320                 if (kvm_state->vmx.smm.flags)
5321                         return -EINVAL;
5322
5323                 if (kvm_state->vmx.vmcs_pa != -1ull)
5324                         return -EINVAL;
5325
5326                 vmx_leave_nested(vcpu);
5327                 return 0;
5328         }
5329
5330         if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
5331                 return -EINVAL;
5332
5333         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5334             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5335                 return -EINVAL;
5336
5337         if (kvm_state->vmx.smm.flags &
5338             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5339                 return -EINVAL;
5340
5341         /*
5342          * SMM temporarily disables VMX, so we cannot be in guest mode,
5343          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5344          * must be zero.
5345          */
5346         if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
5347                 return -EINVAL;
5348
5349         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5350             !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5351                 return -EINVAL;
5352
5353         vmx_leave_nested(vcpu);
5354         if (kvm_state->vmx.vmxon_pa == -1ull)
5355                 return 0;
5356
5357         vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
5358         ret = enter_vmx_operation(vcpu);
5359         if (ret)
5360                 return ret;
5361
5362         /* Empty 'VMXON' state is permitted */
5363         if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
5364                 return 0;
5365
5366         if (kvm_state->vmx.vmcs_pa != -1ull) {
5367                 if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
5368                     !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
5369                         return -EINVAL;
5370
5371                 set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
5372         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5373                 /*
5374                  * Sync eVMCS upon entry as we may not have
5375                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5376                  */
5377                 vmx->nested.need_vmcs12_sync = true;
5378         } else {
5379                 return -EINVAL;
5380         }
5381
5382         if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5383                 vmx->nested.smm.vmxon = true;
5384                 vmx->nested.vmxon = false;
5385
5386                 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5387                         vmx->nested.smm.guest_mode = true;
5388         }
5389
5390         vmcs12 = get_vmcs12(vcpu);
5391         if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
5392                 return -EFAULT;
5393
5394         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5395                 return -EINVAL;
5396
5397         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5398                 return 0;
5399
5400         vmx->nested.nested_run_pending =
5401                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5402
5403         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5404             vmcs12->vmcs_link_pointer != -1ull) {
5405                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5406
5407                 if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
5408                         return -EINVAL;
5409
5410                 if (copy_from_user(shadow_vmcs12,
5411                                    user_kvm_nested_state->data + VMCS12_SIZE,
5412                                    sizeof(*vmcs12)))
5413                         return -EFAULT;
5414
5415                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5416                     !shadow_vmcs12->hdr.shadow_vmcs)
5417                         return -EINVAL;
5418         }
5419
5420         if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
5421             nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
5422                 return -EINVAL;
5423
5424         vmx->nested.dirty_vmcs12 = true;
5425         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5426         if (ret)
5427                 return -EINVAL;
5428
5429         return 0;
5430 }
5431
5432 void nested_vmx_vcpu_setup(void)
5433 {
5434         if (enable_shadow_vmcs) {
5435                 /*
5436                  * At vCPU creation, "VMWRITE to any supported field
5437                  * in the VMCS" is supported, so use the more
5438                  * permissive vmx_vmread_bitmap to specify both read
5439                  * and write permissions for the shadow VMCS.
5440                  */
5441                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5442                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5443         }
5444 }
5445
5446 /*
5447  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5448  * returned for the various VMX controls MSRs when nested VMX is enabled.
5449  * The same values should also be used to verify that vmcs12 control fields are
5450  * valid during nested entry from L1 to L2.
5451  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5452  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5453  * bit in the high half is on if the corresponding bit in the control field
5454  * may be on. See also vmx_control_verify().
5455  */
5456 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5457                                 bool apicv)
5458 {
5459         /*
5460          * Note that as a general rule, the high half of the MSRs (bits in
5461          * the control fields which may be 1) should be initialized by the
5462          * intersection of the underlying hardware's MSR (i.e., features which
5463          * can be supported) and the list of features we want to expose -
5464          * because they are known to be properly supported in our code.
