Merge tag 'kvm-arm-for-3.18-take-2' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id vmx_cpu_id[] = {
59         X86_FEATURE_MATCH(X86_FEATURE_VMX),
60         {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64 static bool __read_mostly enable_vpid = 1;
65 module_param_named(vpid, enable_vpid, bool, 0444);
66
67 static bool __read_mostly flexpriority_enabled = 1;
68 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70 static bool __read_mostly enable_ept = 1;
71 module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73 static bool __read_mostly enable_unrestricted_guest = 1;
74 module_param_named(unrestricted_guest,
75                         enable_unrestricted_guest, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept_ad_bits = 1;
78 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80 static bool __read_mostly emulate_invalid_guest_state = true;
81 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83 static bool __read_mostly vmm_exclusive = 1;
84 module_param(vmm_exclusive, bool, S_IRUGO);
85
86 static bool __read_mostly fasteoi = 1;
87 module_param(fasteoi, bool, S_IRUGO);
88
89 static bool __read_mostly enable_apicv = 1;
90 module_param(enable_apicv, bool, S_IRUGO);
91
92 static bool __read_mostly enable_shadow_vmcs = 1;
93 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94 /*
95  * If nested=1, nested virtualization is supported, i.e., guests may use
96  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97  * use VMX instructions.
98  */
99 static bool __read_mostly nested = 0;
100 module_param(nested, bool, S_IRUGO);
101
102 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
104 #define KVM_VM_CR0_ALWAYS_ON                                            \
105         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
106 #define KVM_CR4_GUEST_OWNED_BITS                                      \
107         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
108          | X86_CR4_OSXMMEXCPT)
109
110 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
113 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
115 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
117 /*
118  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119  * ple_gap:    upper bound on the amount of time between two successive
120  *             executions of PAUSE in a loop. Also indicate if ple enabled.
121  *             According to test, this time is usually smaller than 128 cycles.
122  * ple_window: upper bound on the amount of time a guest is allowed to execute
123  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
124  *             less than 2^12 cycles
125  * Time is measured based on a counter that runs at the same rate as the TSC,
126  * refer SDM volume 3b section 21.6.13 & 22.1.3.
127  */
128 #define KVM_VMX_DEFAULT_PLE_GAP           128
129 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
130 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
131 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
132 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
133                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
134
135 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
136 module_param(ple_gap, int, S_IRUGO);
137
138 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
139 module_param(ple_window, int, S_IRUGO);
140
141 /* Default doubles per-vcpu window every exit. */
142 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
143 module_param(ple_window_grow, int, S_IRUGO);
144
145 /* Default resets per-vcpu window every exit to ple_window. */
146 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
147 module_param(ple_window_shrink, int, S_IRUGO);
148
149 /* Default is to compute the maximum so we can never overflow. */
150 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
151 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
152 module_param(ple_window_max, int, S_IRUGO);
153
154 extern const ulong vmx_return;
155
156 #define NR_AUTOLOAD_MSRS 8
157 #define VMCS02_POOL_SIZE 1
158
159 struct vmcs {
160         u32 revision_id;
161         u32 abort;
162         char data[0];
163 };
164
165 /*
166  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
167  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
168  * loaded on this CPU (so we can clear them if the CPU goes down).
169  */
170 struct loaded_vmcs {
171         struct vmcs *vmcs;
172         int cpu;
173         int launched;
174         struct list_head loaded_vmcss_on_cpu_link;
175 };
176
177 struct shared_msr_entry {
178         unsigned index;
179         u64 data;
180         u64 mask;
181 };
182
183 /*
184  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
185  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
186  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
187  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
188  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
189  * More than one of these structures may exist, if L1 runs multiple L2 guests.
190  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
191  * underlying hardware which will be used to run L2.
192  * This structure is packed to ensure that its layout is identical across
193  * machines (necessary for live migration).
194  * If there are changes in this struct, VMCS12_REVISION must be changed.
195  */
196 typedef u64 natural_width;
197 struct __packed vmcs12 {
198         /* According to the Intel spec, a VMCS region must start with the
199          * following two fields. Then follow implementation-specific data.
200          */
201         u32 revision_id;
202         u32 abort;
203
204         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
205         u32 padding[7]; /* room for future expansion */
206
207         u64 io_bitmap_a;
208         u64 io_bitmap_b;
209         u64 msr_bitmap;
210         u64 vm_exit_msr_store_addr;
211         u64 vm_exit_msr_load_addr;
212         u64 vm_entry_msr_load_addr;
213         u64 tsc_offset;
214         u64 virtual_apic_page_addr;
215         u64 apic_access_addr;
216         u64 ept_pointer;
217         u64 guest_physical_address;
218         u64 vmcs_link_pointer;
219         u64 guest_ia32_debugctl;
220         u64 guest_ia32_pat;
221         u64 guest_ia32_efer;
222         u64 guest_ia32_perf_global_ctrl;
223         u64 guest_pdptr0;
224         u64 guest_pdptr1;
225         u64 guest_pdptr2;
226         u64 guest_pdptr3;
227         u64 guest_bndcfgs;
228         u64 host_ia32_pat;
229         u64 host_ia32_efer;
230         u64 host_ia32_perf_global_ctrl;
231         u64 padding64[8]; /* room for future expansion */
232         /*
233          * To allow migration of L1 (complete with its L2 guests) between
234          * machines of different natural widths (32 or 64 bit), we cannot have
235          * unsigned long fields with no explict size. We use u64 (aliased
236          * natural_width) instead. Luckily, x86 is little-endian.
237          */
238         natural_width cr0_guest_host_mask;
239         natural_width cr4_guest_host_mask;
240         natural_width cr0_read_shadow;
241         natural_width cr4_read_shadow;
242         natural_width cr3_target_value0;
243         natural_width cr3_target_value1;
244         natural_width cr3_target_value2;
245         natural_width cr3_target_value3;
246         natural_width exit_qualification;
247         natural_width guest_linear_address;
248         natural_width guest_cr0;
249         natural_width guest_cr3;
250         natural_width guest_cr4;
251         natural_width guest_es_base;
252         natural_width guest_cs_base;
253         natural_width guest_ss_base;
254         natural_width guest_ds_base;
255         natural_width guest_fs_base;
256         natural_width guest_gs_base;
257         natural_width guest_ldtr_base;
258         natural_width guest_tr_base;
259         natural_width guest_gdtr_base;
260         natural_width guest_idtr_base;
261         natural_width guest_dr7;
262         natural_width guest_rsp;
263         natural_width guest_rip;
264         natural_width guest_rflags;
265         natural_width guest_pending_dbg_exceptions;
266         natural_width guest_sysenter_esp;
267         natural_width guest_sysenter_eip;
268         natural_width host_cr0;
269         natural_width host_cr3;
270         natural_width host_cr4;
271         natural_width host_fs_base;
272         natural_width host_gs_base;
273         natural_width host_tr_base;
274         natural_width host_gdtr_base;
275         natural_width host_idtr_base;
276         natural_width host_ia32_sysenter_esp;
277         natural_width host_ia32_sysenter_eip;
278         natural_width host_rsp;
279         natural_width host_rip;
280         natural_width paddingl[8]; /* room for future expansion */
281         u32 pin_based_vm_exec_control;
282         u32 cpu_based_vm_exec_control;
283         u32 exception_bitmap;
284         u32 page_fault_error_code_mask;
285         u32 page_fault_error_code_match;
286         u32 cr3_target_count;
287         u32 vm_exit_controls;
288         u32 vm_exit_msr_store_count;
289         u32 vm_exit_msr_load_count;
290         u32 vm_entry_controls;
291         u32 vm_entry_msr_load_count;
292         u32 vm_entry_intr_info_field;
293         u32 vm_entry_exception_error_code;
294         u32 vm_entry_instruction_len;
295         u32 tpr_threshold;
296         u32 secondary_vm_exec_control;
297         u32 vm_instruction_error;
298         u32 vm_exit_reason;
299         u32 vm_exit_intr_info;
300         u32 vm_exit_intr_error_code;
301         u32 idt_vectoring_info_field;
302         u32 idt_vectoring_error_code;
303         u32 vm_exit_instruction_len;
304         u32 vmx_instruction_info;
305         u32 guest_es_limit;
306         u32 guest_cs_limit;
307         u32 guest_ss_limit;
308         u32 guest_ds_limit;
309         u32 guest_fs_limit;
310         u32 guest_gs_limit;
311         u32 guest_ldtr_limit;
312         u32 guest_tr_limit;
313         u32 guest_gdtr_limit;
314         u32 guest_idtr_limit;
315         u32 guest_es_ar_bytes;
316         u32 guest_cs_ar_bytes;
317         u32 guest_ss_ar_bytes;
318         u32 guest_ds_ar_bytes;
319         u32 guest_fs_ar_bytes;
320         u32 guest_gs_ar_bytes;
321         u32 guest_ldtr_ar_bytes;
322         u32 guest_tr_ar_bytes;
323         u32 guest_interruptibility_info;
324         u32 guest_activity_state;
325         u32 guest_sysenter_cs;
326         u32 host_ia32_sysenter_cs;
327         u32 vmx_preemption_timer_value;
328         u32 padding32[7]; /* room for future expansion */
329         u16 virtual_processor_id;
330         u16 guest_es_selector;
331         u16 guest_cs_selector;
332         u16 guest_ss_selector;
333         u16 guest_ds_selector;
334         u16 guest_fs_selector;
335         u16 guest_gs_selector;
336         u16 guest_ldtr_selector;
337         u16 guest_tr_selector;
338         u16 host_es_selector;
339         u16 host_cs_selector;
340         u16 host_ss_selector;
341         u16 host_ds_selector;
342         u16 host_fs_selector;
343         u16 host_gs_selector;
344         u16 host_tr_selector;
345 };
346
347 /*
348  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
349  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
350  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
351  */
352 #define VMCS12_REVISION 0x11e57ed0
353
354 /*
355  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
356  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
357  * current implementation, 4K are reserved to avoid future complications.
358  */
359 #define VMCS12_SIZE 0x1000
360
361 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
362 struct vmcs02_list {
363         struct list_head list;
364         gpa_t vmptr;
365         struct loaded_vmcs vmcs02;
366 };
367
368 /*
369  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
370  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
371  */
372 struct nested_vmx {
373         /* Has the level1 guest done vmxon? */
374         bool vmxon;
375         gpa_t vmxon_ptr;
376
377         /* The guest-physical address of the current VMCS L1 keeps for L2 */
378         gpa_t current_vmptr;
379         /* The host-usable pointer to the above */
380         struct page *current_vmcs12_page;
381         struct vmcs12 *current_vmcs12;
382         struct vmcs *current_shadow_vmcs;
383         /*
384          * Indicates if the shadow vmcs must be updated with the
385          * data hold by vmcs12
386          */
387         bool sync_shadow_vmcs;
388
389         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
390         struct list_head vmcs02_pool;
391         int vmcs02_num;
392         u64 vmcs01_tsc_offset;
393         /* L2 must run next, and mustn't decide to exit to L1. */
394         bool nested_run_pending;
395         /*
396          * Guest pages referred to in vmcs02 with host-physical pointers, so
397          * we must keep them pinned while L2 runs.
398          */
399         struct page *apic_access_page;
400         struct page *virtual_apic_page;
401         u64 msr_ia32_feature_control;
402
403         struct hrtimer preemption_timer;
404         bool preemption_timer_expired;
405
406         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
407         u64 vmcs01_debugctl;
408 };
409
410 #define POSTED_INTR_ON  0
411 /* Posted-Interrupt Descriptor */
412 struct pi_desc {
413         u32 pir[8];     /* Posted interrupt requested */
414         u32 control;    /* bit 0 of control is outstanding notification bit */
415         u32 rsvd[7];
416 } __aligned(64);
417
418 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
419 {
420         return test_and_set_bit(POSTED_INTR_ON,
421                         (unsigned long *)&pi_desc->control);
422 }
423
424 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
425 {
426         return test_and_clear_bit(POSTED_INTR_ON,
427                         (unsigned long *)&pi_desc->control);
428 }
429
430 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
431 {
432         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
433 }
434
435 struct vcpu_vmx {
436         struct kvm_vcpu       vcpu;
437         unsigned long         host_rsp;
438         u8                    fail;
439         bool                  nmi_known_unmasked;
440         u32                   exit_intr_info;
441         u32                   idt_vectoring_info;
442         ulong                 rflags;
443         struct shared_msr_entry *guest_msrs;
444         int                   nmsrs;
445         int                   save_nmsrs;
446         unsigned long         host_idt_base;
447 #ifdef CONFIG_X86_64
448         u64                   msr_host_kernel_gs_base;
449         u64                   msr_guest_kernel_gs_base;
450 #endif
451         u32 vm_entry_controls_shadow;
452         u32 vm_exit_controls_shadow;
453         /*
454          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
455          * non-nested (L1) guest, it always points to vmcs01. For a nested
456          * guest (L2), it points to a different VMCS.
457          */
458         struct loaded_vmcs    vmcs01;
459         struct loaded_vmcs   *loaded_vmcs;
460         bool                  __launched; /* temporary, used in vmx_vcpu_run */
461         struct msr_autoload {
462                 unsigned nr;
463                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
464                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
465         } msr_autoload;
466         struct {
467                 int           loaded;
468                 u16           fs_sel, gs_sel, ldt_sel;
469 #ifdef CONFIG_X86_64
470                 u16           ds_sel, es_sel;
471 #endif
472                 int           gs_ldt_reload_needed;
473                 int           fs_reload_needed;
474                 u64           msr_host_bndcfgs;
475                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
476         } host_state;
477         struct {
478                 int vm86_active;
479                 ulong save_rflags;
480                 struct kvm_segment segs[8];
481         } rmode;
482         struct {
483                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
484                 struct kvm_save_segment {
485                         u16 selector;
486                         unsigned long base;
487                         u32 limit;
488                         u32 ar;
489                 } seg[8];
490         } segment_cache;
491         int vpid;
492         bool emulation_required;
493
494         /* Support for vnmi-less CPUs */
495         int soft_vnmi_blocked;
496         ktime_t entry_time;
497         s64 vnmi_blocked_time;
498         u32 exit_reason;
499
500         bool rdtscp_enabled;
501
502         /* Posted interrupt descriptor */
503         struct pi_desc pi_desc;
504
505         /* Support for a guest hypervisor (nested VMX) */
506         struct nested_vmx nested;
507
508         /* Dynamic PLE window. */
509         int ple_window;
510         bool ple_window_dirty;
511 };
512
513 enum segment_cache_field {
514         SEG_FIELD_SEL = 0,
515         SEG_FIELD_BASE = 1,
516         SEG_FIELD_LIMIT = 2,
517         SEG_FIELD_AR = 3,
518
519         SEG_FIELD_NR = 4
520 };
521
522 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
523 {
524         return container_of(vcpu, struct vcpu_vmx, vcpu);
525 }
526
527 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
528 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
529 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
530                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
531
532
533 static unsigned long shadow_read_only_fields[] = {
534         /*
535          * We do NOT shadow fields that are modified when L0
536          * traps and emulates any vmx instruction (e.g. VMPTRLD,
537          * VMXON...) executed by L1.
538          * For example, VM_INSTRUCTION_ERROR is read
539          * by L1 if a vmx instruction fails (part of the error path).
540          * Note the code assumes this logic. If for some reason
541          * we start shadowing these fields then we need to
542          * force a shadow sync when L0 emulates vmx instructions
543          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
544          * by nested_vmx_failValid)
545          */
546         VM_EXIT_REASON,
547         VM_EXIT_INTR_INFO,
548         VM_EXIT_INSTRUCTION_LEN,
549         IDT_VECTORING_INFO_FIELD,
550         IDT_VECTORING_ERROR_CODE,
551         VM_EXIT_INTR_ERROR_CODE,
552         EXIT_QUALIFICATION,
553         GUEST_LINEAR_ADDRESS,
554         GUEST_PHYSICAL_ADDRESS
555 };
556 static int max_shadow_read_only_fields =
557         ARRAY_SIZE(shadow_read_only_fields);
558
559 static unsigned long shadow_read_write_fields[] = {
560         TPR_THRESHOLD,
561         GUEST_RIP,
562         GUEST_RSP,
563         GUEST_CR0,
564         GUEST_CR3,
565         GUEST_CR4,
566         GUEST_INTERRUPTIBILITY_INFO,
567         GUEST_RFLAGS,
568         GUEST_CS_SELECTOR,
569         GUEST_CS_AR_BYTES,
570         GUEST_CS_LIMIT,
571         GUEST_CS_BASE,
572         GUEST_ES_BASE,
573         GUEST_BNDCFGS,
574         CR0_GUEST_HOST_MASK,
575         CR0_READ_SHADOW,
576         CR4_READ_SHADOW,
577         TSC_OFFSET,
578         EXCEPTION_BITMAP,
579         CPU_BASED_VM_EXEC_CONTROL,
580         VM_ENTRY_EXCEPTION_ERROR_CODE,
581         VM_ENTRY_INTR_INFO_FIELD,
582         VM_ENTRY_INSTRUCTION_LEN,
583         VM_ENTRY_EXCEPTION_ERROR_CODE,
584         HOST_FS_BASE,
585         HOST_GS_BASE,
586         HOST_FS_SELECTOR,
587         HOST_GS_SELECTOR
588 };
589 static int max_shadow_read_write_fields =
590         ARRAY_SIZE(shadow_read_write_fields);
591
592 static const unsigned short vmcs_field_to_offset_table[] = {
593         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
594         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
595         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
596         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
597         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
598         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
599         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
600         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
601         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
602         FIELD(HOST_ES_SELECTOR, host_es_selector),
603         FIELD(HOST_CS_SELECTOR, host_cs_selector),
604         FIELD(HOST_SS_SELECTOR, host_ss_selector),
605         FIELD(HOST_DS_SELECTOR, host_ds_selector),
606         FIELD(HOST_FS_SELECTOR, host_fs_selector),
607         FIELD(HOST_GS_SELECTOR, host_gs_selector),
608         FIELD(HOST_TR_SELECTOR, host_tr_selector),
609         FIELD64(IO_BITMAP_A, io_bitmap_a),
610         FIELD64(IO_BITMAP_B, io_bitmap_b),
611         FIELD64(MSR_BITMAP, msr_bitmap),
612         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
613         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
614         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
615         FIELD64(TSC_OFFSET, tsc_offset),
616         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
617         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
618         FIELD64(EPT_POINTER, ept_pointer),
619         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
620         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
621         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
622         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
623         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
624         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
625         FIELD64(GUEST_PDPTR0, guest_pdptr0),
626         FIELD64(GUEST_PDPTR1, guest_pdptr1),
627         FIELD64(GUEST_PDPTR2, guest_pdptr2),
628         FIELD64(GUEST_PDPTR3, guest_pdptr3),
629         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
630         FIELD64(HOST_IA32_PAT, host_ia32_pat),
631         FIELD64(HOST_IA32_EFER, host_ia32_efer),
632         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
633         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
634         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
635         FIELD(EXCEPTION_BITMAP, exception_bitmap),
636         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
637         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
638         FIELD(CR3_TARGET_COUNT, cr3_target_count),
639         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
640         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
641         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
642         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
643         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
644         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
645         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
646         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
647         FIELD(TPR_THRESHOLD, tpr_threshold),
648         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
649         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
650         FIELD(VM_EXIT_REASON, vm_exit_reason),
651         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
652         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
653         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
654         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
655         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
656         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
657         FIELD(GUEST_ES_LIMIT, guest_es_limit),
658         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
659         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
660         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
661         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
662         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
663         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
664         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
665         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
666         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
667         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
668         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
669         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
670         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
671         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
672         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
673         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
674         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
675         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
676         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
677         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
678         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
679         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
680         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
681         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
682         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
683         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
684         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
685         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
686         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
687         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
688         FIELD(EXIT_QUALIFICATION, exit_qualification),
689         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
690         FIELD(GUEST_CR0, guest_cr0),
691         FIELD(GUEST_CR3, guest_cr3),
692         FIELD(GUEST_CR4, guest_cr4),
693         FIELD(GUEST_ES_BASE, guest_es_base),
694         FIELD(GUEST_CS_BASE, guest_cs_base),
695         FIELD(GUEST_SS_BASE, guest_ss_base),
696         FIELD(GUEST_DS_BASE, guest_ds_base),
697         FIELD(GUEST_FS_BASE, guest_fs_base),
698         FIELD(GUEST_GS_BASE, guest_gs_base),
699         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
700         FIELD(GUEST_TR_BASE, guest_tr_base),
701         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
702         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
703         FIELD(GUEST_DR7, guest_dr7),
704         FIELD(GUEST_RSP, guest_rsp),
705         FIELD(GUEST_RIP, guest_rip),
706         FIELD(GUEST_RFLAGS, guest_rflags),
707         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
708         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
709         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
710         FIELD(HOST_CR0, host_cr0),
711         FIELD(HOST_CR3, host_cr3),
712         FIELD(HOST_CR4, host_cr4),
713         FIELD(HOST_FS_BASE, host_fs_base),
714         FIELD(HOST_GS_BASE, host_gs_base),
715         FIELD(HOST_TR_BASE, host_tr_base),
716         FIELD(HOST_GDTR_BASE, host_gdtr_base),
717         FIELD(HOST_IDTR_BASE, host_idtr_base),
718         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
719         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
720         FIELD(HOST_RSP, host_rsp),
721         FIELD(HOST_RIP, host_rip),
722 };
723 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
724
725 static inline short vmcs_field_to_offset(unsigned long field)
726 {
727         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
728                 return -1;
729         return vmcs_field_to_offset_table[field];
730 }
731
732 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
733 {
734         return to_vmx(vcpu)->nested.current_vmcs12;
735 }
736
737 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
738 {
739         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
740         if (is_error_page(page))
741                 return NULL;
742
743         return page;
744 }
745
746 static void nested_release_page(struct page *page)
747 {
748         kvm_release_page_dirty(page);
749 }
750
751 static void nested_release_page_clean(struct page *page)
752 {
753         kvm_release_page_clean(page);
754 }
755
756 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
757 static u64 construct_eptp(unsigned long root_hpa);
758 static void kvm_cpu_vmxon(u64 addr);
759 static void kvm_cpu_vmxoff(void);
760 static bool vmx_mpx_supported(void);
761 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
762 static void vmx_set_segment(struct kvm_vcpu *vcpu,
763                             struct kvm_segment *var, int seg);
764 static void vmx_get_segment(struct kvm_vcpu *vcpu,
765                             struct kvm_segment *var, int seg);
766 static bool guest_state_valid(struct kvm_vcpu *vcpu);
767 static u32 vmx_segment_access_rights(struct kvm_segment *var);
768 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
769 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
770 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
771 static int alloc_identity_pagetable(struct kvm *kvm);
772
773 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
774 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
775 /*
776  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
777  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
778  */
779 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
780 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
781
782 static unsigned long *vmx_io_bitmap_a;
783 static unsigned long *vmx_io_bitmap_b;
784 static unsigned long *vmx_msr_bitmap_legacy;
785 static unsigned long *vmx_msr_bitmap_longmode;
786 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
787 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
788 static unsigned long *vmx_vmread_bitmap;
789 static unsigned long *vmx_vmwrite_bitmap;
790
791 static bool cpu_has_load_ia32_efer;
792 static bool cpu_has_load_perf_global_ctrl;
793
794 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
795 static DEFINE_SPINLOCK(vmx_vpid_lock);
796
797 static struct vmcs_config {
798         int size;
799         int order;
800         u32 revision_id;
801         u32 pin_based_exec_ctrl;
802         u32 cpu_based_exec_ctrl;
803         u32 cpu_based_2nd_exec_ctrl;
804         u32 vmexit_ctrl;
805         u32 vmentry_ctrl;
806 } vmcs_config;
807
808 static struct vmx_capability {
809         u32 ept;
810         u32 vpid;
811 } vmx_capability;
812
813 #define VMX_SEGMENT_FIELD(seg)                                  \
814         [VCPU_SREG_##seg] = {                                   \
815                 .selector = GUEST_##seg##_SELECTOR,             \
816                 .base = GUEST_##seg##_BASE,                     \
817                 .limit = GUEST_##seg##_LIMIT,                   \
818                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
819         }
820
821 static const struct kvm_vmx_segment_field {
822         unsigned selector;
823         unsigned base;
824         unsigned limit;
825         unsigned ar_bytes;
826 } kvm_vmx_segment_fields[] = {
827         VMX_SEGMENT_FIELD(CS),
828         VMX_SEGMENT_FIELD(DS),
829         VMX_SEGMENT_FIELD(ES),
830         VMX_SEGMENT_FIELD(FS),
831         VMX_SEGMENT_FIELD(GS),
832         VMX_SEGMENT_FIELD(SS),
833         VMX_SEGMENT_FIELD(TR),
834         VMX_SEGMENT_FIELD(LDTR),
835 };
836
837 static u64 host_efer;
838
839 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
840
841 /*
842  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
843  * away by decrementing the array size.
844  */
845 static const u32 vmx_msr_index[] = {
846 #ifdef CONFIG_X86_64
847         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
848 #endif
849         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
850 };
851
852 static inline bool is_page_fault(u32 intr_info)
853 {
854         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
855                              INTR_INFO_VALID_MASK)) ==
856                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
857 }
858
859 static inline bool is_no_device(u32 intr_info)
860 {
861         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
862                              INTR_INFO_VALID_MASK)) ==
863                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
864 }
865
866 static inline bool is_invalid_opcode(u32 intr_info)
867 {
868         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
869                              INTR_INFO_VALID_MASK)) ==
870                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
871 }
872
873 static inline bool is_external_interrupt(u32 intr_info)
874 {
875         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
876                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
877 }
878
879 static inline bool is_machine_check(u32 intr_info)
880 {
881         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
882                              INTR_INFO_VALID_MASK)) ==
883                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
884 }
885
886 static inline bool cpu_has_vmx_msr_bitmap(void)
887 {
888         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
889 }
890
891 static inline bool cpu_has_vmx_tpr_shadow(void)
892 {
893         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
894 }
895
896 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
897 {
898         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
899 }
900
901 static inline bool cpu_has_secondary_exec_ctrls(void)
902 {
903         return vmcs_config.cpu_based_exec_ctrl &
904                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
905 }
906
907 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
908 {
909         return vmcs_config.cpu_based_2nd_exec_ctrl &
910                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
911 }
912
913 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
914 {
915         return vmcs_config.cpu_based_2nd_exec_ctrl &
916                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
917 }
918
919 static inline bool cpu_has_vmx_apic_register_virt(void)
920 {
921         return vmcs_config.cpu_based_2nd_exec_ctrl &
922                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
923 }
924
925 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
926 {
927         return vmcs_config.cpu_based_2nd_exec_ctrl &
928                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
929 }
930
931 static inline bool cpu_has_vmx_posted_intr(void)
932 {
933         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
934 }
935
936 static inline bool cpu_has_vmx_apicv(void)
937 {
938         return cpu_has_vmx_apic_register_virt() &&
939                 cpu_has_vmx_virtual_intr_delivery() &&
940                 cpu_has_vmx_posted_intr();
941 }
942
943 static inline bool cpu_has_vmx_flexpriority(void)
944 {
945         return cpu_has_vmx_tpr_shadow() &&
946                 cpu_has_vmx_virtualize_apic_accesses();
947 }
948
949 static inline bool cpu_has_vmx_ept_execute_only(void)
950 {
951         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
952 }
953
954 static inline bool cpu_has_vmx_eptp_uncacheable(void)
955 {
956         return vmx_capability.ept & VMX_EPTP_UC_BIT;
957 }
958
959 static inline bool cpu_has_vmx_eptp_writeback(void)
960 {
961         return vmx_capability.ept & VMX_EPTP_WB_BIT;
962 }
963
964 static inline bool cpu_has_vmx_ept_2m_page(void)
965 {
966         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
967 }
968
969 static inline bool cpu_has_vmx_ept_1g_page(void)
970 {
971         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
972 }
973
974 static inline bool cpu_has_vmx_ept_4levels(void)
975 {
976         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
977 }
978
979 static inline bool cpu_has_vmx_ept_ad_bits(void)
980 {
981         return vmx_capability.ept & VMX_EPT_AD_BIT;
982 }
983
984 static inline bool cpu_has_vmx_invept_context(void)
985 {
986         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
987 }
988
989 static inline bool cpu_has_vmx_invept_global(void)
990 {
991         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
992 }
993
994 static inline bool cpu_has_vmx_invvpid_single(void)
995 {
996         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
997 }
998
999 static inline bool cpu_has_vmx_invvpid_global(void)
1000 {
1001         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1002 }
1003
1004 static inline bool cpu_has_vmx_ept(void)
1005 {
1006         return vmcs_config.cpu_based_2nd_exec_ctrl &
1007                 SECONDARY_EXEC_ENABLE_EPT;
1008 }
1009
1010 static inline bool cpu_has_vmx_unrestricted_guest(void)
1011 {
1012         return vmcs_config.cpu_based_2nd_exec_ctrl &
1013                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1014 }
1015
1016 static inline bool cpu_has_vmx_ple(void)
1017 {
1018         return vmcs_config.cpu_based_2nd_exec_ctrl &
1019                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1020 }
1021
1022 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1023 {
1024         return flexpriority_enabled && irqchip_in_kernel(kvm);
1025 }
1026
1027 static inline bool cpu_has_vmx_vpid(void)
1028 {
1029         return vmcs_config.cpu_based_2nd_exec_ctrl &
1030                 SECONDARY_EXEC_ENABLE_VPID;
1031 }
1032
1033 static inline bool cpu_has_vmx_rdtscp(void)
1034 {
1035         return vmcs_config.cpu_based_2nd_exec_ctrl &
1036                 SECONDARY_EXEC_RDTSCP;
1037 }
1038
1039 static inline bool cpu_has_vmx_invpcid(void)
1040 {
1041         return vmcs_config.cpu_based_2nd_exec_ctrl &
1042                 SECONDARY_EXEC_ENABLE_INVPCID;
1043 }
1044
1045 static inline bool cpu_has_virtual_nmis(void)
1046 {
1047         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1048 }
1049
1050 static inline bool cpu_has_vmx_wbinvd_exit(void)
1051 {
1052         return vmcs_config.cpu_based_2nd_exec_ctrl &
1053                 SECONDARY_EXEC_WBINVD_EXITING;
1054 }
1055
1056 static inline bool cpu_has_vmx_shadow_vmcs(void)
1057 {
1058         u64 vmx_msr;
1059         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1060         /* check if the cpu supports writing r/o exit information fields */
1061         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1062                 return false;
1063
1064         return vmcs_config.cpu_based_2nd_exec_ctrl &
1065                 SECONDARY_EXEC_SHADOW_VMCS;
1066 }
1067
1068 static inline bool report_flexpriority(void)
1069 {
1070         return flexpriority_enabled;
1071 }
1072
1073 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1074 {
1075         return vmcs12->cpu_based_vm_exec_control & bit;
1076 }
1077
1078 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1079 {
1080         return (vmcs12->cpu_based_vm_exec_control &
1081                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1082                 (vmcs12->secondary_vm_exec_control & bit);
1083 }
1084
1085 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1086 {
1087         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1088 }
1089
1090 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1091 {
1092         return vmcs12->pin_based_vm_exec_control &
1093                 PIN_BASED_VMX_PREEMPTION_TIMER;
1094 }
1095
1096 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1097 {
1098         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1099 }
1100
1101 static inline bool is_exception(u32 intr_info)
1102 {
1103         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1104                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1105 }
1106
1107 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1108                               u32 exit_intr_info,
1109                               unsigned long exit_qualification);
1110 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1111                         struct vmcs12 *vmcs12,
1112                         u32 reason, unsigned long qualification);
1113
1114 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1115 {
1116         int i;
1117
1118         for (i = 0; i < vmx->nmsrs; ++i)
1119                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1120                         return i;
1121         return -1;
1122 }
1123
1124 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1125 {
1126     struct {
1127         u64 vpid : 16;
1128         u64 rsvd : 48;
1129         u64 gva;
1130     } operand = { vpid, 0, gva };
1131
1132     asm volatile (__ex(ASM_VMX_INVVPID)
1133                   /* CF==1 or ZF==1 --> rc = -1 */
1134                   "; ja 1f ; ud2 ; 1:"
1135                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1136 }
1137
1138 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1139 {
1140         struct {
1141                 u64 eptp, gpa;
1142         } operand = {eptp, gpa};
1143
1144         asm volatile (__ex(ASM_VMX_INVEPT)
1145                         /* CF==1 or ZF==1 --> rc = -1 */
1146                         "; ja 1f ; ud2 ; 1:\n"
1147                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1148 }
1149
1150 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1151 {
1152         int i;
1153
1154         i = __find_msr_index(vmx, msr);
1155         if (i >= 0)
1156                 return &vmx->guest_msrs[i];
1157         return NULL;
1158 }
1159
1160 static void vmcs_clear(struct vmcs *vmcs)
1161 {
1162         u64 phys_addr = __pa(vmcs);
1163         u8 error;
1164
1165         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1166                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1167                       : "cc", "memory");
1168         if (error)
1169                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1170                        vmcs, phys_addr);
1171 }
1172
1173 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1174 {
1175         vmcs_clear(loaded_vmcs->vmcs);
1176         loaded_vmcs->cpu = -1;
1177         loaded_vmcs->launched = 0;
1178 }
1179
1180 static void vmcs_load(struct vmcs *vmcs)
1181 {
1182         u64 phys_addr = __pa(vmcs);
1183         u8 error;
1184
1185         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1186                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1187                         : "cc", "memory");
1188         if (error)
1189                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1190                        vmcs, phys_addr);
1191 }
1192
1193 #ifdef CONFIG_KEXEC
1194 /*
1195  * This bitmap is used to indicate whether the vmclear
1196  * operation is enabled on all cpus. All disabled by
1197  * default.
