Merge tag 'armsoc-dt64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51
52 #include "trace.h"
53 #include "pmu.h"
54
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id vmx_cpu_id[] = {
63         X86_FEATURE_MATCH(X86_FEATURE_VMX),
64         {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
68 static bool __read_mostly enable_vpid = 1;
69 module_param_named(vpid, enable_vpid, bool, 0444);
70
71 static bool __read_mostly flexpriority_enabled = 1;
72 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept = 1;
75 module_param_named(ept, enable_ept, bool, S_IRUGO);
76
77 static bool __read_mostly enable_unrestricted_guest = 1;
78 module_param_named(unrestricted_guest,
79                         enable_unrestricted_guest, bool, S_IRUGO);
80
81 static bool __read_mostly enable_ept_ad_bits = 1;
82 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
84 static bool __read_mostly emulate_invalid_guest_state = true;
85 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
86
87 static bool __read_mostly vmm_exclusive = 1;
88 module_param(vmm_exclusive, bool, S_IRUGO);
89
90 static bool __read_mostly fasteoi = 1;
91 module_param(fasteoi, bool, S_IRUGO);
92
93 static bool __read_mostly enable_apicv = 1;
94 module_param(enable_apicv, bool, S_IRUGO);
95
96 static bool __read_mostly enable_shadow_vmcs = 1;
97 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
98 /*
99  * If nested=1, nested virtualization is supported, i.e., guests may use
100  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101  * use VMX instructions.
102  */
103 static bool __read_mostly nested = 0;
104 module_param(nested, bool, S_IRUGO);
105
106 static u64 __read_mostly host_xss;
107
108 static bool __read_mostly enable_pml = 1;
109 module_param_named(pml, enable_pml, bool, S_IRUGO);
110
111 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
112
113 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
114 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
115 #define KVM_VM_CR0_ALWAYS_ON                                            \
116         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
117 #define KVM_CR4_GUEST_OWNED_BITS                                      \
118         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
119          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
120
121 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
122 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
123
124 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
125
126 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
127
128 /*
129  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
130  * ple_gap:    upper bound on the amount of time between two successive
131  *             executions of PAUSE in a loop. Also indicate if ple enabled.
132  *             According to test, this time is usually smaller than 128 cycles.
133  * ple_window: upper bound on the amount of time a guest is allowed to execute
134  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
135  *             less than 2^12 cycles
136  * Time is measured based on a counter that runs at the same rate as the TSC,
137  * refer SDM volume 3b section 21.6.13 & 22.1.3.
138  */
139 #define KVM_VMX_DEFAULT_PLE_GAP           128
140 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
141 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
142 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
143 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
144                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
145
146 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
147 module_param(ple_gap, int, S_IRUGO);
148
149 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
150 module_param(ple_window, int, S_IRUGO);
151
152 /* Default doubles per-vcpu window every exit. */
153 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
154 module_param(ple_window_grow, int, S_IRUGO);
155
156 /* Default resets per-vcpu window every exit to ple_window. */
157 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
158 module_param(ple_window_shrink, int, S_IRUGO);
159
160 /* Default is to compute the maximum so we can never overflow. */
161 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
163 module_param(ple_window_max, int, S_IRUGO);
164
165 extern const ulong vmx_return;
166
167 #define NR_AUTOLOAD_MSRS 8
168 #define VMCS02_POOL_SIZE 1
169
170 struct vmcs {
171         u32 revision_id;
172         u32 abort;
173         char data[0];
174 };
175
176 /*
177  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
178  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
179  * loaded on this CPU (so we can clear them if the CPU goes down).
180  */
181 struct loaded_vmcs {
182         struct vmcs *vmcs;
183         int cpu;
184         int launched;
185         struct list_head loaded_vmcss_on_cpu_link;
186 };
187
188 struct shared_msr_entry {
189         unsigned index;
190         u64 data;
191         u64 mask;
192 };
193
194 /*
195  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
196  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
197  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
198  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
199  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
200  * More than one of these structures may exist, if L1 runs multiple L2 guests.
201  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
202  * underlying hardware which will be used to run L2.
203  * This structure is packed to ensure that its layout is identical across
204  * machines (necessary for live migration).
205  * If there are changes in this struct, VMCS12_REVISION must be changed.
206  */
207 typedef u64 natural_width;
208 struct __packed vmcs12 {
209         /* According to the Intel spec, a VMCS region must start with the
210          * following two fields. Then follow implementation-specific data.
211          */
212         u32 revision_id;
213         u32 abort;
214
215         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
216         u32 padding[7]; /* room for future expansion */
217
218         u64 io_bitmap_a;
219         u64 io_bitmap_b;
220         u64 msr_bitmap;
221         u64 vm_exit_msr_store_addr;
222         u64 vm_exit_msr_load_addr;
223         u64 vm_entry_msr_load_addr;
224         u64 tsc_offset;
225         u64 virtual_apic_page_addr;
226         u64 apic_access_addr;
227         u64 posted_intr_desc_addr;
228         u64 ept_pointer;
229         u64 eoi_exit_bitmap0;
230         u64 eoi_exit_bitmap1;
231         u64 eoi_exit_bitmap2;
232         u64 eoi_exit_bitmap3;
233         u64 xss_exit_bitmap;
234         u64 guest_physical_address;
235         u64 vmcs_link_pointer;
236         u64 guest_ia32_debugctl;
237         u64 guest_ia32_pat;
238         u64 guest_ia32_efer;
239         u64 guest_ia32_perf_global_ctrl;
240         u64 guest_pdptr0;
241         u64 guest_pdptr1;
242         u64 guest_pdptr2;
243         u64 guest_pdptr3;
244         u64 guest_bndcfgs;
245         u64 host_ia32_pat;
246         u64 host_ia32_efer;
247         u64 host_ia32_perf_global_ctrl;
248         u64 padding64[8]; /* room for future expansion */
249         /*
250          * To allow migration of L1 (complete with its L2 guests) between
251          * machines of different natural widths (32 or 64 bit), we cannot have
252          * unsigned long fields with no explict size. We use u64 (aliased
253          * natural_width) instead. Luckily, x86 is little-endian.
254          */
255         natural_width cr0_guest_host_mask;
256         natural_width cr4_guest_host_mask;
257         natural_width cr0_read_shadow;
258         natural_width cr4_read_shadow;
259         natural_width cr3_target_value0;
260         natural_width cr3_target_value1;
261         natural_width cr3_target_value2;
262         natural_width cr3_target_value3;
263         natural_width exit_qualification;
264         natural_width guest_linear_address;
265         natural_width guest_cr0;
266         natural_width guest_cr3;
267         natural_width guest_cr4;
268         natural_width guest_es_base;
269         natural_width guest_cs_base;
270         natural_width guest_ss_base;
271         natural_width guest_ds_base;
272         natural_width guest_fs_base;
273         natural_width guest_gs_base;
274         natural_width guest_ldtr_base;
275         natural_width guest_tr_base;
276         natural_width guest_gdtr_base;
277         natural_width guest_idtr_base;
278         natural_width guest_dr7;
279         natural_width guest_rsp;
280         natural_width guest_rip;
281         natural_width guest_rflags;
282         natural_width guest_pending_dbg_exceptions;
283         natural_width guest_sysenter_esp;
284         natural_width guest_sysenter_eip;
285         natural_width host_cr0;
286         natural_width host_cr3;
287         natural_width host_cr4;
288         natural_width host_fs_base;
289         natural_width host_gs_base;
290         natural_width host_tr_base;
291         natural_width host_gdtr_base;
292         natural_width host_idtr_base;
293         natural_width host_ia32_sysenter_esp;
294         natural_width host_ia32_sysenter_eip;
295         natural_width host_rsp;
296         natural_width host_rip;
297         natural_width paddingl[8]; /* room for future expansion */
298         u32 pin_based_vm_exec_control;
299         u32 cpu_based_vm_exec_control;
300         u32 exception_bitmap;
301         u32 page_fault_error_code_mask;
302         u32 page_fault_error_code_match;
303         u32 cr3_target_count;
304         u32 vm_exit_controls;
305         u32 vm_exit_msr_store_count;
306         u32 vm_exit_msr_load_count;
307         u32 vm_entry_controls;
308         u32 vm_entry_msr_load_count;
309         u32 vm_entry_intr_info_field;
310         u32 vm_entry_exception_error_code;
311         u32 vm_entry_instruction_len;
312         u32 tpr_threshold;
313         u32 secondary_vm_exec_control;
314         u32 vm_instruction_error;
315         u32 vm_exit_reason;
316         u32 vm_exit_intr_info;
317         u32 vm_exit_intr_error_code;
318         u32 idt_vectoring_info_field;
319         u32 idt_vectoring_error_code;
320         u32 vm_exit_instruction_len;
321         u32 vmx_instruction_info;
322         u32 guest_es_limit;
323         u32 guest_cs_limit;
324         u32 guest_ss_limit;
325         u32 guest_ds_limit;
326         u32 guest_fs_limit;
327         u32 guest_gs_limit;
328         u32 guest_ldtr_limit;
329         u32 guest_tr_limit;
330         u32 guest_gdtr_limit;
331         u32 guest_idtr_limit;
332         u32 guest_es_ar_bytes;
333         u32 guest_cs_ar_bytes;
334         u32 guest_ss_ar_bytes;
335         u32 guest_ds_ar_bytes;
336         u32 guest_fs_ar_bytes;
337         u32 guest_gs_ar_bytes;
338         u32 guest_ldtr_ar_bytes;
339         u32 guest_tr_ar_bytes;
340         u32 guest_interruptibility_info;
341         u32 guest_activity_state;
342         u32 guest_sysenter_cs;
343         u32 host_ia32_sysenter_cs;
344         u32 vmx_preemption_timer_value;
345         u32 padding32[7]; /* room for future expansion */
346         u16 virtual_processor_id;
347         u16 posted_intr_nv;
348         u16 guest_es_selector;
349         u16 guest_cs_selector;
350         u16 guest_ss_selector;
351         u16 guest_ds_selector;
352         u16 guest_fs_selector;
353         u16 guest_gs_selector;
354         u16 guest_ldtr_selector;
355         u16 guest_tr_selector;
356         u16 guest_intr_status;
357         u16 host_es_selector;
358         u16 host_cs_selector;
359         u16 host_ss_selector;
360         u16 host_ds_selector;
361         u16 host_fs_selector;
362         u16 host_gs_selector;
363         u16 host_tr_selector;
364 };
365
366 /*
367  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
368  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
369  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
370  */
371 #define VMCS12_REVISION 0x11e57ed0
372
373 /*
374  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
375  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
376  * current implementation, 4K are reserved to avoid future complications.
377  */
378 #define VMCS12_SIZE 0x1000
379
380 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
381 struct vmcs02_list {
382         struct list_head list;
383         gpa_t vmptr;
384         struct loaded_vmcs vmcs02;
385 };
386
387 /*
388  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
389  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
390  */
391 struct nested_vmx {
392         /* Has the level1 guest done vmxon? */
393         bool vmxon;
394         gpa_t vmxon_ptr;
395
396         /* The guest-physical address of the current VMCS L1 keeps for L2 */
397         gpa_t current_vmptr;
398         /* The host-usable pointer to the above */
399         struct page *current_vmcs12_page;
400         struct vmcs12 *current_vmcs12;
401         struct vmcs *current_shadow_vmcs;
402         /*
403          * Indicates if the shadow vmcs must be updated with the
404          * data hold by vmcs12
405          */
406         bool sync_shadow_vmcs;
407
408         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
409         struct list_head vmcs02_pool;
410         int vmcs02_num;
411         u64 vmcs01_tsc_offset;
412         /* L2 must run next, and mustn't decide to exit to L1. */
413         bool nested_run_pending;
414         /*
415          * Guest pages referred to in vmcs02 with host-physical pointers, so
416          * we must keep them pinned while L2 runs.
417          */
418         struct page *apic_access_page;
419         struct page *virtual_apic_page;
420         struct page *pi_desc_page;
421         struct pi_desc *pi_desc;
422         bool pi_pending;
423         u16 posted_intr_nv;
424         u64 msr_ia32_feature_control;
425
426         struct hrtimer preemption_timer;
427         bool preemption_timer_expired;
428
429         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
430         u64 vmcs01_debugctl;
431
432         u16 vpid02;
433         u16 last_vpid;
434
435         u32 nested_vmx_procbased_ctls_low;
436         u32 nested_vmx_procbased_ctls_high;
437         u32 nested_vmx_true_procbased_ctls_low;
438         u32 nested_vmx_secondary_ctls_low;
439         u32 nested_vmx_secondary_ctls_high;
440         u32 nested_vmx_pinbased_ctls_low;
441         u32 nested_vmx_pinbased_ctls_high;
442         u32 nested_vmx_exit_ctls_low;
443         u32 nested_vmx_exit_ctls_high;
444         u32 nested_vmx_true_exit_ctls_low;
445         u32 nested_vmx_entry_ctls_low;
446         u32 nested_vmx_entry_ctls_high;
447         u32 nested_vmx_true_entry_ctls_low;
448         u32 nested_vmx_misc_low;
449         u32 nested_vmx_misc_high;
450         u32 nested_vmx_ept_caps;
451         u32 nested_vmx_vpid_caps;
452 };
453
454 #define POSTED_INTR_ON  0
455 #define POSTED_INTR_SN  1
456
457 /* Posted-Interrupt Descriptor */
458 struct pi_desc {
459         u32 pir[8];     /* Posted interrupt requested */
460         union {
461                 struct {
462                                 /* bit 256 - Outstanding Notification */
463                         u16     on      : 1,
464                                 /* bit 257 - Suppress Notification */
465                                 sn      : 1,
466                                 /* bit 271:258 - Reserved */
467                                 rsvd_1  : 14;
468                                 /* bit 279:272 - Notification Vector */
469                         u8      nv;
470                                 /* bit 287:280 - Reserved */
471                         u8      rsvd_2;
472                                 /* bit 319:288 - Notification Destination */
473                         u32     ndst;
474                 };
475                 u64 control;
476         };
477         u32 rsvd[6];
478 } __aligned(64);
479
480 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
481 {
482         return test_and_set_bit(POSTED_INTR_ON,
483                         (unsigned long *)&pi_desc->control);
484 }
485
486 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
487 {
488         return test_and_clear_bit(POSTED_INTR_ON,
489                         (unsigned long *)&pi_desc->control);
490 }
491
492 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
493 {
494         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
495 }
496
497 static inline void pi_clear_sn(struct pi_desc *pi_desc)
498 {
499         return clear_bit(POSTED_INTR_SN,
500                         (unsigned long *)&pi_desc->control);
501 }
502
503 static inline void pi_set_sn(struct pi_desc *pi_desc)
504 {
505         return set_bit(POSTED_INTR_SN,
506                         (unsigned long *)&pi_desc->control);
507 }
508
509 static inline int pi_test_on(struct pi_desc *pi_desc)
510 {
511         return test_bit(POSTED_INTR_ON,
512                         (unsigned long *)&pi_desc->control);
513 }
514
515 static inline int pi_test_sn(struct pi_desc *pi_desc)
516 {
517         return test_bit(POSTED_INTR_SN,
518                         (unsigned long *)&pi_desc->control);
519 }
520
521 struct vcpu_vmx {
522         struct kvm_vcpu       vcpu;
523         unsigned long         host_rsp;
524         u8                    fail;
525         bool                  nmi_known_unmasked;
526         u32                   exit_intr_info;
527         u32                   idt_vectoring_info;
528         ulong                 rflags;
529         struct shared_msr_entry *guest_msrs;
530         int                   nmsrs;
531         int                   save_nmsrs;
532         unsigned long         host_idt_base;
533 #ifdef CONFIG_X86_64
534         u64                   msr_host_kernel_gs_base;
535         u64                   msr_guest_kernel_gs_base;
536 #endif
537         u32 vm_entry_controls_shadow;
538         u32 vm_exit_controls_shadow;
539         /*
540          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
541          * non-nested (L1) guest, it always points to vmcs01. For a nested
542          * guest (L2), it points to a different VMCS.
543          */
544         struct loaded_vmcs    vmcs01;
545         struct loaded_vmcs   *loaded_vmcs;
546         bool                  __launched; /* temporary, used in vmx_vcpu_run */
547         struct msr_autoload {
548                 unsigned nr;
549                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
550                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
551         } msr_autoload;
552         struct {
553                 int           loaded;
554                 u16           fs_sel, gs_sel, ldt_sel;
555 #ifdef CONFIG_X86_64
556                 u16           ds_sel, es_sel;
557 #endif
558                 int           gs_ldt_reload_needed;
559                 int           fs_reload_needed;
560                 u64           msr_host_bndcfgs;
561                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
562         } host_state;
563         struct {
564                 int vm86_active;
565                 ulong save_rflags;
566                 struct kvm_segment segs[8];
567         } rmode;
568         struct {
569                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
570                 struct kvm_save_segment {
571                         u16 selector;
572                         unsigned long base;
573                         u32 limit;
574                         u32 ar;
575                 } seg[8];
576         } segment_cache;
577         int vpid;
578         bool emulation_required;
579
580         /* Support for vnmi-less CPUs */
581         int soft_vnmi_blocked;
582         ktime_t entry_time;
583         s64 vnmi_blocked_time;
584         u32 exit_reason;
585
586         /* Posted interrupt descriptor */
587         struct pi_desc pi_desc;
588
589         /* Support for a guest hypervisor (nested VMX) */
590         struct nested_vmx nested;
591
592         /* Dynamic PLE window. */
593         int ple_window;
594         bool ple_window_dirty;
595
596         /* Support for PML */
597 #define PML_ENTITY_NUM          512
598         struct page *pml_pg;
599
600         u64 current_tsc_ratio;
601
602         bool guest_pkru_valid;
603         u32 guest_pkru;
604         u32 host_pkru;
605 };
606
607 enum segment_cache_field {
608         SEG_FIELD_SEL = 0,
609         SEG_FIELD_BASE = 1,
610         SEG_FIELD_LIMIT = 2,
611         SEG_FIELD_AR = 3,
612
613         SEG_FIELD_NR = 4
614 };
615
616 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
617 {
618         return container_of(vcpu, struct vcpu_vmx, vcpu);
619 }
620
621 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
622 {
623         return &(to_vmx(vcpu)->pi_desc);
624 }
625
626 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
627 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
628 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
629                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
630
631
632 static unsigned long shadow_read_only_fields[] = {
633         /*
634          * We do NOT shadow fields that are modified when L0
635          * traps and emulates any vmx instruction (e.g. VMPTRLD,
636          * VMXON...) executed by L1.
637          * For example, VM_INSTRUCTION_ERROR is read
638          * by L1 if a vmx instruction fails (part of the error path).