5465          * Also, usually, the low half of the MSRs (bits which must be 1) can
5466          * be set to 0, meaning that L1 may turn off any of these bits. The
5467          * reason is that if one of these bits is necessary, it will appear
5468          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5469          * fields of vmcs01 and vmcs02, will turn these bits off - and
5470          * nested_vmx_exit_reflected() will not pass related exits to L1.
5471          * These rules have exceptions below.
5472          */
5473
5474         /* pin-based controls */
5475         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5476                 msrs->pinbased_ctls_low,
5477                 msrs->pinbased_ctls_high);
5478         msrs->pinbased_ctls_low |=
5479                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5480         msrs->pinbased_ctls_high &=
5481                 PIN_BASED_EXT_INTR_MASK |
5482                 PIN_BASED_NMI_EXITING |
5483                 PIN_BASED_VIRTUAL_NMIS |
5484                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5485         msrs->pinbased_ctls_high |=
5486                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5487                 PIN_BASED_VMX_PREEMPTION_TIMER;
5488
5489         /* exit controls */
5490         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5491                 msrs->exit_ctls_low,
5492                 msrs->exit_ctls_high);
5493         msrs->exit_ctls_low =
5494                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5495
5496         msrs->exit_ctls_high &=
5497 #ifdef CONFIG_X86_64
5498                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5499 #endif
5500                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5501         msrs->exit_ctls_high |=
5502                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5503                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5504                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5505
5506         /* We support free control of debug control saving. */
5507         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5508
5509         /* entry controls */
5510         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5511                 msrs->entry_ctls_low,
5512                 msrs->entry_ctls_high);
5513         msrs->entry_ctls_low =
5514                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5515         msrs->entry_ctls_high &=
5516 #ifdef CONFIG_X86_64
5517                 VM_ENTRY_IA32E_MODE |
5518 #endif
5519                 VM_ENTRY_LOAD_IA32_PAT;
5520         msrs->entry_ctls_high |=
5521                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5522
5523         /* We support free control of debug control loading. */
5524         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5525
5526         /* cpu-based controls */
5527         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5528                 msrs->procbased_ctls_low,
5529                 msrs->procbased_ctls_high);
5530         msrs->procbased_ctls_low =
5531                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5532         msrs->procbased_ctls_high &=
5533                 CPU_BASED_VIRTUAL_INTR_PENDING |
5534                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5535                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5536                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5537                 CPU_BASED_CR3_STORE_EXITING |
5538 #ifdef CONFIG_X86_64
5539                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5540 #endif
5541                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5542                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5543                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5544                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5545                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5546         /*
5547          * We can allow some features even when not supported by the
5548          * hardware. For example, L1 can specify an MSR bitmap - and we
5549          * can use it to avoid exits to L1 - even when L0 runs L2
5550          * without MSR bitmaps.
5551          */
5552         msrs->procbased_ctls_high |=
5553                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5554                 CPU_BASED_USE_MSR_BITMAPS;
5555
5556         /* We support free control of CR3 access interception. */
5557         msrs->procbased_ctls_low &=
5558                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5559
5560         /*
5561          * secondary cpu-based controls.  Do not include those that
5562          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5563          */
5564         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5565                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5566                       msrs->secondary_ctls_low,
5567                       msrs->secondary_ctls_high);
5568
5569         msrs->secondary_ctls_low = 0;
5570         msrs->secondary_ctls_high &=
5571                 SECONDARY_EXEC_DESC |
5572                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5573                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5574                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5575                 SECONDARY_EXEC_WBINVD_EXITING;
5576
5577         /*
5578          * We can emulate "VMCS shadowing," even if the hardware
5579          * doesn't support it.