1198  */
1199 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1200
1201 static inline void crash_enable_local_vmclear(int cpu)
1202 {
1203         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1204 }
1205
1206 static inline void crash_disable_local_vmclear(int cpu)
1207 {
1208         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1209 }
1210
1211 static inline int crash_local_vmclear_enabled(int cpu)
1212 {
1213         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1214 }
1215
1216 static void crash_vmclear_local_loaded_vmcss(void)
1217 {
1218         int cpu = raw_smp_processor_id();
1219         struct loaded_vmcs *v;
1220
1221         if (!crash_local_vmclear_enabled(cpu))
1222                 return;
1223
1224         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1225                             loaded_vmcss_on_cpu_link)
1226                 vmcs_clear(v->vmcs);
1227 }
1228 #else
1229 static inline void crash_enable_local_vmclear(int cpu) { }
1230 static inline void crash_disable_local_vmclear(int cpu) { }
1231 #endif /* CONFIG_KEXEC */
1232
1233 static void __loaded_vmcs_clear(void *arg)
1234 {
1235         struct loaded_vmcs *loaded_vmcs = arg;
1236         int cpu = raw_smp_processor_id();
1237
1238         if (loaded_vmcs->cpu != cpu)
1239                 return; /* vcpu migration can race with cpu offline */
1240         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1241                 per_cpu(current_vmcs, cpu) = NULL;
1242         crash_disable_local_vmclear(cpu);
1243         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1244
1245         /*
1246          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1247          * is before setting loaded_vmcs->vcpu to -1 which is done in
1248          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1249          * then adds the vmcs into percpu list before it is deleted.
1250          */
1251         smp_wmb();
1252
1253         loaded_vmcs_init(loaded_vmcs);
1254         crash_enable_local_vmclear(cpu);
1255 }
1256
1257 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1258 {
1259         int cpu = loaded_vmcs->cpu;
1260
1261         if (cpu != -1)
1262                 smp_call_function_single(cpu,
1263                          __loaded_vmcs_clear, loaded_vmcs, 1);
1264 }
1265
1266 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1267 {
1268         if (vmx->vpid == 0)
1269                 return;
1270
1271         if (cpu_has_vmx_invvpid_single())
1272                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1273 }
1274
1275 static inline void vpid_sync_vcpu_global(void)
1276 {
1277         if (cpu_has_vmx_invvpid_global())
1278                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1279 }
1280
1281 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1282 {
1283         if (cpu_has_vmx_invvpid_single())
1284                 vpid_sync_vcpu_single(vmx);
1285         else
1286                 vpid_sync_vcpu_global();
1287 }
1288
1289 static inline void ept_sync_global(void)
1290 {
1291         if (cpu_has_vmx_invept_global())
1292                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1293 }
1294
1295 static inline void ept_sync_context(u64 eptp)
1296 {
1297         if (enable_ept) {
1298                 if (cpu_has_vmx_invept_context())
1299                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1300                 else
1301                         ept_sync_global();
1302         }
1303 }
1304
1305 static __always_inline unsigned long vmcs_readl(unsigned long field)
1306 {
1307         unsigned long value;
1308
1309         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1310                       : "=a"(value) : "d"(field) : "cc");
1311         return value;
1312 }
1313
1314 static __always_inline u16 vmcs_read16(unsigned long field)
1315 {
1316         return vmcs_readl(field);
1317 }
1318
1319 static __always_inline u32 vmcs_read32(unsigned long field)
1320 {
1321         return vmcs_readl(field);
1322 }
1323
1324 static __always_inline u64 vmcs_read64(unsigned long field)
1325 {
1326 #ifdef CONFIG_X86_64
1327         return vmcs_readl(field);
1328 #else
1329         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1330 #endif
1331 }
1332
1333 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1334 {
1335         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1336                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1337         dump_stack();
1338 }
1339
1340 static void vmcs_writel(unsigned long field, unsigned long value)
1341 {
1342         u8 error;
1343
1344         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1345                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1346         if (unlikely(error))
1347                 vmwrite_error(field, value);
1348 }
1349
1350 static void vmcs_write16(unsigned long field, u16 value)
1351 {
1352         vmcs_writel(field, value);
1353 }
1354
1355 static void vmcs_write32(unsigned long field, u32 value)
1356 {
1357         vmcs_writel(field, value);
1358 }
1359
1360 static void vmcs_write64(unsigned long field, u64 value)
1361 {
1362         vmcs_writel(field, value);
1363 #ifndef CONFIG_X86_64
1364         asm volatile ("");
1365         vmcs_writel(field+1, value >> 32);
1366 #endif
1367 }
1368
1369 static void vmcs_clear_bits(unsigned long field, u32 mask)
1370 {
1371         vmcs_writel(field, vmcs_readl(field) & ~mask);
1372 }
1373
1374 static void vmcs_set_bits(unsigned long field, u32 mask)
1375 {
1376         vmcs_writel(field, vmcs_readl(field) | mask);
1377 }
1378
1379 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1380 {
1381         vmcs_write32(VM_ENTRY_CONTROLS, val);
1382         vmx->vm_entry_controls_shadow = val;
1383 }
1384
1385 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1386 {
1387         if (vmx->vm_entry_controls_shadow != val)
1388                 vm_entry_controls_init(vmx, val);
1389 }
1390
1391 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1392 {
1393         return vmx->vm_entry_controls_shadow;
1394 }
1395
1396
1397 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1398 {
1399         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1400 }
1401
1402 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1403 {
1404         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1405 }
1406
1407 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1408 {
1409         vmcs_write32(VM_EXIT_CONTROLS, val);
1410         vmx->vm_exit_controls_shadow = val;
1411 }
1412
1413 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1414 {
1415         if (vmx->vm_exit_controls_shadow != val)
1416                 vm_exit_controls_init(vmx, val);
1417 }
1418
1419 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1420 {
1421         return vmx->vm_exit_controls_shadow;
1422 }
1423
1424
1425 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1426 {
1427         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1428 }
1429
1430 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1431 {
1432         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1433 }
1434
1435 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1436 {
1437         vmx->segment_cache.bitmask = 0;
1438 }
1439
1440 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1441                                        unsigned field)
1442 {
1443         bool ret;
1444         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1445
1446         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1447                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1448                 vmx->segment_cache.bitmask = 0;
1449         }
1450         ret = vmx->segment_cache.bitmask & mask;
1451         vmx->segment_cache.bitmask |= mask;
1452         return ret;
1453 }
1454
1455 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1456 {
1457         u16 *p = &vmx->segment_cache.seg[seg].selector;
1458
1459         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1460                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1461         return *p;
1462 }
1463
1464 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1465 {
1466         ulong *p = &vmx->segment_cache.seg[seg].base;
1467
1468         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1469                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1470         return *p;
1471 }
1472
1473 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1474 {
1475         u32 *p = &vmx->segment_cache.seg[seg].limit;
1476
1477         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1478                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1479         return *p;
1480 }
1481
1482 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1483 {
1484         u32 *p = &vmx->segment_cache.seg[seg].ar;
1485
1486         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1487                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1488         return *p;
1489 }
1490
1491 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1492 {
1493         u32 eb;
1494
1495         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1496              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1497         if ((vcpu->guest_debug &
1498              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1499             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1500                 eb |= 1u << BP_VECTOR;
1501         if (to_vmx(vcpu)->rmode.vm86_active)
1502                 eb = ~0;
1503         if (enable_ept)
1504                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1505         if (vcpu->fpu_active)
1506                 eb &= ~(1u << NM_VECTOR);
1507
1508         /* When we are running a nested L2 guest and L1 specified for it a
1509          * certain exception bitmap, we must trap the same exceptions and pass
1510          * them to L1. When running L2, we will only handle the exceptions
1511          * specified above if L1 did not want them.
1512          */
1513         if (is_guest_mode(vcpu))
1514                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1515
1516         vmcs_write32(EXCEPTION_BITMAP, eb);
1517 }
1518
1519 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1520                 unsigned long entry, unsigned long exit)
1521 {
1522         vm_entry_controls_clearbit(vmx, entry);
1523         vm_exit_controls_clearbit(vmx, exit);
1524 }
1525
1526 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1527 {
1528         unsigned i;
1529         struct msr_autoload *m = &vmx->msr_autoload;
1530
1531         switch (msr) {
1532         case MSR_EFER:
1533                 if (cpu_has_load_ia32_efer) {
1534                         clear_atomic_switch_msr_special(vmx,
1535                                         VM_ENTRY_LOAD_IA32_EFER,
1536                                         VM_EXIT_LOAD_IA32_EFER);
1537                         return;
1538                 }
1539                 break;
1540         case MSR_CORE_PERF_GLOBAL_CTRL:
1541                 if (cpu_has_load_perf_global_ctrl) {
1542                         clear_atomic_switch_msr_special(vmx,
1543                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1544                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1545                         return;
1546                 }
1547                 break;
1548         }
1549
1550         for (i = 0; i < m->nr; ++i)
1551                 if (m->guest[i].index == msr)
1552                         break;
1553
1554         if (i == m->nr)
1555                 return;
1556         --m->nr;
1557         m->guest[i] = m->guest[m->nr];
1558         m->host[i] = m->host[m->nr];
1559         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1560         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1561 }
1562
1563 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1564                 unsigned long entry, unsigned long exit,
1565                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1566                 u64 guest_val, u64 host_val)
1567 {
1568         vmcs_write64(guest_val_vmcs, guest_val);
1569         vmcs_write64(host_val_vmcs, host_val);
1570         vm_entry_controls_setbit(vmx, entry);
1571         vm_exit_controls_setbit(vmx, exit);
1572 }
1573
1574 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1575                                   u64 guest_val, u64 host_val)
1576 {
1577         unsigned i;
1578         struct msr_autoload *m = &vmx->msr_autoload;
1579
1580         switch (msr) {
1581         case MSR_EFER:
1582                 if (cpu_has_load_ia32_efer) {
1583                         add_atomic_switch_msr_special(vmx,
1584                                         VM_ENTRY_LOAD_IA32_EFER,
1585                                         VM_EXIT_LOAD_IA32_EFER,
1586                                         GUEST_IA32_EFER,
1587                                         HOST_IA32_EFER,
1588                                         guest_val, host_val);
1589                         return;
1590                 }
1591                 break;
1592         case MSR_CORE_PERF_GLOBAL_CTRL:
1593                 if (cpu_has_load_perf_global_ctrl) {
1594                         add_atomic_switch_msr_special(vmx,
1595                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1596                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1597                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1598                                         HOST_IA32_PERF_GLOBAL_CTRL,
1599                                         guest_val, host_val);
1600                         return;
1601                 }
1602                 break;
1603         }
1604
1605         for (i = 0; i < m->nr; ++i)
1606                 if (m->guest[i].index == msr)
1607                         break;
1608
1609         if (i == NR_AUTOLOAD_MSRS) {
1610                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1611                                 "Can't add msr %x\n", msr);
1612                 return;
1613         } else if (i == m->nr) {
1614                 ++m->nr;
1615                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1616                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1617         }
1618
1619         m->guest[i].index = msr;
1620         m->guest[i].value = guest_val;
1621         m->host[i].index = msr;
1622         m->host[i].value = host_val;
1623 }
1624
1625 static void reload_tss(void)
1626 {
1627         /*
1628          * VT restores TR but not its size.  Useless.
1629          */
1630         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1631         struct desc_struct *descs;
1632
1633         descs = (void *)gdt->address;
1634         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1635         load_TR_desc();
1636 }
1637
1638 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1639 {
1640         u64 guest_efer;
1641         u64 ignore_bits;
1642
1643         guest_efer = vmx->vcpu.arch.efer;
1644
1645         /*
1646          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1647          * outside long mode
1648          */
1649         ignore_bits = EFER_NX | EFER_SCE;
1650 #ifdef CONFIG_X86_64
1651         ignore_bits |= EFER_LMA | EFER_LME;
1652         /* SCE is meaningful only in long mode on Intel */
1653         if (guest_efer & EFER_LMA)
1654                 ignore_bits &= ~(u64)EFER_SCE;
1655 #endif
1656         guest_efer &= ~ignore_bits;
1657         guest_efer |= host_efer & ignore_bits;
1658         vmx->guest_msrs[efer_offset].data = guest_efer;
1659         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1660
1661         clear_atomic_switch_msr(vmx, MSR_EFER);
1662         /* On ept, can't emulate nx, and must switch nx atomically */
1663         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1664                 guest_efer = vmx->vcpu.arch.efer;
1665                 if (!(guest_efer & EFER_LMA))
1666                         guest_efer &= ~EFER_LME;
1667                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1668                 return false;
1669         }
1670
1671         return true;
1672 }
1673
1674 static unsigned long segment_base(u16 selector)
1675 {
1676         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1677         struct desc_struct *d;
1678         unsigned long table_base;
1679         unsigned long v;
1680
1681         if (!(selector & ~3))
1682                 return 0;
1683
1684         table_base = gdt->address;
1685
1686         if (selector & 4) {           /* from ldt */
1687                 u16 ldt_selector = kvm_read_ldt();
1688
1689                 if (!(ldt_selector & ~3))
1690                         return 0;
1691
1692                 table_base = segment_base(ldt_selector);
1693         }
1694         d = (struct desc_struct *)(table_base + (selector & ~7));
1695         v = get_desc_base(d);
1696 #ifdef CONFIG_X86_64
1697        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1698                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1699 #endif
1700         return v;
1701 }
1702
1703 static inline unsigned long kvm_read_tr_base(void)
1704 {
1705         u16 tr;
1706         asm("str %0" : "=g"(tr));
1707         return segment_base(tr);
1708 }
1709
1710 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1711 {
1712         struct vcpu_vmx *vmx = to_vmx(vcpu);
1713         int i;
1714
1715         if (vmx->host_state.loaded)
1716                 return;
1717
1718         vmx->host_state.loaded = 1;
1719         /*
1720          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1721          * allow segment selectors with cpl > 0 or ti == 1.
1722          */
1723         vmx->host_state.ldt_sel = kvm_read_ldt();
1724         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1725         savesegment(fs, vmx->host_state.fs_sel);
1726         if (!(vmx->host_state.fs_sel & 7)) {
1727                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1728                 vmx->host_state.fs_reload_needed = 0;
1729         } else {
1730                 vmcs_write16(HOST_FS_SELECTOR, 0);
1731                 vmx->host_state.fs_reload_needed = 1;
1732         }
1733         savesegment(gs, vmx->host_state.gs_sel);
1734         if (!(vmx->host_state.gs_sel & 7))
1735                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1736         else {
1737                 vmcs_write16(HOST_GS_SELECTOR, 0);
1738                 vmx->host_state.gs_ldt_reload_needed = 1;
1739         }
1740
1741 #ifdef CONFIG_X86_64
1742         savesegment(ds, vmx->host_state.ds_sel);
1743         savesegment(es, vmx->host_state.es_sel);
1744 #endif
1745
1746 #ifdef CONFIG_X86_64
1747         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1748         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1749 #else
1750         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1751         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1752 #endif
1753
1754 #ifdef CONFIG_X86_64
1755         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1756         if (is_long_mode(&vmx->vcpu))
1757                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1758 #endif
1759         if (boot_cpu_has(X86_FEATURE_MPX))
1760                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1761         for (i = 0; i < vmx->save_nmsrs; ++i)
1762                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1763                                    vmx->guest_msrs[i].data,
1764                                    vmx->guest_msrs[i].mask);
1765 }
1766
1767 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1768 {
1769         if (!vmx->host_state.loaded)
1770                 return;
1771
1772         ++vmx->vcpu.stat.host_state_reload;
1773         vmx->host_state.loaded = 0;
1774 #ifdef CONFIG_X86_64
1775         if (is_long_mode(&vmx->vcpu))
1776                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1777 #endif
1778         if (vmx->host_state.gs_ldt_reload_needed) {
1779                 kvm_load_ldt(vmx->host_state.ldt_sel);
1780 #ifdef CONFIG_X86_64
1781                 load_gs_index(vmx->host_state.gs_sel);
1782 #else
1783                 loadsegment(gs, vmx->host_state.gs_sel);
1784 #endif
1785         }
1786         if (vmx->host_state.fs_reload_needed)
1787                 loadsegment(fs, vmx->host_state.fs_sel);
1788 #ifdef CONFIG_X86_64
1789         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1790                 loadsegment(ds, vmx->host_state.ds_sel);
1791                 loadsegment(es, vmx->host_state.es_sel);
1792         }
1793 #endif
1794         reload_tss();
1795 #ifdef CONFIG_X86_64
1796         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1797 #endif
1798         if (vmx->host_state.msr_host_bndcfgs)
1799                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1800         /*
1801          * If the FPU is not active (through the host task or
1802          * the guest vcpu), then restore the cr0.TS bit.
1803          */
1804         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1805                 stts();
1806         load_gdt(this_cpu_ptr(&host_gdt));
1807 }
1808
1809 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1810 {
1811         preempt_disable();
1812         __vmx_load_host_state(vmx);
1813         preempt_enable();
1814 }
1815
1816 /*
1817  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1818  * vcpu mutex is already taken.
1819  */
1820 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1821 {
1822         struct vcpu_vmx *vmx = to_vmx(vcpu);
1823         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1824
1825         if (!vmm_exclusive)
1826                 kvm_cpu_vmxon(phys_addr);
1827         else if (vmx->loaded_vmcs->cpu != cpu)
1828                 loaded_vmcs_clear(vmx->loaded_vmcs);
1829
1830         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1831                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1832                 vmcs_load(vmx->loaded_vmcs->vmcs);
1833         }
1834
1835         if (vmx->loaded_vmcs->cpu != cpu) {
1836                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1837                 unsigned long sysenter_esp;
1838
1839                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1840                 local_irq_disable();
1841                 crash_disable_local_vmclear(cpu);
1842
1843                 /*
1844                  * Read loaded_vmcs->cpu should be before fetching
1845                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1846                  * See the comments in __loaded_vmcs_clear().
1847                  */
1848                 smp_rmb();
1849
1850                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1851                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1852                 crash_enable_local_vmclear(cpu);
1853                 local_irq_enable();
1854
1855                 /*
1856                  * Linux uses per-cpu TSS and GDT, so set these when switching
1857                  * processors.
1858                  */
1859                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1860                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1861
1862                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1863                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1864                 vmx->loaded_vmcs->cpu = cpu;
1865         }
1866 }
1867
1868 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1869 {
1870         __vmx_load_host_state(to_vmx(vcpu));
1871         if (!vmm_exclusive) {
1872                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1873                 vcpu->cpu = -1;
1874                 kvm_cpu_vmxoff();
1875         }
1876 }
1877
1878 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1879 {
1880         ulong cr0;
1881
1882         if (vcpu->fpu_active)
1883                 return;
1884         vcpu->fpu_active = 1;
1885         cr0 = vmcs_readl(GUEST_CR0);
1886         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1887         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1888         vmcs_writel(GUEST_CR0, cr0);
1889         update_exception_bitmap(vcpu);
1890         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1891         if (is_guest_mode(vcpu))
1892                 vcpu->arch.cr0_guest_owned_bits &=
1893                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1894         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1895 }
1896
1897 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1898
1899 /*
1900  * Return the cr0 value that a nested guest would read. This is a combination
1901  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1902  * its hypervisor (cr0_read_shadow).
1903  */
1904 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1905 {
1906         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1907                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1908 }
1909 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1910 {
1911         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1912                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1913 }
1914
1915 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1916 {
1917         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1918          * set this *before* calling this function.
1919          */
1920         vmx_decache_cr0_guest_bits(vcpu);
1921         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1922         update_exception_bitmap(vcpu);
1923         vcpu->arch.cr0_guest_owned_bits = 0;
1924         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1925         if (is_guest_mode(vcpu)) {
1926                 /*
1927                  * L1's specified read shadow might not contain the TS bit,
1928                  * so now that we turned on shadowing of this bit, we need to
1929                  * set this bit of the shadow. Like in nested_vmx_run we need
1930                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1931                  * up-to-date here because we just decached cr0.TS (and we'll
1932                  * only update vmcs12->guest_cr0 on nested exit).
1933                  */
1934                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1935                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1936                         (vcpu->arch.cr0 & X86_CR0_TS);
1937                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1938         } else
1939                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1940 }
1941
1942 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1943 {
1944         unsigned long rflags, save_rflags;
1945
1946         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1947                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1948                 rflags = vmcs_readl(GUEST_RFLAGS);
1949                 if (to_vmx(vcpu)->rmode.vm86_active) {
1950                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1951                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1952                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1953                 }
1954                 to_vmx(vcpu)->rflags = rflags;
1955         }
1956         return to_vmx(vcpu)->rflags;
1957 }
1958
1959 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1960 {
1961         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1962         to_vmx(vcpu)->rflags = rflags;
1963         if (to_vmx(vcpu)->rmode.vm86_active) {
1964                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1965                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1966         }
1967         vmcs_writel(GUEST_RFLAGS, rflags);
1968 }
1969
1970 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1971 {
1972         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1973         int ret = 0;
1974
1975         if (interruptibility & GUEST_INTR_STATE_STI)
1976                 ret |= KVM_X86_SHADOW_INT_STI;
1977         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1978                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1979
1980         return ret;
1981 }
1982
1983 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1984 {
1985         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1986         u32 interruptibility = interruptibility_old;
1987
1988         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1989
1990         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1991                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1992         else if (mask & KVM_X86_SHADOW_INT_STI)
1993                 interruptibility |= GUEST_INTR_STATE_STI;
1994
1995         if ((interruptibility != interruptibility_old))
1996                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1997 }
1998
1999 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2000 {
2001         unsigned long rip;
2002
2003         rip = kvm_rip_read(vcpu);
2004         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2005         kvm_rip_write(vcpu, rip);
2006
2007         /* skipping an emulated instruction also counts */
2008         vmx_set_interrupt_shadow(vcpu, 0);
2009 }
2010
2011 /*
2012  * KVM wants to inject page-faults which it got to the guest. This function
2013  * checks whether in a nested guest, we need to inject them to L1 or L2.
2014  */
2015 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2016 {
2017         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2018
2019         if (!(vmcs12->exception_bitmap & (1u << nr)))
2020                 return 0;
2021
2022         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2023                           vmcs_read32(VM_EXIT_INTR_INFO),
2024                           vmcs_readl(EXIT_QUALIFICATION));
2025         return 1;
2026 }
2027
2028 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2029                                 bool has_error_code, u32 error_code,
2030                                 bool reinject)
2031 {
2032         struct vcpu_vmx *vmx = to_vmx(vcpu);
2033         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2034
2035         if (!reinject && is_guest_mode(vcpu) &&
2036             nested_vmx_check_exception(vcpu, nr))
2037                 return;
2038
2039         if (has_error_code) {
2040                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2041                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2042         }
2043
2044         if (vmx->rmode.vm86_active) {
2045                 int inc_eip = 0;
2046                 if (kvm_exception_is_soft(nr))
2047                         inc_eip = vcpu->arch.event_exit_inst_len;
2048                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2049                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2050                 return;
2051         }
2052
2053         if (kvm_exception_is_soft(nr)) {
2054                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2055                              vmx->vcpu.arch.event_exit_inst_len);
2056                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2057         } else
2058                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2059
2060         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2061 }
2062
2063 static bool vmx_rdtscp_supported(void)
2064 {
2065         return cpu_has_vmx_rdtscp();
2066 }
2067
2068 static bool vmx_invpcid_supported(void)
2069 {
2070         return cpu_has_vmx_invpcid() && enable_ept;
2071 }
2072
2073 /*
2074  * Swap MSR entry in host/guest MSR entry array.
2075  */
2076 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2077 {
2078         struct shared_msr_entry tmp;
2079
2080         tmp = vmx->guest_msrs[to];
2081         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2082         vmx->guest_msrs[from] = tmp;
2083 }
2084
2085 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2086 {
2087         unsigned long *msr_bitmap;
2088
2089         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2090                 if (is_long_mode(vcpu))
2091                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2092                 else
2093                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2094         } else {
2095                 if (is_long_mode(vcpu))
2096                         msr_bitmap = vmx_msr_bitmap_longmode;
2097                 else
2098                         msr_bitmap = vmx_msr_bitmap_legacy;
2099         }
2100
2101         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2102 }
2103
2104 /*
2105  * Set up the vmcs to automatically save and restore system
2106  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2107  * mode, as fiddling with msrs is very expensive.
2108  */
2109 static void setup_msrs(struct vcpu_vmx *vmx)
2110 {
2111         int save_nmsrs, index;
2112
2113         save_nmsrs = 0;
2114 #ifdef CONFIG_X86_64
2115         if (is_long_mode(&vmx->vcpu)) {
2116                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2117                 if (index >= 0)
2118                         move_msr_up(vmx, index, save_nmsrs++);
2119                 index = __find_msr_index(vmx, MSR_LSTAR);
2120                 if (index >= 0)
2121                         move_msr_up(vmx, index, save_nmsrs++);
2122                 index = __find_msr_index(vmx, MSR_CSTAR);
2123                 if (index >= 0)
2124                         move_msr_up(vmx, index, save_nmsrs++);
2125                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2126                 if (index >= 0 && vmx->rdtscp_enabled)
2127                         move_msr_up(vmx, index, save_nmsrs++);
2128                 /*
2129                  * MSR_STAR is only needed on long mode guests, and only
2130                  * if efer.sce is enabled.
2131                  */
2132                 index = __find_msr_index(vmx, MSR_STAR);
2133                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2134                         move_msr_up(vmx, index, save_nmsrs++);
2135         }
2136 #endif
2137         index = __find_msr_index(vmx, MSR_EFER);
2138         if (index >= 0 && update_transition_efer(vmx, index))
2139                 move_msr_up(vmx, index, save_nmsrs++);
2140
2141         vmx->save_nmsrs = save_nmsrs;
2142
2143         if (cpu_has_vmx_msr_bitmap())
2144                 vmx_set_msr_bitmap(&vmx->vcpu);
2145 }
2146
2147 /*
2148  * reads and returns guest's timestamp counter "register"
2149  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2150  */
2151 static u64 guest_read_tsc(void)
2152 {
2153         u64 host_tsc, tsc_offset;
2154
2155         rdtscll(host_tsc);
2156         tsc_offset = vmcs_read64(TSC_OFFSET);
2157         return host_tsc + tsc_offset;
2158 }
2159
2160 /*
2161  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2162  * counter, even if a nested guest (L2) is currently running.
2163  */
2164 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2165 {
2166         u64 tsc_offset;
2167
2168         tsc_offset = is_guest_mode(vcpu) ?
2169                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2170                 vmcs_read64(TSC_OFFSET);
2171         return host_tsc + tsc_offset;
2172 }
2173
2174 /*
2175  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2176  * software catchup for faster rates on slower CPUs.
2177  */
2178 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2179 {
2180         if (!scale)
2181                 return;
2182
2183         if (user_tsc_khz > tsc_khz) {
2184                 vcpu->arch.tsc_catchup = 1;
2185                 vcpu->arch.tsc_always_catchup = 1;
2186         } else
2187                 WARN(1, "user requested TSC rate below hardware speed\n");
2188 }
2189
2190 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2191 {
2192         return vmcs_read64(TSC_OFFSET);
2193 }
2194
2195 /*
2196  * writes 'offset' into guest's timestamp counter offset register
2197  */
2198 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2199 {
2200         if (is_guest_mode(vcpu)) {
2201                 /*
2202                  * We're here if L1 chose not to trap WRMSR to TSC. According
2203                  * to the spec, this should set L1's TSC; The offset that L1
2204                  * set for L2 remains unchanged, and still needs to be added
2205                  * to the newly set TSC to get L2's TSC.
2206                  */
2207                 struct vmcs12 *vmcs12;
2208                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2209                 /* recalculate vmcs02.TSC_OFFSET: */
2210                 vmcs12 = get_vmcs12(vcpu);
2211                 vmcs_write64(TSC_OFFSET, offset +
2212                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2213                          vmcs12->tsc_offset : 0));
2214         } else {
2215                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2216                                            vmcs_read64(TSC_OFFSET), offset);
2217                 vmcs_write64(TSC_OFFSET, offset);
2218         }
2219 }
2220
2221 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2222 {
2223         u64 offset = vmcs_read64(TSC_OFFSET);
2224
2225         vmcs_write64(TSC_OFFSET, offset + adjustment);
2226         if (is_guest_mode(vcpu)) {
2227                 /* Even when running L2, the adjustment needs to apply to L1 */
2228                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2229         } else
2230                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2231                                            offset + adjustment);
2232 }
2233
2234 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2235 {
2236         return target_tsc - native_read_tsc();
2237 }
2238
2239 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2240 {
2241         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2242         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2243 }
2244
2245 /*
2246  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2247  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2248  * all guests if the "nested" module option is off, and can also be disabled
2249  * for a single guest by disabling its VMX cpuid bit.
2250  */
2251 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2252 {
2253         return nested && guest_cpuid_has_vmx(vcpu);
2254 }
2255
2256 /*
2257  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2258  * returned for the various VMX controls MSRs when nested VMX is enabled.
2259  * The same values should also be used to verify that vmcs12 control fields are
2260  * valid during nested entry from L1 to L2.
2261  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2262  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2263  * bit in the high half is on if the corresponding bit in the control field
2264  * may be on. See also vmx_control_verify().
2265  * TODO: allow these variables to be modified (downgraded) by module options
2266  * or other means.
2267  */
2268 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2269 static u32 nested_vmx_true_procbased_ctls_low;
2270 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2271 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2272 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2273 static u32 nested_vmx_true_exit_ctls_low;
2274 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2275 static u32 nested_vmx_true_entry_ctls_low;
2276 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2277 static u32 nested_vmx_ept_caps;
2278 static __init void nested_vmx_setup_ctls_msrs(void)
2279 {
2280         /*
2281          * Note that as a general rule, the high half of the MSRs (bits in
2282          * the control fields which may be 1) should be initialized by the
2283          * intersection of the underlying hardware's MSR (i.e., features which
2284          * can be supported) and the list of features we want to expose -
2285          * because they are known to be properly supported in our code.
2286          * Also, usually, the low half of the MSRs (bits which must be 1) can
2287          * be set to 0, meaning that L1 may turn off any of these bits. The
2288          * reason is that if one of these bits is necessary, it will appear
2289          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2290          * fields of vmcs01 and vmcs02, will turn these bits off - and
2291          * nested_vmx_exit_handled() will not pass related exits to L1.
2292          * These rules have exceptions below.
2293          */
2294
2295         /* pin-based controls */
2296         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2297               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2298         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2299         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2300                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2301         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2302                 PIN_BASED_VMX_PREEMPTION_TIMER;
2303
2304         /* exit controls */
2305         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2306                 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2307         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2308
2309         nested_vmx_exit_ctls_high &=
2310 #ifdef CONFIG_X86_64
2311                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2312 #endif
2313                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2314         nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2315                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2316                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2317
2318         if (vmx_mpx_supported())
2319                 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2320
2321         /* We support free control of debug control saving. */
2322         nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2323                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2324
2325         /* entry controls */
2326         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2327                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2328         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2329         nested_vmx_entry_ctls_high &=
2330 #ifdef CONFIG_X86_64
2331                 VM_ENTRY_IA32E_MODE |
2332 #endif
2333                 VM_ENTRY_LOAD_IA32_PAT;
2334         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2335                                        VM_ENTRY_LOAD_IA32_EFER);
2336         if (vmx_mpx_supported())
2337                 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2338
2339         /* We support free control of debug control loading. */
2340         nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2341                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2342
2343         /* cpu-based controls */
2344         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2345                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2346         nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2347         nested_vmx_procbased_ctls_high &=
2348                 CPU_BASED_VIRTUAL_INTR_PENDING |
2349                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2350                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2351                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2352                 CPU_BASED_CR3_STORE_EXITING |
2353 #ifdef CONFIG_X86_64
2354                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2355 #endif
2356                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2357                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2358                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2359                 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2360                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2361         /*
2362          * We can allow some features even when not supported by the
2363          * hardware. For example, L1 can specify an MSR bitmap - and we
2364          * can use it to avoid exits to L1 - even when L0 runs L2
2365          * without MSR bitmaps.