639          * Note the code assumes this logic. If for some reason
640          * we start shadowing these fields then we need to
641          * force a shadow sync when L0 emulates vmx instructions
642          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
643          * by nested_vmx_failValid)
644          */
645         VM_EXIT_REASON,
646         VM_EXIT_INTR_INFO,
647         VM_EXIT_INSTRUCTION_LEN,
648         IDT_VECTORING_INFO_FIELD,
649         IDT_VECTORING_ERROR_CODE,
650         VM_EXIT_INTR_ERROR_CODE,
651         EXIT_QUALIFICATION,
652         GUEST_LINEAR_ADDRESS,
653         GUEST_PHYSICAL_ADDRESS
654 };
655 static int max_shadow_read_only_fields =
656         ARRAY_SIZE(shadow_read_only_fields);
657
658 static unsigned long shadow_read_write_fields[] = {
659         TPR_THRESHOLD,
660         GUEST_RIP,
661         GUEST_RSP,
662         GUEST_CR0,
663         GUEST_CR3,
664         GUEST_CR4,
665         GUEST_INTERRUPTIBILITY_INFO,
666         GUEST_RFLAGS,
667         GUEST_CS_SELECTOR,
668         GUEST_CS_AR_BYTES,
669         GUEST_CS_LIMIT,
670         GUEST_CS_BASE,
671         GUEST_ES_BASE,
672         GUEST_BNDCFGS,
673         CR0_GUEST_HOST_MASK,
674         CR0_READ_SHADOW,
675         CR4_READ_SHADOW,
676         TSC_OFFSET,
677         EXCEPTION_BITMAP,
678         CPU_BASED_VM_EXEC_CONTROL,
679         VM_ENTRY_EXCEPTION_ERROR_CODE,
680         VM_ENTRY_INTR_INFO_FIELD,
681         VM_ENTRY_INSTRUCTION_LEN,
682         VM_ENTRY_EXCEPTION_ERROR_CODE,
683         HOST_FS_BASE,
684         HOST_GS_BASE,
685         HOST_FS_SELECTOR,
686         HOST_GS_SELECTOR
687 };
688 static int max_shadow_read_write_fields =
689         ARRAY_SIZE(shadow_read_write_fields);
690
691 static const unsigned short vmcs_field_to_offset_table[] = {
692         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
693         FIELD(POSTED_INTR_NV, posted_intr_nv),
694         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
695         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
696         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
697         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
698         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
699         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
700         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
701         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
702         FIELD(GUEST_INTR_STATUS, guest_intr_status),
703         FIELD(HOST_ES_SELECTOR, host_es_selector),
704         FIELD(HOST_CS_SELECTOR, host_cs_selector),
705         FIELD(HOST_SS_SELECTOR, host_ss_selector),
706         FIELD(HOST_DS_SELECTOR, host_ds_selector),
707         FIELD(HOST_FS_SELECTOR, host_fs_selector),
708         FIELD(HOST_GS_SELECTOR, host_gs_selector),
709         FIELD(HOST_TR_SELECTOR, host_tr_selector),
710         FIELD64(IO_BITMAP_A, io_bitmap_a),
711         FIELD64(IO_BITMAP_B, io_bitmap_b),
712         FIELD64(MSR_BITMAP, msr_bitmap),
713         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
714         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
715         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
716         FIELD64(TSC_OFFSET, tsc_offset),
717         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
718         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
719         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
720         FIELD64(EPT_POINTER, ept_pointer),
721         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
722         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
723         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
724         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
725         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
726         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
727         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
728         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
729         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
730         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
731         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
732         FIELD64(GUEST_PDPTR0, guest_pdptr0),
733         FIELD64(GUEST_PDPTR1, guest_pdptr1),
734         FIELD64(GUEST_PDPTR2, guest_pdptr2),
735         FIELD64(GUEST_PDPTR3, guest_pdptr3),
736         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
737         FIELD64(HOST_IA32_PAT, host_ia32_pat),
738         FIELD64(HOST_IA32_EFER, host_ia32_efer),
739         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
740         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
741         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
742         FIELD(EXCEPTION_BITMAP, exception_bitmap),
743         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
744         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
745         FIELD(CR3_TARGET_COUNT, cr3_target_count),
746         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
747         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
748         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
749         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
750         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
751         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
752         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
753         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
754         FIELD(TPR_THRESHOLD, tpr_threshold),
755         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
756         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
757         FIELD(VM_EXIT_REASON, vm_exit_reason),
758         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
759         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
760         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
761         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
762         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
763         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
764         FIELD(GUEST_ES_LIMIT, guest_es_limit),
765         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
766         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
767         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
768         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
769         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
770         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
771         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
772         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
773         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
774         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
775         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
776         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
777         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
778         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
779         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
780         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
781         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
782         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
783         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
784         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
785         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
786         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
787         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
788         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
789         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
790         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
791         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
792         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
793         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
794         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
795         FIELD(EXIT_QUALIFICATION, exit_qualification),
796         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
797         FIELD(GUEST_CR0, guest_cr0),
798         FIELD(GUEST_CR3, guest_cr3),
799         FIELD(GUEST_CR4, guest_cr4),
800         FIELD(GUEST_ES_BASE, guest_es_base),
801         FIELD(GUEST_CS_BASE, guest_cs_base),
802         FIELD(GUEST_SS_BASE, guest_ss_base),
803         FIELD(GUEST_DS_BASE, guest_ds_base),
804         FIELD(GUEST_FS_BASE, guest_fs_base),
805         FIELD(GUEST_GS_BASE, guest_gs_base),
806         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
807         FIELD(GUEST_TR_BASE, guest_tr_base),
808         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
809         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
810         FIELD(GUEST_DR7, guest_dr7),
811         FIELD(GUEST_RSP, guest_rsp),
812         FIELD(GUEST_RIP, guest_rip),
813         FIELD(GUEST_RFLAGS, guest_rflags),
814         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
815         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
816         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
817         FIELD(HOST_CR0, host_cr0),
818         FIELD(HOST_CR3, host_cr3),
819         FIELD(HOST_CR4, host_cr4),
820         FIELD(HOST_FS_BASE, host_fs_base),
821         FIELD(HOST_GS_BASE, host_gs_base),
822         FIELD(HOST_TR_BASE, host_tr_base),
823         FIELD(HOST_GDTR_BASE, host_gdtr_base),
824         FIELD(HOST_IDTR_BASE, host_idtr_base),
825         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
826         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
827         FIELD(HOST_RSP, host_rsp),
828         FIELD(HOST_RIP, host_rip),
829 };
830
831 static inline short vmcs_field_to_offset(unsigned long field)
832 {
833         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
834
835         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
836             vmcs_field_to_offset_table[field] == 0)
837                 return -ENOENT;
838
839         return vmcs_field_to_offset_table[field];
840 }
841
842 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
843 {
844         return to_vmx(vcpu)->nested.current_vmcs12;
845 }
846
847 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
848 {
849         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
850         if (is_error_page(page))
851                 return NULL;
852
853         return page;
854 }
855
856 static void nested_release_page(struct page *page)
857 {
858         kvm_release_page_dirty(page);
859 }
860
861 static void nested_release_page_clean(struct page *page)
862 {
863         kvm_release_page_clean(page);
864 }
865
866 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
867 static u64 construct_eptp(unsigned long root_hpa);
868 static void kvm_cpu_vmxon(u64 addr);
869 static void kvm_cpu_vmxoff(void);
870 static bool vmx_xsaves_supported(void);
871 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
872 static void vmx_set_segment(struct kvm_vcpu *vcpu,
873                             struct kvm_segment *var, int seg);
874 static void vmx_get_segment(struct kvm_vcpu *vcpu,
875                             struct kvm_segment *var, int seg);
876 static bool guest_state_valid(struct kvm_vcpu *vcpu);
877 static u32 vmx_segment_access_rights(struct kvm_segment *var);
878 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
879 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
880 static int alloc_identity_pagetable(struct kvm *kvm);
881
882 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
883 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
884 /*
885  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
886  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
887  */
888 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
889 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
890
891 /*
892  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
893  * can find which vCPU should be waken up.
894  */
895 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
896 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
897
898 static unsigned long *vmx_io_bitmap_a;
899 static unsigned long *vmx_io_bitmap_b;
900 static unsigned long *vmx_msr_bitmap_legacy;
901 static unsigned long *vmx_msr_bitmap_longmode;
902 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
903 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
904 static unsigned long *vmx_msr_bitmap_nested;
905 static unsigned long *vmx_vmread_bitmap;
906 static unsigned long *vmx_vmwrite_bitmap;
907
908 static bool cpu_has_load_ia32_efer;
909 static bool cpu_has_load_perf_global_ctrl;
910
911 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
912 static DEFINE_SPINLOCK(vmx_vpid_lock);
913
914 static struct vmcs_config {
915         int size;
916         int order;
917         u32 revision_id;
918         u32 pin_based_exec_ctrl;
919         u32 cpu_based_exec_ctrl;
920         u32 cpu_based_2nd_exec_ctrl;
921         u32 vmexit_ctrl;
922         u32 vmentry_ctrl;
923 } vmcs_config;
924
925 static struct vmx_capability {
926         u32 ept;
927         u32 vpid;
928 } vmx_capability;
929
930 #define VMX_SEGMENT_FIELD(seg)                                  \
931         [VCPU_SREG_##seg] = {                                   \
932                 .selector = GUEST_##seg##_SELECTOR,             \
933                 .base = GUEST_##seg##_BASE,                     \
934                 .limit = GUEST_##seg##_LIMIT,                   \
935                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
936         }
937
938 static const struct kvm_vmx_segment_field {
939         unsigned selector;
940         unsigned base;
941         unsigned limit;
942         unsigned ar_bytes;
943 } kvm_vmx_segment_fields[] = {
944         VMX_SEGMENT_FIELD(CS),
945         VMX_SEGMENT_FIELD(DS),
946         VMX_SEGMENT_FIELD(ES),
947         VMX_SEGMENT_FIELD(FS),
948         VMX_SEGMENT_FIELD(GS),
949         VMX_SEGMENT_FIELD(SS),
950         VMX_SEGMENT_FIELD(TR),
951         VMX_SEGMENT_FIELD(LDTR),
952 };
953
954 static u64 host_efer;
955
956 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
957
958 /*
959  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
960  * away by decrementing the array size.
961  */
962 static const u32 vmx_msr_index[] = {
963 #ifdef CONFIG_X86_64
964         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
965 #endif
966         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
967 };
968
969 static inline bool is_exception_n(u32 intr_info, u8 vector)
970 {
971         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
972                              INTR_INFO_VALID_MASK)) ==
973                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
974 }
975
976 static inline bool is_debug(u32 intr_info)
977 {
978         return is_exception_n(intr_info, DB_VECTOR);
979 }
980
981 static inline bool is_breakpoint(u32 intr_info)
982 {
983         return is_exception_n(intr_info, BP_VECTOR);
984 }
985
986 static inline bool is_page_fault(u32 intr_info)
987 {
988         return is_exception_n(intr_info, PF_VECTOR);
989 }
990
991 static inline bool is_no_device(u32 intr_info)
992 {
993         return is_exception_n(intr_info, NM_VECTOR);
994 }
995
996 static inline bool is_invalid_opcode(u32 intr_info)
997 {
998         return is_exception_n(intr_info, UD_VECTOR);
999 }
1000
1001 static inline bool is_external_interrupt(u32 intr_info)
1002 {
1003         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1004                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1005 }
1006
1007 static inline bool is_machine_check(u32 intr_info)
1008 {
1009         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1010                              INTR_INFO_VALID_MASK)) ==
1011                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1012 }
1013
1014 static inline bool cpu_has_vmx_msr_bitmap(void)
1015 {
1016         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1017 }
1018
1019 static inline bool cpu_has_vmx_tpr_shadow(void)
1020 {
1021         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1022 }
1023
1024 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1025 {
1026         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1027 }
1028
1029 static inline bool cpu_has_secondary_exec_ctrls(void)
1030 {
1031         return vmcs_config.cpu_based_exec_ctrl &
1032                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1033 }
1034
1035 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1036 {
1037         return vmcs_config.cpu_based_2nd_exec_ctrl &
1038                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1039 }
1040
1041 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1042 {
1043         return vmcs_config.cpu_based_2nd_exec_ctrl &
1044                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1045 }
1046
1047 static inline bool cpu_has_vmx_apic_register_virt(void)
1048 {
1049         return vmcs_config.cpu_based_2nd_exec_ctrl &
1050                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1051 }
1052
1053 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1054 {
1055         return vmcs_config.cpu_based_2nd_exec_ctrl &
1056                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1057 }
1058
1059 static inline bool cpu_has_vmx_posted_intr(void)
1060 {
1061         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1062                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1063 }
1064
1065 static inline bool cpu_has_vmx_apicv(void)
1066 {
1067         return cpu_has_vmx_apic_register_virt() &&
1068                 cpu_has_vmx_virtual_intr_delivery() &&
1069                 cpu_has_vmx_posted_intr();
1070 }
1071
1072 static inline bool cpu_has_vmx_flexpriority(void)
1073 {
1074         return cpu_has_vmx_tpr_shadow() &&
1075                 cpu_has_vmx_virtualize_apic_accesses();
1076 }
1077
1078 static inline bool cpu_has_vmx_ept_execute_only(void)
1079 {
1080         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1081 }
1082
1083 static inline bool cpu_has_vmx_ept_2m_page(void)
1084 {
1085         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1086 }
1087
1088 static inline bool cpu_has_vmx_ept_1g_page(void)
1089 {
1090         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1091 }
1092
1093 static inline bool cpu_has_vmx_ept_4levels(void)
1094 {
1095         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1096 }
1097
1098 static inline bool cpu_has_vmx_ept_ad_bits(void)
1099 {
1100         return vmx_capability.ept & VMX_EPT_AD_BIT;
1101 }
1102
1103 static inline bool cpu_has_vmx_invept_context(void)
1104 {
1105         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1106 }
1107
1108 static inline bool cpu_has_vmx_invept_global(void)
1109 {
1110         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1111 }
1112
1113 static inline bool cpu_has_vmx_invvpid_single(void)
1114 {
1115         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1116 }
1117
1118 static inline bool cpu_has_vmx_invvpid_global(void)
1119 {
1120         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1121 }
1122
1123 static inline bool cpu_has_vmx_ept(void)
1124 {
1125         return vmcs_config.cpu_based_2nd_exec_ctrl &
1126                 SECONDARY_EXEC_ENABLE_EPT;
1127 }
1128
1129 static inline bool cpu_has_vmx_unrestricted_guest(void)
1130 {
1131         return vmcs_config.cpu_based_2nd_exec_ctrl &
1132                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1133 }
1134
1135 static inline bool cpu_has_vmx_ple(void)
1136 {
1137         return vmcs_config.cpu_based_2nd_exec_ctrl &
1138                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1139 }
1140
1141 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1142 {
1143         return flexpriority_enabled && lapic_in_kernel(vcpu);
1144 }
1145
1146 static inline bool cpu_has_vmx_vpid(void)
1147 {
1148         return vmcs_config.cpu_based_2nd_exec_ctrl &
1149                 SECONDARY_EXEC_ENABLE_VPID;
1150 }
1151
1152 static inline bool cpu_has_vmx_rdtscp(void)
1153 {
1154         return vmcs_config.cpu_based_2nd_exec_ctrl &
1155                 SECONDARY_EXEC_RDTSCP;
1156 }
1157
1158 static inline bool cpu_has_vmx_invpcid(void)
1159 {
1160         return vmcs_config.cpu_based_2nd_exec_ctrl &
1161                 SECONDARY_EXEC_ENABLE_INVPCID;
1162 }
1163
1164 static inline bool cpu_has_virtual_nmis(void)
1165 {
1166         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1167 }
1168
1169 static inline bool cpu_has_vmx_wbinvd_exit(void)
1170 {
1171         return vmcs_config.cpu_based_2nd_exec_ctrl &
1172                 SECONDARY_EXEC_WBINVD_EXITING;
1173 }
1174
1175 static inline bool cpu_has_vmx_shadow_vmcs(void)
1176 {
1177         u64 vmx_msr;
1178         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1179         /* check if the cpu supports writing r/o exit information fields */
1180         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1181                 return false;
1182
1183         return vmcs_config.cpu_based_2nd_exec_ctrl &
1184                 SECONDARY_EXEC_SHADOW_VMCS;
1185 }
1186
1187 static inline bool cpu_has_vmx_pml(void)
1188 {
1189         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1190 }
1191
1192 static inline bool cpu_has_vmx_tsc_scaling(void)
1193 {
1194         return vmcs_config.cpu_based_2nd_exec_ctrl &
1195                 SECONDARY_EXEC_TSC_SCALING;
1196 }
1197
1198 static inline bool report_flexpriority(void)
1199 {
1200         return flexpriority_enabled;
1201 }
1202
1203 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1204 {
1205         return vmcs12->cpu_based_vm_exec_control & bit;
1206 }
1207
1208 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1209 {
1210         return (vmcs12->cpu_based_vm_exec_control &
1211                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1212                 (vmcs12->secondary_vm_exec_control & bit);
1213 }
1214
1215 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1216 {
1217         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1218 }
1219
1220 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1221 {
1222         return vmcs12->pin_based_vm_exec_control &
1223                 PIN_BASED_VMX_PREEMPTION_TIMER;
1224 }
1225
1226 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1227 {
1228         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1229 }
1230
1231 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1232 {
1233         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1234                 vmx_xsaves_supported();
1235 }
1236
1237 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1238 {
1239         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1240 }
1241
1242 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1243 {
1244         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1245 }
1246
1247 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1248 {
1249         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1250 }
1251
1252 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1253 {
1254         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1255 }
1256
1257 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1258 {
1259         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1260 }
1261
1262 static inline bool is_exception(u32 intr_info)
1263 {
1264         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1265                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1266 }
1267
1268 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1269                               u32 exit_intr_info,
1270                               unsigned long exit_qualification);
1271 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1272                         struct vmcs12 *vmcs12,
1273                         u32 reason, unsigned long qualification);
1274
1275 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1276 {
1277         int i;
1278
1279         for (i = 0; i < vmx->nmsrs; ++i)
1280                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1281                         return i;
1282         return -1;
1283 }
1284
1285 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1286 {
1287     struct {
1288         u64 vpid : 16;
1289         u64 rsvd : 48;
1290         u64 gva;
1291     } operand = { vpid, 0, gva };
1292
1293     asm volatile (__ex(ASM_VMX_INVVPID)
1294                   /* CF==1 or ZF==1 --> rc = -1 */
1295                   "; ja 1f ; ud2 ; 1:"
1296                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1297 }
1298
1299 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1300 {
1301         struct {
1302                 u64 eptp, gpa;
1303         } operand = {eptp, gpa};
1304
1305         asm volatile (__ex(ASM_VMX_INVEPT)
1306                         /* CF==1 or ZF==1 --> rc = -1 */
1307                         "; ja 1f ; ud2 ; 1:\n"
1308                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1309 }
1310
1311 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1312 {
1313         int i;
1314
1315         i = __find_msr_index(vmx, msr);
1316         if (i >= 0)
1317                 return &vmx->guest_msrs[i];
1318         return NULL;
1319 }
1320
1321 static void vmcs_clear(struct vmcs *vmcs)
1322 {
1323         u64 phys_addr = __pa(vmcs);
1324         u8 error;
1325
1326         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1327                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1328                       : "cc", "memory");
1329         if (error)
1330                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1331                        vmcs, phys_addr);
1332 }
1333
1334 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1335 {
1336         vmcs_clear(loaded_vmcs->vmcs);
1337         loaded_vmcs->cpu = -1;
1338         loaded_vmcs->launched = 0;
1339 }
1340
1341 static void vmcs_load(struct vmcs *vmcs)
1342 {
1343         u64 phys_addr = __pa(vmcs);
1344         u8 error;
1345
1346         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1347                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1348                         : "cc", "memory");
1349         if (error)
1350                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1351                        vmcs, phys_addr);
1352 }
1353
1354 #ifdef CONFIG_KEXEC_CORE
1355 /*
1356  * This bitmap is used to indicate whether the vmclear
1357  * operation is enabled on all cpus. All disabled by
1358  * default.