5580          */
5581         msrs->secondary_ctls_high |=
5582                 SECONDARY_EXEC_SHADOW_VMCS;
5583
5584         if (enable_ept) {
5585                 /* nested EPT: emulate EPT also to L1 */
5586                 msrs->secondary_ctls_high |=
5587                         SECONDARY_EXEC_ENABLE_EPT;
5588                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5589                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5590                 if (cpu_has_vmx_ept_execute_only())
5591                         msrs->ept_caps |=
5592                                 VMX_EPT_EXECUTE_ONLY_BIT;
5593                 msrs->ept_caps &= ept_caps;
5594                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5595                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5596                         VMX_EPT_1GB_PAGE_BIT;
5597                 if (enable_ept_ad_bits) {
5598                         msrs->secondary_ctls_high |=
5599                                 SECONDARY_EXEC_ENABLE_PML;
5600                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5601                 }
5602         }
5603
5604         if (cpu_has_vmx_vmfunc()) {
5605                 msrs->secondary_ctls_high |=
5606                         SECONDARY_EXEC_ENABLE_VMFUNC;
5607                 /*
5608                  * Advertise EPTP switching unconditionally
5609                  * since we emulate it
5610                  */
5611                 if (enable_ept)
5612                         msrs->vmfunc_controls =
5613                                 VMX_VMFUNC_EPTP_SWITCHING;
5614         }
5615
5616         /*
5617          * Old versions of KVM use the single-context version without
5618          * checking for support, so declare that it is supported even
5619          * though it is treated as global context.  The alternative is
5620          * not failing the single-context invvpid, and it is worse.
5621          */
5622         if (enable_vpid) {
5623                 msrs->secondary_ctls_high |=
5624                         SECONDARY_EXEC_ENABLE_VPID;
5625                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5626                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5627         }
5628
5629         if (enable_unrestricted_guest)
5630                 msrs->secondary_ctls_high |=
5631                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5632
5633         if (flexpriority_enabled)
5634                 msrs->secondary_ctls_high |=
5635                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5636
5637         /* miscellaneous data */
5638         rdmsr(MSR_IA32_VMX_MISC,
5639                 msrs->misc_low,
5640                 msrs->misc_high);
5641         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5642         msrs->misc_low |=
5643                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5644                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5645                 VMX_MISC_ACTIVITY_HLT;
5646         msrs->misc_high = 0;
5647
5648         /*
5649          * This MSR reports some information about VMX support. We
5650          * should return information about the VMX we emulate for the
5651          * guest, and the VMCS structure we give it - not about the
5652          * VMX support of the underlying hardware.
5653          */
5654         msrs->basic =
5655                 VMCS12_REVISION |
5656                 VMX_BASIC_TRUE_CTLS |
5657                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5658                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5659
5660         if (cpu_has_vmx_basic_inout())
5661                 msrs->basic |= VMX_BASIC_INOUT;
5662
5663         /*
5664          * These MSRs specify bits which the guest must keep fixed on
5665          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5666          * We picked the standard core2 setting.
5667          */
5668 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5669 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5670         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5671         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5672
5673         /* These MSRs specify bits which the guest must keep fixed off. */
5674         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5675         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5676
5677         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5678         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5679 }
5680
5681 void nested_vmx_hardware_unsetup(void)
5682 {
5683         int i;
5684
5685         if (enable_shadow_vmcs) {
5686                 for (i = 0; i < VMX_BITMAP_NR; i++)
5687                         free_page((unsigned long)vmx_bitmap[i]);
5688         }
5689 }
5690
5691 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5692 {
5693         int i;
5694
5695         if (!cpu_has_vmx_shadow_vmcs())
5696                 enable_shadow_vmcs = 0;
5697         if (enable_shadow_vmcs) {
5698                 for (i = 0; i < VMX_BITMAP_NR; i++) {
5699                         vmx_bitmap[i] = (unsigned long *)
5700                                 __get_free_page(GFP_KERNEL);
5701                         if (!vmx_bitmap[i]) {
5702                                 nested_vmx_hardware_unsetup();
5703                                 return -ENOMEM;
5704                         }
5705                 }
5706
5707                 init_vmcs_shadow_fields();
5708         }
5709
5710         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
5711         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
5712         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
5713         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
5714         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
5715         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
5716         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
5717         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
5718         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
5719         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
5720         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
5721         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
5722
5723         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5724         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5725         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5726         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5727         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5728         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5729
5730         return 0;
5731 }