2366          */
2367         nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2368                 CPU_BASED_USE_MSR_BITMAPS;
2369
2370         /* We support free control of CR3 access interception. */
2371         nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2372                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2373
2374         /* secondary cpu-based controls */
2375         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2376                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2377         nested_vmx_secondary_ctls_low = 0;
2378         nested_vmx_secondary_ctls_high &=
2379                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2380                 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2381                 SECONDARY_EXEC_WBINVD_EXITING;
2382
2383         if (enable_ept) {
2384                 /* nested EPT: emulate EPT also to L1 */
2385                 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2386                 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2387                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2388                          VMX_EPT_INVEPT_BIT;
2389                 nested_vmx_ept_caps &= vmx_capability.ept;
2390                 /*
2391                  * For nested guests, we don't do anything specific
2392                  * for single context invalidation. Hence, only advertise
2393                  * support for global context invalidation.
2394                  */
2395                 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2396         } else
2397                 nested_vmx_ept_caps = 0;
2398
2399         /* miscellaneous data */
2400         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2401         nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2402         nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2403                 VMX_MISC_ACTIVITY_HLT;
2404         nested_vmx_misc_high = 0;
2405 }
2406
2407 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2408 {
2409         /*
2410          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2411          */
2412         return ((control & high) | low) == control;
2413 }
2414
2415 static inline u64 vmx_control_msr(u32 low, u32 high)
2416 {
2417         return low | ((u64)high << 32);
2418 }
2419
2420 /* Returns 0 on success, non-0 otherwise. */
2421 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2422 {
2423         switch (msr_index) {
2424         case MSR_IA32_VMX_BASIC:
2425                 /*
2426                  * This MSR reports some information about VMX support. We
2427                  * should return information about the VMX we emulate for the
2428                  * guest, and the VMCS structure we give it - not about the
2429                  * VMX support of the underlying hardware.
2430                  */
2431                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2432                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2433                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2434                 break;
2435         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2436         case MSR_IA32_VMX_PINBASED_CTLS:
2437                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2438                                         nested_vmx_pinbased_ctls_high);
2439                 break;
2440         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2441                 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2442                                         nested_vmx_procbased_ctls_high);
2443                 break;
2444         case MSR_IA32_VMX_PROCBASED_CTLS:
2445                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2446                                         nested_vmx_procbased_ctls_high);
2447                 break;
2448         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2449                 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2450                                         nested_vmx_exit_ctls_high);
2451                 break;
2452         case MSR_IA32_VMX_EXIT_CTLS:
2453                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2454                                         nested_vmx_exit_ctls_high);
2455                 break;
2456         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2457                 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2458                                         nested_vmx_entry_ctls_high);
2459                 break;
2460         case MSR_IA32_VMX_ENTRY_CTLS:
2461                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2462                                         nested_vmx_entry_ctls_high);
2463                 break;
2464         case MSR_IA32_VMX_MISC:
2465                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2466                                          nested_vmx_misc_high);
2467                 break;
2468         /*
2469          * These MSRs specify bits which the guest must keep fixed (on or off)
2470          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2471          * We picked the standard core2 setting.
2472          */
2473 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2474 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2475         case MSR_IA32_VMX_CR0_FIXED0:
2476                 *pdata = VMXON_CR0_ALWAYSON;
2477                 break;
2478         case MSR_IA32_VMX_CR0_FIXED1:
2479                 *pdata = -1ULL;
2480                 break;
2481         case MSR_IA32_VMX_CR4_FIXED0:
2482                 *pdata = VMXON_CR4_ALWAYSON;
2483                 break;
2484         case MSR_IA32_VMX_CR4_FIXED1:
2485                 *pdata = -1ULL;
2486                 break;
2487         case MSR_IA32_VMX_VMCS_ENUM:
2488                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2489                 break;
2490         case MSR_IA32_VMX_PROCBASED_CTLS2:
2491                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2492                                         nested_vmx_secondary_ctls_high);
2493                 break;
2494         case MSR_IA32_VMX_EPT_VPID_CAP:
2495                 /* Currently, no nested vpid support */
2496                 *pdata = nested_vmx_ept_caps;
2497                 break;
2498         default:
2499                 return 1;
2500         }
2501
2502         return 0;
2503 }
2504
2505 /*
2506  * Reads an msr value (of 'msr_index') into 'pdata'.
2507  * Returns 0 on success, non-0 otherwise.
2508  * Assumes vcpu_load() was already called.
2509  */
2510 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2511 {
2512         u64 data;
2513         struct shared_msr_entry *msr;
2514
2515         if (!pdata) {
2516                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2517                 return -EINVAL;
2518         }
2519
2520         switch (msr_index) {
2521 #ifdef CONFIG_X86_64
2522         case MSR_FS_BASE:
2523                 data = vmcs_readl(GUEST_FS_BASE);
2524                 break;
2525         case MSR_GS_BASE:
2526                 data = vmcs_readl(GUEST_GS_BASE);
2527                 break;
2528         case MSR_KERNEL_GS_BASE:
2529                 vmx_load_host_state(to_vmx(vcpu));
2530                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2531                 break;
2532 #endif
2533         case MSR_EFER:
2534                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2535         case MSR_IA32_TSC:
2536                 data = guest_read_tsc();
2537                 break;
2538         case MSR_IA32_SYSENTER_CS:
2539                 data = vmcs_read32(GUEST_SYSENTER_CS);
2540                 break;
2541         case MSR_IA32_SYSENTER_EIP:
2542                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2543                 break;
2544         case MSR_IA32_SYSENTER_ESP:
2545                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2546                 break;
2547         case MSR_IA32_BNDCFGS:
2548                 if (!vmx_mpx_supported())
2549                         return 1;
2550                 data = vmcs_read64(GUEST_BNDCFGS);
2551                 break;
2552         case MSR_IA32_FEATURE_CONTROL:
2553                 if (!nested_vmx_allowed(vcpu))
2554                         return 1;
2555                 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2556                 break;
2557         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2558                 if (!nested_vmx_allowed(vcpu))
2559                         return 1;
2560                 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2561         case MSR_TSC_AUX:
2562                 if (!to_vmx(vcpu)->rdtscp_enabled)
2563                         return 1;
2564                 /* Otherwise falls through */
2565         default:
2566                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2567                 if (msr) {
2568                         data = msr->data;
2569                         break;
2570                 }
2571                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2572         }
2573
2574         *pdata = data;
2575         return 0;
2576 }
2577
2578 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2579
2580 /*
2581  * Writes msr value into into the appropriate "register".
2582  * Returns 0 on success, non-0 otherwise.
2583  * Assumes vcpu_load() was already called.
2584  */
2585 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2586 {
2587         struct vcpu_vmx *vmx = to_vmx(vcpu);
2588         struct shared_msr_entry *msr;
2589         int ret = 0;
2590         u32 msr_index = msr_info->index;
2591         u64 data = msr_info->data;
2592
2593         switch (msr_index) {
2594         case MSR_EFER:
2595                 ret = kvm_set_msr_common(vcpu, msr_info);
2596                 break;
2597 #ifdef CONFIG_X86_64
2598         case MSR_FS_BASE:
2599                 vmx_segment_cache_clear(vmx);
2600                 vmcs_writel(GUEST_FS_BASE, data);
2601                 break;
2602         case MSR_GS_BASE:
2603                 vmx_segment_cache_clear(vmx);
2604                 vmcs_writel(GUEST_GS_BASE, data);
2605                 break;
2606         case MSR_KERNEL_GS_BASE:
2607                 vmx_load_host_state(vmx);
2608                 vmx->msr_guest_kernel_gs_base = data;
2609                 break;
2610 #endif
2611         case MSR_IA32_SYSENTER_CS:
2612                 vmcs_write32(GUEST_SYSENTER_CS, data);
2613                 break;
2614         case MSR_IA32_SYSENTER_EIP:
2615                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2616                 break;
2617         case MSR_IA32_SYSENTER_ESP:
2618                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2619                 break;
2620         case MSR_IA32_BNDCFGS:
2621                 if (!vmx_mpx_supported())
2622                         return 1;
2623                 vmcs_write64(GUEST_BNDCFGS, data);
2624                 break;
2625         case MSR_IA32_TSC:
2626                 kvm_write_tsc(vcpu, msr_info);
2627                 break;
2628         case MSR_IA32_CR_PAT:
2629                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2630                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2631                                 return 1;
2632                         vmcs_write64(GUEST_IA32_PAT, data);
2633                         vcpu->arch.pat = data;
2634                         break;
2635                 }
2636                 ret = kvm_set_msr_common(vcpu, msr_info);
2637                 break;
2638         case MSR_IA32_TSC_ADJUST:
2639                 ret = kvm_set_msr_common(vcpu, msr_info);
2640                 break;
2641         case MSR_IA32_FEATURE_CONTROL:
2642                 if (!nested_vmx_allowed(vcpu) ||
2643                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2644                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2645                         return 1;
2646                 vmx->nested.msr_ia32_feature_control = data;
2647                 if (msr_info->host_initiated && data == 0)
2648                         vmx_leave_nested(vcpu);
2649                 break;
2650         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2651                 return 1; /* they are read-only */
2652         case MSR_TSC_AUX:
2653                 if (!vmx->rdtscp_enabled)
2654                         return 1;
2655                 /* Check reserved bit, higher 32 bits should be zero */
2656                 if ((data >> 32) != 0)
2657                         return 1;
2658                 /* Otherwise falls through */
2659         default:
2660                 msr = find_msr_entry(vmx, msr_index);
2661                 if (msr) {
2662                         msr->data = data;
2663                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2664                                 preempt_disable();
2665                                 kvm_set_shared_msr(msr->index, msr->data,
2666                                                    msr->mask);
2667                                 preempt_enable();
2668                         }
2669                         break;
2670                 }
2671                 ret = kvm_set_msr_common(vcpu, msr_info);
2672         }
2673
2674         return ret;
2675 }
2676
2677 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2678 {
2679         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2680         switch (reg) {
2681         case VCPU_REGS_RSP:
2682                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2683                 break;
2684         case VCPU_REGS_RIP:
2685                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2686                 break;
2687         case VCPU_EXREG_PDPTR:
2688                 if (enable_ept)
2689                         ept_save_pdptrs(vcpu);
2690                 break;
2691         default:
2692                 break;
2693         }
2694 }
2695
2696 static __init int cpu_has_kvm_support(void)
2697 {
2698         return cpu_has_vmx();
2699 }
2700
2701 static __init int vmx_disabled_by_bios(void)
2702 {
2703         u64 msr;
2704
2705         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2706         if (msr & FEATURE_CONTROL_LOCKED) {
2707                 /* launched w/ TXT and VMX disabled */
2708                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2709                         && tboot_enabled())
2710                         return 1;
2711                 /* launched w/o TXT and VMX only enabled w/ TXT */
2712                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2713                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2714                         && !tboot_enabled()) {
2715                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2716                                 "activate TXT before enabling KVM\n");
2717                         return 1;
2718                 }
2719                 /* launched w/o TXT and VMX disabled */
2720                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2721                         && !tboot_enabled())
2722                         return 1;
2723         }
2724
2725         return 0;
2726 }
2727
2728 static void kvm_cpu_vmxon(u64 addr)
2729 {
2730         asm volatile (ASM_VMX_VMXON_RAX
2731                         : : "a"(&addr), "m"(addr)
2732                         : "memory", "cc");
2733 }
2734
2735 static int hardware_enable(void)
2736 {
2737         int cpu = raw_smp_processor_id();
2738         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2739         u64 old, test_bits;
2740
2741         if (read_cr4() & X86_CR4_VMXE)
2742                 return -EBUSY;
2743
2744         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2745
2746         /*
2747          * Now we can enable the vmclear operation in kdump
2748          * since the loaded_vmcss_on_cpu list on this cpu
2749          * has been initialized.
2750          *
2751          * Though the cpu is not in VMX operation now, there
2752          * is no problem to enable the vmclear operation
2753          * for the loaded_vmcss_on_cpu list is empty!
2754          */
2755         crash_enable_local_vmclear(cpu);
2756
2757         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2758
2759         test_bits = FEATURE_CONTROL_LOCKED;
2760         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2761         if (tboot_enabled())
2762                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2763
2764         if ((old & test_bits) != test_bits) {
2765                 /* enable and lock */
2766                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2767         }
2768         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2769
2770         if (vmm_exclusive) {
2771                 kvm_cpu_vmxon(phys_addr);
2772                 ept_sync_global();
2773         }
2774
2775         native_store_gdt(this_cpu_ptr(&host_gdt));
2776
2777         return 0;
2778 }
2779
2780 static void vmclear_local_loaded_vmcss(void)
2781 {
2782         int cpu = raw_smp_processor_id();
2783         struct loaded_vmcs *v, *n;
2784
2785         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2786                                  loaded_vmcss_on_cpu_link)
2787                 __loaded_vmcs_clear(v);
2788 }
2789
2790
2791 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2792  * tricks.
2793  */
2794 static void kvm_cpu_vmxoff(void)
2795 {
2796         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2797 }
2798
2799 static void hardware_disable(void)
2800 {
2801         if (vmm_exclusive) {
2802                 vmclear_local_loaded_vmcss();
2803                 kvm_cpu_vmxoff();
2804         }
2805         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2806 }
2807
2808 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2809                                       u32 msr, u32 *result)
2810 {
2811         u32 vmx_msr_low, vmx_msr_high;
2812         u32 ctl = ctl_min | ctl_opt;
2813
2814         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2815
2816         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2817         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2818
2819         /* Ensure minimum (required) set of control bits are supported. */
2820         if (ctl_min & ~ctl)
2821                 return -EIO;
2822
2823         *result = ctl;
2824         return 0;
2825 }
2826
2827 static __init bool allow_1_setting(u32 msr, u32 ctl)
2828 {
2829         u32 vmx_msr_low, vmx_msr_high;
2830
2831         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2832         return vmx_msr_high & ctl;
2833 }
2834
2835 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2836 {
2837         u32 vmx_msr_low, vmx_msr_high;
2838         u32 min, opt, min2, opt2;
2839         u32 _pin_based_exec_control = 0;
2840         u32 _cpu_based_exec_control = 0;
2841         u32 _cpu_based_2nd_exec_control = 0;
2842         u32 _vmexit_control = 0;
2843         u32 _vmentry_control = 0;
2844
2845         min = CPU_BASED_HLT_EXITING |
2846 #ifdef CONFIG_X86_64
2847               CPU_BASED_CR8_LOAD_EXITING |
2848               CPU_BASED_CR8_STORE_EXITING |
2849 #endif
2850               CPU_BASED_CR3_LOAD_EXITING |
2851               CPU_BASED_CR3_STORE_EXITING |
2852               CPU_BASED_USE_IO_BITMAPS |
2853               CPU_BASED_MOV_DR_EXITING |
2854               CPU_BASED_USE_TSC_OFFSETING |
2855               CPU_BASED_MWAIT_EXITING |
2856               CPU_BASED_MONITOR_EXITING |
2857               CPU_BASED_INVLPG_EXITING |
2858               CPU_BASED_RDPMC_EXITING;
2859
2860         opt = CPU_BASED_TPR_SHADOW |
2861               CPU_BASED_USE_MSR_BITMAPS |
2862               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2863         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2864                                 &_cpu_based_exec_control) < 0)
2865                 return -EIO;
2866 #ifdef CONFIG_X86_64
2867         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2868                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2869                                            ~CPU_BASED_CR8_STORE_EXITING;
2870 #endif
2871         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2872                 min2 = 0;
2873                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2874                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2875                         SECONDARY_EXEC_WBINVD_EXITING |
2876                         SECONDARY_EXEC_ENABLE_VPID |
2877                         SECONDARY_EXEC_ENABLE_EPT |
2878                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2879                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2880                         SECONDARY_EXEC_RDTSCP |
2881                         SECONDARY_EXEC_ENABLE_INVPCID |
2882                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2883                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2884                         SECONDARY_EXEC_SHADOW_VMCS;
2885                 if (adjust_vmx_controls(min2, opt2,
2886                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2887                                         &_cpu_based_2nd_exec_control) < 0)
2888                         return -EIO;
2889         }
2890 #ifndef CONFIG_X86_64
2891         if (!(_cpu_based_2nd_exec_control &
2892                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2893                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2894 #endif
2895
2896         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2897                 _cpu_based_2nd_exec_control &= ~(
2898                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2899                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2900                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2901
2902         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2903                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2904                    enabled */
2905                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2906                                              CPU_BASED_CR3_STORE_EXITING |
2907                                              CPU_BASED_INVLPG_EXITING);
2908                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2909                       vmx_capability.ept, vmx_capability.vpid);
2910         }
2911
2912         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2913 #ifdef CONFIG_X86_64
2914         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2915 #endif
2916         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2917                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2918         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2919                                 &_vmexit_control) < 0)
2920                 return -EIO;
2921
2922         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2923         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2924         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2925                                 &_pin_based_exec_control) < 0)
2926                 return -EIO;
2927
2928         if (!(_cpu_based_2nd_exec_control &
2929                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2930                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2931                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2932
2933         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2934         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2935         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2936                                 &_vmentry_control) < 0)
2937                 return -EIO;
2938
2939         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2940
2941         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2942         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2943                 return -EIO;
2944
2945 #ifdef CONFIG_X86_64
2946         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2947         if (vmx_msr_high & (1u<<16))
2948                 return -EIO;
2949 #endif
2950
2951         /* Require Write-Back (WB) memory type for VMCS accesses. */
2952         if (((vmx_msr_high >> 18) & 15) != 6)
2953                 return -EIO;
2954
2955         vmcs_conf->size = vmx_msr_high & 0x1fff;
2956         vmcs_conf->order = get_order(vmcs_config.size);
2957         vmcs_conf->revision_id = vmx_msr_low;
2958
2959         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2960         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2961         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2962         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2963         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2964
2965         cpu_has_load_ia32_efer =
2966                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2967                                 VM_ENTRY_LOAD_IA32_EFER)
2968                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2969                                    VM_EXIT_LOAD_IA32_EFER);
2970
2971         cpu_has_load_perf_global_ctrl =
2972                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2973                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2974                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2975                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2976
2977         /*
2978          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2979          * but due to arrata below it can't be used. Workaround is to use
2980          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2981          *
2982          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2983          *
2984          * AAK155             (model 26)
2985          * AAP115             (model 30)
2986          * AAT100             (model 37)
2987          * BC86,AAY89,BD102   (model 44)
2988          * BA97               (model 46)
2989          *
2990          */
2991         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2992                 switch (boot_cpu_data.x86_model) {
2993                 case 26:
2994                 case 30:
2995                 case 37:
2996                 case 44:
2997                 case 46:
2998                         cpu_has_load_perf_global_ctrl = false;
2999                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3000                                         "does not work properly. Using workaround\n");
3001                         break;
3002                 default:
3003                         break;
3004                 }
3005         }
3006
3007         return 0;
3008 }
3009
3010 static struct vmcs *alloc_vmcs_cpu(int cpu)
3011 {
3012         int node = cpu_to_node(cpu);
3013         struct page *pages;
3014         struct vmcs *vmcs;
3015
3016         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3017         if (!pages)
3018                 return NULL;
3019         vmcs = page_address(pages);
3020         memset(vmcs, 0, vmcs_config.size);
3021         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3022         return vmcs;
3023 }
3024
3025 static struct vmcs *alloc_vmcs(void)
3026 {
3027         return alloc_vmcs_cpu(raw_smp_processor_id());
3028 }
3029
3030 static void free_vmcs(struct vmcs *vmcs)
3031 {
3032         free_pages((unsigned long)vmcs, vmcs_config.order);
3033 }
3034
3035 /*
3036  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3037  */
3038 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3039 {
3040         if (!loaded_vmcs->vmcs)
3041                 return;
3042         loaded_vmcs_clear(loaded_vmcs);
3043         free_vmcs(loaded_vmcs->vmcs);
3044         loaded_vmcs->vmcs = NULL;
3045 }
3046
3047 static void free_kvm_area(void)
3048 {
3049         int cpu;
3050
3051         for_each_possible_cpu(cpu) {
3052                 free_vmcs(per_cpu(vmxarea, cpu));
3053                 per_cpu(vmxarea, cpu) = NULL;
3054         }
3055 }
3056
3057 static void init_vmcs_shadow_fields(void)
3058 {
3059         int i, j;
3060
3061         /* No checks for read only fields yet */
3062
3063         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3064                 switch (shadow_read_write_fields[i]) {
3065                 case GUEST_BNDCFGS:
3066                         if (!vmx_mpx_supported())
3067                                 continue;
3068                         break;
3069                 default:
3070                         break;
3071                 }
3072
3073                 if (j < i)
3074                         shadow_read_write_fields[j] =
3075                                 shadow_read_write_fields[i];
3076                 j++;
3077         }
3078         max_shadow_read_write_fields = j;
3079
3080         /* shadowed fields guest access without vmexit */
3081         for (i = 0; i < max_shadow_read_write_fields; i++) {
3082                 clear_bit(shadow_read_write_fields[i],
3083                           vmx_vmwrite_bitmap);
3084                 clear_bit(shadow_read_write_fields[i],
3085                           vmx_vmread_bitmap);
3086         }
3087         for (i = 0; i < max_shadow_read_only_fields; i++)
3088                 clear_bit(shadow_read_only_fields[i],
3089                           vmx_vmread_bitmap);
3090 }
3091
3092 static __init int alloc_kvm_area(void)
3093 {
3094         int cpu;
3095
3096         for_each_possible_cpu(cpu) {
3097                 struct vmcs *vmcs;
3098
3099                 vmcs = alloc_vmcs_cpu(cpu);
3100                 if (!vmcs) {
3101                         free_kvm_area();
3102                         return -ENOMEM;
3103                 }
3104
3105                 per_cpu(vmxarea, cpu) = vmcs;
3106         }
3107         return 0;
3108 }
3109
3110 static __init int hardware_setup(void)
3111 {
3112         if (setup_vmcs_config(&vmcs_config) < 0)
3113                 return -EIO;
3114
3115         if (boot_cpu_has(X86_FEATURE_NX))
3116                 kvm_enable_efer_bits(EFER_NX);
3117
3118         if (!cpu_has_vmx_vpid())
3119                 enable_vpid = 0;
3120         if (!cpu_has_vmx_shadow_vmcs())
3121                 enable_shadow_vmcs = 0;
3122         if (enable_shadow_vmcs)
3123                 init_vmcs_shadow_fields();
3124
3125         if (!cpu_has_vmx_ept() ||
3126             !cpu_has_vmx_ept_4levels()) {
3127                 enable_ept = 0;
3128                 enable_unrestricted_guest = 0;
3129                 enable_ept_ad_bits = 0;
3130         }
3131
3132         if (!cpu_has_vmx_ept_ad_bits())
3133                 enable_ept_ad_bits = 0;
3134
3135         if (!cpu_has_vmx_unrestricted_guest())
3136                 enable_unrestricted_guest = 0;
3137
3138         if (!cpu_has_vmx_flexpriority()) {
3139                 flexpriority_enabled = 0;
3140
3141                 /*
3142                  * set_apic_access_page_addr() is used to reload apic access
3143                  * page upon invalidation.  No need to do anything if the
3144                  * processor does not have the APIC_ACCESS_ADDR VMCS field.
3145                  */
3146                 kvm_x86_ops->set_apic_access_page_addr = NULL;
3147         }
3148
3149         if (!cpu_has_vmx_tpr_shadow())
3150                 kvm_x86_ops->update_cr8_intercept = NULL;
3151
3152         if (enable_ept && !cpu_has_vmx_ept_2m_page())
3153                 kvm_disable_largepages();
3154
3155         if (!cpu_has_vmx_ple())
3156                 ple_gap = 0;
3157
3158         if (!cpu_has_vmx_apicv())
3159                 enable_apicv = 0;
3160
3161         if (enable_apicv)
3162                 kvm_x86_ops->update_cr8_intercept = NULL;
3163         else {
3164                 kvm_x86_ops->hwapic_irr_update = NULL;
3165                 kvm_x86_ops->deliver_posted_interrupt = NULL;
3166                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3167         }
3168
3169         if (nested)
3170                 nested_vmx_setup_ctls_msrs();
3171
3172         return alloc_kvm_area();
3173 }
3174
3175 static __exit void hardware_unsetup(void)
3176 {
3177         free_kvm_area();
3178 }
3179
3180 static bool emulation_required(struct kvm_vcpu *vcpu)
3181 {
3182         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3183 }
3184
3185 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3186                 struct kvm_segment *save)
3187 {
3188         if (!emulate_invalid_guest_state) {
3189                 /*
3190                  * CS and SS RPL should be equal during guest entry according
3191                  * to VMX spec, but in reality it is not always so. Since vcpu
3192                  * is in the middle of the transition from real mode to
3193                  * protected mode it is safe to assume that RPL 0 is a good
3194                  * default value.
3195                  */
3196                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3197                         save->selector &= ~SELECTOR_RPL_MASK;
3198                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3199                 save->s = 1;
3200         }
3201         vmx_set_segment(vcpu, save, seg);
3202 }
3203
3204 static void enter_pmode(struct kvm_vcpu *vcpu)
3205 {
3206         unsigned long flags;
3207         struct vcpu_vmx *vmx = to_vmx(vcpu);
3208
3209         /*
3210          * Update real mode segment cache. It may be not up-to-date if sement
3211          * register was written while vcpu was in a guest mode.
3212          */
3213         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3214         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3215         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3216         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3217         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3218         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3219
3220         vmx->rmode.vm86_active = 0;
3221
3222         vmx_segment_cache_clear(vmx);
3223
3224         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3225
3226         flags = vmcs_readl(GUEST_RFLAGS);
3227         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3228         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3229         vmcs_writel(GUEST_RFLAGS, flags);
3230
3231         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3232                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3233
3234         update_exception_bitmap(vcpu);
3235
3236         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3237         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3238         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3239         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3240         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3241         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3242 }
3243
3244 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3245 {
3246         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3247         struct kvm_segment var = *save;
3248
3249         var.dpl = 0x3;
3250         if (seg == VCPU_SREG_CS)
3251                 var.type = 0x3;
3252
3253         if (!emulate_invalid_guest_state) {
3254                 var.selector = var.base >> 4;
3255                 var.base = var.base & 0xffff0;
3256                 var.limit = 0xffff;
3257                 var.g = 0;
3258                 var.db = 0;
3259                 var.present = 1;
3260                 var.s = 1;
3261                 var.l = 0;
3262                 var.unusable = 0;
3263                 var.type = 0x3;
3264                 var.avl = 0;
3265                 if (save->base & 0xf)
3266                         printk_once(KERN_WARNING "kvm: segment base is not "
3267                                         "paragraph aligned when entering "
3268                                         "protected mode (seg=%d)", seg);
3269         }
3270
3271         vmcs_write16(sf->selector, var.selector);
3272         vmcs_write32(sf->base, var.base);
3273         vmcs_write32(sf->limit, var.limit);
3274         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3275 }
3276
3277 static void enter_rmode(struct kvm_vcpu *vcpu)
3278 {
3279         unsigned long flags;
3280         struct vcpu_vmx *vmx = to_vmx(vcpu);
3281
3282         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3283         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3284         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3285         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3286         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3287         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3288         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3289
3290         vmx->rmode.vm86_active = 1;
3291
3292         /*
3293          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3294          * vcpu. Warn the user that an update is overdue.
3295          */
3296         if (!vcpu->kvm->arch.tss_addr)
3297                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3298                              "called before entering vcpu\n");
3299
3300         vmx_segment_cache_clear(vmx);
3301
3302         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3303         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3304         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3305
3306         flags = vmcs_readl(GUEST_RFLAGS);
3307         vmx->rmode.save_rflags = flags;
3308
3309         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3310
3311         vmcs_writel(GUEST_RFLAGS, flags);
3312         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3313         update_exception_bitmap(vcpu);
3314
3315         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3316         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3317         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3318         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3319         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3320         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3321
3322         kvm_mmu_reset_context(vcpu);
3323 }
3324
3325 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3326 {
3327         struct vcpu_vmx *vmx = to_vmx(vcpu);
3328         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3329
3330         if (!msr)
3331                 return;
3332
3333         /*
3334          * Force kernel_gs_base reloading before EFER changes, as control
3335          * of this msr depends on is_long_mode().
3336          */
3337         vmx_load_host_state(to_vmx(vcpu));
3338         vcpu->arch.efer = efer;
3339         if (efer & EFER_LMA) {
3340                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3341                 msr->data = efer;
3342         } else {
3343                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3344
3345                 msr->data = efer & ~EFER_LME;
3346         }
3347         setup_msrs(vmx);
3348 }
3349
3350 #ifdef CONFIG_X86_64
3351
3352 static void enter_lmode(struct kvm_vcpu *vcpu)
3353 {
3354         u32 guest_tr_ar;
3355
3356         vmx_segment_cache_clear(to_vmx(vcpu));
3357
3358         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3359         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3360                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3361                                      __func__);
3362                 vmcs_write32(GUEST_TR_AR_BYTES,
3363                              (guest_tr_ar & ~AR_TYPE_MASK)
3364                              | AR_TYPE_BUSY_64_TSS);
3365         }
3366         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3367 }
3368
3369 static void exit_lmode(struct kvm_vcpu *vcpu)
3370 {
3371         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3372         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3373 }
3374
3375 #endif
3376
3377 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3378 {
3379         vpid_sync_context(to_vmx(vcpu));
3380         if (enable_ept) {
3381                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3382                         return;
3383                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3384         }
3385 }
3386
3387 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3388 {
3389         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3390
3391         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3392         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3393 }
3394
3395 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3396 {
3397         if (enable_ept && is_paging(vcpu))
3398                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3399         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3400 }
3401
3402 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3403 {
3404         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3405
3406         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3407         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3408 }
3409
3410 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3411 {
3412         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3413
3414         if (!test_bit(VCPU_EXREG_PDPTR,
3415                       (unsigned long *)&vcpu->arch.regs_dirty))
3416                 return;
3417
3418         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3419                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3420                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3421                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3422                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3423         }
3424 }
3425
3426 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3427 {
3428         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3429
3430         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3431                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3432                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3433                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3434                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3435         }
3436
3437         __set_bit(VCPU_EXREG_PDPTR,
3438                   (unsigned long *)&vcpu->arch.regs_avail);
3439         __set_bit(VCPU_EXREG_PDPTR,
3440                   (unsigned long *)&vcpu->arch.regs_dirty);
3441 }
3442
3443 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3444
3445 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3446                                         unsigned long cr0,
3447                                         struct kvm_vcpu *vcpu)
3448 {
3449         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3450                 vmx_decache_cr3(vcpu);
3451         if (!(cr0 & X86_CR0_PG)) {
3452                 /* From paging/starting to nonpaging */
3453                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3454                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3455                              (CPU_BASED_CR3_LOAD_EXITING |
3456                               CPU_BASED_CR3_STORE_EXITING));
3457                 vcpu->arch.cr0 = cr0;
3458                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3459         } else if (!is_paging(vcpu)) {
3460                 /* From nonpaging to paging */
3461                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3462                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3463                              ~(CPU_BASED_CR3_LOAD_EXITING |
3464                                CPU_BASED_CR3_STORE_EXITING));
3465                 vcpu->arch.cr0 = cr0;
3466                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3467         }
3468
3469         if (!(cr0 & X86_CR0_WP))
3470                 *hw_cr0 &= ~X86_CR0_WP;
3471 }
3472
3473 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3474 {
3475         struct vcpu_vmx *vmx = to_vmx(vcpu);
3476         unsigned long hw_cr0;
3477
3478         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3479         if (enable_unrestricted_guest)
3480                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3481         else {
3482                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3483
3484                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3485                         enter_pmode(vcpu);
3486
3487                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3488                         enter_rmode(vcpu);
3489         }
3490
3491 #ifdef CONFIG_X86_64
3492         if (vcpu->arch.efer & EFER_LME) {
3493                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3494                         enter_lmode(vcpu);
3495                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3496                         exit_lmode(vcpu);
3497         }
3498 #endif
3499
3500         if (enable_ept)
3501                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3502
3503         if (!vcpu->fpu_active)
3504                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3505
3506         vmcs_writel(CR0_READ_SHADOW, cr0);
3507         vmcs_writel(GUEST_CR0, hw_cr0);
3508         vcpu->arch.cr0 = cr0;
3509
3510         /* depends on vcpu->arch.cr0 to be set to a new value */
3511         vmx->emulation_required = emulation_required(vcpu);
3512 }
3513
3514 static u64 construct_eptp(unsigned long root_hpa)
3515 {
3516         u64 eptp;
3517
3518         /* TODO write the value reading from MSR */
3519         eptp = VMX_EPT_DEFAULT_MT |
3520                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3521         if (enable_ept_ad_bits)
3522                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3523         eptp |= (root_hpa & PAGE_MASK);
3524
3525         return eptp;
3526 }
3527
3528 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3529 {
3530         unsigned long guest_cr3;
3531         u64 eptp;
3532
3533         guest_cr3 = cr3;
3534         if (enable_ept) {
3535                 eptp = construct_eptp(cr3);
3536                 vmcs_write64(EPT_POINTER, eptp);
3537                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3538                         guest_cr3 = kvm_read_cr3(vcpu);
3539                 else
3540                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3541                 ept_load_pdptrs(vcpu);
3542         }
3543
3544         vmx_flush_tlb(vcpu);
3545         vmcs_writel(GUEST_CR3, guest_cr3);
3546 }
3547
3548 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3549 {
3550         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3551                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3552
3553         if (cr4 & X86_CR4_VMXE) {
3554                 /*
3555                  * To use VMXON (and later other VMX instructions), a guest
3556                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3557                  * So basically the check on whether to allow nested VMX
3558                  * is here.