1359  */
1360 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1361
1362 static inline void crash_enable_local_vmclear(int cpu)
1363 {
1364         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1365 }
1366
1367 static inline void crash_disable_local_vmclear(int cpu)
1368 {
1369         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1370 }
1371
1372 static inline int crash_local_vmclear_enabled(int cpu)
1373 {
1374         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1375 }
1376
1377 static void crash_vmclear_local_loaded_vmcss(void)
1378 {
1379         int cpu = raw_smp_processor_id();
1380         struct loaded_vmcs *v;
1381
1382         if (!crash_local_vmclear_enabled(cpu))
1383                 return;
1384
1385         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1386                             loaded_vmcss_on_cpu_link)
1387                 vmcs_clear(v->vmcs);
1388 }
1389 #else
1390 static inline void crash_enable_local_vmclear(int cpu) { }
1391 static inline void crash_disable_local_vmclear(int cpu) { }
1392 #endif /* CONFIG_KEXEC_CORE */
1393
1394 static void __loaded_vmcs_clear(void *arg)
1395 {
1396         struct loaded_vmcs *loaded_vmcs = arg;
1397         int cpu = raw_smp_processor_id();
1398
1399         if (loaded_vmcs->cpu != cpu)
1400                 return; /* vcpu migration can race with cpu offline */
1401         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1402                 per_cpu(current_vmcs, cpu) = NULL;
1403         crash_disable_local_vmclear(cpu);
1404         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1405
1406         /*
1407          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1408          * is before setting loaded_vmcs->vcpu to -1 which is done in
1409          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1410          * then adds the vmcs into percpu list before it is deleted.
1411          */
1412         smp_wmb();
1413
1414         loaded_vmcs_init(loaded_vmcs);
1415         crash_enable_local_vmclear(cpu);
1416 }
1417
1418 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1419 {
1420         int cpu = loaded_vmcs->cpu;
1421
1422         if (cpu != -1)
1423                 smp_call_function_single(cpu,
1424                          __loaded_vmcs_clear, loaded_vmcs, 1);
1425 }
1426
1427 static inline void vpid_sync_vcpu_single(int vpid)
1428 {
1429         if (vpid == 0)
1430                 return;
1431
1432         if (cpu_has_vmx_invvpid_single())
1433                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1434 }
1435
1436 static inline void vpid_sync_vcpu_global(void)
1437 {
1438         if (cpu_has_vmx_invvpid_global())
1439                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1440 }
1441
1442 static inline void vpid_sync_context(int vpid)
1443 {
1444         if (cpu_has_vmx_invvpid_single())
1445                 vpid_sync_vcpu_single(vpid);
1446         else
1447                 vpid_sync_vcpu_global();
1448 }
1449
1450 static inline void ept_sync_global(void)
1451 {
1452         if (cpu_has_vmx_invept_global())
1453                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1454 }
1455
1456 static inline void ept_sync_context(u64 eptp)
1457 {
1458         if (enable_ept) {
1459                 if (cpu_has_vmx_invept_context())
1460                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1461                 else
1462                         ept_sync_global();
1463         }
1464 }
1465
1466 static __always_inline void vmcs_check16(unsigned long field)
1467 {
1468         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1469                          "16-bit accessor invalid for 64-bit field");
1470         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1471                          "16-bit accessor invalid for 64-bit high field");
1472         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1473                          "16-bit accessor invalid for 32-bit high field");
1474         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1475                          "16-bit accessor invalid for natural width field");
1476 }
1477
1478 static __always_inline void vmcs_check32(unsigned long field)
1479 {
1480         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1481                          "32-bit accessor invalid for 16-bit field");
1482         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1483                          "32-bit accessor invalid for natural width field");
1484 }
1485
1486 static __always_inline void vmcs_check64(unsigned long field)
1487 {
1488         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1489                          "64-bit accessor invalid for 16-bit field");
1490         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1491                          "64-bit accessor invalid for 64-bit high field");
1492         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1493                          "64-bit accessor invalid for 32-bit field");
1494         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1495                          "64-bit accessor invalid for natural width field");
1496 }
1497
1498 static __always_inline void vmcs_checkl(unsigned long field)
1499 {
1500         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1501                          "Natural width accessor invalid for 16-bit field");
1502         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1503                          "Natural width accessor invalid for 64-bit field");
1504         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1505                          "Natural width accessor invalid for 64-bit high field");
1506         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1507                          "Natural width accessor invalid for 32-bit field");
1508 }
1509
1510 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1511 {
1512         unsigned long value;
1513
1514         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1515                       : "=a"(value) : "d"(field) : "cc");
1516         return value;
1517 }
1518
1519 static __always_inline u16 vmcs_read16(unsigned long field)
1520 {
1521         vmcs_check16(field);
1522         return __vmcs_readl(field);
1523 }
1524
1525 static __always_inline u32 vmcs_read32(unsigned long field)
1526 {
1527         vmcs_check32(field);
1528         return __vmcs_readl(field);
1529 }
1530
1531 static __always_inline u64 vmcs_read64(unsigned long field)
1532 {
1533         vmcs_check64(field);
1534 #ifdef CONFIG_X86_64
1535         return __vmcs_readl(field);
1536 #else
1537         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1538 #endif
1539 }
1540
1541 static __always_inline unsigned long vmcs_readl(unsigned long field)
1542 {
1543         vmcs_checkl(field);
1544         return __vmcs_readl(field);
1545 }
1546
1547 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1548 {
1549         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1550                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1551         dump_stack();
1552 }
1553
1554 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1555 {
1556         u8 error;
1557
1558         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1559                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1560         if (unlikely(error))
1561                 vmwrite_error(field, value);
1562 }
1563
1564 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1565 {
1566         vmcs_check16(field);
1567         __vmcs_writel(field, value);
1568 }
1569
1570 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1571 {
1572         vmcs_check32(field);
1573         __vmcs_writel(field, value);
1574 }
1575
1576 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1577 {
1578         vmcs_check64(field);
1579         __vmcs_writel(field, value);
1580 #ifndef CONFIG_X86_64
1581         asm volatile ("");
1582         __vmcs_writel(field+1, value >> 32);
1583 #endif
1584 }
1585
1586 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1587 {
1588         vmcs_checkl(field);
1589         __vmcs_writel(field, value);
1590 }
1591
1592 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1593 {
1594         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1595                          "vmcs_clear_bits does not support 64-bit fields");
1596         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1597 }
1598
1599 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1600 {
1601         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1602                          "vmcs_set_bits does not support 64-bit fields");
1603         __vmcs_writel(field, __vmcs_readl(field) | mask);
1604 }
1605
1606 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1607 {
1608         vmcs_write32(VM_ENTRY_CONTROLS, val);
1609         vmx->vm_entry_controls_shadow = val;
1610 }
1611
1612 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1613 {
1614         if (vmx->vm_entry_controls_shadow != val)
1615                 vm_entry_controls_init(vmx, val);
1616 }
1617
1618 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1619 {
1620         return vmx->vm_entry_controls_shadow;
1621 }
1622
1623
1624 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1625 {
1626         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1627 }
1628
1629 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1630 {
1631         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1632 }
1633
1634 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1635 {
1636         vmcs_write32(VM_EXIT_CONTROLS, val);
1637         vmx->vm_exit_controls_shadow = val;
1638 }
1639
1640 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1641 {
1642         if (vmx->vm_exit_controls_shadow != val)
1643                 vm_exit_controls_init(vmx, val);
1644 }
1645
1646 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1647 {
1648         return vmx->vm_exit_controls_shadow;
1649 }
1650
1651
1652 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1653 {
1654         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1655 }
1656
1657 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1658 {
1659         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1660 }
1661
1662 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1663 {
1664         vmx->segment_cache.bitmask = 0;
1665 }
1666
1667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1668                                        unsigned field)
1669 {
1670         bool ret;
1671         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1672
1673         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1674                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1675                 vmx->segment_cache.bitmask = 0;
1676         }
1677         ret = vmx->segment_cache.bitmask & mask;
1678         vmx->segment_cache.bitmask |= mask;
1679         return ret;
1680 }
1681
1682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1683 {
1684         u16 *p = &vmx->segment_cache.seg[seg].selector;
1685
1686         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1687                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1688         return *p;
1689 }
1690
1691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1692 {
1693         ulong *p = &vmx->segment_cache.seg[seg].base;
1694
1695         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1696                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1697         return *p;
1698 }
1699
1700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1701 {
1702         u32 *p = &vmx->segment_cache.seg[seg].limit;
1703
1704         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1705                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1706         return *p;
1707 }
1708
1709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1710 {
1711         u32 *p = &vmx->segment_cache.seg[seg].ar;
1712
1713         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1714                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1715         return *p;
1716 }
1717
1718 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1719 {
1720         u32 eb;
1721
1722         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1723              (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1724         if ((vcpu->guest_debug &
1725              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1726             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1727                 eb |= 1u << BP_VECTOR;
1728         if (to_vmx(vcpu)->rmode.vm86_active)
1729                 eb = ~0;
1730         if (enable_ept)
1731                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1732         if (vcpu->fpu_active)
1733                 eb &= ~(1u << NM_VECTOR);
1734
1735         /* When we are running a nested L2 guest and L1 specified for it a
1736          * certain exception bitmap, we must trap the same exceptions and pass
1737          * them to L1. When running L2, we will only handle the exceptions
1738          * specified above if L1 did not want them.
1739          */
1740         if (is_guest_mode(vcpu))
1741                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1742
1743         vmcs_write32(EXCEPTION_BITMAP, eb);
1744 }
1745
1746 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1747                 unsigned long entry, unsigned long exit)
1748 {
1749         vm_entry_controls_clearbit(vmx, entry);
1750         vm_exit_controls_clearbit(vmx, exit);
1751 }
1752
1753 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1754 {
1755         unsigned i;
1756         struct msr_autoload *m = &vmx->msr_autoload;
1757
1758         switch (msr) {
1759         case MSR_EFER:
1760                 if (cpu_has_load_ia32_efer) {
1761                         clear_atomic_switch_msr_special(vmx,
1762                                         VM_ENTRY_LOAD_IA32_EFER,
1763                                         VM_EXIT_LOAD_IA32_EFER);
1764                         return;
1765                 }
1766                 break;
1767         case MSR_CORE_PERF_GLOBAL_CTRL:
1768                 if (cpu_has_load_perf_global_ctrl) {
1769                         clear_atomic_switch_msr_special(vmx,
1770                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1771                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1772                         return;
1773                 }
1774                 break;
1775         }
1776
1777         for (i = 0; i < m->nr; ++i)
1778                 if (m->guest[i].index == msr)
1779                         break;
1780
1781         if (i == m->nr)
1782                 return;
1783         --m->nr;
1784         m->guest[i] = m->guest[m->nr];
1785         m->host[i] = m->host[m->nr];
1786         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1787         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1788 }
1789
1790 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1791                 unsigned long entry, unsigned long exit,
1792                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1793                 u64 guest_val, u64 host_val)
1794 {
1795         vmcs_write64(guest_val_vmcs, guest_val);
1796         vmcs_write64(host_val_vmcs, host_val);
1797         vm_entry_controls_setbit(vmx, entry);
1798         vm_exit_controls_setbit(vmx, exit);
1799 }
1800
1801 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1802                                   u64 guest_val, u64 host_val)
1803 {
1804         unsigned i;
1805         struct msr_autoload *m = &vmx->msr_autoload;
1806
1807         switch (msr) {
1808         case MSR_EFER:
1809                 if (cpu_has_load_ia32_efer) {
1810                         add_atomic_switch_msr_special(vmx,
1811                                         VM_ENTRY_LOAD_IA32_EFER,
1812                                         VM_EXIT_LOAD_IA32_EFER,
1813                                         GUEST_IA32_EFER,
1814                                         HOST_IA32_EFER,
1815                                         guest_val, host_val);
1816                         return;
1817                 }
1818                 break;
1819         case MSR_CORE_PERF_GLOBAL_CTRL:
1820                 if (cpu_has_load_perf_global_ctrl) {
1821                         add_atomic_switch_msr_special(vmx,
1822                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1823                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1824                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1825                                         HOST_IA32_PERF_GLOBAL_CTRL,
1826                                         guest_val, host_val);
1827                         return;
1828                 }
1829                 break;
1830         case MSR_IA32_PEBS_ENABLE:
1831                 /* PEBS needs a quiescent period after being disabled (to write
1832                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1833                  * provide that period, so a CPU could write host's record into
1834                  * guest's memory.
1835                  */
1836                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1837         }
1838
1839         for (i = 0; i < m->nr; ++i)
1840                 if (m->guest[i].index == msr)
1841                         break;
1842
1843         if (i == NR_AUTOLOAD_MSRS) {
1844                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1845                                 "Can't add msr %x\n", msr);
1846                 return;
1847         } else if (i == m->nr) {
1848                 ++m->nr;
1849                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1850                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1851         }
1852
1853         m->guest[i].index = msr;
1854         m->guest[i].value = guest_val;
1855         m->host[i].index = msr;
1856         m->host[i].value = host_val;
1857 }
1858
1859 static void reload_tss(void)
1860 {
1861         /*
1862          * VT restores TR but not its size.  Useless.
1863          */
1864         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1865         struct desc_struct *descs;
1866
1867         descs = (void *)gdt->address;
1868         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1869         load_TR_desc();
1870 }
1871
1872 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1873 {
1874         u64 guest_efer = vmx->vcpu.arch.efer;
1875         u64 ignore_bits = 0;
1876
1877         if (!enable_ept) {
1878                 /*
1879                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
1880                  * host CPUID is more efficient than testing guest CPUID
1881                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
1882                  */
1883                 if (boot_cpu_has(X86_FEATURE_SMEP))
1884                         guest_efer |= EFER_NX;
1885                 else if (!(guest_efer & EFER_NX))
1886                         ignore_bits |= EFER_NX;
1887         }
1888
1889         /*
1890          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1891          */
1892         ignore_bits |= EFER_SCE;
1893 #ifdef CONFIG_X86_64
1894         ignore_bits |= EFER_LMA | EFER_LME;
1895         /* SCE is meaningful only in long mode on Intel */
1896         if (guest_efer & EFER_LMA)
1897                 ignore_bits &= ~(u64)EFER_SCE;
1898 #endif
1899
1900         clear_atomic_switch_msr(vmx, MSR_EFER);
1901
1902         /*
1903          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1904          * On CPUs that support "load IA32_EFER", always switch EFER
1905          * atomically, since it's faster than switching it manually.
1906          */
1907         if (cpu_has_load_ia32_efer ||
1908             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1909                 if (!(guest_efer & EFER_LMA))
1910                         guest_efer &= ~EFER_LME;
1911                 if (guest_efer != host_efer)
1912                         add_atomic_switch_msr(vmx, MSR_EFER,
1913                                               guest_efer, host_efer);
1914                 return false;
1915         } else {
1916                 guest_efer &= ~ignore_bits;
1917                 guest_efer |= host_efer & ignore_bits;
1918
1919                 vmx->guest_msrs[efer_offset].data = guest_efer;
1920                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1921
1922                 return true;
1923         }
1924 }
1925
1926 static unsigned long segment_base(u16 selector)
1927 {
1928         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1929         struct desc_struct *d;
1930         unsigned long table_base;
1931         unsigned long v;
1932
1933         if (!(selector & ~3))
1934                 return 0;
1935
1936         table_base = gdt->address;
1937
1938         if (selector & 4) {           /* from ldt */
1939                 u16 ldt_selector = kvm_read_ldt();
1940
1941                 if (!(ldt_selector & ~3))
1942                         return 0;
1943
1944                 table_base = segment_base(ldt_selector);
1945         }
1946         d = (struct desc_struct *)(table_base + (selector & ~7));
1947         v = get_desc_base(d);
1948 #ifdef CONFIG_X86_64
1949        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1950                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1951 #endif
1952         return v;
1953 }
1954
1955 static inline unsigned long kvm_read_tr_base(void)
1956 {
1957         u16 tr;
1958         asm("str %0" : "=g"(tr));
1959         return segment_base(tr);
1960 }
1961
1962 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1963 {
1964         struct vcpu_vmx *vmx = to_vmx(vcpu);
1965         int i;
1966
1967         if (vmx->host_state.loaded)
1968                 return;
1969
1970         vmx->host_state.loaded = 1;
1971         /*
1972          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1973          * allow segment selectors with cpl > 0 or ti == 1.
1974          */
1975         vmx->host_state.ldt_sel = kvm_read_ldt();
1976         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1977         savesegment(fs, vmx->host_state.fs_sel);
1978         if (!(vmx->host_state.fs_sel & 7)) {
1979                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1980                 vmx->host_state.fs_reload_needed = 0;
1981         } else {
1982                 vmcs_write16(HOST_FS_SELECTOR, 0);
1983                 vmx->host_state.fs_reload_needed = 1;
1984         }
1985         savesegment(gs, vmx->host_state.gs_sel);
1986         if (!(vmx->host_state.gs_sel & 7))
1987                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1988         else {
1989                 vmcs_write16(HOST_GS_SELECTOR, 0);
1990                 vmx->host_state.gs_ldt_reload_needed = 1;
1991         }
1992
1993 #ifdef CONFIG_X86_64
1994         savesegment(ds, vmx->host_state.ds_sel);
1995         savesegment(es, vmx->host_state.es_sel);
1996 #endif
1997
1998 #ifdef CONFIG_X86_64
1999         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2000         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2001 #else
2002         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2003         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2004 #endif
2005
2006 #ifdef CONFIG_X86_64
2007         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2008         if (is_long_mode(&vmx->vcpu))
2009                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2010 #endif
2011         if (boot_cpu_has(X86_FEATURE_MPX))
2012                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2013         for (i = 0; i < vmx->save_nmsrs; ++i)
2014                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2015                                    vmx->guest_msrs[i].data,
2016                                    vmx->guest_msrs[i].mask);
2017 }
2018
2019 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2020 {
2021         if (!vmx->host_state.loaded)
2022                 return;
2023
2024         ++vmx->vcpu.stat.host_state_reload;
2025         vmx->host_state.loaded = 0;
2026 #ifdef CONFIG_X86_64
2027         if (is_long_mode(&vmx->vcpu))
2028                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2029 #endif
2030         if (vmx->host_state.gs_ldt_reload_needed) {
2031                 kvm_load_ldt(vmx->host_state.ldt_sel);
2032 #ifdef CONFIG_X86_64
2033                 load_gs_index(vmx->host_state.gs_sel);
2034 #else
2035                 loadsegment(gs, vmx->host_state.gs_sel);
2036 #endif
2037         }
2038         if (vmx->host_state.fs_reload_needed)
2039                 loadsegment(fs, vmx->host_state.fs_sel);
2040 #ifdef CONFIG_X86_64
2041         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2042                 loadsegment(ds, vmx->host_state.ds_sel);
2043                 loadsegment(es, vmx->host_state.es_sel);
2044         }
2045 #endif
2046         reload_tss();
2047 #ifdef CONFIG_X86_64
2048         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2049 #endif
2050         if (vmx->host_state.msr_host_bndcfgs)
2051                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2052         /*
2053          * If the FPU is not active (through the host task or
2054          * the guest vcpu), then restore the cr0.TS bit.