3559                  */
3560                 if (!nested_vmx_allowed(vcpu))
3561                         return 1;
3562         }
3563         if (to_vmx(vcpu)->nested.vmxon &&
3564             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3565                 return 1;
3566
3567         vcpu->arch.cr4 = cr4;
3568         if (enable_ept) {
3569                 if (!is_paging(vcpu)) {
3570                         hw_cr4 &= ~X86_CR4_PAE;
3571                         hw_cr4 |= X86_CR4_PSE;
3572                         /*
3573                          * SMEP/SMAP is disabled if CPU is in non-paging mode
3574                          * in hardware. However KVM always uses paging mode to
3575                          * emulate guest non-paging mode with TDP.
3576                          * To emulate this behavior, SMEP/SMAP needs to be
3577                          * manually disabled when guest switches to non-paging
3578                          * mode.
3579                          */
3580                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3581                 } else if (!(cr4 & X86_CR4_PAE)) {
3582                         hw_cr4 &= ~X86_CR4_PAE;
3583                 }
3584         }
3585
3586         vmcs_writel(CR4_READ_SHADOW, cr4);
3587         vmcs_writel(GUEST_CR4, hw_cr4);
3588         return 0;
3589 }
3590
3591 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3592                             struct kvm_segment *var, int seg)
3593 {
3594         struct vcpu_vmx *vmx = to_vmx(vcpu);
3595         u32 ar;
3596
3597         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3598                 *var = vmx->rmode.segs[seg];
3599                 if (seg == VCPU_SREG_TR
3600                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3601                         return;
3602                 var->base = vmx_read_guest_seg_base(vmx, seg);
3603                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3604                 return;
3605         }
3606         var->base = vmx_read_guest_seg_base(vmx, seg);
3607         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3608         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3609         ar = vmx_read_guest_seg_ar(vmx, seg);
3610         var->unusable = (ar >> 16) & 1;
3611         var->type = ar & 15;
3612         var->s = (ar >> 4) & 1;
3613         var->dpl = (ar >> 5) & 3;
3614         /*
3615          * Some userspaces do not preserve unusable property. Since usable
3616          * segment has to be present according to VMX spec we can use present
3617          * property to amend userspace bug by making unusable segment always
3618          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3619          * segment as unusable.
3620          */
3621         var->present = !var->unusable;
3622         var->avl = (ar >> 12) & 1;
3623         var->l = (ar >> 13) & 1;
3624         var->db = (ar >> 14) & 1;
3625         var->g = (ar >> 15) & 1;
3626 }
3627
3628 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3629 {
3630         struct kvm_segment s;
3631
3632         if (to_vmx(vcpu)->rmode.vm86_active) {
3633                 vmx_get_segment(vcpu, &s, seg);
3634                 return s.base;
3635         }
3636         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3637 }
3638
3639 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3640 {
3641         struct vcpu_vmx *vmx = to_vmx(vcpu);
3642
3643         if (unlikely(vmx->rmode.vm86_active))
3644                 return 0;
3645         else {
3646                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3647                 return AR_DPL(ar);
3648         }
3649 }
3650
3651 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3652 {
3653         u32 ar;
3654
3655         if (var->unusable || !var->present)
3656                 ar = 1 << 16;
3657         else {
3658                 ar = var->type & 15;
3659                 ar |= (var->s & 1) << 4;
3660                 ar |= (var->dpl & 3) << 5;
3661                 ar |= (var->present & 1) << 7;
3662                 ar |= (var->avl & 1) << 12;
3663                 ar |= (var->l & 1) << 13;
3664                 ar |= (var->db & 1) << 14;
3665                 ar |= (var->g & 1) << 15;
3666         }
3667
3668         return ar;
3669 }
3670
3671 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3672                             struct kvm_segment *var, int seg)
3673 {
3674         struct vcpu_vmx *vmx = to_vmx(vcpu);
3675         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3676
3677         vmx_segment_cache_clear(vmx);
3678
3679         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3680                 vmx->rmode.segs[seg] = *var;
3681                 if (seg == VCPU_SREG_TR)
3682                         vmcs_write16(sf->selector, var->selector);
3683                 else if (var->s)
3684                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3685                 goto out;
3686         }
3687
3688         vmcs_writel(sf->base, var->base);
3689         vmcs_write32(sf->limit, var->limit);
3690         vmcs_write16(sf->selector, var->selector);
3691
3692         /*
3693          *   Fix the "Accessed" bit in AR field of segment registers for older
3694          * qemu binaries.
3695          *   IA32 arch specifies that at the time of processor reset the
3696          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3697          * is setting it to 0 in the userland code. This causes invalid guest
3698          * state vmexit when "unrestricted guest" mode is turned on.
3699          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3700          * tree. Newer qemu binaries with that qemu fix would not need this
3701          * kvm hack.
3702          */
3703         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3704                 var->type |= 0x1; /* Accessed */
3705
3706         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3707
3708 out:
3709         vmx->emulation_required = emulation_required(vcpu);
3710 }
3711
3712 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3713 {
3714         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3715
3716         *db = (ar >> 14) & 1;
3717         *l = (ar >> 13) & 1;
3718 }
3719
3720 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3721 {
3722         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3723         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3724 }
3725
3726 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3727 {
3728         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3729         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3730 }
3731
3732 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3733 {
3734         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3735         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3736 }
3737
3738 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3739 {
3740         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3741         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3742 }
3743
3744 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3745 {
3746         struct kvm_segment var;
3747         u32 ar;
3748
3749         vmx_get_segment(vcpu, &var, seg);
3750         var.dpl = 0x3;
3751         if (seg == VCPU_SREG_CS)
3752                 var.type = 0x3;
3753         ar = vmx_segment_access_rights(&var);
3754
3755         if (var.base != (var.selector << 4))
3756                 return false;
3757         if (var.limit != 0xffff)
3758                 return false;
3759         if (ar != 0xf3)
3760                 return false;
3761
3762         return true;
3763 }
3764
3765 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3766 {
3767         struct kvm_segment cs;
3768         unsigned int cs_rpl;
3769
3770         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3771         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3772
3773         if (cs.unusable)
3774                 return false;
3775         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3776                 return false;
3777         if (!cs.s)
3778                 return false;
3779         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3780                 if (cs.dpl > cs_rpl)
3781                         return false;
3782         } else {
3783                 if (cs.dpl != cs_rpl)
3784                         return false;
3785         }
3786         if (!cs.present)
3787                 return false;
3788
3789         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3790         return true;
3791 }
3792
3793 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3794 {
3795         struct kvm_segment ss;
3796         unsigned int ss_rpl;
3797
3798         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3799         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3800
3801         if (ss.unusable)
3802                 return true;
3803         if (ss.type != 3 && ss.type != 7)
3804                 return false;
3805         if (!ss.s)
3806                 return false;
3807         if (ss.dpl != ss_rpl) /* DPL != RPL */
3808                 return false;
3809         if (!ss.present)
3810                 return false;
3811
3812         return true;
3813 }
3814
3815 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3816 {
3817         struct kvm_segment var;
3818         unsigned int rpl;
3819
3820         vmx_get_segment(vcpu, &var, seg);
3821         rpl = var.selector & SELECTOR_RPL_MASK;
3822
3823         if (var.unusable)
3824                 return true;
3825         if (!var.s)
3826                 return false;
3827         if (!var.present)
3828                 return false;
3829         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3830                 if (var.dpl < rpl) /* DPL < RPL */
3831                         return false;
3832         }
3833
3834         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3835          * rights flags
3836          */
3837         return true;
3838 }
3839
3840 static bool tr_valid(struct kvm_vcpu *vcpu)
3841 {
3842         struct kvm_segment tr;
3843
3844         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3845
3846         if (tr.unusable)
3847                 return false;
3848         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3849                 return false;
3850         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3851                 return false;
3852         if (!tr.present)
3853                 return false;
3854
3855         return true;
3856 }
3857
3858 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3859 {
3860         struct kvm_segment ldtr;
3861
3862         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3863
3864         if (ldtr.unusable)
3865                 return true;
3866         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3867                 return false;
3868         if (ldtr.type != 2)
3869                 return false;
3870         if (!ldtr.present)
3871                 return false;
3872
3873         return true;
3874 }
3875
3876 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3877 {
3878         struct kvm_segment cs, ss;
3879
3880         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3881         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3882
3883         return ((cs.selector & SELECTOR_RPL_MASK) ==
3884                  (ss.selector & SELECTOR_RPL_MASK));
3885 }
3886
3887 /*
3888  * Check if guest state is valid. Returns true if valid, false if
3889  * not.
3890  * We assume that registers are always usable
3891  */
3892 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3893 {
3894         if (enable_unrestricted_guest)
3895                 return true;
3896
3897         /* real mode guest state checks */
3898         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3899                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3900                         return false;
3901                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3902                         return false;
3903                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3904                         return false;
3905                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3906                         return false;
3907                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3908                         return false;
3909                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3910                         return false;
3911         } else {
3912         /* protected mode guest state checks */
3913                 if (!cs_ss_rpl_check(vcpu))
3914                         return false;
3915                 if (!code_segment_valid(vcpu))
3916                         return false;
3917                 if (!stack_segment_valid(vcpu))
3918                         return false;
3919                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3920                         return false;
3921                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3922                         return false;
3923                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3924                         return false;
3925                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3926                         return false;
3927                 if (!tr_valid(vcpu))
3928                         return false;
3929                 if (!ldtr_valid(vcpu))
3930                         return false;
3931         }
3932         /* TODO:
3933          * - Add checks on RIP
3934          * - Add checks on RFLAGS
3935          */
3936
3937         return true;
3938 }
3939
3940 static int init_rmode_tss(struct kvm *kvm)
3941 {
3942         gfn_t fn;
3943         u16 data = 0;
3944         int idx, r;
3945
3946         idx = srcu_read_lock(&kvm->srcu);
3947         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3948         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3949         if (r < 0)
3950                 goto out;
3951         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3952         r = kvm_write_guest_page(kvm, fn++, &data,
3953                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3954         if (r < 0)
3955                 goto out;
3956         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3957         if (r < 0)
3958                 goto out;
3959         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3960         if (r < 0)
3961                 goto out;
3962         data = ~0;
3963         r = kvm_write_guest_page(kvm, fn, &data,
3964                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3965                                  sizeof(u8));
3966 out:
3967         srcu_read_unlock(&kvm->srcu, idx);
3968         return r;
3969 }
3970
3971 static int init_rmode_identity_map(struct kvm *kvm)
3972 {
3973         int i, idx, r = 0;
3974         pfn_t identity_map_pfn;
3975         u32 tmp;
3976
3977         if (!enable_ept)
3978                 return 0;
3979
3980         /* Protect kvm->arch.ept_identity_pagetable_done. */
3981         mutex_lock(&kvm->slots_lock);
3982
3983         if (likely(kvm->arch.ept_identity_pagetable_done))
3984                 goto out2;
3985
3986         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3987
3988         r = alloc_identity_pagetable(kvm);
3989         if (r < 0)
3990                 goto out2;
3991
3992         idx = srcu_read_lock(&kvm->srcu);
3993         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3994         if (r < 0)
3995                 goto out;
3996         /* Set up identity-mapping pagetable for EPT in real mode */
3997         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3998                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3999                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4000                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4001                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4002                 if (r < 0)
4003                         goto out;
4004         }
4005         kvm->arch.ept_identity_pagetable_done = true;
4006
4007 out:
4008         srcu_read_unlock(&kvm->srcu, idx);
4009
4010 out2:
4011         mutex_unlock(&kvm->slots_lock);
4012         return r;
4013 }
4014
4015 static void seg_setup(int seg)
4016 {
4017         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4018         unsigned int ar;
4019
4020         vmcs_write16(sf->selector, 0);
4021         vmcs_writel(sf->base, 0);
4022         vmcs_write32(sf->limit, 0xffff);
4023         ar = 0x93;
4024         if (seg == VCPU_SREG_CS)
4025                 ar |= 0x08; /* code segment */
4026
4027         vmcs_write32(sf->ar_bytes, ar);
4028 }
4029
4030 static int alloc_apic_access_page(struct kvm *kvm)
4031 {
4032         struct page *page;
4033         struct kvm_userspace_memory_region kvm_userspace_mem;
4034         int r = 0;
4035
4036         mutex_lock(&kvm->slots_lock);
4037         if (kvm->arch.apic_access_page_done)
4038                 goto out;
4039         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4040         kvm_userspace_mem.flags = 0;
4041         kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4042         kvm_userspace_mem.memory_size = PAGE_SIZE;
4043         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4044         if (r)
4045                 goto out;
4046
4047         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4048         if (is_error_page(page)) {
4049                 r = -EFAULT;
4050                 goto out;
4051         }
4052
4053         /*
4054          * Do not pin the page in memory, so that memory hot-unplug
4055          * is able to migrate it.
4056          */
4057         put_page(page);
4058         kvm->arch.apic_access_page_done = true;
4059 out:
4060         mutex_unlock(&kvm->slots_lock);
4061         return r;
4062 }
4063
4064 static int alloc_identity_pagetable(struct kvm *kvm)
4065 {
4066         /* Called with kvm->slots_lock held. */
4067
4068         struct kvm_userspace_memory_region kvm_userspace_mem;
4069         int r = 0;
4070
4071         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4072
4073         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4074         kvm_userspace_mem.flags = 0;
4075         kvm_userspace_mem.guest_phys_addr =
4076                 kvm->arch.ept_identity_map_addr;
4077         kvm_userspace_mem.memory_size = PAGE_SIZE;
4078         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4079
4080         return r;
4081 }
4082
4083 static void allocate_vpid(struct vcpu_vmx *vmx)
4084 {
4085         int vpid;
4086
4087         vmx->vpid = 0;
4088         if (!enable_vpid)
4089                 return;
4090         spin_lock(&vmx_vpid_lock);
4091         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4092         if (vpid < VMX_NR_VPIDS) {
4093                 vmx->vpid = vpid;
4094                 __set_bit(vpid, vmx_vpid_bitmap);
4095         }
4096         spin_unlock(&vmx_vpid_lock);
4097 }
4098
4099 static void free_vpid(struct vcpu_vmx *vmx)
4100 {
4101         if (!enable_vpid)
4102                 return;
4103         spin_lock(&vmx_vpid_lock);
4104         if (vmx->vpid != 0)
4105                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4106         spin_unlock(&vmx_vpid_lock);
4107 }
4108
4109 #define MSR_TYPE_R      1
4110 #define MSR_TYPE_W      2
4111 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4112                                                 u32 msr, int type)
4113 {
4114         int f = sizeof(unsigned long);
4115
4116         if (!cpu_has_vmx_msr_bitmap())
4117                 return;
4118
4119         /*
4120          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4121          * have the write-low and read-high bitmap offsets the wrong way round.
4122          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4123          */
4124         if (msr <= 0x1fff) {
4125                 if (type & MSR_TYPE_R)
4126                         /* read-low */
4127                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4128
4129                 if (type & MSR_TYPE_W)
4130                         /* write-low */
4131                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4132
4133         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4134                 msr &= 0x1fff;
4135                 if (type & MSR_TYPE_R)
4136                         /* read-high */
4137                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4138
4139                 if (type & MSR_TYPE_W)
4140                         /* write-high */
4141                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4142
4143         }
4144 }
4145
4146 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4147                                                 u32 msr, int type)
4148 {
4149         int f = sizeof(unsigned long);
4150
4151         if (!cpu_has_vmx_msr_bitmap())
4152                 return;
4153
4154         /*
4155          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4156          * have the write-low and read-high bitmap offsets the wrong way round.
4157          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4158          */
4159         if (msr <= 0x1fff) {
4160                 if (type & MSR_TYPE_R)
4161                         /* read-low */
4162                         __set_bit(msr, msr_bitmap + 0x000 / f);
4163
4164                 if (type & MSR_TYPE_W)
4165                         /* write-low */
4166                         __set_bit(msr, msr_bitmap + 0x800 / f);
4167
4168         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4169                 msr &= 0x1fff;
4170                 if (type & MSR_TYPE_R)
4171                         /* read-high */
4172                         __set_bit(msr, msr_bitmap + 0x400 / f);
4173
4174                 if (type & MSR_TYPE_W)
4175                         /* write-high */
4176                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4177
4178         }
4179 }
4180
4181 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4182 {
4183         if (!longmode_only)
4184                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4185                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4186         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4187                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4188 }
4189
4190 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4191 {
4192         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4193                         msr, MSR_TYPE_R);
4194         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4195                         msr, MSR_TYPE_R);
4196 }
4197
4198 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4199 {
4200         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4201                         msr, MSR_TYPE_R);
4202         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4203                         msr, MSR_TYPE_R);
4204 }
4205
4206 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4207 {
4208         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4209                         msr, MSR_TYPE_W);
4210         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4211                         msr, MSR_TYPE_W);
4212 }
4213
4214 static int vmx_vm_has_apicv(struct kvm *kvm)
4215 {
4216         return enable_apicv && irqchip_in_kernel(kvm);
4217 }
4218
4219 /*
4220  * Send interrupt to vcpu via posted interrupt way.
4221  * 1. If target vcpu is running(non-root mode), send posted interrupt
4222  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4223  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4224  * interrupt from PIR in next vmentry.
4225  */
4226 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4227 {
4228         struct vcpu_vmx *vmx = to_vmx(vcpu);
4229         int r;
4230
4231         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4232                 return;
4233
4234         r = pi_test_and_set_on(&vmx->pi_desc);
4235         kvm_make_request(KVM_REQ_EVENT, vcpu);
4236 #ifdef CONFIG_SMP
4237         if (!r && (vcpu->mode == IN_GUEST_MODE))
4238                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4239                                 POSTED_INTR_VECTOR);
4240         else
4241 #endif
4242                 kvm_vcpu_kick(vcpu);
4243 }
4244
4245 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4246 {
4247         struct vcpu_vmx *vmx = to_vmx(vcpu);
4248
4249         if (!pi_test_and_clear_on(&vmx->pi_desc))
4250                 return;
4251
4252         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4253 }
4254
4255 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4256 {
4257         return;
4258 }
4259
4260 /*
4261  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4262  * will not change in the lifetime of the guest.
4263  * Note that host-state that does change is set elsewhere. E.g., host-state
4264  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4265  */
4266 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4267 {
4268         u32 low32, high32;
4269         unsigned long tmpl;
4270         struct desc_ptr dt;
4271         unsigned long cr4;
4272
4273         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4274         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4275
4276         /* Save the most likely value for this task's CR4 in the VMCS. */
4277         cr4 = read_cr4();
4278         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4279         vmx->host_state.vmcs_host_cr4 = cr4;
4280
4281         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4282 #ifdef CONFIG_X86_64
4283         /*
4284          * Load null selectors, so we can avoid reloading them in
4285          * __vmx_load_host_state(), in case userspace uses the null selectors
4286          * too (the expected case).
4287          */
4288         vmcs_write16(HOST_DS_SELECTOR, 0);
4289         vmcs_write16(HOST_ES_SELECTOR, 0);
4290 #else
4291         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4292         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4293 #endif
4294         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4295         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4296
4297         native_store_idt(&dt);
4298         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4299         vmx->host_idt_base = dt.address;
4300
4301         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4302
4303         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4304         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4305         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4306         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4307
4308         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4309                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4310                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4311         }
4312 }
4313
4314 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4315 {
4316         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4317         if (enable_ept)
4318                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4319         if (is_guest_mode(&vmx->vcpu))
4320                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4321                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4322         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4323 }
4324
4325 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4326 {
4327         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4328
4329         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4330                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4331         return pin_based_exec_ctrl;
4332 }
4333
4334 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4335 {
4336         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4337
4338         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4339                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4340
4341         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4342                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4343 #ifdef CONFIG_X86_64
4344                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4345                                 CPU_BASED_CR8_LOAD_EXITING;
4346 #endif
4347         }
4348         if (!enable_ept)
4349                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4350                                 CPU_BASED_CR3_LOAD_EXITING  |
4351                                 CPU_BASED_INVLPG_EXITING;
4352         return exec_control;
4353 }
4354
4355 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4356 {
4357         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4358         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4359                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4360         if (vmx->vpid == 0)
4361                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4362         if (!enable_ept) {
4363                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4364                 enable_unrestricted_guest = 0;
4365                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4366                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4367         }
4368         if (!enable_unrestricted_guest)
4369                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4370         if (!ple_gap)
4371                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4372         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4373                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4374                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4375         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4376         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4377            (handle_vmptrld).
4378            We can NOT enable shadow_vmcs here because we don't have yet
4379            a current VMCS12
4380         */
4381         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4382         return exec_control;
4383 }
4384
4385 static void ept_set_mmio_spte_mask(void)
4386 {
4387         /*
4388          * EPT Misconfigurations can be generated if the value of bits 2:0
4389          * of an EPT paging-structure entry is 110b (write/execute).
4390          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4391          * spte.
4392          */
4393         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4394 }
4395
4396 /*
4397  * Sets up the vmcs for emulated real mode.
4398  */
4399 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4400 {
4401 #ifdef CONFIG_X86_64
4402         unsigned long a;
4403 #endif
4404         int i;
4405
4406         /* I/O */
4407         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4408         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4409
4410         if (enable_shadow_vmcs) {
4411                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4412                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4413         }
4414         if (cpu_has_vmx_msr_bitmap())
4415                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4416
4417         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4418
4419         /* Control */
4420         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4421
4422         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4423
4424         if (cpu_has_secondary_exec_ctrls()) {
4425                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4426                                 vmx_secondary_exec_control(vmx));
4427         }
4428
4429         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4430                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4431                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4432                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4433                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4434
4435                 vmcs_write16(GUEST_INTR_STATUS, 0);
4436
4437                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4438                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4439         }
4440
4441         if (ple_gap) {
4442                 vmcs_write32(PLE_GAP, ple_gap);
4443                 vmx->ple_window = ple_window;
4444                 vmx->ple_window_dirty = true;
4445         }
4446
4447         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4448         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4449         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4450
4451         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4452         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4453         vmx_set_constant_host_state(vmx);
4454 #ifdef CONFIG_X86_64
4455         rdmsrl(MSR_FS_BASE, a);
4456         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4457         rdmsrl(MSR_GS_BASE, a);
4458         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4459 #else
4460         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4461         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4462 #endif
4463
4464         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4465         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4466         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4467         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4468         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4469
4470         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4471                 u32 msr_low, msr_high;
4472                 u64 host_pat;
4473                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4474                 host_pat = msr_low | ((u64) msr_high << 32);
4475                 /* Write the default value follow host pat */
4476                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4477                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4478                 vmx->vcpu.arch.pat = host_pat;
4479         }
4480
4481         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4482                 u32 index = vmx_msr_index[i];
4483                 u32 data_low, data_high;
4484                 int j = vmx->nmsrs;
4485
4486                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4487                         continue;
4488                 if (wrmsr_safe(index, data_low, data_high) < 0)
4489                         continue;
4490                 vmx->guest_msrs[j].index = i;
4491                 vmx->guest_msrs[j].data = 0;
4492                 vmx->guest_msrs[j].mask = -1ull;
4493                 ++vmx->nmsrs;
4494         }
4495
4496
4497         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4498
4499         /* 22.2.1, 20.8.1 */
4500         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4501
4502         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4503         set_cr4_guest_host_mask(vmx);
4504
4505         return 0;
4506 }
4507
4508 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4509 {
4510         struct vcpu_vmx *vmx = to_vmx(vcpu);
4511         struct msr_data apic_base_msr;
4512
4513         vmx->rmode.vm86_active = 0;
4514
4515         vmx->soft_vnmi_blocked = 0;
4516
4517         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4518         kvm_set_cr8(&vmx->vcpu, 0);
4519         apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4520         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4521                 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4522         apic_base_msr.host_initiated = true;
4523         kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4524
4525         vmx_segment_cache_clear(vmx);
4526
4527         seg_setup(VCPU_SREG_CS);
4528         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4529         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4530
4531         seg_setup(VCPU_SREG_DS);
4532         seg_setup(VCPU_SREG_ES);
4533         seg_setup(VCPU_SREG_FS);
4534         seg_setup(VCPU_SREG_GS);
4535         seg_setup(VCPU_SREG_SS);
4536
4537         vmcs_write16(GUEST_TR_SELECTOR, 0);
4538         vmcs_writel(GUEST_TR_BASE, 0);
4539         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4540         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4541
4542         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4543         vmcs_writel(GUEST_LDTR_BASE, 0);
4544         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4545         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4546
4547         vmcs_write32(GUEST_SYSENTER_CS, 0);
4548         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4549         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4550
4551         vmcs_writel(GUEST_RFLAGS, 0x02);
4552         kvm_rip_write(vcpu, 0xfff0);
4553
4554         vmcs_writel(GUEST_GDTR_BASE, 0);
4555         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4556
4557         vmcs_writel(GUEST_IDTR_BASE, 0);
4558         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4559
4560         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4561         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4562         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4563
4564         /* Special registers */
4565         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4566
4567         setup_msrs(vmx);
4568
4569         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4570
4571         if (cpu_has_vmx_tpr_shadow()) {
4572                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4573                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4574                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4575                                      __pa(vmx->vcpu.arch.apic->regs));
4576                 vmcs_write32(TPR_THRESHOLD, 0);
4577         }
4578
4579         kvm_vcpu_reload_apic_access_page(vcpu);
4580
4581         if (vmx_vm_has_apicv(vcpu->kvm))
4582                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4583
4584         if (vmx->vpid != 0)
4585                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4586
4587         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4588         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4589         vmx_set_cr4(&vmx->vcpu, 0);
4590         vmx_set_efer(&vmx->vcpu, 0);
4591         vmx_fpu_activate(&vmx->vcpu);
4592         update_exception_bitmap(&vmx->vcpu);
4593
4594         vpid_sync_context(vmx);
4595 }
4596
4597 /*
4598  * In nested virtualization, check if L1 asked to exit on external interrupts.
4599  * For most existing hypervisors, this will always return true.
4600  */
4601 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4602 {
4603         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4604                 PIN_BASED_EXT_INTR_MASK;
4605 }
4606
4607 /*
4608  * In nested virtualization, check if L1 has set
4609  * VM_EXIT_ACK_INTR_ON_EXIT
4610  */
4611 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4612 {
4613         return get_vmcs12(vcpu)->vm_exit_controls &
4614                 VM_EXIT_ACK_INTR_ON_EXIT;
4615 }
4616
4617 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4618 {
4619         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4620                 PIN_BASED_NMI_EXITING;
4621 }
4622
4623 static void enable_irq_window(struct kvm_vcpu *vcpu)
4624 {
4625         u32 cpu_based_vm_exec_control;
4626
4627         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4628         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4629         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4630 }
4631
4632 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4633 {
4634         u32 cpu_based_vm_exec_control;
4635
4636         if (!cpu_has_virtual_nmis() ||
4637             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4638                 enable_irq_window(vcpu);
4639                 return;
4640         }
4641
4642         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4643         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4644         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4645 }
4646
4647 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4648 {
4649         struct vcpu_vmx *vmx = to_vmx(vcpu);
4650         uint32_t intr;
4651         int irq = vcpu->arch.interrupt.nr;
4652
4653         trace_kvm_inj_virq(irq);
4654
4655         ++vcpu->stat.irq_injections;
4656         if (vmx->rmode.vm86_active) {
4657                 int inc_eip = 0;
4658                 if (vcpu->arch.interrupt.soft)
4659                         inc_eip = vcpu->arch.event_exit_inst_len;
4660                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4661                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4662                 return;
4663         }
4664         intr = irq | INTR_INFO_VALID_MASK;
4665         if (vcpu->arch.interrupt.soft) {
4666                 intr |= INTR_TYPE_SOFT_INTR;
4667                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4668                              vmx->vcpu.arch.event_exit_inst_len);
4669         } else
4670                 intr |= INTR_TYPE_EXT_INTR;
4671         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4672 }
4673
4674 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4675 {
4676         struct vcpu_vmx *vmx = to_vmx(vcpu);
4677
4678         if (is_guest_mode(vcpu))
4679                 return;
4680
4681         if (!cpu_has_virtual_nmis()) {
4682                 /*
4683                  * Tracking the NMI-blocked state in software is built upon
4684                  * finding the next open IRQ window. This, in turn, depends on
4685                  * well-behaving guests: They have to keep IRQs disabled at
4686                  * least as long as the NMI handler runs. Otherwise we may
4687                  * cause NMI nesting, maybe breaking the guest. But as this is
4688                  * highly unlikely, we can live with the residual risk.
4689                  */
4690                 vmx->soft_vnmi_blocked = 1;
4691                 vmx->vnmi_blocked_time = 0;
4692         }
4693
4694         ++vcpu->stat.nmi_injections;
4695         vmx->nmi_known_unmasked = false;
4696         if (vmx->rmode.vm86_active) {
4697                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4698                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4699                 return;
4700         }
4701         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4702                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4703 }
4704
4705 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4706 {
4707         if (!cpu_has_virtual_nmis())
4708                 return to_vmx(vcpu)->soft_vnmi_blocked;
4709         if (to_vmx(vcpu)->nmi_known_unmasked)
4710                 return false;
4711         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4712 }
4713
4714 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4715 {
4716         struct vcpu_vmx *vmx = to_vmx(vcpu);
4717
4718         if (!cpu_has_virtual_nmis()) {
4719                 if (vmx->soft_vnmi_blocked != masked) {
4720                         vmx->soft_vnmi_blocked = masked;
4721                         vmx->vnmi_blocked_time = 0;
4722                 }
4723         } else {
4724                 vmx->nmi_known_unmasked = !masked;
4725                 if (masked)
4726                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4727                                       GUEST_INTR_STATE_NMI);
4728                 else
4729                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4730                                         GUEST_INTR_STATE_NMI);
4731         }
4732 }
4733
4734 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4735 {
4736         if (to_vmx(vcpu)->nested.nested_run_pending)
4737                 return 0;
4738
4739         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4740                 return 0;
4741
4742         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4743                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4744                    | GUEST_INTR_STATE_NMI));
4745 }
4746
4747 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4748 {
4749         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4750                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4751                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4752                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4753 }
4754
4755 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4756 {
4757         int ret;
4758         struct kvm_userspace_memory_region tss_mem = {
4759                 .slot = TSS_PRIVATE_MEMSLOT,
4760                 .guest_phys_addr = addr,
4761                 .memory_size = PAGE_SIZE * 3,
4762                 .flags = 0,
4763         };
4764
4765         ret = kvm_set_memory_region(kvm, &tss_mem);
4766         if (ret)
4767                 return ret;
4768         kvm->arch.tss_addr = addr;
4769         return init_rmode_tss(kvm);
4770 }
4771
4772 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4773 {
4774         switch (vec) {
4775         case BP_VECTOR:
4776                 /*
4777                  * Update instruction length as we may reinject the exception
4778                  * from user space while in guest debugging mode.
4779                  */
4780                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4781                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4782                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4783                         return false;
4784                 /* fall through */
4785         case DB_VECTOR:
4786                 if (vcpu->guest_debug &
4787                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4788                         return false;
4789                 /* fall through */
4790         case DE_VECTOR:
4791         case OF_VECTOR:
4792         case BR_VECTOR:
4793         case UD_VECTOR:
4794         case DF_VECTOR:
4795         case SS_VECTOR:
4796         case GP_VECTOR:
4797         case MF_VECTOR:
4798                 return true;
4799         break;
4800         }
4801         return false;
4802 }
4803
4804 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4805                                   int vec, u32 err_code)
4806 {
4807         /*
4808          * Instruction with address size override prefix opcode 0x67
4809          * Cause the #SS fault with 0 error code in VM86 mode.
4810          */
4811         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4812                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4813                         if (vcpu->arch.halt_request) {
4814                                 vcpu->arch.halt_request = 0;
4815                                 return kvm_emulate_halt(vcpu);
4816                         }
4817                         return 1;
4818                 }
4819                 return 0;
4820         }
4821
4822         /*
4823          * Forward all other exceptions that are valid in real mode.
4824          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4825          *        the required debugging infrastructure rework.
4826          */
4827         kvm_queue_exception(vcpu, vec);
4828         return 1;
4829 }
4830
4831 /*
4832  * Trigger machine check on the host. We assume all the MSRs are already set up
4833  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4834  * We pass a fake environment to the machine check handler because we want
4835  * the guest to be always treated like user space, no matter what context
4836  * it used internally.
4837  */
4838 static void kvm_machine_check(void)
4839 {
4840 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4841         struct pt_regs regs = {
4842                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4843                 .flags = X86_EFLAGS_IF,
4844         };
4845
4846         do_machine_check(&regs, 0);
4847 #endif
4848 }
4849
4850 static int handle_machine_check(struct kvm_vcpu *vcpu)
4851 {
4852         /* already handled by vcpu_run */
4853         return 1;
4854 }
4855
4856 static int handle_exception(struct kvm_vcpu *vcpu)
4857 {
4858         struct vcpu_vmx *vmx = to_vmx(vcpu);
4859         struct kvm_run *kvm_run = vcpu->run;
4860         u32 intr_info, ex_no, error_code;
4861         unsigned long cr2, rip, dr6;
4862         u32 vect_info;
4863         enum emulation_result er;
4864
4865         vect_info = vmx->idt_vectoring_info;
4866         intr_info = vmx->exit_intr_info;
4867
4868         if (is_machine_check(intr_info))
4869                 return handle_machine_check(vcpu);
4870
4871         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4872                 return 1;  /* already handled by vmx_vcpu_run() */
4873
4874         if (is_no_device(intr_info)) {
4875                 vmx_fpu_activate(vcpu);
4876                 return 1;
4877         }
4878
4879         if (is_invalid_opcode(intr_info)) {
4880                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4881                 if (er != EMULATE_DONE)
4882                         kvm_queue_exception(vcpu, UD_VECTOR);
4883                 return 1;
4884         }
4885
4886         error_code = 0;
4887         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4888                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4889
4890         /*
4891          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4892          * MMIO, it is better to report an internal error.
4893          * See the comments in vmx_handle_exit.
4894          */
4895         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4896             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4897                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4898                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4899                 vcpu->run->internal.ndata = 2;
4900                 vcpu->run->internal.data[0] = vect_info;
4901                 vcpu->run->internal.data[1] = intr_info;
4902                 return 0;
4903         }
4904
4905         if (is_page_fault(intr_info)) {
4906                 /* EPT won't cause page fault directly */
4907                 BUG_ON(enable_ept);
4908                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4909                 trace_kvm_page_fault(cr2, error_code);
4910
4911                 if (kvm_event_needs_reinjection(vcpu))
4912                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4913                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4914         }
4915
4916         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4917
4918         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4919                 return handle_rmode_exception(vcpu, ex_no, error_code);
4920
4921         switch (ex_no) {
4922         case DB_VECTOR:
4923                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4924                 if (!(vcpu->guest_debug &
4925                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4926                         vcpu->arch.dr6 &= ~15;
4927                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4928                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4929                                 skip_emulated_instruction(vcpu);
4930
4931                         kvm_queue_exception(vcpu, DB_VECTOR);
4932                         return 1;
4933                 }
4934                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4935                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4936                 /* fall through */
4937         case BP_VECTOR:
4938                 /*
4939                  * Update instruction length as we may reinject #BP from
4940                  * user space while in guest debugging mode. Reading it for
4941                  * #DB as well causes no harm, it is not used in that case.
4942                  */
4943                 vmx->vcpu.arch.event_exit_inst_len =
4944                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4945                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4946                 rip = kvm_rip_read(vcpu);
4947                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4948                 kvm_run->debug.arch.exception = ex_no;
4949                 break;
4950         default:
4951                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4952                 kvm_run->ex.exception = ex_no;
4953                 kvm_run->ex.error_code = error_code;
4954                 break;
4955         }
4956         return 0;
4957 }
4958
4959 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4960 {
4961         ++vcpu->stat.irq_exits;
4962         return 1;
4963 }
4964
4965 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4966 {
4967         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4968         return 0;
4969 }
4970
4971 static int handle_io(struct kvm_vcpu *vcpu)
4972 {
4973         unsigned long exit_qualification;
4974         int size, in, string;
4975         unsigned port;
4976
4977         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4978         string = (exit_qualification & 16) != 0;
4979         in = (exit_qualification & 8) != 0;
4980
4981         ++vcpu->stat.io_exits;
4982
4983         if (string || in)
4984                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4985
4986         port = exit_qualification >> 16;
4987         size = (exit_qualification & 7) + 1;
4988         skip_emulated_instruction(vcpu);
4989
4990         return kvm_fast_pio_out(vcpu, size, port);
4991 }
4992
4993 static void
4994 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4995 {
4996         /*
4997          * Patch in the VMCALL instruction:
4998          */
4999         hypercall[0] = 0x0f;
5000         hypercall[1] = 0x01;
5001         hypercall[2] = 0xc1;
5002 }
5003
5004 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
5005 {
5006         unsigned long always_on = VMXON_CR0_ALWAYSON;
5007
5008         if (nested_vmx_secondary_ctls_high &
5009                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5010             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5011                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5012         return (val & always_on) == always_on;
5013 }
5014
5015 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5016 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5017 {
5018         if (is_guest_mode(vcpu)) {
5019                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5020                 unsigned long orig_val = val;
5021
5022                 /*
5023                  * We get here when L2 changed cr0 in a way that did not change
5024                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5025                  * but did change L0 shadowed bits. So we first calculate the
5026                  * effective cr0 value that L1 would like to write into the
5027                  * hardware. It consists of the L2-owned bits from the new
5028                  * value combined with the L1-owned bits from L1's guest_cr0.
5029                  */
5030                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5031                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5032
5033                 if (!nested_cr0_valid(vmcs12, val))
5034                         return 1;
5035
5036                 if (kvm_set_cr0(vcpu, val))
5037                         return 1;
5038                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5039                 return 0;
5040         } else {
5041                 if (to_vmx(vcpu)->nested.vmxon &&
5042                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5043                         return 1;
5044                 return kvm_set_cr0(vcpu, val);
5045         }
5046 }
5047
5048 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5049 {
5050         if (is_guest_mode(vcpu)) {
5051                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5052                 unsigned long orig_val = val;
5053
5054                 /* analogously to handle_set_cr0 */
5055                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5056                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5057                 if (kvm_set_cr4(vcpu, val))
5058                         return 1;
5059                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5060                 return 0;
5061         } else
5062                 return kvm_set_cr4(vcpu, val);
5063 }
5064
5065 /* called to set cr0 as approriate for clts instruction exit. */
5066 static void handle_clts(struct kvm_vcpu *vcpu)
5067 {
5068         if (is_guest_mode(vcpu)) {
5069                 /*
5070                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5071                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5072                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5073                  */
5074                 vmcs_writel(CR0_READ_SHADOW,
5075                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5076                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5077         } else
5078                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5079 }
5080
5081 static int handle_cr(struct kvm_vcpu *vcpu)
5082 {
5083         unsigned long exit_qualification, val;
5084         int cr;
5085         int reg;
5086         int err;
5087
5088         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5089         cr = exit_qualification & 15;
5090         reg = (exit_qualification >> 8) & 15;
5091         switch ((exit_qualification >> 4) & 3) {
5092         case 0: /* mov to cr */
5093                 val = kvm_register_readl(vcpu, reg);
5094                 trace_kvm_cr_write(cr, val);
5095                 switch (cr) {
5096                 case 0:
5097                         err = handle_set_cr0(vcpu, val);
5098                         kvm_complete_insn_gp(vcpu, err);
5099                         return 1;
5100                 case 3:
5101                         err = kvm_set_cr3(vcpu, val);
5102                         kvm_complete_insn_gp(vcpu, err);
5103                         return 1;
5104                 case 4:
5105                         err = handle_set_cr4(vcpu, val);
5106                         kvm_complete_insn_gp(vcpu, err);
5107                         return 1;
5108                 case 8: {
5109                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5110                                 u8 cr8 = (u8)val;
5111                                 err = kvm_set_cr8(vcpu, cr8);
5112                                 kvm_complete_insn_gp(vcpu, err);
5113                                 if (irqchip_in_kernel(vcpu->kvm))
5114                                         return 1;
5115                                 if (cr8_prev <= cr8)
5116                                         return 1;
5117                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5118                                 return 0;
5119                         }
5120                 }
5121                 break;
5122         case 2: /* clts */
5123                 handle_clts(vcpu);
5124                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5125                 skip_emulated_instruction(vcpu);
5126                 vmx_fpu_activate(vcpu);
5127                 return 1;
5128         case 1: /*mov from cr*/
5129                 switch (cr) {
5130                 case 3:
5131                         val = kvm_read_cr3(vcpu);
5132                         kvm_register_write(vcpu, reg, val);
5133                         trace_kvm_cr_read(cr, val);
5134                         skip_emulated_instruction(vcpu);
5135                         return 1;
5136                 case 8:
5137                         val = kvm_get_cr8(vcpu);
5138                         kvm_register_write(vcpu, reg, val);
5139                         trace_kvm_cr_read(cr, val);
5140                         skip_emulated_instruction(vcpu);
5141                         return 1;
5142                 }
5143                 break;
5144         case 3: /* lmsw */
5145                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5146                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5147                 kvm_lmsw(vcpu, val);
5148
5149                 skip_emulated_instruction(vcpu);
5150                 return 1;
5151         default:
5152                 break;
5153         }
5154         vcpu->run->exit_reason = 0;
5155         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5156                (int)(exit_qualification >> 4) & 3, cr);
5157         return 0;
5158 }
5159
5160 static int handle_dr(struct kvm_vcpu *vcpu)
5161 {
5162         unsigned long exit_qualification;
5163         int dr, reg;
5164
5165         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5166         if (!kvm_require_cpl(vcpu, 0))
5167                 return 1;
5168         dr = vmcs_readl(GUEST_DR7);
5169         if (dr & DR7_GD) {
5170                 /*
5171                  * As the vm-exit takes precedence over the debug trap, we
5172                  * need to emulate the latter, either for the host or the
5173                  * guest debugging itself.
5174                  */
5175                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5176                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5177                         vcpu->run->debug.arch.dr7 = dr;
5178                         vcpu->run->debug.arch.pc =
5179                                 vmcs_readl(GUEST_CS_BASE) +
5180                                 vmcs_readl(GUEST_RIP);
5181                         vcpu->run->debug.arch.exception = DB_VECTOR;
5182                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5183                         return 0;
5184                 } else {
5185                         vcpu->arch.dr7 &= ~DR7_GD;
5186                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5187                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5188                         kvm_queue_exception(vcpu, DB_VECTOR);
5189                         return 1;
5190                 }
5191         }
5192
5193         if (vcpu->guest_debug == 0) {
5194                 u32 cpu_based_vm_exec_control;
5195
5196                 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5197                 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5198                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5199
5200                 /*
5201                  * No more DR vmexits; force a reload of the debug registers
5202                  * and reenter on this instruction.  The next vmexit will
5203                  * retrieve the full state of the debug registers.
5204                  */
5205                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5206                 return 1;
5207         }
5208
5209         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5210         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5211         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5212         if (exit_qualification & TYPE_MOV_FROM_DR) {
5213                 unsigned long val;
5214
5215                 if (kvm_get_dr(vcpu, dr, &val))
5216                         return 1;
5217                 kvm_register_write(vcpu, reg, val);
5218         } else
5219                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5220                         return 1;
5221
5222         skip_emulated_instruction(vcpu);
5223         return 1;
5224 }
5225
5226 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5227 {
5228         return vcpu->arch.dr6;
5229 }
5230
5231 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5232 {
5233 }
5234
5235 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5236 {
5237         u32 cpu_based_vm_exec_control;
5238
5239         get_debugreg(vcpu->arch.db[0], 0);
5240         get_debugreg(vcpu->arch.db[1], 1);
5241         get_debugreg(vcpu->arch.db[2], 2);
5242         get_debugreg(vcpu->arch.db[3], 3);
5243         get_debugreg(vcpu->arch.dr6, 6);
5244         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5245
5246         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5247
5248         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5249         cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5250         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5251 }
5252
5253 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5254 {
5255         vmcs_writel(GUEST_DR7, val);
5256 }
5257
5258 static int handle_cpuid(struct kvm_vcpu *vcpu)
5259 {
5260         kvm_emulate_cpuid(vcpu);
5261         return 1;
5262 }
5263
5264 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5265 {
5266         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5267         u64 data;
5268
5269         if (vmx_get_msr(vcpu, ecx, &data)) {
5270                 trace_kvm_msr_read_ex(ecx);
5271                 kvm_inject_gp(vcpu, 0);
5272                 return 1;
5273         }
5274
5275         trace_kvm_msr_read(ecx, data);
5276
5277         /* FIXME: handling of bits 32:63 of rax, rdx */
5278         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5279         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5280         skip_emulated_instruction(vcpu);
5281         return 1;
5282 }
5283
5284 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5285 {
5286         struct msr_data msr;
5287         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5288         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5289                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5290
5291         msr.data = data;
5292         msr.index = ecx;
5293         msr.host_initiated = false;
5294         if (vmx_set_msr(vcpu, &msr) != 0) {
5295                 trace_kvm_msr_write_ex(ecx, data);
5296                 kvm_inject_gp(vcpu, 0);
5297                 return 1;
5298         }
5299
5300         trace_kvm_msr_write(ecx, data);
5301         skip_emulated_instruction(vcpu);
5302         return 1;
5303 }
5304
5305 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5306 {
5307         kvm_make_request(KVM_REQ_EVENT, vcpu);
5308         return 1;
5309 }
5310
5311 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5312 {
5313         u32 cpu_based_vm_exec_control;
5314
5315         /* clear pending irq */
5316         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5317         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5318         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5319
5320         kvm_make_request(KVM_REQ_EVENT, vcpu);
5321
5322         ++vcpu->stat.irq_window_exits;
5323
5324         /*
5325          * If the user space waits to inject interrupts, exit as soon as
5326          * possible
5327          */
5328         if (!irqchip_in_kernel(vcpu->kvm) &&
5329             vcpu->run->request_interrupt_window &&
5330             !kvm_cpu_has_interrupt(vcpu)) {
5331                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5332                 return 0;
5333         }
5334         return 1;
5335 }
5336
5337 static int handle_halt(struct kvm_vcpu *vcpu)
5338 {
5339         skip_emulated_instruction(vcpu);
5340         return kvm_emulate_halt(vcpu);
5341 }
5342
5343 static int handle_vmcall(struct kvm_vcpu *vcpu)
5344 {
5345         skip_emulated_instruction(vcpu);
5346         kvm_emulate_hypercall(vcpu);
5347         return 1;
5348 }
5349
5350 static int handle_invd(struct kvm_vcpu *vcpu)
5351 {
5352         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5353 }
5354
5355 static int handle_invlpg(struct kvm_vcpu *vcpu)
5356 {
5357         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5358
5359         kvm_mmu_invlpg(vcpu, exit_qualification);
5360         skip_emulated_instruction(vcpu);
5361         return 1;
5362 }
5363
5364 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5365 {
5366         int err;
5367
5368         err = kvm_rdpmc(vcpu);
5369         kvm_complete_insn_gp(vcpu, err);
5370
5371         return 1;
5372 }
5373
5374 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5375 {
5376         skip_emulated_instruction(vcpu);
5377         kvm_emulate_wbinvd(vcpu);
5378         return 1;
5379 }
5380
5381 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5382 {
5383         u64 new_bv = kvm_read_edx_eax(vcpu);
5384         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5385
5386         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5387                 skip_emulated_instruction(vcpu);
5388         return 1;
5389 }
5390
5391 static int handle_apic_access(struct kvm_vcpu *vcpu)
5392 {
5393         if (likely(fasteoi)) {
5394                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5395                 int access_type, offset;
5396
5397                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5398                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5399                 /*
5400                  * Sane guest uses MOV to write EOI, with written value
5401                  * not cared. So make a short-circuit here by avoiding
5402                  * heavy instruction emulation.
5403                  */
5404                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5405                     (offset == APIC_EOI)) {
5406                         kvm_lapic_set_eoi(vcpu);
5407                         skip_emulated_instruction(vcpu);
5408                         return 1;
5409                 }
5410         }
5411         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5412 }
5413
5414 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5415 {
5416         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5417         int vector = exit_qualification & 0xff;
5418
5419         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5420         kvm_apic_set_eoi_accelerated(vcpu, vector);
5421         return 1;
5422 }
5423
5424 static int handle_apic_write(struct kvm_vcpu *vcpu)
5425 {
5426         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5427         u32 offset = exit_qualification & 0xfff;
5428
5429         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5430         kvm_apic_write_nodecode(vcpu, offset);
5431         return 1;
5432 }
5433
5434 static int handle_task_switch(struct kvm_vcpu *vcpu)
5435 {
5436         struct vcpu_vmx *vmx = to_vmx(vcpu);
5437         unsigned long exit_qualification;
5438         bool has_error_code = false;
5439         u32 error_code = 0;
5440         u16 tss_selector;
5441         int reason, type, idt_v, idt_index;
5442
5443         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5444         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5445         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5446
5447         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5448
5449         reason = (u32)exit_qualification >> 30;
5450         if (reason == TASK_SWITCH_GATE && idt_v) {
5451                 switch (type) {
5452                 case INTR_TYPE_NMI_INTR:
5453                         vcpu->arch.nmi_injected = false;
5454                         vmx_set_nmi_mask(vcpu, true);
5455                         break;
5456                 case INTR_TYPE_EXT_INTR:
5457                 case INTR_TYPE_SOFT_INTR:
5458                         kvm_clear_interrupt_queue(vcpu);
5459                         break;
5460                 case INTR_TYPE_HARD_EXCEPTION:
5461                         if (vmx->idt_vectoring_info &
5462                             VECTORING_INFO_DELIVER_CODE_MASK) {
5463                                 has_error_code = true;
5464                                 error_code =
5465                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5466                         }
5467                         /* fall through */
5468                 case INTR_TYPE_SOFT_EXCEPTION:
5469                         kvm_clear_exception_queue(vcpu);
5470                         break;
5471                 default:
5472                         break;
5473                 }
5474         }
5475         tss_selector = exit_qualification;
5476
5477         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5478                        type != INTR_TYPE_EXT_INTR &&
5479                        type != INTR_TYPE_NMI_INTR))
5480                 skip_emulated_instruction(vcpu);
5481
5482         if (kvm_task_switch(vcpu, tss_selector,
5483                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5484                             has_error_code, error_code) == EMULATE_FAIL) {
5485                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5486                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5487                 vcpu->run->internal.ndata = 0;
5488                 return 0;
5489         }
5490
5491         /* clear all local breakpoint enable flags */
5492         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x55);
5493
5494         /*
5495          * TODO: What about debug traps on tss switch?
5496          *       Are we supposed to inject them and update dr6?
5497          */
5498
5499         return 1;
5500 }
5501
5502 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5503 {
5504         unsigned long exit_qualification;
5505         gpa_t gpa;
5506         u32 error_code;
5507         int gla_validity;
5508
5509         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5510
5511         gla_validity = (exit_qualification >> 7) & 0x3;
5512         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5513                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5514                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5515                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5516                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5517                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5518                         (long unsigned int)exit_qualification);
5519                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5520                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5521                 return 0;
5522         }
5523
5524         /*
5525          * EPT violation happened while executing iret from NMI,
5526          * "blocked by NMI" bit has to be set before next VM entry.
5527          * There are errata that may cause this bit to not be set:
5528          * AAK134, BY25.
5529          */
5530         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5531                         cpu_has_virtual_nmis() &&
5532                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5533                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5534
5535         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5536         trace_kvm_page_fault(gpa, exit_qualification);
5537
5538         /* It is a write fault? */
5539         error_code = exit_qualification & (1U << 1);
5540         /* It is a fetch fault? */
5541         error_code |= (exit_qualification & (1U << 2)) << 2;
5542         /* ept page table is present? */
5543         error_code |= (exit_qualification >> 3) & 0x1;
5544
5545         vcpu->arch.exit_qualification = exit_qualification;
5546
5547         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5548 }
5549
5550 static u64 ept_rsvd_mask(u64 spte, int level)
5551 {
5552         int i;
5553         u64 mask = 0;
5554
5555         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5556                 mask |= (1ULL << i);
5557
5558         if (level == 4)
5559                 /* bits 7:3 reserved */
5560                 mask |= 0xf8;
5561         else if (spte & (1ULL << 7))
5562                 /*
5563                  * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5564                  * level == 1 if the hypervisor is using the ignored bit 7.
5565                  */
5566                 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5567         else if (level > 1)
5568                 /* bits 6:3 reserved */
5569                 mask |= 0x78;
5570
5571         return mask;
5572 }
5573
5574 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5575                                        int level)
5576 {
5577         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5578
5579         /* 010b (write-only) */
5580         WARN_ON((spte & 0x7) == 0x2);
5581
5582         /* 110b (write/execute) */
5583         WARN_ON((spte & 0x7) == 0x6);
5584
5585         /* 100b (execute-only) and value not supported by logical processor */
5586         if (!cpu_has_vmx_ept_execute_only())
5587                 WARN_ON((spte & 0x7) == 0x4);
5588
5589         /* not 000b */
5590         if ((spte & 0x7)) {
5591                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5592
5593                 if (rsvd_bits != 0) {
5594                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5595                                          __func__, rsvd_bits);
5596                         WARN_ON(1);
5597                 }
5598
5599                 /* bits 5:3 are _not_ reserved for large page or leaf page */
5600                 if ((rsvd_bits & 0x38) == 0) {
5601                         u64 ept_mem_type = (spte & 0x38) >> 3;
5602
5603                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5604                             ept_mem_type == 7) {
5605                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5606                                                 __func__, ept_mem_type);
5607                                 WARN_ON(1);
5608                         }
5609                 }
5610         }
5611 }
5612
5613 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5614 {
5615         u64 sptes[4];
5616         int nr_sptes, i, ret;
5617         gpa_t gpa;
5618
5619         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5620         if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5621                 skip_emulated_instruction(vcpu);
5622                 return 1;
5623         }
5624
5625         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5626         if (likely(ret == RET_MMIO_PF_EMULATE))
5627                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5628                                               EMULATE_DONE;
5629
5630         if (unlikely(ret == RET_MMIO_PF_INVALID))
5631                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5632
5633         if (unlikely(ret == RET_MMIO_PF_RETRY))
5634                 return 1;
5635
5636         /* It is the real ept misconfig */
5637         printk(KERN_ERR "EPT: Misconfiguration.\n");
5638         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5639
5640         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5641
5642         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5643                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5644
5645         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5646         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5647
5648         return 0;
5649 }
5650
5651 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5652 {
5653         u32 cpu_based_vm_exec_control;
5654
5655         /* clear pending NMI */
5656         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5657         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5658         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5659         ++vcpu->stat.nmi_window_exits;
5660         kvm_make_request(KVM_REQ_EVENT, vcpu);
5661
5662         return 1;
5663 }
5664
5665 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5666 {
5667         struct vcpu_vmx *vmx = to_vmx(vcpu);
5668         enum emulation_result err = EMULATE_DONE;
5669         int ret = 1;
5670         u32 cpu_exec_ctrl;
5671         bool intr_window_requested;
5672         unsigned count = 130;
5673
5674         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5675         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5676
5677         while (vmx->emulation_required && count-- != 0) {
5678                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5679                         return handle_interrupt_window(&vmx->vcpu);
5680
5681                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5682                         return 1;
5683
5684                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5685
5686                 if (err == EMULATE_USER_EXIT) {
5687                         ++vcpu->stat.mmio_exits;
5688                         ret = 0;
5689                         goto out;
5690                 }
5691
5692                 if (err != EMULATE_DONE) {
5693                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5694                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5695                         vcpu->run->internal.ndata = 0;
5696                         return 0;
5697                 }
5698
5699                 if (vcpu->arch.halt_request) {
5700                         vcpu->arch.halt_request = 0;
5701                         ret = kvm_emulate_halt(vcpu);
5702                         goto out;
5703                 }
5704
5705                 if (signal_pending(current))
5706                         goto out;
5707                 if (need_resched())
5708                         schedule();
5709         }
5710
5711 out:
5712         return ret;
5713 }
5714
5715 static int __grow_ple_window(int val)
5716 {
5717         if (ple_window_grow < 1)
5718                 return ple_window;
5719
5720         val = min(val, ple_window_actual_max);
5721
5722         if (ple_window_grow < ple_window)
5723                 val *= ple_window_grow;
5724         else
5725                 val += ple_window_grow;
5726
5727         return val;
5728 }
5729
5730 static int __shrink_ple_window(int val, int modifier, int minimum)
5731 {
5732         if (modifier < 1)
5733                 return ple_window;
5734
5735         if (modifier < ple_window)
5736                 val /= modifier;
5737         else
5738                 val -= modifier;
5739
5740         return max(val, minimum);
5741 }
5742
5743 static void grow_ple_window(struct kvm_vcpu *vcpu)
5744 {
5745         struct vcpu_vmx *vmx = to_vmx(vcpu);
5746         int old = vmx->ple_window;
5747
5748         vmx->ple_window = __grow_ple_window(old);
5749
5750         if (vmx->ple_window != old)
5751                 vmx->ple_window_dirty = true;
5752
5753         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5754 }
5755
5756 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5757 {
5758         struct vcpu_vmx *vmx = to_vmx(vcpu);
5759         int old = vmx->ple_window;
5760
5761         vmx->ple_window = __shrink_ple_window(old,
5762                                               ple_window_shrink, ple_window);
5763
5764         if (vmx->ple_window != old)
5765                 vmx->ple_window_dirty = true;
5766
5767         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5768 }
5769
5770 /*
5771  * ple_window_actual_max is computed to be one grow_ple_window() below
5772  * ple_window_max. (See __grow_ple_window for the reason.)
5773  * This prevents overflows, because ple_window_max is int.
5774  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5775  * this process.
5776  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5777  */
5778 static void update_ple_window_actual_max(void)
5779 {
5780         ple_window_actual_max =
5781                         __shrink_ple_window(max(ple_window_max, ple_window),
5782                                             ple_window_grow, INT_MIN);
5783 }
5784
5785 /*
5786  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5787  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5788  */
5789 static int handle_pause(struct kvm_vcpu *vcpu)
5790 {
5791         if (ple_gap)
5792                 grow_ple_window(vcpu);
5793
5794         skip_emulated_instruction(vcpu);
5795         kvm_vcpu_on_spin(vcpu);
5796
5797         return 1;
5798 }
5799
5800 static int handle_nop(struct kvm_vcpu *vcpu)
5801 {
5802         skip_emulated_instruction(vcpu);
5803         return 1;
5804 }
5805
5806 static int handle_mwait(struct kvm_vcpu *vcpu)
5807 {
5808         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5809         return handle_nop(vcpu);
5810 }
5811
5812 static int handle_monitor(struct kvm_vcpu *vcpu)
5813 {
5814         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5815         return handle_nop(vcpu);
5816 }
5817
5818 /*
5819  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5820  * We could reuse a single VMCS for all the L2 guests, but we also want the
5821  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5822  * allows keeping them loaded on the processor, and in the future will allow
5823  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5824  * every entry if they never change.
5825  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5826  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5827  *
5828  * The following functions allocate and free a vmcs02 in this pool.
5829  */
5830
5831 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5832 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5833 {
5834         struct vmcs02_list *item;
5835         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5836                 if (item->vmptr == vmx->nested.current_vmptr) {
5837                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5838                         return &item->vmcs02;
5839                 }
5840
5841         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5842                 /* Recycle the least recently used VMCS. */
5843                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5844                         struct vmcs02_list, list);
5845                 item->vmptr = vmx->nested.current_vmptr;
5846                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5847                 return &item->vmcs02;
5848         }
5849
5850         /* Create a new VMCS */
5851         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5852         if (!item)
5853                 return NULL;
5854         item->vmcs02.vmcs = alloc_vmcs();
5855         if (!item->vmcs02.vmcs) {
5856                 kfree(item);
5857                 return NULL;
5858         }
5859         loaded_vmcs_init(&item->vmcs02);
5860         item->vmptr = vmx->nested.current_vmptr;
5861         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5862         vmx->nested.vmcs02_num++;
5863         return &item->vmcs02;
5864 }
5865
5866 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5867 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5868 {
5869         struct vmcs02_list *item;
5870         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5871                 if (item->vmptr == vmptr) {
5872                         free_loaded_vmcs(&item->vmcs02);
5873                         list_del(&item->list);
5874                         kfree(item);
5875                         vmx->nested.vmcs02_num--;
5876                         return;
5877                 }
5878 }
5879
5880 /*
5881  * Free all VMCSs saved for this vcpu, except the one pointed by
5882  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
5883  * must be &vmx->vmcs01.
5884  */
5885 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5886 {
5887         struct vmcs02_list *item, *n;
5888
5889         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
5890         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5891                 /*
5892                  * Something will leak if the above WARN triggers.  Better than
5893                  * a use-after-free.
5894                  */
5895                 if (vmx->loaded_vmcs == &item->vmcs02)
5896                         continue;
5897
5898                 free_loaded_vmcs(&item->vmcs02);
5899                 list_del(&item->list);
5900                 kfree(item);
5901                 vmx->nested.vmcs02_num--;
5902         }
5903 }
5904
5905 /*
5906  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5907  * set the success or error code of an emulated VMX instruction, as specified
5908  * by Vol 2B, VMX Instruction Reference, "Conventions".
5909  */
5910 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5911 {
5912         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5913                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5914                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5915 }
5916
5917 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5918 {
5919         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5920                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5921                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5922                         | X86_EFLAGS_CF);
5923 }
5924
5925 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5926                                         u32 vm_instruction_error)
5927 {
5928         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5929                 /*
5930                  * failValid writes the error number to the current VMCS, which
5931                  * can't be done there isn't a current VMCS.
5932                  */
5933                 nested_vmx_failInvalid(vcpu);
5934                 return;
5935         }
5936         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5937                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5938                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5939                         | X86_EFLAGS_ZF);
5940         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5941         /*
5942          * We don't need to force a shadow sync because
5943          * VM_INSTRUCTION_ERROR is not shadowed
5944          */
5945 }
5946
5947 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
5948 {
5949         struct vcpu_vmx *vmx =
5950                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
5951
5952         vmx->nested.preemption_timer_expired = true;
5953         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5954         kvm_vcpu_kick(&vmx->vcpu);
5955
5956         return HRTIMER_NORESTART;
5957 }
5958
5959 /*
5960  * Decode the memory-address operand of a vmx instruction, as recorded on an
5961  * exit caused by such an instruction (run by a guest hypervisor).
5962  * On success, returns 0. When the operand is invalid, returns 1 and throws
5963  * #UD or #GP.
5964  */
5965 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5966                                  unsigned long exit_qualification,
5967                                  u32 vmx_instruction_info, gva_t *ret)
5968 {
5969         /*
5970          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5971          * Execution", on an exit, vmx_instruction_info holds most of the
5972          * addressing components of the operand. Only the displacement part
5973          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5974          * For how an actual address is calculated from all these components,
5975          * refer to Vol. 1, "Operand Addressing".