2055          */
2056         if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2057                 stts();
2058         load_gdt(this_cpu_ptr(&host_gdt));
2059 }
2060
2061 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2062 {
2063         preempt_disable();
2064         __vmx_load_host_state(vmx);
2065         preempt_enable();
2066 }
2067
2068 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2069 {
2070         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2071         struct pi_desc old, new;
2072         unsigned int dest;
2073
2074         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2075                 !irq_remapping_cap(IRQ_POSTING_CAP))
2076                 return;
2077
2078         do {
2079                 old.control = new.control = pi_desc->control;
2080
2081                 /*
2082                  * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2083                  * are two possible cases:
2084                  * 1. After running 'pre_block', context switch
2085                  *    happened. For this case, 'sn' was set in
2086                  *    vmx_vcpu_put(), so we need to clear it here.
2087                  * 2. After running 'pre_block', we were blocked,
2088                  *    and woken up by some other guy. For this case,
2089                  *    we don't need to do anything, 'pi_post_block'
2090                  *    will do everything for us. However, we cannot
2091                  *    check whether it is case #1 or case #2 here
2092                  *    (maybe, not needed), so we also clear sn here,
2093                  *    I think it is not a big deal.
2094                  */
2095                 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2096                         if (vcpu->cpu != cpu) {
2097                                 dest = cpu_physical_id(cpu);
2098
2099                                 if (x2apic_enabled())
2100                                         new.ndst = dest;
2101                                 else
2102                                         new.ndst = (dest << 8) & 0xFF00;
2103                         }
2104
2105                         /* set 'NV' to 'notification vector' */
2106                         new.nv = POSTED_INTR_VECTOR;
2107                 }
2108
2109                 /* Allow posting non-urgent interrupts */
2110                 new.sn = 0;
2111         } while (cmpxchg(&pi_desc->control, old.control,
2112                         new.control) != old.control);
2113 }
2114
2115 /*
2116  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2117  * vcpu mutex is already taken.
2118  */
2119 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2120 {
2121         struct vcpu_vmx *vmx = to_vmx(vcpu);
2122         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2123
2124         if (!vmm_exclusive)
2125                 kvm_cpu_vmxon(phys_addr);
2126         else if (vmx->loaded_vmcs->cpu != cpu)
2127                 loaded_vmcs_clear(vmx->loaded_vmcs);
2128
2129         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2130                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2131                 vmcs_load(vmx->loaded_vmcs->vmcs);
2132         }
2133
2134         if (vmx->loaded_vmcs->cpu != cpu) {
2135                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2136                 unsigned long sysenter_esp;
2137
2138                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2139                 local_irq_disable();
2140                 crash_disable_local_vmclear(cpu);
2141
2142                 /*
2143                  * Read loaded_vmcs->cpu should be before fetching
2144                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2145                  * See the comments in __loaded_vmcs_clear().
2146                  */
2147                 smp_rmb();
2148
2149                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2150                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2151                 crash_enable_local_vmclear(cpu);
2152                 local_irq_enable();
2153
2154                 /*
2155                  * Linux uses per-cpu TSS and GDT, so set these when switching
2156                  * processors.
2157                  */
2158                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2159                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
2160
2161                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2162                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2163
2164                 vmx->loaded_vmcs->cpu = cpu;
2165         }
2166
2167         /* Setup TSC multiplier */
2168         if (kvm_has_tsc_control &&
2169             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2170                 vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2171                 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2172         }
2173
2174         vmx_vcpu_pi_load(vcpu, cpu);
2175         vmx->host_pkru = read_pkru();
2176 }
2177
2178 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2179 {
2180         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2181
2182         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2183                 !irq_remapping_cap(IRQ_POSTING_CAP))
2184                 return;
2185
2186         /* Set SN when the vCPU is preempted */
2187         if (vcpu->preempted)
2188                 pi_set_sn(pi_desc);
2189 }
2190
2191 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2192 {
2193         vmx_vcpu_pi_put(vcpu);
2194
2195         __vmx_load_host_state(to_vmx(vcpu));
2196         if (!vmm_exclusive) {
2197                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2198                 vcpu->cpu = -1;
2199                 kvm_cpu_vmxoff();
2200         }
2201 }
2202
2203 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2204 {
2205         ulong cr0;
2206
2207         if (vcpu->fpu_active)
2208                 return;
2209         vcpu->fpu_active = 1;
2210         cr0 = vmcs_readl(GUEST_CR0);
2211         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2212         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2213         vmcs_writel(GUEST_CR0, cr0);
2214         update_exception_bitmap(vcpu);
2215         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2216         if (is_guest_mode(vcpu))
2217                 vcpu->arch.cr0_guest_owned_bits &=
2218                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2219         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2220 }
2221
2222 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2223
2224 /*
2225  * Return the cr0 value that a nested guest would read. This is a combination
2226  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2227  * its hypervisor (cr0_read_shadow).
2228  */
2229 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2230 {
2231         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2232                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2233 }
2234 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2235 {
2236         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2237                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2238 }
2239
2240 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2241 {
2242         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2243          * set this *before* calling this function.
2244          */
2245         vmx_decache_cr0_guest_bits(vcpu);
2246         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2247         update_exception_bitmap(vcpu);
2248         vcpu->arch.cr0_guest_owned_bits = 0;
2249         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2250         if (is_guest_mode(vcpu)) {
2251                 /*
2252                  * L1's specified read shadow might not contain the TS bit,
2253                  * so now that we turned on shadowing of this bit, we need to
2254                  * set this bit of the shadow. Like in nested_vmx_run we need
2255                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2256                  * up-to-date here because we just decached cr0.TS (and we'll
2257                  * only update vmcs12->guest_cr0 on nested exit).
2258                  */
2259                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2260                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2261                         (vcpu->arch.cr0 & X86_CR0_TS);
2262                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2263         } else
2264                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2265 }
2266
2267 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2268 {
2269         unsigned long rflags, save_rflags;
2270
2271         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2272                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2273                 rflags = vmcs_readl(GUEST_RFLAGS);
2274                 if (to_vmx(vcpu)->rmode.vm86_active) {
2275                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2276                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2277                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2278                 }
2279                 to_vmx(vcpu)->rflags = rflags;
2280         }
2281         return to_vmx(vcpu)->rflags;
2282 }
2283
2284 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2285 {
2286         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2287         to_vmx(vcpu)->rflags = rflags;
2288         if (to_vmx(vcpu)->rmode.vm86_active) {
2289                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2290                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2291         }
2292         vmcs_writel(GUEST_RFLAGS, rflags);
2293 }
2294
2295 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2296 {
2297         return to_vmx(vcpu)->guest_pkru;
2298 }
2299
2300 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2301 {
2302         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2303         int ret = 0;
2304
2305         if (interruptibility & GUEST_INTR_STATE_STI)
2306                 ret |= KVM_X86_SHADOW_INT_STI;
2307         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2308                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2309
2310         return ret;
2311 }
2312
2313 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2314 {
2315         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2316         u32 interruptibility = interruptibility_old;
2317
2318         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2319
2320         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2321                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2322         else if (mask & KVM_X86_SHADOW_INT_STI)
2323                 interruptibility |= GUEST_INTR_STATE_STI;
2324
2325         if ((interruptibility != interruptibility_old))
2326                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2327 }
2328
2329 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2330 {
2331         unsigned long rip;
2332
2333         rip = kvm_rip_read(vcpu);
2334         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2335         kvm_rip_write(vcpu, rip);
2336
2337         /* skipping an emulated instruction also counts */
2338         vmx_set_interrupt_shadow(vcpu, 0);
2339 }
2340
2341 /*
2342  * KVM wants to inject page-faults which it got to the guest. This function
2343  * checks whether in a nested guest, we need to inject them to L1 or L2.
2344  */
2345 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2346 {
2347         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2348
2349         if (!(vmcs12->exception_bitmap & (1u << nr)))
2350                 return 0;
2351
2352         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2353                           vmcs_read32(VM_EXIT_INTR_INFO),
2354                           vmcs_readl(EXIT_QUALIFICATION));
2355         return 1;
2356 }
2357
2358 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2359                                 bool has_error_code, u32 error_code,
2360                                 bool reinject)
2361 {
2362         struct vcpu_vmx *vmx = to_vmx(vcpu);
2363         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2364
2365         if (!reinject && is_guest_mode(vcpu) &&
2366             nested_vmx_check_exception(vcpu, nr))
2367                 return;
2368
2369         if (has_error_code) {
2370                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2371                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2372         }
2373
2374         if (vmx->rmode.vm86_active) {
2375                 int inc_eip = 0;
2376                 if (kvm_exception_is_soft(nr))
2377                         inc_eip = vcpu->arch.event_exit_inst_len;
2378                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2379                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2380                 return;
2381         }
2382
2383         if (kvm_exception_is_soft(nr)) {
2384                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2385                              vmx->vcpu.arch.event_exit_inst_len);
2386                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2387         } else
2388                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2389
2390         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2391 }
2392
2393 static bool vmx_rdtscp_supported(void)
2394 {
2395         return cpu_has_vmx_rdtscp();
2396 }
2397
2398 static bool vmx_invpcid_supported(void)
2399 {
2400         return cpu_has_vmx_invpcid() && enable_ept;
2401 }
2402
2403 /*
2404  * Swap MSR entry in host/guest MSR entry array.
2405  */
2406 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2407 {
2408         struct shared_msr_entry tmp;
2409
2410         tmp = vmx->guest_msrs[to];
2411         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2412         vmx->guest_msrs[from] = tmp;
2413 }
2414
2415 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2416 {
2417         unsigned long *msr_bitmap;
2418
2419         if (is_guest_mode(vcpu))
2420                 msr_bitmap = vmx_msr_bitmap_nested;
2421         else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2422                 if (is_long_mode(vcpu))
2423                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2424                 else
2425                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2426         } else {
2427                 if (is_long_mode(vcpu))
2428                         msr_bitmap = vmx_msr_bitmap_longmode;
2429                 else
2430                         msr_bitmap = vmx_msr_bitmap_legacy;
2431         }
2432
2433         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2434 }
2435
2436 /*
2437  * Set up the vmcs to automatically save and restore system
2438  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2439  * mode, as fiddling with msrs is very expensive.
2440  */
2441 static void setup_msrs(struct vcpu_vmx *vmx)
2442 {
2443         int save_nmsrs, index;
2444
2445         save_nmsrs = 0;
2446 #ifdef CONFIG_X86_64
2447         if (is_long_mode(&vmx->vcpu)) {
2448                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2449                 if (index >= 0)
2450                         move_msr_up(vmx, index, save_nmsrs++);
2451                 index = __find_msr_index(vmx, MSR_LSTAR);
2452                 if (index >= 0)
2453                         move_msr_up(vmx, index, save_nmsrs++);
2454                 index = __find_msr_index(vmx, MSR_CSTAR);
2455                 if (index >= 0)
2456                         move_msr_up(vmx, index, save_nmsrs++);
2457                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2458                 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2459                         move_msr_up(vmx, index, save_nmsrs++);
2460                 /*
2461                  * MSR_STAR is only needed on long mode guests, and only
2462                  * if efer.sce is enabled.
2463                  */
2464                 index = __find_msr_index(vmx, MSR_STAR);
2465                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2466                         move_msr_up(vmx, index, save_nmsrs++);
2467         }
2468 #endif
2469         index = __find_msr_index(vmx, MSR_EFER);
2470         if (index >= 0 && update_transition_efer(vmx, index))
2471                 move_msr_up(vmx, index, save_nmsrs++);
2472
2473         vmx->save_nmsrs = save_nmsrs;
2474
2475         if (cpu_has_vmx_msr_bitmap())
2476                 vmx_set_msr_bitmap(&vmx->vcpu);
2477 }
2478
2479 /*
2480  * reads and returns guest's timestamp counter "register"
2481  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2482  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2483  */
2484 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2485 {
2486         u64 host_tsc, tsc_offset;
2487
2488         host_tsc = rdtsc();
2489         tsc_offset = vmcs_read64(TSC_OFFSET);
2490         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2491 }
2492
2493 /*
2494  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2495  * counter, even if a nested guest (L2) is currently running.
2496  */
2497 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2498 {
2499         u64 tsc_offset;
2500
2501         tsc_offset = is_guest_mode(vcpu) ?
2502                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2503                 vmcs_read64(TSC_OFFSET);
2504         return host_tsc + tsc_offset;
2505 }
2506
2507 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2508 {
2509         return vmcs_read64(TSC_OFFSET);
2510 }
2511
2512 /*
2513  * writes 'offset' into guest's timestamp counter offset register
2514  */
2515 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2516 {
2517         if (is_guest_mode(vcpu)) {
2518                 /*
2519                  * We're here if L1 chose not to trap WRMSR to TSC. According
2520                  * to the spec, this should set L1's TSC; The offset that L1
2521                  * set for L2 remains unchanged, and still needs to be added
2522                  * to the newly set TSC to get L2's TSC.
2523                  */
2524                 struct vmcs12 *vmcs12;
2525                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2526                 /* recalculate vmcs02.TSC_OFFSET: */
2527                 vmcs12 = get_vmcs12(vcpu);
2528                 vmcs_write64(TSC_OFFSET, offset +
2529                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2530                          vmcs12->tsc_offset : 0));
2531         } else {
2532                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2533                                            vmcs_read64(TSC_OFFSET), offset);
2534                 vmcs_write64(TSC_OFFSET, offset);
2535         }
2536 }
2537
2538 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2539 {
2540         u64 offset = vmcs_read64(TSC_OFFSET);
2541
2542         vmcs_write64(TSC_OFFSET, offset + adjustment);
2543         if (is_guest_mode(vcpu)) {
2544                 /* Even when running L2, the adjustment needs to apply to L1 */
2545                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2546         } else
2547                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2548                                            offset + adjustment);
2549 }
2550
2551 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2552 {
2553         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2554         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2555 }
2556
2557 /*
2558  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2559  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2560  * all guests if the "nested" module option is off, and can also be disabled
2561  * for a single guest by disabling its VMX cpuid bit.
2562  */
2563 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2564 {
2565         return nested && guest_cpuid_has_vmx(vcpu);
2566 }
2567
2568 /*
2569  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2570  * returned for the various VMX controls MSRs when nested VMX is enabled.
2571  * The same values should also be used to verify that vmcs12 control fields are
2572  * valid during nested entry from L1 to L2.
2573  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2574  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2575  * bit in the high half is on if the corresponding bit in the control field
2576  * may be on. See also vmx_control_verify().
2577  */
2578 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2579 {
2580         /*
2581          * Note that as a general rule, the high half of the MSRs (bits in
2582          * the control fields which may be 1) should be initialized by the
2583          * intersection of the underlying hardware's MSR (i.e., features which
2584          * can be supported) and the list of features we want to expose -
2585          * because they are known to be properly supported in our code.
2586          * Also, usually, the low half of the MSRs (bits which must be 1) can
2587          * be set to 0, meaning that L1 may turn off any of these bits. The
2588          * reason is that if one of these bits is necessary, it will appear
2589          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2590          * fields of vmcs01 and vmcs02, will turn these bits off - and
2591          * nested_vmx_exit_handled() will not pass related exits to L1.
2592          * These rules have exceptions below.
2593          */
2594
2595         /* pin-based controls */
2596         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2597                 vmx->nested.nested_vmx_pinbased_ctls_low,
2598                 vmx->nested.nested_vmx_pinbased_ctls_high);
2599         vmx->nested.nested_vmx_pinbased_ctls_low |=
2600                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2601         vmx->nested.nested_vmx_pinbased_ctls_high &=
2602                 PIN_BASED_EXT_INTR_MASK |
2603                 PIN_BASED_NMI_EXITING |
2604                 PIN_BASED_VIRTUAL_NMIS;
2605         vmx->nested.nested_vmx_pinbased_ctls_high |=
2606                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2607                 PIN_BASED_VMX_PREEMPTION_TIMER;
2608         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2609                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2610                         PIN_BASED_POSTED_INTR;
2611
2612         /* exit controls */
2613         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2614                 vmx->nested.nested_vmx_exit_ctls_low,
2615                 vmx->nested.nested_vmx_exit_ctls_high);
2616         vmx->nested.nested_vmx_exit_ctls_low =
2617                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2618
2619         vmx->nested.nested_vmx_exit_ctls_high &=
2620 #ifdef CONFIG_X86_64
2621                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2622 #endif
2623                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2624         vmx->nested.nested_vmx_exit_ctls_high |=
2625                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2626                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2627                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2628
2629         if (kvm_mpx_supported())
2630                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2631
2632         /* We support free control of debug control saving. */
2633         vmx->nested.nested_vmx_true_exit_ctls_low =
2634                 vmx->nested.nested_vmx_exit_ctls_low &
2635                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2636
2637         /* entry controls */
2638         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2639                 vmx->nested.nested_vmx_entry_ctls_low,
2640                 vmx->nested.nested_vmx_entry_ctls_high);
2641         vmx->nested.nested_vmx_entry_ctls_low =
2642                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2643         vmx->nested.nested_vmx_entry_ctls_high &=
2644 #ifdef CONFIG_X86_64
2645                 VM_ENTRY_IA32E_MODE |
2646 #endif
2647                 VM_ENTRY_LOAD_IA32_PAT;
2648         vmx->nested.nested_vmx_entry_ctls_high |=
2649                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2650         if (kvm_mpx_supported())
2651                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2652
2653         /* We support free control of debug control loading. */
2654         vmx->nested.nested_vmx_true_entry_ctls_low =
2655                 vmx->nested.nested_vmx_entry_ctls_low &
2656                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2657
2658         /* cpu-based controls */
2659         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2660                 vmx->nested.nested_vmx_procbased_ctls_low,
2661                 vmx->nested.nested_vmx_procbased_ctls_high);
2662         vmx->nested.nested_vmx_procbased_ctls_low =
2663                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2664         vmx->nested.nested_vmx_procbased_ctls_high &=
2665                 CPU_BASED_VIRTUAL_INTR_PENDING |
2666                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2667                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2668                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2669                 CPU_BASED_CR3_STORE_EXITING |
2670 #ifdef CONFIG_X86_64
2671                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2672 #endif
2673                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2674                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2675                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2676                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2677                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2678         /*
2679          * We can allow some features even when not supported by the
2680          * hardware. For example, L1 can specify an MSR bitmap - and we
2681          * can use it to avoid exits to L1 - even when L0 runs L2
2682          * without MSR bitmaps.