5976          */
5977         int  scaling = vmx_instruction_info & 3;
5978         int  addr_size = (vmx_instruction_info >> 7) & 7;
5979         bool is_reg = vmx_instruction_info & (1u << 10);
5980         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5981         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5982         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5983         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5984         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5985
5986         if (is_reg) {
5987                 kvm_queue_exception(vcpu, UD_VECTOR);
5988                 return 1;
5989         }
5990
5991         /* Addr = segment_base + offset */
5992         /* offset = base + [index * scale] + displacement */
5993         *ret = vmx_get_segment_base(vcpu, seg_reg);
5994         if (base_is_valid)
5995                 *ret += kvm_register_read(vcpu, base_reg);
5996         if (index_is_valid)
5997                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5998         *ret += exit_qualification; /* holds the displacement */
5999
6000         if (addr_size == 1) /* 32 bit */
6001                 *ret &= 0xffffffff;
6002
6003         /*
6004          * TODO: throw #GP (and return 1) in various cases that the VM*
6005          * instructions require it - e.g., offset beyond segment limit,
6006          * unusable or unreadable/unwritable segment, non-canonical 64-bit
6007          * address, and so on. Currently these are not checked.
6008          */
6009         return 0;
6010 }
6011
6012 /*
6013  * This function performs the various checks including
6014  * - if it's 4KB aligned
6015  * - No bits beyond the physical address width are set
6016  * - Returns 0 on success or else 1
6017  * (Intel SDM Section 30.3)
6018  */
6019 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6020                                   gpa_t *vmpointer)
6021 {
6022         gva_t gva;
6023         gpa_t vmptr;
6024         struct x86_exception e;
6025         struct page *page;
6026         struct vcpu_vmx *vmx = to_vmx(vcpu);
6027         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6028
6029         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6030                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6031                 return 1;
6032
6033         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6034                                 sizeof(vmptr), &e)) {
6035                 kvm_inject_page_fault(vcpu, &e);
6036                 return 1;
6037         }
6038
6039         switch (exit_reason) {
6040         case EXIT_REASON_VMON:
6041                 /*
6042                  * SDM 3: 24.11.5
6043                  * The first 4 bytes of VMXON region contain the supported
6044                  * VMCS revision identifier
6045                  *
6046                  * Note - IA32_VMX_BASIC[48] will never be 1
6047                  * for the nested case;
6048                  * which replaces physical address width with 32
6049                  *
6050                  */
6051                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6052                         nested_vmx_failInvalid(vcpu);
6053                         skip_emulated_instruction(vcpu);
6054                         return 1;
6055                 }
6056
6057                 page = nested_get_page(vcpu, vmptr);
6058                 if (page == NULL ||
6059                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6060                         nested_vmx_failInvalid(vcpu);
6061                         kunmap(page);
6062                         skip_emulated_instruction(vcpu);
6063                         return 1;
6064                 }
6065                 kunmap(page);
6066                 vmx->nested.vmxon_ptr = vmptr;
6067                 break;
6068         case EXIT_REASON_VMCLEAR:
6069                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6070                         nested_vmx_failValid(vcpu,
6071                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6072                         skip_emulated_instruction(vcpu);
6073                         return 1;
6074                 }
6075
6076                 if (vmptr == vmx->nested.vmxon_ptr) {
6077                         nested_vmx_failValid(vcpu,
6078                                              VMXERR_VMCLEAR_VMXON_POINTER);
6079                         skip_emulated_instruction(vcpu);
6080                         return 1;
6081                 }
6082                 break;
6083         case EXIT_REASON_VMPTRLD:
6084                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6085                         nested_vmx_failValid(vcpu,
6086                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6087                         skip_emulated_instruction(vcpu);
6088                         return 1;
6089                 }
6090
6091                 if (vmptr == vmx->nested.vmxon_ptr) {
6092                         nested_vmx_failValid(vcpu,
6093                                              VMXERR_VMCLEAR_VMXON_POINTER);
6094                         skip_emulated_instruction(vcpu);
6095                         return 1;
6096                 }
6097                 break;
6098         default:
6099                 return 1; /* shouldn't happen */
6100         }
6101
6102         if (vmpointer)
6103                 *vmpointer = vmptr;
6104         return 0;
6105 }
6106
6107 /*
6108  * Emulate the VMXON instruction.
6109  * Currently, we just remember that VMX is active, and do not save or even
6110  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6111  * do not currently need to store anything in that guest-allocated memory
6112  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6113  * argument is different from the VMXON pointer (which the spec says they do).
6114  */
6115 static int handle_vmon(struct kvm_vcpu *vcpu)
6116 {
6117         struct kvm_segment cs;
6118         struct vcpu_vmx *vmx = to_vmx(vcpu);
6119         struct vmcs *shadow_vmcs;
6120         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6121                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6122
6123         /* The Intel VMX Instruction Reference lists a bunch of bits that
6124          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6125          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6126          * Otherwise, we should fail with #UD. We test these now:
6127          */
6128         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6129             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6130             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6131                 kvm_queue_exception(vcpu, UD_VECTOR);
6132                 return 1;
6133         }
6134
6135         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6136         if (is_long_mode(vcpu) && !cs.l) {
6137                 kvm_queue_exception(vcpu, UD_VECTOR);
6138                 return 1;
6139         }
6140
6141         if (vmx_get_cpl(vcpu)) {
6142                 kvm_inject_gp(vcpu, 0);
6143                 return 1;
6144         }
6145
6146         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6147                 return 1;
6148
6149         if (vmx->nested.vmxon) {
6150                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6151                 skip_emulated_instruction(vcpu);
6152                 return 1;
6153         }
6154
6155         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6156                         != VMXON_NEEDED_FEATURES) {
6157                 kvm_inject_gp(vcpu, 0);
6158                 return 1;
6159         }
6160
6161         if (enable_shadow_vmcs) {
6162                 shadow_vmcs = alloc_vmcs();
6163                 if (!shadow_vmcs)
6164                         return -ENOMEM;
6165                 /* mark vmcs as shadow */
6166                 shadow_vmcs->revision_id |= (1u << 31);
6167                 /* init shadow vmcs */
6168                 vmcs_clear(shadow_vmcs);
6169                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6170         }
6171
6172         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6173         vmx->nested.vmcs02_num = 0;
6174
6175         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6176                      HRTIMER_MODE_REL);
6177         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6178
6179         vmx->nested.vmxon = true;
6180
6181         skip_emulated_instruction(vcpu);
6182         nested_vmx_succeed(vcpu);
6183         return 1;
6184 }
6185
6186 /*
6187  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6188  * for running VMX instructions (except VMXON, whose prerequisites are
6189  * slightly different). It also specifies what exception to inject otherwise.
6190  */
6191 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6192 {
6193         struct kvm_segment cs;
6194         struct vcpu_vmx *vmx = to_vmx(vcpu);
6195
6196         if (!vmx->nested.vmxon) {
6197                 kvm_queue_exception(vcpu, UD_VECTOR);
6198                 return 0;
6199         }
6200
6201         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6202         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6203             (is_long_mode(vcpu) && !cs.l)) {
6204                 kvm_queue_exception(vcpu, UD_VECTOR);
6205                 return 0;
6206         }
6207
6208         if (vmx_get_cpl(vcpu)) {
6209                 kvm_inject_gp(vcpu, 0);
6210                 return 0;
6211         }
6212
6213         return 1;
6214 }
6215
6216 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6217 {
6218         u32 exec_control;
6219         if (vmx->nested.current_vmptr == -1ull)
6220                 return;
6221
6222         /* current_vmptr and current_vmcs12 are always set/reset together */
6223         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6224                 return;
6225
6226         if (enable_shadow_vmcs) {
6227                 /* copy to memory all shadowed fields in case
6228                    they were modified */
6229                 copy_shadow_to_vmcs12(vmx);
6230                 vmx->nested.sync_shadow_vmcs = false;
6231                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6232                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6233                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6234                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6235         }
6236         kunmap(vmx->nested.current_vmcs12_page);
6237         nested_release_page(vmx->nested.current_vmcs12_page);
6238         vmx->nested.current_vmptr = -1ull;
6239         vmx->nested.current_vmcs12 = NULL;
6240 }
6241
6242 /*
6243  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6244  * just stops using VMX.
6245  */
6246 static void free_nested(struct vcpu_vmx *vmx)
6247 {
6248         if (!vmx->nested.vmxon)
6249                 return;
6250
6251         vmx->nested.vmxon = false;
6252         nested_release_vmcs12(vmx);
6253         if (enable_shadow_vmcs)
6254                 free_vmcs(vmx->nested.current_shadow_vmcs);
6255         /* Unpin physical memory we referred to in current vmcs02 */
6256         if (vmx->nested.apic_access_page) {
6257                 nested_release_page(vmx->nested.apic_access_page);
6258                 vmx->nested.apic_access_page = NULL;
6259         }
6260         if (vmx->nested.virtual_apic_page) {
6261                 nested_release_page(vmx->nested.virtual_apic_page);
6262                 vmx->nested.virtual_apic_page = NULL;
6263         }
6264
6265         nested_free_all_saved_vmcss(vmx);
6266 }
6267
6268 /* Emulate the VMXOFF instruction */
6269 static int handle_vmoff(struct kvm_vcpu *vcpu)
6270 {
6271         if (!nested_vmx_check_permission(vcpu))
6272                 return 1;
6273         free_nested(to_vmx(vcpu));
6274         skip_emulated_instruction(vcpu);
6275         nested_vmx_succeed(vcpu);
6276         return 1;
6277 }
6278
6279 /* Emulate the VMCLEAR instruction */
6280 static int handle_vmclear(struct kvm_vcpu *vcpu)
6281 {
6282         struct vcpu_vmx *vmx = to_vmx(vcpu);
6283         gpa_t vmptr;
6284         struct vmcs12 *vmcs12;
6285         struct page *page;
6286
6287         if (!nested_vmx_check_permission(vcpu))
6288                 return 1;
6289
6290         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6291                 return 1;
6292
6293         if (vmptr == vmx->nested.current_vmptr)
6294                 nested_release_vmcs12(vmx);
6295
6296         page = nested_get_page(vcpu, vmptr);
6297         if (page == NULL) {
6298                 /*
6299                  * For accurate processor emulation, VMCLEAR beyond available
6300                  * physical memory should do nothing at all. However, it is
6301                  * possible that a nested vmx bug, not a guest hypervisor bug,
6302                  * resulted in this case, so let's shut down before doing any
6303                  * more damage:
6304                  */
6305                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6306                 return 1;
6307         }
6308         vmcs12 = kmap(page);
6309         vmcs12->launch_state = 0;
6310         kunmap(page);
6311         nested_release_page(page);
6312
6313         nested_free_vmcs02(vmx, vmptr);
6314
6315         skip_emulated_instruction(vcpu);
6316         nested_vmx_succeed(vcpu);
6317         return 1;
6318 }
6319
6320 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6321
6322 /* Emulate the VMLAUNCH instruction */
6323 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6324 {
6325         return nested_vmx_run(vcpu, true);
6326 }
6327
6328 /* Emulate the VMRESUME instruction */
6329 static int handle_vmresume(struct kvm_vcpu *vcpu)
6330 {
6331
6332         return nested_vmx_run(vcpu, false);
6333 }
6334
6335 enum vmcs_field_type {
6336         VMCS_FIELD_TYPE_U16 = 0,
6337         VMCS_FIELD_TYPE_U64 = 1,
6338         VMCS_FIELD_TYPE_U32 = 2,
6339         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6340 };
6341
6342 static inline int vmcs_field_type(unsigned long field)
6343 {
6344         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6345                 return VMCS_FIELD_TYPE_U32;
6346         return (field >> 13) & 0x3 ;
6347 }
6348
6349 static inline int vmcs_field_readonly(unsigned long field)
6350 {
6351         return (((field >> 10) & 0x3) == 1);
6352 }
6353
6354 /*
6355  * Read a vmcs12 field. Since these can have varying lengths and we return
6356  * one type, we chose the biggest type (u64) and zero-extend the return value
6357  * to that size. Note that the caller, handle_vmread, might need to use only
6358  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6359  * 64-bit fields are to be returned).
6360  */
6361 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6362                                         unsigned long field, u64 *ret)
6363 {
6364         short offset = vmcs_field_to_offset(field);
6365         char *p;
6366
6367         if (offset < 0)
6368                 return 0;
6369
6370         p = ((char *)(get_vmcs12(vcpu))) + offset;
6371
6372         switch (vmcs_field_type(field)) {
6373         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6374                 *ret = *((natural_width *)p);
6375                 return 1;
6376         case VMCS_FIELD_TYPE_U16:
6377                 *ret = *((u16 *)p);
6378                 return 1;
6379         case VMCS_FIELD_TYPE_U32:
6380                 *ret = *((u32 *)p);
6381                 return 1;
6382         case VMCS_FIELD_TYPE_U64:
6383                 *ret = *((u64 *)p);
6384                 return 1;
6385         default:
6386                 return 0; /* can never happen. */
6387         }
6388 }
6389
6390
6391 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6392                                     unsigned long field, u64 field_value){
6393         short offset = vmcs_field_to_offset(field);
6394         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6395         if (offset < 0)
6396                 return false;
6397
6398         switch (vmcs_field_type(field)) {
6399         case VMCS_FIELD_TYPE_U16:
6400                 *(u16 *)p = field_value;
6401                 return true;
6402         case VMCS_FIELD_TYPE_U32:
6403                 *(u32 *)p = field_value;
6404                 return true;
6405         case VMCS_FIELD_TYPE_U64:
6406                 *(u64 *)p = field_value;
6407                 return true;
6408         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6409                 *(natural_width *)p = field_value;
6410                 return true;
6411         default:
6412                 return false; /* can never happen. */
6413         }
6414
6415 }
6416
6417 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6418 {
6419         int i;
6420         unsigned long field;
6421         u64 field_value;
6422         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6423         const unsigned long *fields = shadow_read_write_fields;
6424         const int num_fields = max_shadow_read_write_fields;
6425
6426         vmcs_load(shadow_vmcs);
6427
6428         for (i = 0; i < num_fields; i++) {
6429                 field = fields[i];
6430                 switch (vmcs_field_type(field)) {
6431                 case VMCS_FIELD_TYPE_U16:
6432                         field_value = vmcs_read16(field);
6433                         break;
6434                 case VMCS_FIELD_TYPE_U32:
6435                         field_value = vmcs_read32(field);
6436                         break;
6437                 case VMCS_FIELD_TYPE_U64:
6438                         field_value = vmcs_read64(field);
6439                         break;
6440                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6441                         field_value = vmcs_readl(field);
6442                         break;
6443                 }
6444                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6445         }
6446
6447         vmcs_clear(shadow_vmcs);
6448         vmcs_load(vmx->loaded_vmcs->vmcs);
6449 }
6450
6451 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6452 {
6453         const unsigned long *fields[] = {
6454                 shadow_read_write_fields,
6455                 shadow_read_only_fields
6456         };
6457         const int max_fields[] = {
6458                 max_shadow_read_write_fields,
6459                 max_shadow_read_only_fields
6460         };
6461         int i, q;
6462         unsigned long field;
6463         u64 field_value = 0;
6464         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6465
6466         vmcs_load(shadow_vmcs);
6467
6468         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6469                 for (i = 0; i < max_fields[q]; i++) {
6470                         field = fields[q][i];
6471                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6472
6473                         switch (vmcs_field_type(field)) {
6474                         case VMCS_FIELD_TYPE_U16:
6475                                 vmcs_write16(field, (u16)field_value);
6476                                 break;
6477                         case VMCS_FIELD_TYPE_U32:
6478                                 vmcs_write32(field, (u32)field_value);
6479                                 break;
6480                         case VMCS_FIELD_TYPE_U64:
6481                                 vmcs_write64(field, (u64)field_value);
6482                                 break;
6483                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6484                                 vmcs_writel(field, (long)field_value);
6485                                 break;
6486                         }
6487                 }
6488         }
6489
6490         vmcs_clear(shadow_vmcs);
6491         vmcs_load(vmx->loaded_vmcs->vmcs);
6492 }
6493
6494 /*
6495  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6496  * used before) all generate the same failure when it is missing.
6497  */
6498 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6499 {
6500         struct vcpu_vmx *vmx = to_vmx(vcpu);
6501         if (vmx->nested.current_vmptr == -1ull) {
6502                 nested_vmx_failInvalid(vcpu);
6503                 skip_emulated_instruction(vcpu);
6504                 return 0;
6505         }
6506         return 1;
6507 }
6508
6509 static int handle_vmread(struct kvm_vcpu *vcpu)
6510 {
6511         unsigned long field;
6512         u64 field_value;
6513         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6514         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6515         gva_t gva = 0;
6516
6517         if (!nested_vmx_check_permission(vcpu) ||
6518             !nested_vmx_check_vmcs12(vcpu))
6519                 return 1;
6520
6521         /* Decode instruction info and find the field to read */
6522         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6523         /* Read the field, zero-extended to a u64 field_value */
6524         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6525                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6526                 skip_emulated_instruction(vcpu);
6527                 return 1;
6528         }
6529         /*
6530          * Now copy part of this value to register or memory, as requested.
6531          * Note that the number of bits actually copied is 32 or 64 depending
6532          * on the guest's mode (32 or 64 bit), not on the given field's length.
6533          */
6534         if (vmx_instruction_info & (1u << 10)) {
6535                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6536                         field_value);
6537         } else {
6538                 if (get_vmx_mem_address(vcpu, exit_qualification,
6539                                 vmx_instruction_info, &gva))
6540                         return 1;
6541                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6542                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6543                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6544         }
6545
6546         nested_vmx_succeed(vcpu);
6547         skip_emulated_instruction(vcpu);
6548         return 1;
6549 }
6550
6551
6552 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6553 {
6554         unsigned long field;
6555         gva_t gva;
6556         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6557         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6558         /* The value to write might be 32 or 64 bits, depending on L1's long
6559          * mode, and eventually we need to write that into a field of several
6560          * possible lengths. The code below first zero-extends the value to 64
6561          * bit (field_value), and then copies only the approriate number of
6562          * bits into the vmcs12 field.
6563          */
6564         u64 field_value = 0;
6565         struct x86_exception e;
6566
6567         if (!nested_vmx_check_permission(vcpu) ||
6568             !nested_vmx_check_vmcs12(vcpu))
6569                 return 1;
6570
6571         if (vmx_instruction_info & (1u << 10))
6572                 field_value = kvm_register_readl(vcpu,
6573                         (((vmx_instruction_info) >> 3) & 0xf));
6574         else {
6575                 if (get_vmx_mem_address(vcpu, exit_qualification,
6576                                 vmx_instruction_info, &gva))
6577                         return 1;
6578                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6579                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
6580                         kvm_inject_page_fault(vcpu, &e);
6581                         return 1;
6582                 }
6583         }
6584
6585
6586         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6587         if (vmcs_field_readonly(field)) {
6588                 nested_vmx_failValid(vcpu,
6589                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6590                 skip_emulated_instruction(vcpu);
6591                 return 1;
6592         }
6593
6594         if (!vmcs12_write_any(vcpu, field, field_value)) {
6595                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6596                 skip_emulated_instruction(vcpu);
6597                 return 1;
6598         }
6599
6600         nested_vmx_succeed(vcpu);
6601         skip_emulated_instruction(vcpu);
6602         return 1;
6603 }
6604
6605 /* Emulate the VMPTRLD instruction */
6606 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6607 {
6608         struct vcpu_vmx *vmx = to_vmx(vcpu);
6609         gpa_t vmptr;
6610         u32 exec_control;
6611
6612         if (!nested_vmx_check_permission(vcpu))
6613                 return 1;
6614
6615         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6616                 return 1;
6617
6618         if (vmx->nested.current_vmptr != vmptr) {
6619                 struct vmcs12 *new_vmcs12;
6620                 struct page *page;
6621                 page = nested_get_page(vcpu, vmptr);
6622                 if (page == NULL) {
6623                         nested_vmx_failInvalid(vcpu);
6624                         skip_emulated_instruction(vcpu);
6625                         return 1;
6626                 }
6627                 new_vmcs12 = kmap(page);
6628                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6629                         kunmap(page);
6630                         nested_release_page_clean(page);
6631                         nested_vmx_failValid(vcpu,
6632                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6633                         skip_emulated_instruction(vcpu);
6634                         return 1;
6635                 }
6636
6637                 nested_release_vmcs12(vmx);
6638                 vmx->nested.current_vmptr = vmptr;
6639                 vmx->nested.current_vmcs12 = new_vmcs12;
6640                 vmx->nested.current_vmcs12_page = page;
6641                 if (enable_shadow_vmcs) {
6642                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6643                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6644                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6645                         vmcs_write64(VMCS_LINK_POINTER,
6646                                      __pa(vmx->nested.current_shadow_vmcs));
6647                         vmx->nested.sync_shadow_vmcs = true;
6648                 }
6649         }
6650
6651         nested_vmx_succeed(vcpu);
6652         skip_emulated_instruction(vcpu);
6653         return 1;
6654 }
6655
6656 /* Emulate the VMPTRST instruction */
6657 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6658 {
6659         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6660         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6661         gva_t vmcs_gva;
6662         struct x86_exception e;
6663
6664         if (!nested_vmx_check_permission(vcpu))
6665                 return 1;
6666
6667         if (get_vmx_mem_address(vcpu, exit_qualification,
6668                         vmx_instruction_info, &vmcs_gva))
6669                 return 1;
6670         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6671         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6672                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6673                                  sizeof(u64), &e)) {
6674                 kvm_inject_page_fault(vcpu, &e);
6675                 return 1;
6676         }
6677         nested_vmx_succeed(vcpu);
6678         skip_emulated_instruction(vcpu);
6679         return 1;
6680 }
6681
6682 /* Emulate the INVEPT instruction */
6683 static int handle_invept(struct kvm_vcpu *vcpu)
6684 {
6685         u32 vmx_instruction_info, types;
6686         unsigned long type;
6687         gva_t gva;
6688         struct x86_exception e;
6689         struct {
6690                 u64 eptp, gpa;
6691         } operand;
6692
6693         if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6694             !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6695                 kvm_queue_exception(vcpu, UD_VECTOR);
6696                 return 1;
6697         }
6698
6699         if (!nested_vmx_check_permission(vcpu))
6700                 return 1;
6701
6702         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6703                 kvm_queue_exception(vcpu, UD_VECTOR);
6704                 return 1;
6705         }
6706
6707         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6708         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
6709
6710         types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6711
6712         if (!(types & (1UL << type))) {
6713                 nested_vmx_failValid(vcpu,
6714                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6715                 return 1;
6716         }
6717
6718         /* According to the Intel VMX instruction reference, the memory
6719          * operand is read even if it isn't needed (e.g., for type==global)
6720          */
6721         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6722                         vmx_instruction_info, &gva))
6723                 return 1;
6724         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6725                                 sizeof(operand), &e)) {
6726                 kvm_inject_page_fault(vcpu, &e);
6727                 return 1;
6728         }
6729
6730         switch (type) {
6731         case VMX_EPT_EXTENT_GLOBAL:
6732                 kvm_mmu_sync_roots(vcpu);
6733                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6734                 nested_vmx_succeed(vcpu);
6735                 break;
6736         default:
6737                 /* Trap single context invalidation invept calls */
6738                 BUG_ON(1);
6739                 break;
6740         }
6741
6742         skip_emulated_instruction(vcpu);
6743         return 1;
6744 }
6745
6746 /*
6747  * The exit handlers return 1 if the exit was handled fully and guest execution
6748  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6749  * to be done to userspace and return 0.
6750  */
6751 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6752         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6753         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6754         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6755         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6756         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6757         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6758         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6759         [EXIT_REASON_CPUID]                   = handle_cpuid,
6760         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6761         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6762         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6763         [EXIT_REASON_HLT]                     = handle_halt,
6764         [EXIT_REASON_INVD]                    = handle_invd,
6765         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6766         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6767         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6768         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6769         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6770         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6771         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6772         [EXIT_REASON_VMREAD]                  = handle_vmread,
6773         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6774         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6775         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6776         [EXIT_REASON_VMON]                    = handle_vmon,
6777         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6778         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6779         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6780         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6781         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6782         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6783         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6784         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6785         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6786         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6787         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6788         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
6789         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
6790         [EXIT_REASON_INVEPT]                  = handle_invept,
6791 };
6792
6793 static const int kvm_vmx_max_exit_handlers =
6794         ARRAY_SIZE(kvm_vmx_exit_handlers);
6795
6796 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6797                                        struct vmcs12 *vmcs12)
6798 {
6799         unsigned long exit_qualification;
6800         gpa_t bitmap, last_bitmap;
6801         unsigned int port;
6802         int size;
6803         u8 b;
6804
6805         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6806                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6807
6808         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6809
6810         port = exit_qualification >> 16;
6811         size = (exit_qualification & 7) + 1;
6812
6813         last_bitmap = (gpa_t)-1;
6814         b = -1;
6815
6816         while (size > 0) {
6817                 if (port < 0x8000)
6818                         bitmap = vmcs12->io_bitmap_a;
6819                 else if (port < 0x10000)
6820                         bitmap = vmcs12->io_bitmap_b;
6821                 else
6822                         return 1;
6823                 bitmap += (port & 0x7fff) / 8;
6824
6825                 if (last_bitmap != bitmap)
6826                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6827                                 return 1;
6828                 if (b & (1 << (port & 7)))
6829                         return 1;
6830
6831                 port++;
6832                 size--;
6833                 last_bitmap = bitmap;
6834         }
6835
6836         return 0;
6837 }
6838
6839 /*
6840  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6841  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6842  * disinterest in the current event (read or write a specific MSR) by using an
6843  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6844  */
6845 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6846         struct vmcs12 *vmcs12, u32 exit_reason)
6847 {
6848         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6849         gpa_t bitmap;
6850
6851         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6852                 return 1;
6853
6854         /*
6855          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6856          * for the four combinations of read/write and low/high MSR numbers.
6857          * First we need to figure out which of the four to use:
6858          */
6859         bitmap = vmcs12->msr_bitmap;
6860         if (exit_reason == EXIT_REASON_MSR_WRITE)
6861                 bitmap += 2048;
6862         if (msr_index >= 0xc0000000) {
6863                 msr_index -= 0xc0000000;
6864                 bitmap += 1024;
6865         }
6866
6867         /* Then read the msr_index'th bit from this bitmap: */
6868         if (msr_index < 1024*8) {
6869                 unsigned char b;
6870                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6871                         return 1;
6872                 return 1 & (b >> (msr_index & 7));
6873         } else
6874                 return 1; /* let L1 handle the wrong parameter */
6875 }
6876
6877 /*
6878  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6879  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6880  * intercept (via guest_host_mask etc.) the current event.
6881  */
6882 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6883         struct vmcs12 *vmcs12)
6884 {
6885         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6886         int cr = exit_qualification & 15;
6887         int reg = (exit_qualification >> 8) & 15;
6888         unsigned long val = kvm_register_readl(vcpu, reg);
6889
6890         switch ((exit_qualification >> 4) & 3) {
6891         case 0: /* mov to cr */
6892                 switch (cr) {
6893                 case 0:
6894                         if (vmcs12->cr0_guest_host_mask &
6895                             (val ^ vmcs12->cr0_read_shadow))
6896                                 return 1;
6897                         break;
6898                 case 3:
6899                         if ((vmcs12->cr3_target_count >= 1 &&
6900                                         vmcs12->cr3_target_value0 == val) ||
6901                                 (vmcs12->cr3_target_count >= 2 &&
6902                                         vmcs12->cr3_target_value1 == val) ||
6903                                 (vmcs12->cr3_target_count >= 3 &&
6904                                         vmcs12->cr3_target_value2 == val) ||
6905                                 (vmcs12->cr3_target_count >= 4 &&
6906                                         vmcs12->cr3_target_value3 == val))
6907                                 return 0;
6908                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6909                                 return 1;
6910                         break;
6911                 case 4:
6912                         if (vmcs12->cr4_guest_host_mask &
6913                             (vmcs12->cr4_read_shadow ^ val))
6914                                 return 1;
6915                         break;
6916                 case 8:
6917                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6918                                 return 1;
6919                         break;
6920                 }
6921                 break;
6922         case 2: /* clts */
6923                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6924                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6925                         return 1;
6926                 break;
6927         case 1: /* mov from cr */
6928                 switch (cr) {
6929                 case 3:
6930                         if (vmcs12->cpu_based_vm_exec_control &
6931                             CPU_BASED_CR3_STORE_EXITING)
6932                                 return 1;
6933                         break;
6934                 case 8:
6935                         if (vmcs12->cpu_based_vm_exec_control &
6936                             CPU_BASED_CR8_STORE_EXITING)
6937                                 return 1;
6938                         break;
6939                 }
6940                 break;
6941         case 3: /* lmsw */
6942                 /*
6943                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6944                  * cr0. Other attempted changes are ignored, with no exit.
6945                  */
6946                 if (vmcs12->cr0_guest_host_mask & 0xe &
6947                     (val ^ vmcs12->cr0_read_shadow))
6948                         return 1;
6949                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6950                     !(vmcs12->cr0_read_shadow & 0x1) &&
6951                     (val & 0x1))
6952                         return 1;
6953                 break;
6954         }
6955         return 0;
6956 }
6957
6958 /*
6959  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6960  * should handle it ourselves in L0 (and then continue L2). Only call this
6961  * when in is_guest_mode (L2).
6962  */
6963 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6964 {
6965         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6966         struct vcpu_vmx *vmx = to_vmx(vcpu);
6967         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6968         u32 exit_reason = vmx->exit_reason;
6969
6970         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6971                                 vmcs_readl(EXIT_QUALIFICATION),
6972                                 vmx->idt_vectoring_info,
6973                                 intr_info,
6974                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6975                                 KVM_ISA_VMX);
6976
6977         if (vmx->nested.nested_run_pending)
6978                 return 0;
6979
6980         if (unlikely(vmx->fail)) {
6981                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6982                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6983                 return 1;
6984         }
6985
6986         switch (exit_reason) {
6987         case EXIT_REASON_EXCEPTION_NMI:
6988                 if (!is_exception(intr_info))
6989                         return 0;
6990                 else if (is_page_fault(intr_info))
6991                         return enable_ept;
6992                 else if (is_no_device(intr_info) &&
6993                          !(vmcs12->guest_cr0 & X86_CR0_TS))
6994                         return 0;
6995                 return vmcs12->exception_bitmap &
6996                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6997         case EXIT_REASON_EXTERNAL_INTERRUPT:
6998                 return 0;
6999         case EXIT_REASON_TRIPLE_FAULT:
7000                 return 1;
7001         case EXIT_REASON_PENDING_INTERRUPT:
7002                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7003         case EXIT_REASON_NMI_WINDOW:
7004                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7005         case EXIT_REASON_TASK_SWITCH:
7006                 return 1;
7007         case EXIT_REASON_CPUID:
7008                 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7009                         return 0;
7010                 return 1;
7011         case EXIT_REASON_HLT:
7012                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7013         case EXIT_REASON_INVD:
7014                 return 1;
7015         case EXIT_REASON_INVLPG:
7016                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7017         case EXIT_REASON_RDPMC:
7018                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7019         case EXIT_REASON_RDTSC:
7020                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7021         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7022         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7023         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7024         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7025         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7026         case EXIT_REASON_INVEPT:
7027                 /*
7028                  * VMX instructions trap unconditionally. This allows L1 to
7029                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
7030                  */
7031                 return 1;
7032         case EXIT_REASON_CR_ACCESS:
7033                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7034         case EXIT_REASON_DR_ACCESS:
7035                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7036         case EXIT_REASON_IO_INSTRUCTION:
7037                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7038         case EXIT_REASON_MSR_READ:
7039         case EXIT_REASON_MSR_WRITE:
7040                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7041         case EXIT_REASON_INVALID_STATE:
7042                 return 1;
7043         case EXIT_REASON_MWAIT_INSTRUCTION:
7044                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7045         case EXIT_REASON_MONITOR_INSTRUCTION:
7046                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7047         case EXIT_REASON_PAUSE_INSTRUCTION:
7048                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7049                         nested_cpu_has2(vmcs12,
7050                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7051         case EXIT_REASON_MCE_DURING_VMENTRY:
7052                 return 0;
7053         case EXIT_REASON_TPR_BELOW_THRESHOLD:
7054                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7055         case EXIT_REASON_APIC_ACCESS:
7056                 return nested_cpu_has2(vmcs12,
7057                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7058         case EXIT_REASON_EPT_VIOLATION:
7059                 /*
7060                  * L0 always deals with the EPT violation. If nested EPT is
7061                  * used, and the nested mmu code discovers that the address is
7062                  * missing in the guest EPT table (EPT12), the EPT violation
7063                  * will be injected with nested_ept_inject_page_fault()
7064                  */
7065                 return 0;
7066         case EXIT_REASON_EPT_MISCONFIG:
7067                 /*
7068                  * L2 never uses directly L1's EPT, but rather L0's own EPT
7069                  * table (shadow on EPT) or a merged EPT table that L0 built
7070                  * (EPT on EPT). So any problems with the structure of the
7071                  * table is L0's fault.
7072                  */
7073                 return 0;
7074         case EXIT_REASON_WBINVD:
7075                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7076         case EXIT_REASON_XSETBV:
7077                 return 1;
7078         default:
7079                 return 1;
7080         }
7081 }
7082
7083 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7084 {
7085         *info1 = vmcs_readl(EXIT_QUALIFICATION);
7086         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7087 }
7088
7089 /*
7090  * The guest has exited.  See if we can fix it or if we need userspace
7091  * assistance.
7092  */
7093 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7094 {
7095         struct vcpu_vmx *vmx = to_vmx(vcpu);
7096         u32 exit_reason = vmx->exit_reason;
7097         u32 vectoring_info = vmx->idt_vectoring_info;
7098
7099         /* If guest state is invalid, start emulating */
7100         if (vmx->emulation_required)
7101                 return handle_invalid_guest_state(vcpu);
7102
7103         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7104                 nested_vmx_vmexit(vcpu, exit_reason,
7105                                   vmcs_read32(VM_EXIT_INTR_INFO),
7106                                   vmcs_readl(EXIT_QUALIFICATION));
7107                 return 1;
7108         }
7109
7110         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7111                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7112                 vcpu->run->fail_entry.hardware_entry_failure_reason
7113                         = exit_reason;
7114                 return 0;
7115         }
7116
7117         if (unlikely(vmx->fail)) {
7118                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7119                 vcpu->run->fail_entry.hardware_entry_failure_reason
7120                         = vmcs_read32(VM_INSTRUCTION_ERROR);
7121                 return 0;
7122         }
7123
7124         /*
7125          * Note:
7126          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7127          * delivery event since it indicates guest is accessing MMIO.
7128          * The vm-exit can be triggered again after return to guest that
7129          * will cause infinite loop.
7130          */
7131         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7132                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7133                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
7134                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
7135                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7136                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7137                 vcpu->run->internal.ndata = 2;
7138                 vcpu->run->internal.data[0] = vectoring_info;
7139                 vcpu->run->internal.data[1] = exit_reason;
7140                 return 0;
7141         }
7142
7143         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7144             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7145                                         get_vmcs12(vcpu))))) {
7146                 if (vmx_interrupt_allowed(vcpu)) {
7147                         vmx->soft_vnmi_blocked = 0;
7148                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7149                            vcpu->arch.nmi_pending) {
7150                         /*
7151                          * This CPU don't support us in finding the end of an
7152                          * NMI-blocked window if the guest runs with IRQs
7153                          * disabled. So we pull the trigger after 1 s of
7154                          * futile waiting, but inform the user about this.
7155                          */
7156                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7157                                "state on VCPU %d after 1 s timeout\n",
7158                                __func__, vcpu->vcpu_id);
7159                         vmx->soft_vnmi_blocked = 0;
7160                 }
7161         }
7162
7163         if (exit_reason < kvm_vmx_max_exit_handlers
7164             && kvm_vmx_exit_handlers[exit_reason])
7165                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7166         else {
7167                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
7168                 vcpu->run->hw.hardware_exit_reason = exit_reason;
7169         }
7170         return 0;
7171 }
7172
7173 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7174 {
7175         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7176
7177         if (is_guest_mode(vcpu) &&
7178                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7179                 return;
7180
7181         if (irr == -1 || tpr < irr) {
7182                 vmcs_write32(TPR_THRESHOLD, 0);
7183                 return;
7184         }
7185
7186         vmcs_write32(TPR_THRESHOLD, irr);
7187 }
7188
7189 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7190 {
7191         u32 sec_exec_control;
7192
7193         /*
7194          * There is not point to enable virtualize x2apic without enable
7195          * apicv
7196          */
7197         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7198                                 !vmx_vm_has_apicv(vcpu->kvm))
7199                 return;
7200
7201         if (!vm_need_tpr_shadow(vcpu->kvm))
7202                 return;
7203
7204         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7205
7206         if (set) {
7207                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7208                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7209         } else {
7210                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7211                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7212         }
7213         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7214
7215         vmx_set_msr_bitmap(vcpu);
7216 }
7217
7218 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7219 {
7220         struct vcpu_vmx *vmx = to_vmx(vcpu);
7221
7222         /*
7223          * Currently we do not handle the nested case where L2 has an
7224          * APIC access page of its own; that page is still pinned.
7225          * Hence, we skip the case where the VCPU is in guest mode _and_
7226          * L1 prepared an APIC access page for L2.
7227          *
7228          * For the case where L1 and L2 share the same APIC access page
7229          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7230          * in the vmcs12), this function will only update either the vmcs01
7231          * or the vmcs02.  If the former, the vmcs02 will be updated by
7232          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
7233          * the next L2->L1 exit.
7234          */
7235         if (!is_guest_mode(vcpu) ||
7236             !nested_cpu_has2(vmx->nested.current_vmcs12,
7237                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7238                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7239 }
7240
7241 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7242 {
7243         u16 status;
7244         u8 old;
7245
7246         if (!vmx_vm_has_apicv(kvm))
7247                 return;
7248
7249         if (isr == -1)
7250                 isr = 0;
7251
7252         status = vmcs_read16(GUEST_INTR_STATUS);
7253         old = status >> 8;
7254         if (isr != old) {
7255                 status &= 0xff;
7256                 status |= isr << 8;
7257                 vmcs_write16(GUEST_INTR_STATUS, status);
7258         }
7259 }
7260
7261 static void vmx_set_rvi(int vector)
7262 {
7263         u16 status;
7264         u8 old;
7265
7266         status = vmcs_read16(GUEST_INTR_STATUS);
7267         old = (u8)status & 0xff;
7268         if ((u8)vector != old) {
7269                 status &= ~0xff;
7270                 status |= (u8)vector;
7271                 vmcs_write16(GUEST_INTR_STATUS, status);
7272         }
7273 }
7274
7275 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7276 {
7277         if (max_irr == -1)
7278                 return;
7279
7280         /*
7281          * If a vmexit is needed, vmx_check_nested_events handles it.
7282          */
7283         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
7284                 return;
7285
7286         if (!is_guest_mode(vcpu)) {
7287                 vmx_set_rvi(max_irr);
7288                 return;
7289         }
7290
7291         /*
7292          * Fall back to pre-APICv interrupt injection since L2
7293          * is run without virtual interrupt delivery.
7294          */
7295         if (!kvm_event_needs_reinjection(vcpu) &&
7296             vmx_interrupt_allowed(vcpu)) {
7297                 kvm_queue_interrupt(vcpu, max_irr, false);
7298                 vmx_inject_irq(vcpu);
7299         }
7300 }
7301
7302 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7303 {
7304         if (!vmx_vm_has_apicv(vcpu->kvm))
7305                 return;
7306
7307         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7308         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7309         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7310         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7311 }
7312
7313 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7314 {
7315         u32 exit_intr_info;
7316
7317         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7318               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7319                 return;
7320
7321         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7322         exit_intr_info = vmx->exit_intr_info;
7323
7324         /* Handle machine checks before interrupts are enabled */
7325         if (is_machine_check(exit_intr_info))
7326                 kvm_machine_check();
7327
7328         /* We need to handle NMIs before interrupts are enabled */
7329         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7330             (exit_intr_info & INTR_INFO_VALID_MASK)) {
7331                 kvm_before_handle_nmi(&vmx->vcpu);
7332                 asm("int $2");
7333                 kvm_after_handle_nmi(&vmx->vcpu);
7334         }
7335 }
7336
7337 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7338 {
7339         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7340
7341         /*
7342          * If external interrupt exists, IF bit is set in rflags/eflags on the
7343          * interrupt stack frame, and interrupt will be enabled on a return
7344          * from interrupt handler.
7345          */
7346         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7347                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7348                 unsigned int vector;
7349                 unsigned long entry;
7350                 gate_desc *desc;
7351                 struct vcpu_vmx *vmx = to_vmx(vcpu);
7352 #ifdef CONFIG_X86_64
7353                 unsigned long tmp;
7354 #endif
7355
7356                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7357                 desc = (gate_desc *)vmx->host_idt_base + vector;
7358                 entry = gate_offset(*desc);
7359                 asm volatile(
7360 #ifdef CONFIG_X86_64
7361                         "mov %%" _ASM_SP ", %[sp]\n\t"
7362                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7363                         "push $%c[ss]\n\t"
7364                         "push %[sp]\n\t"
7365 #endif
7366                         "pushf\n\t"
7367                         "orl $0x200, (%%" _ASM_SP ")\n\t"
7368                         __ASM_SIZE(push) " $%c[cs]\n\t"
7369                         "call *%[entry]\n\t"
7370                         :
7371 #ifdef CONFIG_X86_64
7372                         [sp]"=&r"(tmp)
7373 #endif
7374                         :
7375                         [entry]"r"(entry),
7376                         [ss]"i"(__KERNEL_DS),
7377                         [cs]"i"(__KERNEL_CS)
7378                         );
7379         } else
7380                 local_irq_enable();
7381 }
7382
7383 static bool vmx_mpx_supported(void)
7384 {
7385         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7386                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7387 }
7388
7389 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7390 {
7391         u32 exit_intr_info;
7392         bool unblock_nmi;
7393         u8 vector;
7394         bool idtv_info_valid;
7395
7396         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7397
7398         if (cpu_has_virtual_nmis()) {
7399                 if (vmx->nmi_known_unmasked)
7400                         return;
7401                 /*
7402                  * Can't use vmx->exit_intr_info since we're not sure what
7403                  * the exit reason is.
7404                  */
7405                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7406                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7407                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7408                 /*
7409                  * SDM 3: 27.7.1.2 (September 2008)
7410                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7411                  * a guest IRET fault.
7412                  * SDM 3: 23.2.2 (September 2008)
7413                  * Bit 12 is undefined in any of the following cases:
7414                  *  If the VM exit sets the valid bit in the IDT-vectoring
7415                  *   information field.
7416                  *  If the VM exit is due to a double fault.
7417                  */
7418                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7419                     vector != DF_VECTOR && !idtv_info_valid)
7420                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7421                                       GUEST_INTR_STATE_NMI);
7422                 else
7423                         vmx->nmi_known_unmasked =
7424                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7425                                   & GUEST_INTR_STATE_NMI);
7426         } else if (unlikely(vmx->soft_vnmi_blocked))
7427                 vmx->vnmi_blocked_time +=
7428                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7429 }
7430
7431 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7432                                       u32 idt_vectoring_info,
7433                                       int instr_len_field,
7434                                       int error_code_field)
7435 {
7436         u8 vector;
7437         int type;
7438         bool idtv_info_valid;
7439
7440         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7441
7442         vcpu->arch.nmi_injected = false;
7443         kvm_clear_exception_queue(vcpu);
7444         kvm_clear_interrupt_queue(vcpu);
7445
7446         if (!idtv_info_valid)
7447                 return;
7448
7449         kvm_make_request(KVM_REQ_EVENT, vcpu);
7450
7451         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7452         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7453
7454         switch (type) {
7455         case INTR_TYPE_NMI_INTR:
7456                 vcpu->arch.nmi_injected = true;
7457                 /*
7458                  * SDM 3: 27.7.1.2 (September 2008)
7459                  * Clear bit "block by NMI" before VM entry if a NMI
7460                  * delivery faulted.
7461                  */
7462                 vmx_set_nmi_mask(vcpu, false);
7463                 break;
7464         case INTR_TYPE_SOFT_EXCEPTION:
7465                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7466                 /* fall through */
7467         case INTR_TYPE_HARD_EXCEPTION:
7468                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7469                         u32 err = vmcs_read32(error_code_field);
7470                         kvm_requeue_exception_e(vcpu, vector, err);
7471                 } else
7472                         kvm_requeue_exception(vcpu, vector);
7473                 break;
7474         case INTR_TYPE_SOFT_INTR:
7475                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7476                 /* fall through */
7477         case INTR_TYPE_EXT_INTR:
7478                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7479                 break;
7480         default:
7481                 break;
7482         }
7483 }
7484
7485 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7486 {
7487         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7488                                   VM_EXIT_INSTRUCTION_LEN,
7489                                   IDT_VECTORING_ERROR_CODE);
7490 }
7491
7492 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7493 {
7494         __vmx_complete_interrupts(vcpu,
7495                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7496                                   VM_ENTRY_INSTRUCTION_LEN,
7497                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7498
7499         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7500 }
7501
7502 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7503 {
7504         int i, nr_msrs;
7505         struct perf_guest_switch_msr *msrs;
7506
7507         msrs = perf_guest_get_msrs(&nr_msrs);
7508
7509         if (!msrs)
7510                 return;
7511
7512         for (i = 0; i < nr_msrs; i++)
7513                 if (msrs[i].host == msrs[i].guest)
7514                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7515                 else
7516                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7517                                         msrs[i].host);
7518 }
7519
7520 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7521 {
7522         struct vcpu_vmx *vmx = to_vmx(vcpu);
7523         unsigned long debugctlmsr, cr4;
7524
7525         /* Record the guest's net vcpu time for enforced NMI injections. */
7526         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7527                 vmx->entry_time = ktime_get();
7528
7529         /* Don't enter VMX if guest state is invalid, let the exit handler
7530            start emulation until we arrive back to a valid state */
7531         if (vmx->emulation_required)
7532                 return;
7533
7534         if (vmx->ple_window_dirty) {
7535                 vmx->ple_window_dirty = false;
7536                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7537         }
7538
7539         if (vmx->nested.sync_shadow_vmcs) {
7540                 copy_vmcs12_to_shadow(vmx);
7541                 vmx->nested.sync_shadow_vmcs = false;
7542         }
7543
7544         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7545                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7546         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7547                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7548
7549         cr4 = read_cr4();
7550         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
7551                 vmcs_writel(HOST_CR4, cr4);
7552                 vmx->host_state.vmcs_host_cr4 = cr4;
7553         }
7554
7555         /* When single-stepping over STI and MOV SS, we must clear the
7556          * corresponding interruptibility bits in the guest state. Otherwise
7557          * vmentry fails as it then expects bit 14 (BS) in pending debug
7558          * exceptions being set, but that's not correct for the guest debugging
7559          * case. */
7560         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7561                 vmx_set_interrupt_shadow(vcpu, 0);
7562
7563         atomic_switch_perf_msrs(vmx);
7564         debugctlmsr = get_debugctlmsr();
7565
7566         vmx->__launched = vmx->loaded_vmcs->launched;
7567         asm(
7568                 /* Store host registers */
7569                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7570                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7571                 "push %%" _ASM_CX " \n\t"
7572                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7573                 "je 1f \n\t"
7574                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7575                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7576                 "1: \n\t"
7577                 /* Reload cr2 if changed */
7578                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7579                 "mov %%cr2, %%" _ASM_DX " \n\t"
7580                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7581                 "je 2f \n\t"
7582                 "mov %%" _ASM_AX", %%cr2 \n\t"
7583                 "2: \n\t"
7584                 /* Check if vmlaunch of vmresume is needed */
7585                 "cmpl $0, %c[launched](%0) \n\t"
7586                 /* Load guest registers.  Don't clobber flags. */
7587                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7588                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7589                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7590                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7591                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7592                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7593 #ifdef CONFIG_X86_64
7594                 "mov %c[r8](%0),  %%r8  \n\t"
7595                 "mov %c[r9](%0),  %%r9  \n\t"
7596                 "mov %c[r10](%0), %%r10 \n\t"
7597                 "mov %c[r11](%0), %%r11 \n\t"
7598                 "mov %c[r12](%0), %%r12 \n\t"
7599                 "mov %c[r13](%0), %%r13 \n\t"
7600                 "mov %c[r14](%0), %%r14 \n\t"
7601                 "mov %c[r15](%0), %%r15 \n\t"
7602 #endif
7603                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7604
7605                 /* Enter guest mode */
7606                 "jne 1f \n\t"
7607                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7608                 "jmp 2f \n\t"
7609                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7610                 "2: "
7611                 /* Save guest registers, load host registers, keep flags */
7612                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7613                 "pop %0 \n\t"
7614                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7615                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7616                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7617                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7618                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7619                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7620                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7621 #ifdef CONFIG_X86_64
7622                 "mov %%r8,  %c[r8](%0) \n\t"
7623                 "mov %%r9,  %c[r9](%0) \n\t"
7624                 "mov %%r10, %c[r10](%0) \n\t"
7625                 "mov %%r11, %c[r11](%0) \n\t"
7626                 "mov %%r12, %c[r12](%0) \n\t"
7627                 "mov %%r13, %c[r13](%0) \n\t"
7628                 "mov %%r14, %c[r14](%0) \n\t"
7629                 "mov %%r15, %c[r15](%0) \n\t"
7630 #endif
7631                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7632                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7633
7634                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7635                 "setbe %c[fail](%0) \n\t"
7636                 ".pushsection .rodata \n\t"
7637                 ".global vmx_return \n\t"
7638                 "vmx_return: " _ASM_PTR " 2b \n\t"
7639                 ".popsection"
7640               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7641                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7642                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7643                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7644                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7645                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7646                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7647                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7648                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7649                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7650                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7651 #ifdef CONFIG_X86_64
7652                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7653                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7654                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7655                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7656                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7657                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7658                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7659                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7660 #endif
7661                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7662                 [wordsize]"i"(sizeof(ulong))
7663               : "cc", "memory"
7664 #ifdef CONFIG_X86_64
7665                 , "rax", "rbx", "rdi", "rsi"
7666                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7667 #else
7668                 , "eax", "ebx", "edi", "esi"
7669 #endif
7670               );
7671
7672         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7673         if (debugctlmsr)
7674                 update_debugctlmsr(debugctlmsr);
7675
7676 #ifndef CONFIG_X86_64
7677         /*
7678          * The sysexit path does not restore ds/es, so we must set them to
7679          * a reasonable value ourselves.
7680          *
7681          * We can't defer this to vmx_load_host_state() since that function
7682          * may be executed in interrupt context, which saves and restore segments
7683          * around it, nullifying its effect.
7684          */
7685         loadsegment(ds, __USER_DS);
7686         loadsegment(es, __USER_DS);
7687 #endif
7688
7689         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7690                                   | (1 << VCPU_EXREG_RFLAGS)
7691                                   | (1 << VCPU_EXREG_PDPTR)
7692                                   | (1 << VCPU_EXREG_SEGMENTS)
7693                                   | (1 << VCPU_EXREG_CR3));
7694         vcpu->arch.regs_dirty = 0;
7695
7696         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7697
7698         vmx->loaded_vmcs->launched = 1;
7699
7700         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7701         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7702
7703         /*
7704          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7705          * we did not inject a still-pending event to L1 now because of
7706          * nested_run_pending, we need to re-enable this bit.
7707          */
7708         if (vmx->nested.nested_run_pending)
7709                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7710
7711         vmx->nested.nested_run_pending = 0;
7712
7713         vmx_complete_atomic_exit(vmx);
7714         vmx_recover_nmi_blocking(vmx);
7715         vmx_complete_interrupts(vmx);
7716 }
7717
7718 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7719 {
7720         struct vcpu_vmx *vmx = to_vmx(vcpu);
7721         int cpu;
7722
7723         if (vmx->loaded_vmcs == &vmx->vmcs01)
7724                 return;
7725
7726         cpu = get_cpu();
7727         vmx->loaded_vmcs = &vmx->vmcs01;
7728         vmx_vcpu_put(vcpu);
7729         vmx_vcpu_load(vcpu, cpu);
7730         vcpu->cpu = cpu;
7731         put_cpu();
7732 }
7733
7734 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7735 {
7736         struct vcpu_vmx *vmx = to_vmx(vcpu);
7737
7738         free_vpid(vmx);
7739         leave_guest_mode(vcpu);
7740         vmx_load_vmcs01(vcpu);
7741         free_nested(vmx);
7742         free_loaded_vmcs(vmx->loaded_vmcs);
7743         kfree(vmx->guest_msrs);
7744         kvm_vcpu_uninit(vcpu);
7745         kmem_cache_free(kvm_vcpu_cache, vmx);
7746 }
7747
7748 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7749 {
7750         int err;
7751         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7752         int cpu;
7753
7754         if (!vmx)
7755                 return ERR_PTR(-ENOMEM);
7756
7757         allocate_vpid(vmx);
7758
7759         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7760         if (err)
7761                 goto free_vcpu;
7762
7763         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7764         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
7765                      > PAGE_SIZE);
7766
7767         err = -ENOMEM;
7768         if (!vmx->guest_msrs) {
7769                 goto uninit_vcpu;
7770         }
7771
7772         vmx->loaded_vmcs = &vmx->vmcs01;
7773         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7774         if (!vmx->loaded_vmcs->vmcs)
7775                 goto free_msrs;
7776         if (!vmm_exclusive)
7777                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7778         loaded_vmcs_init(vmx->loaded_vmcs);
7779         if (!vmm_exclusive)
7780                 kvm_cpu_vmxoff();
7781
7782         cpu = get_cpu();
7783         vmx_vcpu_load(&vmx->vcpu, cpu);
7784         vmx->vcpu.cpu = cpu;
7785         err = vmx_vcpu_setup(vmx);
7786         vmx_vcpu_put(&vmx->vcpu);
7787         put_cpu();
7788         if (err)
7789                 goto free_vmcs;
7790         if (vm_need_virtualize_apic_accesses(kvm)) {
7791                 err = alloc_apic_access_page(kvm);
7792                 if (err)
7793                         goto free_vmcs;
7794         }
7795
7796         if (enable_ept) {
7797                 if (!kvm->arch.ept_identity_map_addr)
7798                         kvm->arch.ept_identity_map_addr =
7799                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7800                 err = init_rmode_identity_map(kvm);
7801                 if (err)
7802                         goto free_vmcs;
7803         }
7804
7805         vmx->nested.current_vmptr = -1ull;
7806         vmx->nested.current_vmcs12 = NULL;
7807
7808         return &vmx->vcpu;
7809
7810 free_vmcs:
7811         free_loaded_vmcs(vmx->loaded_vmcs);
7812 free_msrs:
7813         kfree(vmx->guest_msrs);
7814 uninit_vcpu:
7815         kvm_vcpu_uninit(&vmx->vcpu);
7816 free_vcpu:
7817         free_vpid(vmx);
7818         kmem_cache_free(kvm_vcpu_cache, vmx);
7819         return ERR_PTR(err);
7820 }
7821
7822 static void __init vmx_check_processor_compat(void *rtn)
7823 {
7824         struct vmcs_config vmcs_conf;
7825
7826         *(int *)rtn = 0;
7827         if (setup_vmcs_config(&vmcs_conf) < 0)
7828                 *(int *)rtn = -EIO;
7829         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7830                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7831                                 smp_processor_id());
7832                 *(int *)rtn = -EIO;
7833         }
7834 }
7835
7836 static int get_ept_level(void)
7837 {
7838         return VMX_EPT_DEFAULT_GAW + 1;
7839 }
7840
7841 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7842 {
7843         u64 ret;
7844
7845         /* For VT-d and EPT combination
7846          * 1. MMIO: always map as UC
7847          * 2. EPT with VT-d:
7848          *   a. VT-d without snooping control feature: can't guarantee the
7849          *      result, try to trust guest.
7850          *   b. VT-d with snooping control feature: snooping control feature of
7851          *      VT-d engine can guarantee the cache correctness. Just set it
7852          *      to WB to keep consistent with host. So the same as item 3.
7853          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7854          *    consistent with host MTRR
7855          */
7856         if (is_mmio)
7857                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7858         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7859                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7860                       VMX_EPT_MT_EPTE_SHIFT;
7861         else
7862                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7863                         | VMX_EPT_IPAT_BIT;
7864
7865         return ret;
7866 }
7867
7868 static int vmx_get_lpage_level(void)
7869 {
7870         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7871                 return PT_DIRECTORY_LEVEL;
7872         else
7873                 /* For shadow and EPT supported 1GB page */
7874                 return PT_PDPE_LEVEL;
7875 }
7876
7877 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7878 {
7879         struct kvm_cpuid_entry2 *best;
7880         struct vcpu_vmx *vmx = to_vmx(vcpu);
7881         u32 exec_control;
7882
7883         vmx->rdtscp_enabled = false;
7884         if (vmx_rdtscp_supported()) {
7885                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7886                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7887                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7888                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7889                                 vmx->rdtscp_enabled = true;
7890                         else {
7891                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7892                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7893                                                 exec_control);
7894                         }
7895                 }
7896         }
7897
7898         /* Exposing INVPCID only when PCID is exposed */
7899         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7900         if (vmx_invpcid_supported() &&
7901             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7902             guest_cpuid_has_pcid(vcpu)) {
7903                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7904                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7905                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7906                              exec_control);
7907         } else {
7908                 if (cpu_has_secondary_exec_ctrls()) {
7909                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7910                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7911                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7912                                      exec_control);
7913                 }
7914                 if (best)
7915                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7916         }
7917 }
7918
7919 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7920 {
7921         if (func == 1 && nested)
7922                 entry->ecx |= bit(X86_FEATURE_VMX);
7923 }
7924
7925 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7926                 struct x86_exception *fault)
7927 {
7928         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7929         u32 exit_reason;
7930
7931         if (fault->error_code & PFERR_RSVD_MASK)
7932                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
7933         else
7934                 exit_reason = EXIT_REASON_EPT_VIOLATION;
7935         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7936         vmcs12->guest_physical_address = fault->address;
7937 }
7938
7939 /* Callbacks for nested_ept_init_mmu_context: */
7940
7941 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7942 {
7943         /* return the page table to be shadowed - in our case, EPT12 */
7944         return get_vmcs12(vcpu)->ept_pointer;
7945 }
7946
7947 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7948 {
7949         kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7950                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7951
7952         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7953         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7954         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7955
7956         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7957 }
7958
7959 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7960 {
7961         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7962 }
7963
7964 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7965                 struct x86_exception *fault)
7966 {
7967         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7968
7969         WARN_ON(!is_guest_mode(vcpu));
7970
7971         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7972         if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7973                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7974                                   vmcs_read32(VM_EXIT_INTR_INFO),
7975                                   vmcs_readl(EXIT_QUALIFICATION));
7976         else
7977                 kvm_inject_page_fault(vcpu, fault);
7978 }
7979
7980 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
7981                                         struct vmcs12 *vmcs12)
7982 {
7983         struct vcpu_vmx *vmx = to_vmx(vcpu);
7984
7985         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
7986                 /* TODO: Also verify bits beyond physical address width are 0 */
7987                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
7988                         return false;
7989
7990                 /*
7991                  * Translate L1 physical address to host physical
7992                  * address for vmcs02. Keep the page pinned, so this
7993                  * physical address remains valid. We keep a reference
7994                  * to it so we can release it later.
7995                  */
7996                 if (vmx->nested.apic_access_page) /* shouldn't happen */
7997                         nested_release_page(vmx->nested.apic_access_page);
7998                 vmx->nested.apic_access_page =
7999                         nested_get_page(vcpu, vmcs12->apic_access_addr);
8000         }
8001
8002         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8003                 /* TODO: Also verify bits beyond physical address width are 0 */
8004                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8005                         return false;
8006
8007                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8008                         nested_release_page(vmx->nested.virtual_apic_page);
8009                 vmx->nested.virtual_apic_page =
8010                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8011
8012                 /*
8013                  * Failing the vm entry is _not_ what the processor does
8014                  * but it's basically the only possibility we have.
8015                  * We could still enter the guest if CR8 load exits are
8016                  * enabled, CR8 store exits are enabled, and virtualize APIC
8017                  * access is disabled; in this case the processor would never
8018                  * use the TPR shadow and we could simply clear the bit from
8019                  * the execution control.  But such a configuration is useless,
8020                  * so let's keep the code simple.
8021                  */
8022                 if (!vmx->nested.virtual_apic_page)
8023                         return false;
8024         }
8025
8026         return true;
8027 }
8028
8029 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8030 {
8031         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8032         struct vcpu_vmx *vmx = to_vmx(vcpu);
8033
8034         if (vcpu->arch.virtual_tsc_khz == 0)
8035                 return;
8036
8037         /* Make sure short timeouts reliably trigger an immediate vmexit.
8038          * hrtimer_start does not guarantee this. */
8039         if (preemption_timeout <= 1) {
8040                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8041                 return;
8042         }
8043
8044         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8045         preemption_timeout *= 1000000;
8046         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8047         hrtimer_start(&vmx->nested.preemption_timer,
8048                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8049 }
8050
8051 /*
8052  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8053  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
8054  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
8055  * guest in a way that will both be appropriate to L1's requests, and our
8056  * needs. In addition to modifying the active vmcs (which is vmcs02), this
8057  * function also has additional necessary side-effects, like setting various
8058  * vcpu->arch fields.
8059  */
8060 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8061 {
8062         struct vcpu_vmx *vmx = to_vmx(vcpu);
8063         u32 exec_control;
8064
8065         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8066         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8067         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8068         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8069         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8070         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8071         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8072         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8073         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8074         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8075         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8076         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8077         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8078         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8079         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8080         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8081         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8082         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8083         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8084         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8085         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8086         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8087         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8088         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8089         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8090         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8091         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8092         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8093         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8094         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8095         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8096         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8097         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8098         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8099         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8100         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8101
8102         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8103                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8104                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8105         } else {
8106                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8107                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8108         }
8109         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8110                 vmcs12->vm_entry_intr_info_field);
8111         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8112                 vmcs12->vm_entry_exception_error_code);
8113         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8114                 vmcs12->vm_entry_instruction_len);
8115         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8116                 vmcs12->guest_interruptibility_info);
8117         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
8118         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
8119         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8120                 vmcs12->guest_pending_dbg_exceptions);
8121         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8122         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8123
8124         vmcs_write64(VMCS_LINK_POINTER, -1ull);
8125
8126         exec_control = vmcs12->pin_based_vm_exec_control;
8127         exec_control |= vmcs_config.pin_based_exec_ctrl;
8128         exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8129                           PIN_BASED_POSTED_INTR);
8130         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
8131
8132         vmx->nested.preemption_timer_expired = false;
8133         if (nested_cpu_has_preemption_timer(vmcs12))
8134                 vmx_start_preemption_timer(vcpu);
8135
8136         /*
8137          * Whether page-faults are trapped is determined by a combination of
8138          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8139          * If enable_ept, L0 doesn't care about page faults and we should
8140          * set all of these to L1's desires. However, if !enable_ept, L0 does
8141          * care about (at least some) page faults, and because it is not easy
8142          * (if at all possible?) to merge L0 and L1's desires, we simply ask
8143          * to exit on each and every L2 page fault. This is done by setting
8144          * MASK=MATCH=0 and (see below) EB.PF=1.
8145          * Note that below we don't need special code to set EB.PF beyond the
8146          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8147          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8148          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8149          *
8150          * A problem with this approach (when !enable_ept) is that L1 may be
8151          * injected with more page faults than it asked for. This could have
8152          * caused problems, but in practice existing hypervisors don't care.
8153          * To fix this, we will need to emulate the PFEC checking (on the L1
8154          * page tables), using walk_addr(), when injecting PFs to L1.
8155          */
8156         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8157                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8158         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8159                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
8160
8161         if (cpu_has_secondary_exec_ctrls()) {
8162                 exec_control = vmx_secondary_exec_control(vmx);
8163                 if (!vmx->rdtscp_enabled)
8164                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
8165                 /* Take the following fields only from vmcs12 */
8166                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8167                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8168                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
8169                 if (nested_cpu_has(vmcs12,
8170                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8171                         exec_control |= vmcs12->secondary_vm_exec_control;
8172
8173                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
8174                         /*
8175                          * If translation failed, no matter: This feature asks
8176                          * to exit when accessing the given address, and if it
8177                          * can never be accessed, this feature won't do
8178                          * anything anyway.
8179                          */
8180                         if (!vmx->nested.apic_access_page)
8181                                 exec_control &=
8182                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8183                         else
8184                                 vmcs_write64(APIC_ACCESS_ADDR,
8185                                   page_to_phys(vmx->nested.apic_access_page));
8186                 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8187                         exec_control |=
8188                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8189                         kvm_vcpu_reload_apic_access_page(vcpu);
8190                 }
8191
8192                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8193         }
8194
8195
8196         /*
8197          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8198          * Some constant fields are set here by vmx_set_constant_host_state().
8199          * Other fields are different per CPU, and will be set later when
8200          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8201          */
8202         vmx_set_constant_host_state(vmx);
8203
8204         /*
8205          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8206          * entry, but only if the current (host) sp changed from the value
8207          * we wrote last (vmx->host_rsp). This cache is no longer relevant
8208          * if we switch vmcs, and rather than hold a separate cache per vmcs,
8209          * here we just force the write to happen on entry.