2683          */
2684         vmx->nested.nested_vmx_procbased_ctls_high |=
2685                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2686                 CPU_BASED_USE_MSR_BITMAPS;
2687
2688         /* We support free control of CR3 access interception. */
2689         vmx->nested.nested_vmx_true_procbased_ctls_low =
2690                 vmx->nested.nested_vmx_procbased_ctls_low &
2691                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2692
2693         /* secondary cpu-based controls */
2694         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2695                 vmx->nested.nested_vmx_secondary_ctls_low,
2696                 vmx->nested.nested_vmx_secondary_ctls_high);
2697         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2698         vmx->nested.nested_vmx_secondary_ctls_high &=
2699                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2700                 SECONDARY_EXEC_RDTSCP |
2701                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2702                 SECONDARY_EXEC_ENABLE_VPID |
2703                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2704                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2705                 SECONDARY_EXEC_WBINVD_EXITING |
2706                 SECONDARY_EXEC_XSAVES |
2707                 SECONDARY_EXEC_PCOMMIT;
2708
2709         if (enable_ept) {
2710                 /* nested EPT: emulate EPT also to L1 */
2711                 vmx->nested.nested_vmx_secondary_ctls_high |=
2712                         SECONDARY_EXEC_ENABLE_EPT;
2713                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2714                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2715                          VMX_EPT_INVEPT_BIT;
2716                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2717                 /*
2718                  * For nested guests, we don't do anything specific
2719                  * for single context invalidation. Hence, only advertise
2720                  * support for global context invalidation.
2721                  */
2722                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2723         } else
2724                 vmx->nested.nested_vmx_ept_caps = 0;
2725
2726         /*
2727          * Old versions of KVM use the single-context version without
2728          * checking for support, so declare that it is supported even
2729          * though it is treated as global context.  The alternative is
2730          * not failing the single-context invvpid, and it is worse.
2731          */
2732         if (enable_vpid)
2733                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2734                                 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
2735                                 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2736         else
2737                 vmx->nested.nested_vmx_vpid_caps = 0;
2738
2739         if (enable_unrestricted_guest)
2740                 vmx->nested.nested_vmx_secondary_ctls_high |=
2741                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2742
2743         /* miscellaneous data */
2744         rdmsr(MSR_IA32_VMX_MISC,
2745                 vmx->nested.nested_vmx_misc_low,
2746                 vmx->nested.nested_vmx_misc_high);
2747         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2748         vmx->nested.nested_vmx_misc_low |=
2749                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2750                 VMX_MISC_ACTIVITY_HLT;
2751         vmx->nested.nested_vmx_misc_high = 0;
2752 }
2753
2754 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2755 {
2756         /*
2757          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2758          */
2759         return ((control & high) | low) == control;
2760 }
2761
2762 static inline u64 vmx_control_msr(u32 low, u32 high)
2763 {
2764         return low | ((u64)high << 32);
2765 }
2766
2767 /* Returns 0 on success, non-0 otherwise. */
2768 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2769 {
2770         struct vcpu_vmx *vmx = to_vmx(vcpu);
2771
2772         switch (msr_index) {
2773         case MSR_IA32_VMX_BASIC:
2774                 /*
2775                  * This MSR reports some information about VMX support. We
2776                  * should return information about the VMX we emulate for the
2777                  * guest, and the VMCS structure we give it - not about the
2778                  * VMX support of the underlying hardware.
2779                  */
2780                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2781                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2782                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2783                 break;
2784         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2785         case MSR_IA32_VMX_PINBASED_CTLS:
2786                 *pdata = vmx_control_msr(
2787                         vmx->nested.nested_vmx_pinbased_ctls_low,
2788                         vmx->nested.nested_vmx_pinbased_ctls_high);
2789                 break;
2790         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2791                 *pdata = vmx_control_msr(
2792                         vmx->nested.nested_vmx_true_procbased_ctls_low,
2793                         vmx->nested.nested_vmx_procbased_ctls_high);
2794                 break;
2795         case MSR_IA32_VMX_PROCBASED_CTLS:
2796                 *pdata = vmx_control_msr(
2797                         vmx->nested.nested_vmx_procbased_ctls_low,
2798                         vmx->nested.nested_vmx_procbased_ctls_high);
2799                 break;
2800         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2801                 *pdata = vmx_control_msr(
2802                         vmx->nested.nested_vmx_true_exit_ctls_low,
2803                         vmx->nested.nested_vmx_exit_ctls_high);
2804                 break;
2805         case MSR_IA32_VMX_EXIT_CTLS:
2806                 *pdata = vmx_control_msr(
2807                         vmx->nested.nested_vmx_exit_ctls_low,
2808                         vmx->nested.nested_vmx_exit_ctls_high);
2809                 break;
2810         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2811                 *pdata = vmx_control_msr(
2812                         vmx->nested.nested_vmx_true_entry_ctls_low,
2813                         vmx->nested.nested_vmx_entry_ctls_high);
2814                 break;
2815         case MSR_IA32_VMX_ENTRY_CTLS:
2816                 *pdata = vmx_control_msr(
2817                         vmx->nested.nested_vmx_entry_ctls_low,
2818                         vmx->nested.nested_vmx_entry_ctls_high);
2819                 break;
2820         case MSR_IA32_VMX_MISC:
2821                 *pdata = vmx_control_msr(
2822                         vmx->nested.nested_vmx_misc_low,
2823                         vmx->nested.nested_vmx_misc_high);
2824                 break;
2825         /*
2826          * These MSRs specify bits which the guest must keep fixed (on or off)
2827          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2828          * We picked the standard core2 setting.
2829          */
2830 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2831 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2832         case MSR_IA32_VMX_CR0_FIXED0:
2833                 *pdata = VMXON_CR0_ALWAYSON;
2834                 break;
2835         case MSR_IA32_VMX_CR0_FIXED1:
2836                 *pdata = -1ULL;
2837                 break;
2838         case MSR_IA32_VMX_CR4_FIXED0:
2839                 *pdata = VMXON_CR4_ALWAYSON;
2840                 break;
2841         case MSR_IA32_VMX_CR4_FIXED1:
2842                 *pdata = -1ULL;
2843                 break;
2844         case MSR_IA32_VMX_VMCS_ENUM:
2845                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2846                 break;
2847         case MSR_IA32_VMX_PROCBASED_CTLS2:
2848                 *pdata = vmx_control_msr(
2849                         vmx->nested.nested_vmx_secondary_ctls_low,
2850                         vmx->nested.nested_vmx_secondary_ctls_high);
2851                 break;
2852         case MSR_IA32_VMX_EPT_VPID_CAP:
2853                 /* Currently, no nested vpid support */
2854                 *pdata = vmx->nested.nested_vmx_ept_caps |
2855                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2856                 break;
2857         default:
2858                 return 1;
2859         }
2860
2861         return 0;
2862 }
2863
2864 /*
2865  * Reads an msr value (of 'msr_index') into 'pdata'.
2866  * Returns 0 on success, non-0 otherwise.
2867  * Assumes vcpu_load() was already called.
2868  */
2869 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2870 {
2871         struct shared_msr_entry *msr;
2872
2873         switch (msr_info->index) {
2874 #ifdef CONFIG_X86_64
2875         case MSR_FS_BASE:
2876                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2877                 break;
2878         case MSR_GS_BASE:
2879                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2880                 break;
2881         case MSR_KERNEL_GS_BASE:
2882                 vmx_load_host_state(to_vmx(vcpu));
2883                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2884                 break;
2885 #endif
2886         case MSR_EFER:
2887                 return kvm_get_msr_common(vcpu, msr_info);
2888         case MSR_IA32_TSC:
2889                 msr_info->data = guest_read_tsc(vcpu);
2890                 break;
2891         case MSR_IA32_SYSENTER_CS:
2892                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2893                 break;
2894         case MSR_IA32_SYSENTER_EIP:
2895                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2896                 break;
2897         case MSR_IA32_SYSENTER_ESP:
2898                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2899                 break;
2900         case MSR_IA32_BNDCFGS:
2901                 if (!kvm_mpx_supported())
2902                         return 1;
2903                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2904                 break;
2905         case MSR_IA32_FEATURE_CONTROL:
2906                 if (!nested_vmx_allowed(vcpu))
2907                         return 1;
2908                 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2909                 break;
2910         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2911                 if (!nested_vmx_allowed(vcpu))
2912                         return 1;
2913                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2914         case MSR_IA32_XSS:
2915                 if (!vmx_xsaves_supported())
2916                         return 1;
2917                 msr_info->data = vcpu->arch.ia32_xss;
2918                 break;
2919         case MSR_TSC_AUX:
2920                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2921                         return 1;
2922                 /* Otherwise falls through */
2923         default:
2924                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2925                 if (msr) {
2926                         msr_info->data = msr->data;
2927                         break;
2928                 }
2929                 return kvm_get_msr_common(vcpu, msr_info);
2930         }
2931
2932         return 0;
2933 }
2934
2935 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2936
2937 /*
2938  * Writes msr value into into the appropriate "register".
2939  * Returns 0 on success, non-0 otherwise.
2940  * Assumes vcpu_load() was already called.
2941  */
2942 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2943 {
2944         struct vcpu_vmx *vmx = to_vmx(vcpu);
2945         struct shared_msr_entry *msr;
2946         int ret = 0;
2947         u32 msr_index = msr_info->index;
2948         u64 data = msr_info->data;
2949
2950         switch (msr_index) {
2951         case MSR_EFER:
2952                 ret = kvm_set_msr_common(vcpu, msr_info);
2953                 break;
2954 #ifdef CONFIG_X86_64
2955         case MSR_FS_BASE:
2956                 vmx_segment_cache_clear(vmx);
2957                 vmcs_writel(GUEST_FS_BASE, data);
2958                 break;
2959         case MSR_GS_BASE:
2960                 vmx_segment_cache_clear(vmx);
2961                 vmcs_writel(GUEST_GS_BASE, data);
2962                 break;
2963         case MSR_KERNEL_GS_BASE:
2964                 vmx_load_host_state(vmx);
2965                 vmx->msr_guest_kernel_gs_base = data;
2966                 break;
2967 #endif
2968         case MSR_IA32_SYSENTER_CS:
2969                 vmcs_write32(GUEST_SYSENTER_CS, data);
2970                 break;
2971         case MSR_IA32_SYSENTER_EIP:
2972                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2973                 break;
2974         case MSR_IA32_SYSENTER_ESP:
2975                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2976                 break;
2977         case MSR_IA32_BNDCFGS:
2978                 if (!kvm_mpx_supported())
2979                         return 1;
2980                 vmcs_write64(GUEST_BNDCFGS, data);
2981                 break;
2982         case MSR_IA32_TSC:
2983                 kvm_write_tsc(vcpu, msr_info);
2984                 break;
2985         case MSR_IA32_CR_PAT:
2986                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2987                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2988                                 return 1;
2989                         vmcs_write64(GUEST_IA32_PAT, data);
2990                         vcpu->arch.pat = data;
2991                         break;
2992                 }
2993                 ret = kvm_set_msr_common(vcpu, msr_info);
2994                 break;
2995         case MSR_IA32_TSC_ADJUST:
2996                 ret = kvm_set_msr_common(vcpu, msr_info);
2997                 break;
2998         case MSR_IA32_FEATURE_CONTROL:
2999                 if (!nested_vmx_allowed(vcpu) ||
3000                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
3001                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3002                         return 1;
3003                 vmx->nested.msr_ia32_feature_control = data;
3004                 if (msr_info->host_initiated && data == 0)
3005                         vmx_leave_nested(vcpu);
3006                 break;
3007         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3008                 return 1; /* they are read-only */
3009         case MSR_IA32_XSS:
3010                 if (!vmx_xsaves_supported())
3011                         return 1;
3012                 /*
3013                  * The only supported bit as of Skylake is bit 8, but
3014                  * it is not supported on KVM.
3015                  */
3016                 if (data != 0)
3017                         return 1;
3018                 vcpu->arch.ia32_xss = data;
3019                 if (vcpu->arch.ia32_xss != host_xss)
3020                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3021                                 vcpu->arch.ia32_xss, host_xss);
3022                 else
3023                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3024                 break;
3025         case MSR_TSC_AUX:
3026                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3027                         return 1;
3028                 /* Check reserved bit, higher 32 bits should be zero */
3029                 if ((data >> 32) != 0)
3030                         return 1;
3031                 /* Otherwise falls through */
3032         default:
3033                 msr = find_msr_entry(vmx, msr_index);
3034                 if (msr) {
3035                         u64 old_msr_data = msr->data;
3036                         msr->data = data;
3037                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3038                                 preempt_disable();
3039                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3040                                                          msr->mask);
3041                                 preempt_enable();
3042                                 if (ret)
3043                                         msr->data = old_msr_data;
3044                         }
3045                         break;
3046                 }
3047                 ret = kvm_set_msr_common(vcpu, msr_info);
3048         }
3049
3050         return ret;
3051 }
3052
3053 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3054 {
3055         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3056         switch (reg) {
3057         case VCPU_REGS_RSP:
3058                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3059                 break;
3060         case VCPU_REGS_RIP:
3061                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3062                 break;
3063         case VCPU_EXREG_PDPTR:
3064                 if (enable_ept)
3065                         ept_save_pdptrs(vcpu);
3066                 break;
3067         default:
3068                 break;
3069         }
3070 }
3071
3072 static __init int cpu_has_kvm_support(void)
3073 {
3074         return cpu_has_vmx();
3075 }
3076
3077 static __init int vmx_disabled_by_bios(void)
3078 {
3079         u64 msr;
3080
3081         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3082         if (msr & FEATURE_CONTROL_LOCKED) {
3083                 /* launched w/ TXT and VMX disabled */
3084                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3085                         && tboot_enabled())
3086                         return 1;
3087                 /* launched w/o TXT and VMX only enabled w/ TXT */
3088                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3089                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3090                         && !tboot_enabled()) {
3091                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3092                                 "activate TXT before enabling KVM\n");
3093                         return 1;
3094                 }
3095                 /* launched w/o TXT and VMX disabled */
3096                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3097                         && !tboot_enabled())
3098                         return 1;
3099         }
3100
3101         return 0;
3102 }
3103
3104 static void kvm_cpu_vmxon(u64 addr)
3105 {
3106         intel_pt_handle_vmx(1);
3107
3108         asm volatile (ASM_VMX_VMXON_RAX
3109                         : : "a"(&addr), "m"(addr)
3110                         : "memory", "cc");
3111 }
3112
3113 static int hardware_enable(void)
3114 {
3115         int cpu = raw_smp_processor_id();
3116         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3117         u64 old, test_bits;
3118
3119         if (cr4_read_shadow() & X86_CR4_VMXE)
3120                 return -EBUSY;
3121
3122         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3123         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3124         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3125
3126         /*
3127          * Now we can enable the vmclear operation in kdump
3128          * since the loaded_vmcss_on_cpu list on this cpu
3129          * has been initialized.
3130          *
3131          * Though the cpu is not in VMX operation now, there
3132          * is no problem to enable the vmclear operation
3133          * for the loaded_vmcss_on_cpu list is empty!
3134          */
3135         crash_enable_local_vmclear(cpu);
3136
3137         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3138
3139         test_bits = FEATURE_CONTROL_LOCKED;
3140         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3141         if (tboot_enabled())
3142                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3143
3144         if ((old & test_bits) != test_bits) {
3145                 /* enable and lock */
3146                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3147         }
3148         cr4_set_bits(X86_CR4_VMXE);
3149
3150         if (vmm_exclusive) {
3151                 kvm_cpu_vmxon(phys_addr);
3152                 ept_sync_global();
3153         }
3154
3155         native_store_gdt(this_cpu_ptr(&host_gdt));
3156
3157         return 0;
3158 }
3159
3160 static void vmclear_local_loaded_vmcss(void)
3161 {
3162         int cpu = raw_smp_processor_id();
3163         struct loaded_vmcs *v, *n;
3164
3165         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3166                                  loaded_vmcss_on_cpu_link)
3167                 __loaded_vmcs_clear(v);
3168 }
3169
3170
3171 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3172  * tricks.
3173  */
3174 static void kvm_cpu_vmxoff(void)
3175 {
3176         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3177
3178         intel_pt_handle_vmx(0);
3179 }
3180
3181 static void hardware_disable(void)
3182 {
3183         if (vmm_exclusive) {
3184                 vmclear_local_loaded_vmcss();
3185                 kvm_cpu_vmxoff();
3186         }
3187         cr4_clear_bits(X86_CR4_VMXE);
3188 }
3189
3190 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3191                                       u32 msr, u32 *result)
3192 {
3193         u32 vmx_msr_low, vmx_msr_high;
3194         u32 ctl = ctl_min | ctl_opt;
3195
3196         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3197
3198         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3199         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3200
3201         /* Ensure minimum (required) set of control bits are supported. */
3202         if (ctl_min & ~ctl)
3203                 return -EIO;
3204
3205         *result = ctl;
3206         return 0;
3207 }
3208
3209 static __init bool allow_1_setting(u32 msr, u32 ctl)
3210 {
3211         u32 vmx_msr_low, vmx_msr_high;
3212
3213         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3214         return vmx_msr_high & ctl;
3215 }
3216
3217 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3218 {
3219         u32 vmx_msr_low, vmx_msr_high;
3220         u32 min, opt, min2, opt2;
3221         u32 _pin_based_exec_control = 0;
3222         u32 _cpu_based_exec_control = 0;
3223         u32 _cpu_based_2nd_exec_control = 0;
3224         u32 _vmexit_control = 0;
3225         u32 _vmentry_control = 0;
3226
3227         min = CPU_BASED_HLT_EXITING |
3228 #ifdef CONFIG_X86_64
3229               CPU_BASED_CR8_LOAD_EXITING |
3230               CPU_BASED_CR8_STORE_EXITING |
3231 #endif
3232               CPU_BASED_CR3_LOAD_EXITING |
3233               CPU_BASED_CR3_STORE_EXITING |
3234               CPU_BASED_USE_IO_BITMAPS |
3235               CPU_BASED_MOV_DR_EXITING |
3236               CPU_BASED_USE_TSC_OFFSETING |
3237               CPU_BASED_MWAIT_EXITING |
3238               CPU_BASED_MONITOR_EXITING |
3239               CPU_BASED_INVLPG_EXITING |
3240               CPU_BASED_RDPMC_EXITING;
3241
3242         opt = CPU_BASED_TPR_SHADOW |
3243               CPU_BASED_USE_MSR_BITMAPS |
3244               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3245         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3246                                 &_cpu_based_exec_control) < 0)
3247                 return -EIO;
3248 #ifdef CONFIG_X86_64
3249         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3250                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3251                                            ~CPU_BASED_CR8_STORE_EXITING;
3252 #endif
3253         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3254                 min2 = 0;
3255                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3256                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3257                         SECONDARY_EXEC_WBINVD_EXITING |
3258                         SECONDARY_EXEC_ENABLE_VPID |
3259                         SECONDARY_EXEC_ENABLE_EPT |
3260                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3261                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3262                         SECONDARY_EXEC_RDTSCP |
3263                         SECONDARY_EXEC_ENABLE_INVPCID |
3264                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3265                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3266                         SECONDARY_EXEC_SHADOW_VMCS |
3267                         SECONDARY_EXEC_XSAVES |
3268                         SECONDARY_EXEC_ENABLE_PML |
3269                         SECONDARY_EXEC_PCOMMIT |
3270                         SECONDARY_EXEC_TSC_SCALING;
3271                 if (adjust_vmx_controls(min2, opt2,
3272                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3273                                         &_cpu_based_2nd_exec_control) < 0)
3274                         return -EIO;
3275         }
3276 #ifndef CONFIG_X86_64
3277         if (!(_cpu_based_2nd_exec_control &
3278                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3279                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3280 #endif
3281
3282         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3283                 _cpu_based_2nd_exec_control &= ~(
3284                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3285                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3286                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3287
3288         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3289                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3290                    enabled */
3291                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3292                                              CPU_BASED_CR3_STORE_EXITING |
3293                                              CPU_BASED_INVLPG_EXITING);
3294                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3295                       vmx_capability.ept, vmx_capability.vpid);
3296         }
3297
3298         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3299 #ifdef CONFIG_X86_64
3300         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3301 #endif
3302         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3303                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3304         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3305                                 &_vmexit_control) < 0)
3306                 return -EIO;
3307
3308         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3309         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3310         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3311                                 &_pin_based_exec_control) < 0)
3312                 return -EIO;
3313
3314         if (!(_cpu_based_2nd_exec_control &
3315                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3316                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3317                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3318
3319         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3320         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3321         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3322                                 &_vmentry_control) < 0)
3323                 return -EIO;
3324
3325         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3326
3327         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3328         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3329                 return -EIO;
3330
3331 #ifdef CONFIG_X86_64
3332         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3333         if (vmx_msr_high & (1u<<16))
3334                 return -EIO;
3335 #endif
3336
3337         /* Require Write-Back (WB) memory type for VMCS accesses. */
3338         if (((vmx_msr_high >> 18) & 15) != 6)
3339                 return -EIO;
3340
3341         vmcs_conf->size = vmx_msr_high & 0x1fff;
3342         vmcs_conf->order = get_order(vmcs_config.size);
3343         vmcs_conf->revision_id = vmx_msr_low;
3344
3345         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3346         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3347         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3348         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3349         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3350
3351         cpu_has_load_ia32_efer =
3352                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3353                                 VM_ENTRY_LOAD_IA32_EFER)
3354                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3355                                    VM_EXIT_LOAD_IA32_EFER);
3356
3357         cpu_has_load_perf_global_ctrl =
3358                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3359                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3360                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3361                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3362
3363         /*
3364          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3365          * but due to arrata below it can't be used. Workaround is to use
3366          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3367          *
3368          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3369          *
3370          * AAK155             (model 26)
3371          * AAP115             (model 30)
3372          * AAT100             (model 37)
3373          * BC86,AAY89,BD102   (model 44)
3374          * BA97               (model 46)
3375          *
3376          */
3377         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3378                 switch (boot_cpu_data.x86_model) {
3379                 case 26:
3380                 case 30:
3381                 case 37:
3382                 case 44:
3383                 case 46:
3384                         cpu_has_load_perf_global_ctrl = false;
3385                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3386                                         "does not work properly. Using workaround\n");
3387                         break;
3388                 default:
3389                         break;
3390                 }
3391         }
3392
3393         if (boot_cpu_has(X86_FEATURE_XSAVES))
3394                 rdmsrl(MSR_IA32_XSS, host_xss);
3395
3396         return 0;
3397 }
3398
3399 static struct vmcs *alloc_vmcs_cpu(int cpu)
3400 {
3401         int node = cpu_to_node(cpu);
3402         struct page *pages;
3403         struct vmcs *vmcs;
3404
3405         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3406         if (!pages)
3407                 return NULL;
3408         vmcs = page_address(pages);
3409         memset(vmcs, 0, vmcs_config.size);
3410         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3411         return vmcs;
3412 }
3413
3414 static struct vmcs *alloc_vmcs(void)
3415 {
3416         return alloc_vmcs_cpu(raw_smp_processor_id());
3417 }
3418
3419 static void free_vmcs(struct vmcs *vmcs)
3420 {
3421         free_pages((unsigned long)vmcs, vmcs_config.order);
3422 }
3423
3424 /*
3425  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3426  */
3427 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3428 {
3429         if (!loaded_vmcs->vmcs)
3430                 return;
3431         loaded_vmcs_clear(loaded_vmcs);
3432         free_vmcs(loaded_vmcs->vmcs);
3433         loaded_vmcs->vmcs = NULL;
3434 }
3435
3436 static void free_kvm_area(void)
3437 {
3438         int cpu;
3439
3440         for_each_possible_cpu(cpu) {
3441                 free_vmcs(per_cpu(vmxarea, cpu));
3442                 per_cpu(vmxarea, cpu) = NULL;
3443         }
3444 }
3445
3446 static void init_vmcs_shadow_fields(void)
3447 {
3448         int i, j;
3449
3450         /* No checks for read only fields yet */
3451
3452         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3453                 switch (shadow_read_write_fields[i]) {
3454                 case GUEST_BNDCFGS:
3455                         if (!kvm_mpx_supported())
3456                                 continue;
3457                         break;
3458                 default:
3459                         break;
3460                 }
3461
3462                 if (j < i)
3463                         shadow_read_write_fields[j] =
3464                                 shadow_read_write_fields[i];
3465                 j++;
3466         }
3467         max_shadow_read_write_fields = j;
3468
3469         /* shadowed fields guest access without vmexit */
3470         for (i = 0; i < max_shadow_read_write_fields; i++) {
3471                 clear_bit(shadow_read_write_fields[i],
3472                           vmx_vmwrite_bitmap);
3473                 clear_bit(shadow_read_write_fields[i],
3474                           vmx_vmread_bitmap);
3475         }
3476         for (i = 0; i < max_shadow_read_only_fields; i++)
3477                 clear_bit(shadow_read_only_fields[i],
3478                           vmx_vmread_bitmap);
3479 }
3480
3481 static __init int alloc_kvm_area(void)
3482 {
3483         int cpu;
3484
3485         for_each_possible_cpu(cpu) {
3486                 struct vmcs *vmcs;
3487
3488                 vmcs = alloc_vmcs_cpu(cpu);
3489                 if (!vmcs) {
3490                         free_kvm_area();
3491                         return -ENOMEM;
3492                 }
3493
3494                 per_cpu(vmxarea, cpu) = vmcs;
3495         }
3496         return 0;
3497 }
3498
3499 static bool emulation_required(struct kvm_vcpu *vcpu)
3500 {
3501         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3502 }
3503
3504 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3505                 struct kvm_segment *save)
3506 {
3507         if (!emulate_invalid_guest_state) {
3508                 /*
3509                  * CS and SS RPL should be equal during guest entry according
3510                  * to VMX spec, but in reality it is not always so. Since vcpu
3511                  * is in the middle of the transition from real mode to
3512                  * protected mode it is safe to assume that RPL 0 is a good
3513                  * default value.
3514                  */
3515                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3516                         save->selector &= ~SEGMENT_RPL_MASK;
3517                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3518                 save->s = 1;
3519         }
3520         vmx_set_segment(vcpu, save, seg);
3521 }
3522
3523 static void enter_pmode(struct kvm_vcpu *vcpu)
3524 {
3525         unsigned long flags;
3526         struct vcpu_vmx *vmx = to_vmx(vcpu);
3527
3528         /*
3529          * Update real mode segment cache. It may be not up-to-date if sement
3530          * register was written while vcpu was in a guest mode.
3531          */
3532         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3533         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3534         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3535         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3536         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3537         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3538
3539         vmx->rmode.vm86_active = 0;
3540
3541         vmx_segment_cache_clear(vmx);
3542
3543         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3544
3545         flags = vmcs_readl(GUEST_RFLAGS);
3546         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3547         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3548         vmcs_writel(GUEST_RFLAGS, flags);
3549
3550         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3551                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3552
3553         update_exception_bitmap(vcpu);
3554
3555         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3556         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3557         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3558         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3559         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3560         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3561 }
3562
3563 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3564 {
3565         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3566         struct kvm_segment var = *save;
3567
3568         var.dpl = 0x3;
3569         if (seg == VCPU_SREG_CS)
3570                 var.type = 0x3;
3571
3572         if (!emulate_invalid_guest_state) {
3573                 var.selector = var.base >> 4;
3574                 var.base = var.base & 0xffff0;
3575                 var.limit = 0xffff;
3576                 var.g = 0;
3577                 var.db = 0;
3578                 var.present = 1;
3579                 var.s = 1;
3580                 var.l = 0;
3581                 var.unusable = 0;
3582                 var.type = 0x3;
3583                 var.avl = 0;
3584                 if (save->base & 0xf)
3585                         printk_once(KERN_WARNING "kvm: segment base is not "
3586                                         "paragraph aligned when entering "
3587                                         "protected mode (seg=%d)", seg);
3588         }
3589
3590         vmcs_write16(sf->selector, var.selector);
3591         vmcs_write32(sf->base, var.base);
3592         vmcs_write32(sf->limit, var.limit);
3593         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3594 }
3595
3596 static void enter_rmode(struct kvm_vcpu *vcpu)
3597 {
3598         unsigned long flags;
3599         struct vcpu_vmx *vmx = to_vmx(vcpu);
3600
3601         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3602         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3603         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3604         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3605         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3606         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3607         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3608
3609         vmx->rmode.vm86_active = 1;
3610
3611         /*
3612          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3613          * vcpu. Warn the user that an update is overdue.
3614          */
3615         if (!vcpu->kvm->arch.tss_addr)
3616                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3617                              "called before entering vcpu\n");
3618
3619         vmx_segment_cache_clear(vmx);
3620
3621         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3622         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3623         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3624
3625         flags = vmcs_readl(GUEST_RFLAGS);
3626         vmx->rmode.save_rflags = flags;
3627
3628         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3629
3630         vmcs_writel(GUEST_RFLAGS, flags);
3631         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3632         update_exception_bitmap(vcpu);
3633
3634         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3635         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3636         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3637         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3638         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3639         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3640
3641         kvm_mmu_reset_context(vcpu);
3642 }
3643
3644 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3645 {
3646         struct vcpu_vmx *vmx = to_vmx(vcpu);
3647         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3648
3649         if (!msr)
3650                 return;
3651
3652         /*
3653          * Force kernel_gs_base reloading before EFER changes, as control
3654          * of this msr depends on is_long_mode().
3655          */
3656         vmx_load_host_state(to_vmx(vcpu));
3657         vcpu->arch.efer = efer;
3658         if (efer & EFER_LMA) {
3659                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3660                 msr->data = efer;
3661         } else {
3662                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3663
3664                 msr->data = efer & ~EFER_LME;
3665         }
3666         setup_msrs(vmx);
3667 }
3668
3669 #ifdef CONFIG_X86_64
3670
3671 static void enter_lmode(struct kvm_vcpu *vcpu)
3672 {
3673         u32 guest_tr_ar;
3674
3675         vmx_segment_cache_clear(to_vmx(vcpu));
3676
3677         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3678         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3679                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3680                                      __func__);
3681                 vmcs_write32(GUEST_TR_AR_BYTES,
3682                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3683                              | VMX_AR_TYPE_BUSY_64_TSS);
3684         }
3685         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3686 }
3687
3688 static void exit_lmode(struct kvm_vcpu *vcpu)
3689 {
3690         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3691         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3692 }
3693
3694 #endif
3695
3696 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3697 {
3698         vpid_sync_context(vpid);
3699         if (enable_ept) {
3700                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3701                         return;
3702                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3703         }
3704 }
3705
3706 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3707 {
3708         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3709 }
3710
3711 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3712 {
3713         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3714
3715         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3716         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3717 }
3718
3719 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3720 {
3721         if (enable_ept && is_paging(vcpu))
3722                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3723         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3724 }
3725
3726 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3727 {
3728         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3729
3730         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3731         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3732 }
3733
3734 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3735 {
3736         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3737
3738         if (!test_bit(VCPU_EXREG_PDPTR,
3739                       (unsigned long *)&vcpu->arch.regs_dirty))
3740                 return;
3741
3742         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3743                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3744                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3745                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3746                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3747         }
3748 }
3749
3750 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3751 {
3752         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3753
3754         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3755                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3756                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3757                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3758                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3759         }
3760
3761         __set_bit(VCPU_EXREG_PDPTR,
3762                   (unsigned long *)&vcpu->arch.regs_avail);
3763         __set_bit(VCPU_EXREG_PDPTR,
3764                   (unsigned long *)&vcpu->arch.regs_dirty);
3765 }
3766
3767 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3768
3769 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3770                                         unsigned long cr0,
3771                                         struct kvm_vcpu *vcpu)
3772 {
3773         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3774                 vmx_decache_cr3(vcpu);
3775         if (!(cr0 & X86_CR0_PG)) {
3776                 /* From paging/starting to nonpaging */
3777                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3778                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3779                              (CPU_BASED_CR3_LOAD_EXITING |
3780                               CPU_BASED_CR3_STORE_EXITING));
3781                 vcpu->arch.cr0 = cr0;
3782                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3783         } else if (!is_paging(vcpu)) {
3784                 /* From nonpaging to paging */
3785                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3786                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3787                              ~(CPU_BASED_CR3_LOAD_EXITING |
3788                                CPU_BASED_CR3_STORE_EXITING));
3789                 vcpu->arch.cr0 = cr0;
3790                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3791         }
3792
3793         if (!(cr0 & X86_CR0_WP))
3794                 *hw_cr0 &= ~X86_CR0_WP;
3795 }
3796
3797 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3798 {
3799         struct vcpu_vmx *vmx = to_vmx(vcpu);
3800         unsigned long hw_cr0;
3801
3802         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3803         if (enable_unrestricted_guest)
3804                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3805         else {
3806                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3807
3808                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3809                         enter_pmode(vcpu);
3810
3811                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3812                         enter_rmode(vcpu);
3813         }
3814
3815 #ifdef CONFIG_X86_64
3816         if (vcpu->arch.efer & EFER_LME) {
3817                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3818                         enter_lmode(vcpu);
3819                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3820                         exit_lmode(vcpu);
3821         }
3822 #endif
3823
3824         if (enable_ept)
3825                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3826
3827         if (!vcpu->fpu_active)
3828                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3829
3830         vmcs_writel(CR0_READ_SHADOW, cr0);
3831         vmcs_writel(GUEST_CR0, hw_cr0);
3832         vcpu->arch.cr0 = cr0;
3833
3834         /* depends on vcpu->arch.cr0 to be set to a new value */
3835         vmx->emulation_required = emulation_required(vcpu);
3836 }
3837
3838 static u64 construct_eptp(unsigned long root_hpa)
3839 {
3840         u64 eptp;
3841
3842         /* TODO write the value reading from MSR */
3843         eptp = VMX_EPT_DEFAULT_MT |
3844                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3845         if (enable_ept_ad_bits)
3846                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3847         eptp |= (root_hpa & PAGE_MASK);
3848
3849         return eptp;
3850 }
3851
3852 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3853 {
3854         unsigned long guest_cr3;
3855         u64 eptp;
3856
3857         guest_cr3 = cr3;
3858         if (enable_ept) {
3859                 eptp = construct_eptp(cr3);
3860                 vmcs_write64(EPT_POINTER, eptp);
3861                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3862                         guest_cr3 = kvm_read_cr3(vcpu);
3863                 else
3864                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3865                 ept_load_pdptrs(vcpu);
3866         }
3867
3868         vmx_flush_tlb(vcpu);
3869         vmcs_writel(GUEST_CR3, guest_cr3);
3870 }
3871
3872 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3873 {
3874         /*
3875          * Pass through host's Machine Check Enable value to hw_cr4, which
3876          * is in force while we are in guest mode.  Do not let guests control
3877          * this bit, even if host CR4.MCE == 0.
3878          */
3879         unsigned long hw_cr4 =
3880                 (cr4_read_shadow() & X86_CR4_MCE) |
3881                 (cr4 & ~X86_CR4_MCE) |
3882                 (to_vmx(vcpu)->rmode.vm86_active ?
3883                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3884
3885         if (cr4 & X86_CR4_VMXE) {
3886                 /*
3887                  * To use VMXON (and later other VMX instructions), a guest
3888                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3889                  * So basically the check on whether to allow nested VMX
3890                  * is here.
3891                  */
3892                 if (!nested_vmx_allowed(vcpu))
3893                         return 1;
3894         }
3895         if (to_vmx(vcpu)->nested.vmxon &&
3896             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3897                 return 1;
3898
3899         vcpu->arch.cr4 = cr4;
3900         if (enable_ept) {
3901                 if (!is_paging(vcpu)) {
3902                         hw_cr4 &= ~X86_CR4_PAE;
3903                         hw_cr4 |= X86_CR4_PSE;
3904                 } else if (!(cr4 & X86_CR4_PAE)) {
3905                         hw_cr4 &= ~X86_CR4_PAE;
3906                 }
3907         }
3908
3909         if (!enable_unrestricted_guest && !is_paging(vcpu))
3910                 /*
3911                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3912                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3913                  * to be manually disabled when guest switches to non-paging
3914                  * mode.
3915                  *
3916                  * If !enable_unrestricted_guest, the CPU is always running
3917                  * with CR0.PG=1 and CR4 needs to be modified.
3918                  * If enable_unrestricted_guest, the CPU automatically
3919                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3920                  */
3921                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3922
3923         vmcs_writel(CR4_READ_SHADOW, cr4);
3924         vmcs_writel(GUEST_CR4, hw_cr4);
3925         return 0;
3926 }
3927
3928 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3929                             struct kvm_segment *var, int seg)
3930 {
3931         struct vcpu_vmx *vmx = to_vmx(vcpu);
3932         u32 ar;
3933
3934         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3935                 *var = vmx->rmode.segs[seg];
3936                 if (seg == VCPU_SREG_TR
3937                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3938                         return;
3939                 var->base = vmx_read_guest_seg_base(vmx, seg);
3940                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3941                 return;
3942         }
3943         var->base = vmx_read_guest_seg_base(vmx, seg);
3944         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3945         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3946         ar = vmx_read_guest_seg_ar(vmx, seg);
3947         var->unusable = (ar >> 16) & 1;
3948         var->type = ar & 15;
3949         var->s = (ar >> 4) & 1;
3950         var->dpl = (ar >> 5) & 3;
3951         /*
3952          * Some userspaces do not preserve unusable property. Since usable
3953          * segment has to be present according to VMX spec we can use present
3954          * property to amend userspace bug by making unusable segment always
3955          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3956          * segment as unusable.