8210          */
8211         vmx->host_rsp = 0;
8212
8213         exec_control = vmx_exec_control(vmx); /* L0's desires */
8214         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8215         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8216         exec_control &= ~CPU_BASED_TPR_SHADOW;
8217         exec_control |= vmcs12->cpu_based_vm_exec_control;
8218
8219         if (exec_control & CPU_BASED_TPR_SHADOW) {
8220                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8221                                 page_to_phys(vmx->nested.virtual_apic_page));
8222                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8223         }
8224
8225         /*
8226          * Merging of IO and MSR bitmaps not currently supported.
8227          * Rather, exit every time.
8228          */
8229         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8230         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8231         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8232
8233         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8234
8235         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8236          * bitwise-or of what L1 wants to trap for L2, and what we want to
8237          * trap. Note that CR0.TS also needs updating - we do this later.
8238          */
8239         update_exception_bitmap(vcpu);
8240         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8241         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8242
8243         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8244          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8245          * bits are further modified by vmx_set_efer() below.
8246          */
8247         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8248
8249         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8250          * emulated by vmx_set_efer(), below.
8251          */
8252         vm_entry_controls_init(vmx, 
8253                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8254                         ~VM_ENTRY_IA32E_MODE) |
8255                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8256
8257         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
8258                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
8259                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8260         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
8261                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8262
8263
8264         set_cr4_guest_host_mask(vmx);
8265
8266         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8267                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8268
8269         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8270                 vmcs_write64(TSC_OFFSET,
8271                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8272         else
8273                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8274
8275         if (enable_vpid) {
8276                 /*
8277                  * Trivially support vpid by letting L2s share their parent
8278                  * L1's vpid. TODO: move to a more elaborate solution, giving
8279                  * each L2 its own vpid and exposing the vpid feature to L1.
8280                  */
8281                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8282                 vmx_flush_tlb(vcpu);
8283         }
8284
8285         if (nested_cpu_has_ept(vmcs12)) {
8286                 kvm_mmu_unload(vcpu);
8287                 nested_ept_init_mmu_context(vcpu);
8288         }
8289
8290         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8291                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
8292         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8293                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8294         else
8295                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8296         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8297         vmx_set_efer(vcpu, vcpu->arch.efer);
8298
8299         /*
8300          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8301          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8302          * The CR0_READ_SHADOW is what L2 should have expected to read given
8303          * the specifications by L1; It's not enough to take
8304          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8305          * have more bits than L1 expected.
8306          */
8307         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8308         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8309
8310         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8311         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8312
8313         /* shadow page tables on either EPT or shadow page tables */
8314         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8315         kvm_mmu_reset_context(vcpu);
8316
8317         if (!enable_ept)
8318                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8319
8320         /*
8321          * L1 may access the L2's PDPTR, so save them to construct vmcs12
8322          */
8323         if (enable_ept) {
8324                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8325                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8326                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8327                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8328         }
8329
8330         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8331         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8332 }
8333
8334 /*
8335  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8336  * for running an L2 nested guest.
8337  */
8338 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8339 {
8340         struct vmcs12 *vmcs12;
8341         struct vcpu_vmx *vmx = to_vmx(vcpu);
8342         int cpu;
8343         struct loaded_vmcs *vmcs02;
8344         bool ia32e;
8345
8346         if (!nested_vmx_check_permission(vcpu) ||
8347             !nested_vmx_check_vmcs12(vcpu))
8348                 return 1;
8349
8350         skip_emulated_instruction(vcpu);
8351         vmcs12 = get_vmcs12(vcpu);
8352
8353         if (enable_shadow_vmcs)
8354                 copy_shadow_to_vmcs12(vmx);
8355
8356         /*
8357          * The nested entry process starts with enforcing various prerequisites
8358          * on vmcs12 as required by the Intel SDM, and act appropriately when
8359          * they fail: As the SDM explains, some conditions should cause the
8360          * instruction to fail, while others will cause the instruction to seem
8361          * to succeed, but return an EXIT_REASON_INVALID_STATE.
8362          * To speed up the normal (success) code path, we should avoid checking
8363          * for misconfigurations which will anyway be caught by the processor
8364          * when using the merged vmcs02.
8365          */
8366         if (vmcs12->launch_state == launch) {
8367                 nested_vmx_failValid(vcpu,
8368                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8369                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8370                 return 1;
8371         }
8372
8373         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8374             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8375                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8376                 return 1;
8377         }
8378
8379         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8380                         !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
8381                 /*TODO: Also verify bits beyond physical address width are 0*/
8382                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8383                 return 1;
8384         }
8385
8386         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
8387                 /*TODO: Also verify bits beyond physical address width are 0*/
8388                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8389                 return 1;
8390         }
8391
8392         if (vmcs12->vm_entry_msr_load_count > 0 ||
8393             vmcs12->vm_exit_msr_load_count > 0 ||
8394             vmcs12->vm_exit_msr_store_count > 0) {
8395                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8396                                     __func__);
8397                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8398                 return 1;
8399         }
8400
8401         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8402                                 nested_vmx_true_procbased_ctls_low,
8403                                 nested_vmx_procbased_ctls_high) ||
8404             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8405               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8406             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8407               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8408             !vmx_control_verify(vmcs12->vm_exit_controls,
8409                                 nested_vmx_true_exit_ctls_low,
8410                                 nested_vmx_exit_ctls_high) ||
8411             !vmx_control_verify(vmcs12->vm_entry_controls,
8412                                 nested_vmx_true_entry_ctls_low,
8413                                 nested_vmx_entry_ctls_high))
8414         {
8415                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8416                 return 1;
8417         }
8418
8419         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8420             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8421                 nested_vmx_failValid(vcpu,
8422                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8423                 return 1;
8424         }
8425
8426         if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8427             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8428                 nested_vmx_entry_failure(vcpu, vmcs12,
8429                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8430                 return 1;
8431         }
8432         if (vmcs12->vmcs_link_pointer != -1ull) {
8433                 nested_vmx_entry_failure(vcpu, vmcs12,
8434                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8435                 return 1;
8436         }
8437
8438         /*
8439          * If the load IA32_EFER VM-entry control is 1, the following checks
8440          * are performed on the field for the IA32_EFER MSR:
8441          * - Bits reserved in the IA32_EFER MSR must be 0.
8442          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8443          *   the IA-32e mode guest VM-exit control. It must also be identical
8444          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8445          *   CR0.PG) is 1.
8446          */
8447         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8448                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8449                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8450                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8451                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8452                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8453                         nested_vmx_entry_failure(vcpu, vmcs12,
8454                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8455                         return 1;
8456                 }
8457         }
8458
8459         /*
8460          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8461          * IA32_EFER MSR must be 0 in the field for that register. In addition,
8462          * the values of the LMA and LME bits in the field must each be that of
8463          * the host address-space size VM-exit control.
8464          */
8465         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8466                 ia32e = (vmcs12->vm_exit_controls &
8467                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8468                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8469                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8470                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8471                         nested_vmx_entry_failure(vcpu, vmcs12,
8472                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8473                         return 1;
8474                 }
8475         }
8476
8477         /*
8478          * We're finally done with prerequisite checking, and can start with
8479          * the nested entry.
8480          */
8481
8482         vmcs02 = nested_get_current_vmcs02(vmx);
8483         if (!vmcs02)
8484                 return -ENOMEM;
8485
8486         enter_guest_mode(vcpu);
8487
8488         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8489
8490         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8491                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8492
8493         cpu = get_cpu();
8494         vmx->loaded_vmcs = vmcs02;
8495         vmx_vcpu_put(vcpu);
8496         vmx_vcpu_load(vcpu, cpu);
8497         vcpu->cpu = cpu;
8498         put_cpu();
8499
8500         vmx_segment_cache_clear(vmx);
8501
8502         vmcs12->launch_state = 1;
8503
8504         prepare_vmcs02(vcpu, vmcs12);
8505
8506         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8507                 return kvm_emulate_halt(vcpu);
8508
8509         vmx->nested.nested_run_pending = 1;
8510
8511         /*
8512          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8513          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8514          * returned as far as L1 is concerned. It will only return (and set
8515          * the success flag) when L2 exits (see nested_vmx_vmexit()).
8516          */
8517         return 1;
8518 }
8519
8520 /*
8521  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8522  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8523  * This function returns the new value we should put in vmcs12.guest_cr0.
8524  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8525  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8526  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8527  *     didn't trap the bit, because if L1 did, so would L0).
8528  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8529  *     been modified by L2, and L1 knows it. So just leave the old value of
8530  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8531  *     isn't relevant, because if L0 traps this bit it can set it to anything.
8532  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8533  *     changed these bits, and therefore they need to be updated, but L0
8534  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8535  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8536  */
8537 static inline unsigned long
8538 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8539 {
8540         return
8541         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8542         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8543         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8544                         vcpu->arch.cr0_guest_owned_bits));
8545 }
8546
8547 static inline unsigned long
8548 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8549 {
8550         return
8551         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8552         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8553         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8554                         vcpu->arch.cr4_guest_owned_bits));
8555 }
8556
8557 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8558                                        struct vmcs12 *vmcs12)
8559 {
8560         u32 idt_vectoring;
8561         unsigned int nr;
8562
8563         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8564                 nr = vcpu->arch.exception.nr;
8565                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8566
8567                 if (kvm_exception_is_soft(nr)) {
8568                         vmcs12->vm_exit_instruction_len =
8569                                 vcpu->arch.event_exit_inst_len;
8570                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8571                 } else
8572                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8573
8574                 if (vcpu->arch.exception.has_error_code) {
8575                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8576                         vmcs12->idt_vectoring_error_code =
8577                                 vcpu->arch.exception.error_code;
8578                 }
8579
8580                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8581         } else if (vcpu->arch.nmi_injected) {
8582                 vmcs12->idt_vectoring_info_field =
8583                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8584         } else if (vcpu->arch.interrupt.pending) {
8585                 nr = vcpu->arch.interrupt.nr;
8586                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8587
8588                 if (vcpu->arch.interrupt.soft) {
8589                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
8590                         vmcs12->vm_entry_instruction_len =
8591                                 vcpu->arch.event_exit_inst_len;
8592                 } else
8593                         idt_vectoring |= INTR_TYPE_EXT_INTR;
8594
8595                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8596         }
8597 }
8598
8599 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8600 {
8601         struct vcpu_vmx *vmx = to_vmx(vcpu);
8602
8603         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8604             vmx->nested.preemption_timer_expired) {
8605                 if (vmx->nested.nested_run_pending)
8606                         return -EBUSY;
8607                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8608                 return 0;
8609         }
8610
8611         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8612                 if (vmx->nested.nested_run_pending ||
8613                     vcpu->arch.interrupt.pending)
8614                         return -EBUSY;
8615                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8616                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
8617                                   INTR_INFO_VALID_MASK, 0);
8618                 /*
8619                  * The NMI-triggered VM exit counts as injection:
8620                  * clear this one and block further NMIs.
8621                  */
8622                 vcpu->arch.nmi_pending = 0;
8623                 vmx_set_nmi_mask(vcpu, true);
8624                 return 0;
8625         }
8626
8627         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8628             nested_exit_on_intr(vcpu)) {
8629                 if (vmx->nested.nested_run_pending)
8630                         return -EBUSY;
8631                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8632         }
8633
8634         return 0;
8635 }
8636
8637 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8638 {
8639         ktime_t remaining =
8640                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8641         u64 value;
8642
8643         if (ktime_to_ns(remaining) <= 0)
8644                 return 0;
8645
8646         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8647         do_div(value, 1000000);
8648         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8649 }
8650
8651 /*
8652  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8653  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8654  * and this function updates it to reflect the changes to the guest state while
8655  * L2 was running (and perhaps made some exits which were handled directly by L0
8656  * without going back to L1), and to reflect the exit reason.
8657  * Note that we do not have to copy here all VMCS fields, just those that
8658  * could have changed by the L2 guest or the exit - i.e., the guest-state and
8659  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8660  * which already writes to vmcs12 directly.
8661  */
8662 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8663                            u32 exit_reason, u32 exit_intr_info,
8664                            unsigned long exit_qualification)
8665 {
8666         /* update guest state fields: */
8667         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8668         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8669
8670         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8671         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8672         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8673
8674         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8675         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8676         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8677         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8678         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8679         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8680         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8681         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8682         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8683         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8684         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8685         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8686         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8687         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8688         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8689         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8690         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8691         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8692         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8693         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8694         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8695         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8696         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8697         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8698         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8699         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8700         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8701         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8702         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8703         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8704         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8705         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8706         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8707         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8708         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8709         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8710
8711         vmcs12->guest_interruptibility_info =
8712                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8713         vmcs12->guest_pending_dbg_exceptions =
8714                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8715         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8716                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8717         else
8718                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8719
8720         if (nested_cpu_has_preemption_timer(vmcs12)) {
8721                 if (vmcs12->vm_exit_controls &
8722                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8723                         vmcs12->vmx_preemption_timer_value =
8724                                 vmx_get_preemption_timer_value(vcpu);
8725                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8726         }
8727
8728         /*
8729          * In some cases (usually, nested EPT), L2 is allowed to change its
8730          * own CR3 without exiting. If it has changed it, we must keep it.
8731          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8732          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8733          *
8734          * Additionally, restore L2's PDPTR to vmcs12.
8735          */
8736         if (enable_ept) {
8737                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8738                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8739                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8740                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8741                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8742         }
8743
8744         vmcs12->vm_entry_controls =
8745                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8746                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8747
8748         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8749                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8750                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8751         }
8752
8753         /* TODO: These cannot have changed unless we have MSR bitmaps and
8754          * the relevant bit asks not to trap the change */
8755         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8756                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8757         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8758                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8759         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8760         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8761         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8762         if (vmx_mpx_supported())
8763                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
8764
8765         /* update exit information fields: */
8766
8767         vmcs12->vm_exit_reason = exit_reason;
8768         vmcs12->exit_qualification = exit_qualification;
8769
8770         vmcs12->vm_exit_intr_info = exit_intr_info;
8771         if ((vmcs12->vm_exit_intr_info &
8772              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8773             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8774                 vmcs12->vm_exit_intr_error_code =
8775                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8776         vmcs12->idt_vectoring_info_field = 0;
8777         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8778         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8779
8780         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8781                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8782                  * instead of reading the real value. */
8783                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8784
8785                 /*
8786                  * Transfer the event that L0 or L1 may wanted to inject into
8787                  * L2 to IDT_VECTORING_INFO_FIELD.
8788                  */
8789                 vmcs12_save_pending_event(vcpu, vmcs12);
8790         }
8791
8792         /*
8793          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8794          * preserved above and would only end up incorrectly in L1.
8795          */
8796         vcpu->arch.nmi_injected = false;
8797         kvm_clear_exception_queue(vcpu);
8798         kvm_clear_interrupt_queue(vcpu);
8799 }
8800
8801 /*
8802  * A part of what we need to when the nested L2 guest exits and we want to
8803  * run its L1 parent, is to reset L1's guest state to the host state specified
8804  * in vmcs12.
8805  * This function is to be called not only on normal nested exit, but also on
8806  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8807  * Failures During or After Loading Guest State").
8808  * This function should be called when the active VMCS is L1's (vmcs01).
8809  */
8810 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8811                                    struct vmcs12 *vmcs12)
8812 {
8813         struct kvm_segment seg;
8814
8815         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8816                 vcpu->arch.efer = vmcs12->host_ia32_efer;
8817         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8818                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8819         else
8820                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8821         vmx_set_efer(vcpu, vcpu->arch.efer);
8822
8823         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8824         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8825         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8826         /*
8827          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8828          * actually changed, because it depends on the current state of
8829          * fpu_active (which may have changed).
8830          * Note that vmx_set_cr0 refers to efer set above.
8831          */
8832         vmx_set_cr0(vcpu, vmcs12->host_cr0);
8833         /*
8834          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8835          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8836          * but we also need to update cr0_guest_host_mask and exception_bitmap.
8837          */
8838         update_exception_bitmap(vcpu);
8839         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8840         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8841
8842         /*
8843          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8844          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8845          */
8846         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8847         kvm_set_cr4(vcpu, vmcs12->host_cr4);
8848
8849         nested_ept_uninit_mmu_context(vcpu);
8850
8851         kvm_set_cr3(vcpu, vmcs12->host_cr3);
8852         kvm_mmu_reset_context(vcpu);
8853
8854         if (!enable_ept)
8855                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8856
8857         if (enable_vpid) {
8858                 /*
8859                  * Trivially support vpid by letting L2s share their parent
8860                  * L1's vpid. TODO: move to a more elaborate solution, giving
8861                  * each L2 its own vpid and exposing the vpid feature to L1.
8862                  */
8863                 vmx_flush_tlb(vcpu);
8864         }
8865
8866
8867         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8868         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8869         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8870         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8871         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8872
8873         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
8874         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
8875                 vmcs_write64(GUEST_BNDCFGS, 0);
8876
8877         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8878                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8879                 vcpu->arch.pat = vmcs12->host_ia32_pat;
8880         }
8881         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8882                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8883                         vmcs12->host_ia32_perf_global_ctrl);
8884
8885         /* Set L1 segment info according to Intel SDM
8886             27.5.2 Loading Host Segment and Descriptor-Table Registers */
8887         seg = (struct kvm_segment) {
8888                 .base = 0,
8889                 .limit = 0xFFFFFFFF,
8890                 .selector = vmcs12->host_cs_selector,
8891                 .type = 11,
8892                 .present = 1,
8893                 .s = 1,
8894                 .g = 1
8895         };
8896         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8897                 seg.l = 1;
8898         else
8899                 seg.db = 1;
8900         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8901         seg = (struct kvm_segment) {
8902                 .base = 0,
8903                 .limit = 0xFFFFFFFF,
8904                 .type = 3,
8905                 .present = 1,
8906                 .s = 1,
8907                 .db = 1,
8908                 .g = 1
8909         };
8910         seg.selector = vmcs12->host_ds_selector;
8911         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8912         seg.selector = vmcs12->host_es_selector;
8913         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8914         seg.selector = vmcs12->host_ss_selector;
8915         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8916         seg.selector = vmcs12->host_fs_selector;
8917         seg.base = vmcs12->host_fs_base;
8918         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8919         seg.selector = vmcs12->host_gs_selector;
8920         seg.base = vmcs12->host_gs_base;
8921         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8922         seg = (struct kvm_segment) {
8923                 .base = vmcs12->host_tr_base,
8924                 .limit = 0x67,
8925                 .selector = vmcs12->host_tr_selector,
8926                 .type = 11,
8927                 .present = 1
8928         };
8929         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8930
8931         kvm_set_dr(vcpu, 7, 0x400);
8932         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8933 }
8934
8935 /*
8936  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8937  * and modify vmcs12 to make it see what it would expect to see there if
8938  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8939  */
8940 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8941                               u32 exit_intr_info,
8942                               unsigned long exit_qualification)
8943 {
8944         struct vcpu_vmx *vmx = to_vmx(vcpu);
8945         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8946
8947         /* trying to cancel vmlaunch/vmresume is a bug */
8948         WARN_ON_ONCE(vmx->nested.nested_run_pending);
8949
8950         leave_guest_mode(vcpu);
8951         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8952                        exit_qualification);
8953
8954         vmx_load_vmcs01(vcpu);
8955
8956         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
8957             && nested_exit_intr_ack_set(vcpu)) {
8958                 int irq = kvm_cpu_get_interrupt(vcpu);
8959                 WARN_ON(irq < 0);
8960                 vmcs12->vm_exit_intr_info = irq |
8961                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
8962         }
8963
8964         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8965                                        vmcs12->exit_qualification,
8966                                        vmcs12->idt_vectoring_info_field,
8967                                        vmcs12->vm_exit_intr_info,
8968                                        vmcs12->vm_exit_intr_error_code,
8969                                        KVM_ISA_VMX);
8970
8971         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8972         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8973         vmx_segment_cache_clear(vmx);
8974
8975         /* if no vmcs02 cache requested, remove the one we used */
8976         if (VMCS02_POOL_SIZE == 0)
8977                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8978
8979         load_vmcs12_host_state(vcpu, vmcs12);
8980
8981         /* Update TSC_OFFSET if TSC was changed while L2 ran */
8982         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8983
8984         /* This is needed for same reason as it was needed in prepare_vmcs02 */
8985         vmx->host_rsp = 0;
8986
8987         /* Unpin physical memory we referred to in vmcs02 */
8988         if (vmx->nested.apic_access_page) {
8989                 nested_release_page(vmx->nested.apic_access_page);
8990                 vmx->nested.apic_access_page = NULL;
8991         }
8992         if (vmx->nested.virtual_apic_page) {
8993                 nested_release_page(vmx->nested.virtual_apic_page);
8994                 vmx->nested.virtual_apic_page = NULL;
8995         }
8996
8997         /*
8998          * We are now running in L2, mmu_notifier will force to reload the
8999          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
9000          */
9001         kvm_vcpu_reload_apic_access_page(vcpu);
9002
9003         /*
9004          * Exiting from L2 to L1, we're now back to L1 which thinks it just
9005          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
9006          * success or failure flag accordingly.
9007          */
9008         if (unlikely(vmx->fail)) {
9009                 vmx->fail = 0;
9010                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
9011         } else
9012                 nested_vmx_succeed(vcpu);
9013         if (enable_shadow_vmcs)
9014                 vmx->nested.sync_shadow_vmcs = true;
9015
9016         /* in case we halted in L2 */
9017         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9018 }
9019
9020 /*
9021  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9022  */
9023 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
9024 {
9025         if (is_guest_mode(vcpu))
9026                 nested_vmx_vmexit(vcpu, -1, 0, 0);
9027         free_nested(to_vmx(vcpu));
9028 }
9029
9030 /*
9031  * L1's failure to enter L2 is a subset of a normal exit, as explained in
9032  * 23.7 "VM-entry failures during or after loading guest state" (this also
9033  * lists the acceptable exit-reason and exit-qualification parameters).
9034  * It should only be called before L2 actually succeeded to run, and when
9035  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9036  */
9037 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
9038                         struct vmcs12 *vmcs12,
9039                         u32 reason, unsigned long qualification)
9040 {
9041         load_vmcs12_host_state(vcpu, vmcs12);
9042         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9043         vmcs12->exit_qualification = qualification;
9044         nested_vmx_succeed(vcpu);
9045         if (enable_shadow_vmcs)
9046                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
9047 }
9048
9049 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9050                                struct x86_instruction_info *info,
9051                                enum x86_intercept_stage stage)
9052 {
9053         return X86EMUL_CONTINUE;
9054 }
9055
9056 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
9057 {
9058         if (ple_gap)
9059                 shrink_ple_window(vcpu);
9060 }
9061
9062 static struct kvm_x86_ops vmx_x86_ops = {
9063         .cpu_has_kvm_support = cpu_has_kvm_support,
9064         .disabled_by_bios = vmx_disabled_by_bios,
9065         .hardware_setup = hardware_setup,
9066         .hardware_unsetup = hardware_unsetup,
9067         .check_processor_compatibility = vmx_check_processor_compat,
9068         .hardware_enable = hardware_enable,
9069         .hardware_disable = hardware_disable,
9070         .cpu_has_accelerated_tpr = report_flexpriority,
9071
9072         .vcpu_create = vmx_create_vcpu,
9073         .vcpu_free = vmx_free_vcpu,
9074         .vcpu_reset = vmx_vcpu_reset,
9075
9076         .prepare_guest_switch = vmx_save_host_state,
9077         .vcpu_load = vmx_vcpu_load,
9078         .vcpu_put = vmx_vcpu_put,
9079
9080         .update_db_bp_intercept = update_exception_bitmap,
9081         .get_msr = vmx_get_msr,
9082         .set_msr = vmx_set_msr,
9083         .get_segment_base = vmx_get_segment_base,
9084         .get_segment = vmx_get_segment,
9085         .set_segment = vmx_set_segment,
9086         .get_cpl = vmx_get_cpl,
9087         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
9088         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
9089         .decache_cr3 = vmx_decache_cr3,
9090         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
9091         .set_cr0 = vmx_set_cr0,
9092         .set_cr3 = vmx_set_cr3,
9093         .set_cr4 = vmx_set_cr4,
9094         .set_efer = vmx_set_efer,
9095         .get_idt = vmx_get_idt,
9096         .set_idt = vmx_set_idt,
9097         .get_gdt = vmx_get_gdt,
9098         .set_gdt = vmx_set_gdt,
9099         .get_dr6 = vmx_get_dr6,
9100         .set_dr6 = vmx_set_dr6,
9101         .set_dr7 = vmx_set_dr7,
9102         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
9103         .cache_reg = vmx_cache_reg,
9104         .get_rflags = vmx_get_rflags,
9105         .set_rflags = vmx_set_rflags,
9106         .fpu_deactivate = vmx_fpu_deactivate,
9107
9108         .tlb_flush = vmx_flush_tlb,
9109
9110         .run = vmx_vcpu_run,
9111         .handle_exit = vmx_handle_exit,
9112         .skip_emulated_instruction = skip_emulated_instruction,
9113         .set_interrupt_shadow = vmx_set_interrupt_shadow,
9114         .get_interrupt_shadow = vmx_get_interrupt_shadow,
9115         .patch_hypercall = vmx_patch_hypercall,
9116         .set_irq = vmx_inject_irq,
9117         .set_nmi = vmx_inject_nmi,
9118         .queue_exception = vmx_queue_exception,
9119         .cancel_injection = vmx_cancel_injection,
9120         .interrupt_allowed = vmx_interrupt_allowed,
9121         .nmi_allowed = vmx_nmi_allowed,
9122         .get_nmi_mask = vmx_get_nmi_mask,
9123         .set_nmi_mask = vmx_set_nmi_mask,
9124         .enable_nmi_window = enable_nmi_window,
9125         .enable_irq_window = enable_irq_window,
9126         .update_cr8_intercept = update_cr8_intercept,
9127         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
9128         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
9129         .vm_has_apicv = vmx_vm_has_apicv,
9130         .load_eoi_exitmap = vmx_load_eoi_exitmap,
9131         .hwapic_irr_update = vmx_hwapic_irr_update,
9132         .hwapic_isr_update = vmx_hwapic_isr_update,
9133         .sync_pir_to_irr = vmx_sync_pir_to_irr,
9134         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
9135
9136         .set_tss_addr = vmx_set_tss_addr,
9137         .get_tdp_level = get_ept_level,
9138         .get_mt_mask = vmx_get_mt_mask,
9139
9140         .get_exit_info = vmx_get_exit_info,
9141
9142         .get_lpage_level = vmx_get_lpage_level,
9143
9144         .cpuid_update = vmx_cpuid_update,
9145
9146         .rdtscp_supported = vmx_rdtscp_supported,
9147         .invpcid_supported = vmx_invpcid_supported,
9148
9149         .set_supported_cpuid = vmx_set_supported_cpuid,
9150
9151         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
9152
9153         .set_tsc_khz = vmx_set_tsc_khz,
9154         .read_tsc_offset = vmx_read_tsc_offset,
9155         .write_tsc_offset = vmx_write_tsc_offset,
9156         .adjust_tsc_offset = vmx_adjust_tsc_offset,
9157         .compute_tsc_offset = vmx_compute_tsc_offset,
9158         .read_l1_tsc = vmx_read_l1_tsc,
9159
9160         .set_tdp_cr3 = vmx_set_cr3,
9161
9162         .check_intercept = vmx_check_intercept,
9163         .handle_external_intr = vmx_handle_external_intr,
9164         .mpx_supported = vmx_mpx_supported,
9165
9166         .check_nested_events = vmx_check_nested_events,
9167
9168         .sched_in = vmx_sched_in,
9169 };
9170
9171 static int __init vmx_init(void)
9172 {
9173         int r, i, msr;
9174
9175         rdmsrl_safe(MSR_EFER, &host_efer);
9176
9177         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
9178                 kvm_define_shared_msr(i, vmx_msr_index[i]);
9179
9180         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
9181         if (!vmx_io_bitmap_a)
9182                 return -ENOMEM;
9183
9184         r = -ENOMEM;
9185
9186         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
9187         if (!vmx_io_bitmap_b)
9188                 goto out;
9189
9190         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
9191         if (!vmx_msr_bitmap_legacy)
9192                 goto out1;
9193
9194         vmx_msr_bitmap_legacy_x2apic =
9195                                 (unsigned long *)__get_free_page(GFP_KERNEL);
9196         if (!vmx_msr_bitmap_legacy_x2apic)
9197                 goto out2;
9198
9199         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
9200         if (!vmx_msr_bitmap_longmode)
9201                 goto out3;
9202
9203         vmx_msr_bitmap_longmode_x2apic =
9204                                 (unsigned long *)__get_free_page(GFP_KERNEL);
9205         if (!vmx_msr_bitmap_longmode_x2apic)
9206                 goto out4;
9207         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9208         if (!vmx_vmread_bitmap)
9209                 goto out5;
9210
9211         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9212         if (!vmx_vmwrite_bitmap)
9213                 goto out6;
9214
9215         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
9216         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
9217
9218         /*
9219          * Allow direct access to the PC debug port (it is often used for I/O
9220          * delays, but the vmexits simply slow things down).
9221          */
9222         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
9223         clear_bit(0x80, vmx_io_bitmap_a);
9224
9225         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
9226
9227         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
9228         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
9229
9230         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
9231
9232         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9233                      __alignof__(struct vcpu_vmx), THIS_MODULE);
9234         if (r)
9235                 goto out7;
9236
9237 #ifdef CONFIG_KEXEC
9238         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9239                            crash_vmclear_local_loaded_vmcss);
9240 #endif
9241
9242         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
9243         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
9244         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
9245         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
9246         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
9247         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
9248         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
9249
9250         memcpy(vmx_msr_bitmap_legacy_x2apic,
9251                         vmx_msr_bitmap_legacy, PAGE_SIZE);
9252         memcpy(vmx_msr_bitmap_longmode_x2apic,
9253                         vmx_msr_bitmap_longmode, PAGE_SIZE);
9254
9255         if (enable_apicv) {
9256                 for (msr = 0x800; msr <= 0x8ff; msr++)
9257                         vmx_disable_intercept_msr_read_x2apic(msr);
9258
9259                 /* According SDM, in x2apic mode, the whole id reg is used.
9260                  * But in KVM, it only use the highest eight bits. Need to
9261                  * intercept it */
9262                 vmx_enable_intercept_msr_read_x2apic(0x802);
9263                 /* TMCCT */
9264                 vmx_enable_intercept_msr_read_x2apic(0x839);
9265                 /* TPR */
9266                 vmx_disable_intercept_msr_write_x2apic(0x808);
9267                 /* EOI */
9268                 vmx_disable_intercept_msr_write_x2apic(0x80b);
9269                 /* SELF-IPI */
9270                 vmx_disable_intercept_msr_write_x2apic(0x83f);
9271         }
9272
9273         if (enable_ept) {
9274                 kvm_mmu_set_mask_ptes(0ull,
9275                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
9276                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
9277                         0ull, VMX_EPT_EXECUTABLE_MASK);
9278                 ept_set_mmio_spte_mask();
9279                 kvm_enable_tdp();
9280         } else
9281                 kvm_disable_tdp();
9282
9283         update_ple_window_actual_max();
9284
9285         return 0;
9286
9287 out7:
9288         free_page((unsigned long)vmx_vmwrite_bitmap);
9289 out6:
9290         free_page((unsigned long)vmx_vmread_bitmap);
9291 out5:
9292         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9293 out4:
9294         free_page((unsigned long)vmx_msr_bitmap_longmode);
9295 out3:
9296         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9297 out2:
9298         free_page((unsigned long)vmx_msr_bitmap_legacy);
9299 out1:
9300         free_page((unsigned long)vmx_io_bitmap_b);
9301 out:
9302         free_page((unsigned long)vmx_io_bitmap_a);
9303         return r;
9304 }
9305
9306 static void __exit vmx_exit(void)
9307 {
9308         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9309         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9310         free_page((unsigned long)vmx_msr_bitmap_legacy);
9311         free_page((unsigned long)vmx_msr_bitmap_longmode);
9312         free_page((unsigned long)vmx_io_bitmap_b);
9313         free_page((unsigned long)vmx_io_bitmap_a);
9314         free_page((unsigned long)vmx_vmwrite_bitmap);
9315         free_page((unsigned long)vmx_vmread_bitmap);
9316
9317 #ifdef CONFIG_KEXEC
9318         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
9319         synchronize_rcu();
9320 #endif
9321
9322         kvm_exit();
9323 }
9324
9325 module_init(vmx_init)
9326 module_exit(vmx_exit)