3957          */
3958         var->present = !var->unusable;
3959         var->avl = (ar >> 12) & 1;
3960         var->l = (ar >> 13) & 1;
3961         var->db = (ar >> 14) & 1;
3962         var->g = (ar >> 15) & 1;
3963 }
3964
3965 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3966 {
3967         struct kvm_segment s;
3968
3969         if (to_vmx(vcpu)->rmode.vm86_active) {
3970                 vmx_get_segment(vcpu, &s, seg);
3971                 return s.base;
3972         }
3973         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3974 }
3975
3976 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3977 {
3978         struct vcpu_vmx *vmx = to_vmx(vcpu);
3979
3980         if (unlikely(vmx->rmode.vm86_active))
3981                 return 0;
3982         else {
3983                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3984                 return VMX_AR_DPL(ar);
3985         }
3986 }
3987
3988 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3989 {
3990         u32 ar;
3991
3992         if (var->unusable || !var->present)
3993                 ar = 1 << 16;
3994         else {
3995                 ar = var->type & 15;
3996                 ar |= (var->s & 1) << 4;
3997                 ar |= (var->dpl & 3) << 5;
3998                 ar |= (var->present & 1) << 7;
3999                 ar |= (var->avl & 1) << 12;
4000                 ar |= (var->l & 1) << 13;
4001                 ar |= (var->db & 1) << 14;
4002                 ar |= (var->g & 1) << 15;
4003         }
4004
4005         return ar;
4006 }
4007
4008 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4009                             struct kvm_segment *var, int seg)
4010 {
4011         struct vcpu_vmx *vmx = to_vmx(vcpu);
4012         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4013
4014         vmx_segment_cache_clear(vmx);
4015
4016         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4017                 vmx->rmode.segs[seg] = *var;
4018                 if (seg == VCPU_SREG_TR)
4019                         vmcs_write16(sf->selector, var->selector);
4020                 else if (var->s)
4021                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4022                 goto out;
4023         }
4024
4025         vmcs_writel(sf->base, var->base);
4026         vmcs_write32(sf->limit, var->limit);
4027         vmcs_write16(sf->selector, var->selector);
4028
4029         /*
4030          *   Fix the "Accessed" bit in AR field of segment registers for older
4031          * qemu binaries.
4032          *   IA32 arch specifies that at the time of processor reset the
4033          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4034          * is setting it to 0 in the userland code. This causes invalid guest
4035          * state vmexit when "unrestricted guest" mode is turned on.
4036          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4037          * tree. Newer qemu binaries with that qemu fix would not need this
4038          * kvm hack.
4039          */
4040         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4041                 var->type |= 0x1; /* Accessed */
4042
4043         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4044
4045 out:
4046         vmx->emulation_required = emulation_required(vcpu);
4047 }
4048
4049 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4050 {
4051         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4052
4053         *db = (ar >> 14) & 1;
4054         *l = (ar >> 13) & 1;
4055 }
4056
4057 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4058 {
4059         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4060         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4061 }
4062
4063 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4064 {
4065         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4066         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4067 }
4068
4069 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4070 {
4071         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4072         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4073 }
4074
4075 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4076 {
4077         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4078         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4079 }
4080
4081 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4082 {
4083         struct kvm_segment var;
4084         u32 ar;
4085
4086         vmx_get_segment(vcpu, &var, seg);
4087         var.dpl = 0x3;
4088         if (seg == VCPU_SREG_CS)
4089                 var.type = 0x3;
4090         ar = vmx_segment_access_rights(&var);
4091
4092         if (var.base != (var.selector << 4))
4093                 return false;
4094         if (var.limit != 0xffff)
4095                 return false;
4096         if (ar != 0xf3)
4097                 return false;
4098
4099         return true;
4100 }
4101
4102 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4103 {
4104         struct kvm_segment cs;
4105         unsigned int cs_rpl;
4106
4107         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4108         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4109
4110         if (cs.unusable)
4111                 return false;
4112         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4113                 return false;
4114         if (!cs.s)
4115                 return false;
4116         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4117                 if (cs.dpl > cs_rpl)
4118                         return false;
4119         } else {
4120                 if (cs.dpl != cs_rpl)
4121                         return false;
4122         }
4123         if (!cs.present)
4124                 return false;
4125
4126         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4127         return true;
4128 }
4129
4130 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4131 {
4132         struct kvm_segment ss;
4133         unsigned int ss_rpl;
4134
4135         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4136         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4137
4138         if (ss.unusable)
4139                 return true;
4140         if (ss.type != 3 && ss.type != 7)
4141                 return false;
4142         if (!ss.s)
4143                 return false;
4144         if (ss.dpl != ss_rpl) /* DPL != RPL */
4145                 return false;
4146         if (!ss.present)
4147                 return false;
4148
4149         return true;
4150 }
4151
4152 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4153 {
4154         struct kvm_segment var;
4155         unsigned int rpl;
4156
4157         vmx_get_segment(vcpu, &var, seg);
4158         rpl = var.selector & SEGMENT_RPL_MASK;
4159
4160         if (var.unusable)
4161                 return true;
4162         if (!var.s)
4163                 return false;
4164         if (!var.present)
4165                 return false;
4166         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4167                 if (var.dpl < rpl) /* DPL < RPL */
4168                         return false;
4169         }
4170
4171         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4172          * rights flags
4173          */
4174         return true;
4175 }
4176
4177 static bool tr_valid(struct kvm_vcpu *vcpu)
4178 {
4179         struct kvm_segment tr;
4180
4181         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4182
4183         if (tr.unusable)
4184                 return false;
4185         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4186                 return false;
4187         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4188                 return false;
4189         if (!tr.present)
4190                 return false;
4191
4192         return true;
4193 }
4194
4195 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4196 {
4197         struct kvm_segment ldtr;
4198
4199         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4200
4201         if (ldtr.unusable)
4202                 return true;
4203         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4204                 return false;
4205         if (ldtr.type != 2)
4206                 return false;
4207         if (!ldtr.present)
4208                 return false;
4209
4210         return true;
4211 }
4212
4213 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4214 {
4215         struct kvm_segment cs, ss;
4216
4217         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4218         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4219
4220         return ((cs.selector & SEGMENT_RPL_MASK) ==
4221                  (ss.selector & SEGMENT_RPL_MASK));
4222 }
4223
4224 /*
4225  * Check if guest state is valid. Returns true if valid, false if
4226  * not.
4227  * We assume that registers are always usable
4228  */
4229 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4230 {
4231         if (enable_unrestricted_guest)
4232                 return true;
4233
4234         /* real mode guest state checks */
4235         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4236                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4237                         return false;
4238                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4239                         return false;
4240                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4241                         return false;
4242                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4243                         return false;
4244                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4245                         return false;
4246                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4247                         return false;
4248         } else {
4249         /* protected mode guest state checks */
4250                 if (!cs_ss_rpl_check(vcpu))
4251                         return false;
4252                 if (!code_segment_valid(vcpu))
4253                         return false;
4254                 if (!stack_segment_valid(vcpu))
4255                         return false;
4256                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4257                         return false;
4258                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4259                         return false;
4260                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4261                         return false;
4262                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4263                         return false;
4264                 if (!tr_valid(vcpu))
4265                         return false;
4266                 if (!ldtr_valid(vcpu))
4267                         return false;
4268         }
4269         /* TODO:
4270          * - Add checks on RIP
4271          * - Add checks on RFLAGS
4272          */
4273
4274         return true;
4275 }
4276
4277 static int init_rmode_tss(struct kvm *kvm)
4278 {
4279         gfn_t fn;
4280         u16 data = 0;
4281         int idx, r;
4282
4283         idx = srcu_read_lock(&kvm->srcu);
4284         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4285         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4286         if (r < 0)
4287                 goto out;
4288         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4289         r = kvm_write_guest_page(kvm, fn++, &data,
4290                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4291         if (r < 0)
4292                 goto out;
4293         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4294         if (r < 0)
4295                 goto out;
4296         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4297         if (r < 0)
4298                 goto out;
4299         data = ~0;
4300         r = kvm_write_guest_page(kvm, fn, &data,
4301                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4302                                  sizeof(u8));
4303 out:
4304         srcu_read_unlock(&kvm->srcu, idx);
4305         return r;
4306 }
4307
4308 static int init_rmode_identity_map(struct kvm *kvm)
4309 {
4310         int i, idx, r = 0;
4311         kvm_pfn_t identity_map_pfn;
4312         u32 tmp;
4313
4314         if (!enable_ept)
4315                 return 0;
4316
4317         /* Protect kvm->arch.ept_identity_pagetable_done. */
4318         mutex_lock(&kvm->slots_lock);
4319
4320         if (likely(kvm->arch.ept_identity_pagetable_done))
4321                 goto out2;
4322
4323         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4324
4325         r = alloc_identity_pagetable(kvm);
4326         if (r < 0)
4327                 goto out2;
4328
4329         idx = srcu_read_lock(&kvm->srcu);
4330         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4331         if (r < 0)
4332                 goto out;
4333         /* Set up identity-mapping pagetable for EPT in real mode */
4334         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4335                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4336                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4337                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4338                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4339                 if (r < 0)
4340                         goto out;
4341         }
4342         kvm->arch.ept_identity_pagetable_done = true;
4343
4344 out:
4345         srcu_read_unlock(&kvm->srcu, idx);
4346
4347 out2:
4348         mutex_unlock(&kvm->slots_lock);
4349         return r;
4350 }
4351
4352 static void seg_setup(int seg)
4353 {
4354         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4355         unsigned int ar;
4356
4357         vmcs_write16(sf->selector, 0);
4358         vmcs_writel(sf->base, 0);
4359         vmcs_write32(sf->limit, 0xffff);
4360         ar = 0x93;
4361         if (seg == VCPU_SREG_CS)
4362                 ar |= 0x08; /* code segment */
4363
4364         vmcs_write32(sf->ar_bytes, ar);
4365 }
4366
4367 static int alloc_apic_access_page(struct kvm *kvm)
4368 {
4369         struct page *page;
4370         int r = 0;
4371
4372         mutex_lock(&kvm->slots_lock);
4373         if (kvm->arch.apic_access_page_done)
4374                 goto out;
4375         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4376                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4377         if (r)
4378                 goto out;
4379
4380         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4381         if (is_error_page(page)) {
4382                 r = -EFAULT;
4383                 goto out;
4384         }
4385
4386         /*
4387          * Do not pin the page in memory, so that memory hot-unplug
4388          * is able to migrate it.
4389          */
4390         put_page(page);
4391         kvm->arch.apic_access_page_done = true;
4392 out:
4393         mutex_unlock(&kvm->slots_lock);
4394         return r;
4395 }
4396
4397 static int alloc_identity_pagetable(struct kvm *kvm)
4398 {
4399         /* Called with kvm->slots_lock held. */
4400
4401         int r = 0;
4402
4403         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4404
4405         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4406                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4407
4408         return r;
4409 }
4410
4411 static int allocate_vpid(void)
4412 {
4413         int vpid;
4414
4415         if (!enable_vpid)
4416                 return 0;
4417         spin_lock(&vmx_vpid_lock);
4418         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4419         if (vpid < VMX_NR_VPIDS)
4420                 __set_bit(vpid, vmx_vpid_bitmap);
4421         else
4422                 vpid = 0;
4423         spin_unlock(&vmx_vpid_lock);
4424         return vpid;
4425 }
4426
4427 static void free_vpid(int vpid)
4428 {
4429         if (!enable_vpid || vpid == 0)
4430                 return;
4431         spin_lock(&vmx_vpid_lock);
4432         __clear_bit(vpid, vmx_vpid_bitmap);
4433         spin_unlock(&vmx_vpid_lock);
4434 }
4435
4436 #define MSR_TYPE_R      1
4437 #define MSR_TYPE_W      2
4438 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4439                                                 u32 msr, int type)
4440 {
4441         int f = sizeof(unsigned long);
4442
4443         if (!cpu_has_vmx_msr_bitmap())
4444                 return;
4445
4446         /*
4447          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4448          * have the write-low and read-high bitmap offsets the wrong way round.
4449          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4450          */
4451         if (msr <= 0x1fff) {
4452                 if (type & MSR_TYPE_R)
4453                         /* read-low */
4454                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4455
4456                 if (type & MSR_TYPE_W)
4457                         /* write-low */
4458                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4459
4460         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4461                 msr &= 0x1fff;
4462                 if (type & MSR_TYPE_R)
4463                         /* read-high */
4464                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4465
4466                 if (type & MSR_TYPE_W)
4467                         /* write-high */
4468                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4469
4470         }
4471 }
4472
4473 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4474                                                 u32 msr, int type)
4475 {
4476         int f = sizeof(unsigned long);
4477
4478         if (!cpu_has_vmx_msr_bitmap())
4479                 return;
4480
4481         /*
4482          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4483          * have the write-low and read-high bitmap offsets the wrong way round.
4484          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4485          */
4486         if (msr <= 0x1fff) {
4487                 if (type & MSR_TYPE_R)
4488                         /* read-low */
4489                         __set_bit(msr, msr_bitmap + 0x000 / f);
4490
4491                 if (type & MSR_TYPE_W)
4492                         /* write-low */
4493                         __set_bit(msr, msr_bitmap + 0x800 / f);
4494
4495         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4496                 msr &= 0x1fff;
4497                 if (type & MSR_TYPE_R)
4498                         /* read-high */
4499                         __set_bit(msr, msr_bitmap + 0x400 / f);
4500
4501                 if (type & MSR_TYPE_W)
4502                         /* write-high */
4503                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4504
4505         }
4506 }
4507
4508 /*
4509  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4510  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4511  */
4512 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4513                                                unsigned long *msr_bitmap_nested,
4514                                                u32 msr, int type)
4515 {
4516         int f = sizeof(unsigned long);
4517
4518         if (!cpu_has_vmx_msr_bitmap()) {
4519                 WARN_ON(1);
4520                 return;
4521         }
4522
4523         /*
4524          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4525          * have the write-low and read-high bitmap offsets the wrong way round.
4526          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4527          */
4528         if (msr <= 0x1fff) {
4529                 if (type & MSR_TYPE_R &&
4530                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4531                         /* read-low */
4532                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4533
4534                 if (type & MSR_TYPE_W &&
4535                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4536                         /* write-low */
4537                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4538
4539         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4540                 msr &= 0x1fff;
4541                 if (type & MSR_TYPE_R &&
4542                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4543                         /* read-high */
4544                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4545
4546                 if (type & MSR_TYPE_W &&
4547                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4548                         /* write-high */
4549                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4550
4551         }
4552 }
4553
4554 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4555 {
4556         if (!longmode_only)
4557                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4558                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4559         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4560                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4561 }
4562
4563 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4564 {
4565         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4566                         msr, MSR_TYPE_R);
4567         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4568                         msr, MSR_TYPE_R);
4569 }
4570
4571 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4572 {
4573         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4574                         msr, MSR_TYPE_R);
4575         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4576                         msr, MSR_TYPE_R);
4577 }
4578
4579 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4580 {
4581         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4582                         msr, MSR_TYPE_W);
4583         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4584                         msr, MSR_TYPE_W);
4585 }
4586
4587 static bool vmx_get_enable_apicv(void)
4588 {
4589         return enable_apicv;
4590 }
4591
4592 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4593 {
4594         struct vcpu_vmx *vmx = to_vmx(vcpu);
4595         int max_irr;
4596         void *vapic_page;
4597         u16 status;
4598
4599         if (vmx->nested.pi_desc &&
4600             vmx->nested.pi_pending) {
4601                 vmx->nested.pi_pending = false;
4602                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4603                         return 0;
4604
4605                 max_irr = find_last_bit(
4606                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4607
4608                 if (max_irr == 256)
4609                         return 0;
4610
4611                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4612                 if (!vapic_page) {
4613                         WARN_ON(1);
4614                         return -ENOMEM;
4615                 }
4616                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4617                 kunmap(vmx->nested.virtual_apic_page);
4618
4619                 status = vmcs_read16(GUEST_INTR_STATUS);
4620                 if ((u8)max_irr > ((u8)status & 0xff)) {
4621                         status &= ~0xff;
4622                         status |= (u8)max_irr;
4623                         vmcs_write16(GUEST_INTR_STATUS, status);
4624                 }
4625         }
4626         return 0;
4627 }
4628
4629 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4630 {
4631 #ifdef CONFIG_SMP
4632         if (vcpu->mode == IN_GUEST_MODE) {
4633                 struct vcpu_vmx *vmx = to_vmx(vcpu);
4634
4635                 /*
4636                  * Currently, we don't support urgent interrupt,
4637                  * all interrupts are recognized as non-urgent
4638                  * interrupt, so we cannot post interrupts when
4639                  * 'SN' is set.
4640                  *
4641                  * If the vcpu is in guest mode, it means it is
4642                  * running instead of being scheduled out and
4643                  * waiting in the run queue, and that's the only
4644                  * case when 'SN' is set currently, warning if
4645                  * 'SN' is set.
4646                  */
4647                 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4648
4649                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4650                                 POSTED_INTR_VECTOR);
4651                 return true;
4652         }
4653 #endif
4654         return false;
4655 }
4656
4657 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4658                                                 int vector)
4659 {
4660         struct vcpu_vmx *vmx = to_vmx(vcpu);
4661
4662         if (is_guest_mode(vcpu) &&
4663             vector == vmx->nested.posted_intr_nv) {
4664                 /* the PIR and ON have been set by L1. */
4665                 kvm_vcpu_trigger_posted_interrupt(vcpu);
4666                 /*
4667                  * If a posted intr is not recognized by hardware,
4668                  * we will accomplish it in the next vmentry.
4669                  */
4670                 vmx->nested.pi_pending = true;
4671                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4672                 return 0;
4673         }
4674         return -1;
4675 }
4676 /*
4677  * Send interrupt to vcpu via posted interrupt way.
4678  * 1. If target vcpu is running(non-root mode), send posted interrupt
4679  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4680  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4681  * interrupt from PIR in next vmentry.
4682  */
4683 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4684 {
4685         struct vcpu_vmx *vmx = to_vmx(vcpu);
4686         int r;
4687
4688         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4689         if (!r)
4690                 return;
4691
4692         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4693                 return;
4694
4695         r = pi_test_and_set_on(&vmx->pi_desc);
4696         kvm_make_request(KVM_REQ_EVENT, vcpu);
4697         if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4698                 kvm_vcpu_kick(vcpu);
4699 }
4700
4701 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4702 {
4703         struct vcpu_vmx *vmx = to_vmx(vcpu);
4704
4705         if (!pi_test_and_clear_on(&vmx->pi_desc))
4706                 return;
4707
4708         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4709 }
4710
4711 /*
4712  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4713  * will not change in the lifetime of the guest.
4714  * Note that host-state that does change is set elsewhere. E.g., host-state
4715  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4716  */
4717 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4718 {
4719         u32 low32, high32;
4720         unsigned long tmpl;
4721         struct desc_ptr dt;
4722         unsigned long cr4;
4723
4724         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4725         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4726
4727         /* Save the most likely value for this task's CR4 in the VMCS. */
4728         cr4 = cr4_read_shadow();
4729         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4730         vmx->host_state.vmcs_host_cr4 = cr4;
4731
4732         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4733 #ifdef CONFIG_X86_64
4734         /*
4735          * Load null selectors, so we can avoid reloading them in
4736          * __vmx_load_host_state(), in case userspace uses the null selectors
4737          * too (the expected case).
4738          */
4739         vmcs_write16(HOST_DS_SELECTOR, 0);
4740         vmcs_write16(HOST_ES_SELECTOR, 0);
4741 #else
4742         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4743         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4744 #endif
4745         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4746         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4747
4748         native_store_idt(&dt);
4749         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4750         vmx->host_idt_base = dt.address;
4751
4752         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4753
4754         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4755         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4756         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4757         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4758
4759         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4760                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4761                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4762         }
4763 }
4764
4765 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4766 {
4767         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4768         if (enable_ept)
4769                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4770         if (is_guest_mode(&vmx->vcpu))
4771                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4772                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4773         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4774 }
4775
4776 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4777 {
4778         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4779
4780         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4781                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4782         return pin_based_exec_ctrl;
4783 }
4784
4785 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4786 {
4787         struct vcpu_vmx *vmx = to_vmx(vcpu);
4788
4789         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4790 }
4791
4792 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4793 {
4794         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4795
4796         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4797                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4798
4799         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4800                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4801 #ifdef CONFIG_X86_64
4802                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4803                                 CPU_BASED_CR8_LOAD_EXITING;
4804 #endif
4805         }
4806         if (!enable_ept)
4807                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4808                                 CPU_BASED_CR3_LOAD_EXITING  |
4809                                 CPU_BASED_INVLPG_EXITING;
4810         return exec_control;
4811 }
4812
4813 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4814 {
4815         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4816         if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4817                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4818         if (vmx->vpid == 0)
4819                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4820         if (!enable_ept) {
4821                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4822                 enable_unrestricted_guest = 0;
4823                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4824                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4825         }
4826         if (!enable_unrestricted_guest)
4827                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4828         if (!ple_gap)
4829                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4830         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4831                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4832                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4833         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4834         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4835            (handle_vmptrld).
4836            We can NOT enable shadow_vmcs here because we don't have yet
4837            a current VMCS12
4838         */
4839         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4840
4841         if (!enable_pml)
4842                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4843
4844         /* Currently, we allow L1 guest to directly run pcommit instruction. */
4845         exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4846
4847         return exec_control;
4848 }
4849
4850 static void ept_set_mmio_spte_mask(void)
4851 {
4852         /*
4853          * EPT Misconfigurations can be generated if the value of bits 2:0
4854          * of an EPT paging-structure entry is 110b (write/execute).
4855          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4856          * spte.
4857          */
4858         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4859 }
4860
4861 #define VMX_XSS_EXIT_BITMAP 0
4862 /*
4863  * Sets up the vmcs for emulated real mode.
4864  */
4865 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4866 {
4867 #ifdef CONFIG_X86_64
4868         unsigned long a;
4869 #endif
4870         int i;
4871
4872         /* I/O */
4873         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4874         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4875
4876         if (enable_shadow_vmcs) {
4877                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4878                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4879         }
4880         if (cpu_has_vmx_msr_bitmap())
4881                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4882
4883         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4884
4885         /* Control */
4886         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4887
4888         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4889
4890         if (cpu_has_secondary_exec_ctrls())
4891                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4892                                 vmx_secondary_exec_control(vmx));
4893
4894         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4895                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4896                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4897                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4898                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4899
4900                 vmcs_write16(GUEST_INTR_STATUS, 0);
4901
4902                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4903                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4904         }
4905
4906         if (ple_gap) {
4907                 vmcs_write32(PLE_GAP, ple_gap);
4908                 vmx->ple_window = ple_window;
4909                 vmx->ple_window_dirty = true;
4910         }
4911
4912         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4913         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4914         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4915
4916         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4917         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4918         vmx_set_constant_host_state(vmx);
4919 #ifdef CONFIG_X86_64
4920         rdmsrl(MSR_FS_BASE, a);
4921         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4922         rdmsrl(MSR_GS_BASE, a);
4923         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4924 #else
4925         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4926         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4927 #endif
4928
4929         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4930         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4931         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4932         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4933         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4934
4935         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4936                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4937
4938         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4939                 u32 index = vmx_msr_index[i];
4940                 u32 data_low, data_high;
4941                 int j = vmx->nmsrs;
4942
4943                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4944                         continue;
4945                 if (wrmsr_safe(index, data_low, data_high) < 0)
4946                         continue;
4947                 vmx->guest_msrs[j].index = i;
4948                 vmx->guest_msrs[j].data = 0;
4949                 vmx->guest_msrs[j].mask = -1ull;
4950                 ++vmx->nmsrs;
4951         }
4952
4953
4954         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4955
4956         /* 22.2.1, 20.8.1 */
4957         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4958
4959         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4960         set_cr4_guest_host_mask(vmx);
4961
4962         if (vmx_xsaves_supported())
4963                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4964
4965         return 0;
4966 }
4967
4968 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4969 {
4970         struct vcpu_vmx *vmx = to_vmx(vcpu);
4971         struct msr_data apic_base_msr;
4972         u64 cr0;
4973
4974         vmx->rmode.vm86_active = 0;
4975
4976         vmx->soft_vnmi_blocked = 0;
4977
4978         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4979         kvm_set_cr8(vcpu, 0);
4980
4981         if (!init_event) {
4982                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4983                                      MSR_IA32_APICBASE_ENABLE;
4984                 if (kvm_vcpu_is_reset_bsp(vcpu))
4985                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4986                 apic_base_msr.host_initiated = true;
4987                 kvm_set_apic_base(vcpu, &apic_base_msr);
4988         }
4989
4990         vmx_segment_cache_clear(vmx);
4991
4992         seg_setup(VCPU_SREG_CS);
4993         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4994         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4995
4996         seg_setup(VCPU_SREG_DS);
4997         seg_setup(VCPU_SREG_ES);
4998         seg_setup(VCPU_SREG_FS);
4999         seg_setup(VCPU_SREG_GS);
5000         seg_setup(VCPU_SREG_SS);
5001
5002         vmcs_write16(GUEST_TR_SELECTOR, 0);
5003         vmcs_writel(GUEST_TR_BASE, 0);
5004         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5005         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5006
5007         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5008         vmcs_writel(GUEST_LDTR_BASE, 0);
5009         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5010         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5011
5012         if (!init_event) {
5013                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5014                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5015                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5016                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5017         }
5018
5019         vmcs_writel(GUEST_RFLAGS, 0x02);
5020         kvm_rip_write(vcpu, 0xfff0);
5021
5022         vmcs_writel(GUEST_GDTR_BASE, 0);
5023         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5024
5025         vmcs_writel(GUEST_IDTR_BASE, 0);
5026         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5027
5028         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5029         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5030         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5031
5032         setup_msrs(vmx);
5033
5034         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5035
5036         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5037                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5038                 if (cpu_need_tpr_shadow(vcpu))
5039                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5040                                      __pa(vcpu->arch.apic->regs));
5041                 vmcs_write32(TPR_THRESHOLD, 0);
5042         }
5043
5044         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5045
5046         if (kvm_vcpu_apicv_active(vcpu))
5047                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5048
5049         if (vmx->vpid != 0)
5050                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5051
5052         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5053         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5054         vmx->vcpu.arch.cr0 = cr0;
5055         vmx_set_cr4(vcpu, 0);
5056         vmx_set_efer(vcpu, 0);
5057         vmx_fpu_activate(vcpu);
5058         update_exception_bitmap(vcpu);
5059
5060         vpid_sync_context(vmx->vpid);
5061 }
5062
5063 /*
5064  * In nested virtualization, check if L1 asked to exit on external interrupts.
5065  * For most existing hypervisors, this will always return true.
5066  */
5067 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5068 {
5069         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5070                 PIN_BASED_EXT_INTR_MASK;
5071 }
5072
5073 /*
5074  * In nested virtualization, check if L1 has set
5075  * VM_EXIT_ACK_INTR_ON_EXIT
5076  */
5077 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5078 {
5079         return get_vmcs12(vcpu)->vm_exit_controls &
5080                 VM_EXIT_ACK_INTR_ON_EXIT;
5081 }
5082
5083 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5084 {
5085         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5086                 PIN_BASED_NMI_EXITING;
5087 }
5088
5089 static void enable_irq_window(struct kvm_vcpu *vcpu)
5090 {
5091         u32 cpu_based_vm_exec_control;
5092
5093         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5094         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5095         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5096 }
5097
5098 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5099 {
5100         u32 cpu_based_vm_exec_control;
5101
5102         if (!cpu_has_virtual_nmis() ||
5103             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5104                 enable_irq_window(vcpu);
5105                 return;
5106         }
5107
5108         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5109         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5110         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5111 }
5112
5113 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5114 {
5115         struct vcpu_vmx *vmx = to_vmx(vcpu);
5116         uint32_t intr;
5117         int irq = vcpu->arch.interrupt.nr;
5118
5119         trace_kvm_inj_virq(irq);
5120
5121         ++vcpu->stat.irq_injections;
5122         if (vmx->rmode.vm86_active) {
5123                 int inc_eip = 0;
5124                 if (vcpu->arch.interrupt.soft)
5125                         inc_eip = vcpu->arch.event_exit_inst_len;
5126                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5127                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5128                 return;
5129         }
5130         intr = irq | INTR_INFO_VALID_MASK;
5131         if (vcpu->arch.interrupt.soft) {
5132                 intr |= INTR_TYPE_SOFT_INTR;
5133                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5134                              vmx->vcpu.arch.event_exit_inst_len);
5135         } else
5136                 intr |= INTR_TYPE_EXT_INTR;
5137         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5138 }
5139
5140 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5141 {
5142         struct vcpu_vmx *vmx = to_vmx(vcpu);
5143
5144         if (is_guest_mode(vcpu))
5145                 return;
5146
5147         if (!cpu_has_virtual_nmis()) {
5148                 /*
5149                  * Tracking the NMI-blocked state in software is built upon
5150                  * finding the next open IRQ window. This, in turn, depends on
5151                  * well-behaving guests: They have to keep IRQs disabled at
5152                  * least as long as the NMI handler runs. Otherwise we may
5153                  * cause NMI nesting, maybe breaking the guest. But as this is
5154                  * highly unlikely, we can live with the residual risk.
5155                  */
5156                 vmx->soft_vnmi_blocked = 1;
5157                 vmx->vnmi_blocked_time = 0;
5158         }
5159
5160         ++vcpu->stat.nmi_injections;
5161         vmx->nmi_known_unmasked = false;
5162         if (vmx->rmode.vm86_active) {
5163                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5164                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5165                 return;
5166         }
5167         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5168                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5169 }
5170
5171 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5172 {
5173         if (!cpu_has_virtual_nmis())
5174                 return to_vmx(vcpu)->soft_vnmi_blocked;
5175         if (to_vmx(vcpu)->nmi_known_unmasked)
5176                 return false;
5177         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5178 }
5179
5180 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5181 {
5182         struct vcpu_vmx *vmx = to_vmx(vcpu);
5183
5184         if (!cpu_has_virtual_nmis()) {
5185                 if (vmx->soft_vnmi_blocked != masked) {
5186                         vmx->soft_vnmi_blocked = masked;
5187                         vmx->vnmi_blocked_time = 0;
5188                 }
5189         } else {
5190                 vmx->nmi_known_unmasked = !masked;
5191                 if (masked)
5192                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5193                                       GUEST_INTR_STATE_NMI);
5194                 else
5195                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5196                                         GUEST_INTR_STATE_NMI);
5197         }
5198 }
5199
5200 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5201 {
5202         if (to_vmx(vcpu)->nested.nested_run_pending)
5203                 return 0;
5204
5205         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5206                 return 0;
5207
5208         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5209                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5210                    | GUEST_INTR_STATE_NMI));
5211 }
5212
5213 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5214 {
5215         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5216                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5217                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5218                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5219 }
5220
5221 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5222 {
5223         int ret;
5224
5225         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5226                                     PAGE_SIZE * 3);
5227         if (ret)
5228                 return ret;
5229         kvm->arch.tss_addr = addr;
5230         return init_rmode_tss(kvm);
5231 }
5232
5233 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5234 {
5235         switch (vec) {
5236         case BP_VECTOR:
5237                 /*
5238                  * Update instruction length as we may reinject the exception
5239                  * from user space while in guest debugging mode.
5240                  */
5241                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5242                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5243                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5244                         return false;
5245                 /* fall through */
5246         case DB_VECTOR:
5247                 if (vcpu->guest_debug &
5248                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5249                         return false;
5250                 /* fall through */
5251         case DE_VECTOR:
5252         case OF_VECTOR:
5253         case BR_VECTOR:
5254         case UD_VECTOR:
5255         case DF_VECTOR:
5256         case SS_VECTOR:
5257         case GP_VECTOR:
5258         case MF_VECTOR:
5259                 return true;
5260         break;
5261         }
5262         return false;
5263 }
5264
5265 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5266                                   int vec, u32 err_code)
5267 {
5268         /*
5269          * Instruction with address size override prefix opcode 0x67
5270          * Cause the #SS fault with 0 error code in VM86 mode.
5271          */
5272         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5273                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5274                         if (vcpu->arch.halt_request) {
5275                                 vcpu->arch.halt_request = 0;
5276                                 return kvm_vcpu_halt(vcpu);
5277                         }
5278                         return 1;
5279                 }
5280                 return 0;
5281         }
5282
5283         /*
5284          * Forward all other exceptions that are valid in real mode.
5285          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5286          *        the required debugging infrastructure rework.
5287          */
5288         kvm_queue_exception(vcpu, vec);
5289         return 1;
5290 }
5291
5292 /*
5293  * Trigger machine check on the host. We assume all the MSRs are already set up
5294  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5295  * We pass a fake environment to the machine check handler because we want
5296  * the guest to be always treated like user space, no matter what context
5297  * it used internally.
5298  */
5299 static void kvm_machine_check(void)
5300 {
5301 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5302         struct pt_regs regs = {
5303                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5304                 .flags = X86_EFLAGS_IF,
5305         };
5306
5307         do_machine_check(&regs, 0);
5308 #endif
5309 }
5310
5311 static int handle_machine_check(struct kvm_vcpu *vcpu)
5312 {
5313         /* already handled by vcpu_run */
5314         return 1;
5315 }
5316
5317 static int handle_exception(struct kvm_vcpu *vcpu)
5318 {
5319         struct vcpu_vmx *vmx = to_vmx(vcpu);
5320         struct kvm_run *kvm_run = vcpu->run;
5321         u32 intr_info, ex_no, error_code;
5322         unsigned long cr2, rip, dr6;
5323         u32 vect_info;
5324         enum emulation_result er;
5325
5326         vect_info = vmx->idt_vectoring_info;
5327         intr_info = vmx->exit_intr_info;
5328
5329         if (is_machine_check(intr_info))
5330                 return handle_machine_check(vcpu);
5331
5332         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5333                 return 1;  /* already handled by vmx_vcpu_run() */
5334
5335         if (is_no_device(intr_info)) {
5336                 vmx_fpu_activate(vcpu);
5337                 return 1;
5338         }
5339
5340         if (is_invalid_opcode(intr_info)) {
5341                 if (is_guest_mode(vcpu)) {
5342                         kvm_queue_exception(vcpu, UD_VECTOR);
5343                         return 1;
5344                 }
5345                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5346                 if (er != EMULATE_DONE)
5347                         kvm_queue_exception(vcpu, UD_VECTOR);
5348                 return 1;
5349         }
5350
5351         error_code = 0;
5352         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5353                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5354
5355         /*
5356          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5357          * MMIO, it is better to report an internal error.
5358          * See the comments in vmx_handle_exit.
5359          */
5360         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5361             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5362                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5363                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5364                 vcpu->run->internal.ndata = 3;
5365                 vcpu->run->internal.data[0] = vect_info;
5366                 vcpu->run->internal.data[1] = intr_info;
5367                 vcpu->run->internal.data[2] = error_code;
5368                 return 0;
5369         }
5370
5371         if (is_page_fault(intr_info)) {
5372                 /* EPT won't cause page fault directly */
5373                 BUG_ON(enable_ept);
5374                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5375                 trace_kvm_page_fault(cr2, error_code);
5376
5377                 if (kvm_event_needs_reinjection(vcpu))
5378                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
5379                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5380         }
5381
5382         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5383
5384         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5385                 return handle_rmode_exception(vcpu, ex_no, error_code);
5386
5387         switch (ex_no) {
5388         case AC_VECTOR:
5389                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5390                 return 1;
5391         case DB_VECTOR:
5392                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5393                 if (!(vcpu->guest_debug &
5394                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5395                         vcpu->arch.dr6 &= ~15;
5396                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5397                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5398                                 skip_emulated_instruction(vcpu);
5399
5400                         kvm_queue_exception(vcpu, DB_VECTOR);
5401                         return 1;
5402                 }
5403                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5404                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5405                 /* fall through */
5406         case BP_VECTOR:
5407                 /*
5408                  * Update instruction length as we may reinject #BP from
5409                  * user space while in guest debugging mode. Reading it for
5410                  * #DB as well causes no harm, it is not used in that case.
5411                  */
5412                 vmx->vcpu.arch.event_exit_inst_len =
5413                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5414                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5415                 rip = kvm_rip_read(vcpu);
5416                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5417                 kvm_run->debug.arch.exception = ex_no;
5418                 break;
5419         default:
5420                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5421                 kvm_run->ex.exception = ex_no;
5422                 kvm_run->ex.error_code = error_code;
5423                 break;
5424         }
5425         return 0;
5426 }
5427
5428 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5429 {
5430         ++vcpu->stat.irq_exits;
5431         return 1;
5432 }
5433
5434 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5435 {
5436         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5437         return 0;
5438 }
5439
5440 static int handle_io(struct kvm_vcpu *vcpu)
5441 {
5442         unsigned long exit_qualification;
5443         int size, in, string;
5444         unsigned port;
5445
5446         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5447         string = (exit_qualification & 16) != 0;
5448         in = (exit_qualification & 8) != 0;
5449
5450         ++vcpu->stat.io_exits;
5451
5452         if (string || in)
5453                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5454
5455         port = exit_qualification >> 16;
5456         size = (exit_qualification & 7) + 1;
5457         skip_emulated_instruction(vcpu);
5458
5459         return kvm_fast_pio_out(vcpu, size, port);
5460 }
5461
5462 static void
5463 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5464 {
5465         /*
5466          * Patch in the VMCALL instruction:
5467          */
5468         hypercall[0] = 0x0f;
5469         hypercall[1] = 0x01;
5470         hypercall[2] = 0xc1;
5471 }
5472
5473 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5474 {
5475         unsigned long always_on = VMXON_CR0_ALWAYSON;
5476         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5477
5478         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5479                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5480             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5481                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5482         return (val & always_on) == always_on;
5483 }
5484
5485 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5486 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5487 {
5488         if (is_guest_mode(vcpu)) {
5489                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5490                 unsigned long orig_val = val;
5491
5492                 /*
5493                  * We get here when L2 changed cr0 in a way that did not change
5494                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5495                  * but did change L0 shadowed bits. So we first calculate the
5496                  * effective cr0 value that L1 would like to write into the
5497                  * hardware. It consists of the L2-owned bits from the new
5498                  * value combined with the L1-owned bits from L1's guest_cr0.
5499                  */
5500                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5501                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5502
5503                 if (!nested_cr0_valid(vcpu, val))
5504                         return 1;
5505
5506                 if (kvm_set_cr0(vcpu, val))
5507                         return 1;
5508                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5509                 return 0;
5510         } else {
5511                 if (to_vmx(vcpu)->nested.vmxon &&
5512                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5513                         return 1;
5514                 return kvm_set_cr0(vcpu, val);
5515         }
5516 }
5517
5518 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5519 {
5520         if (is_guest_mode(vcpu)) {
5521                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5522                 unsigned long orig_val = val;
5523
5524                 /* analogously to handle_set_cr0 */
5525                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5526                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5527                 if (kvm_set_cr4(vcpu, val))
5528                         return 1;
5529                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5530                 return 0;
5531         } else
5532                 return kvm_set_cr4(vcpu, val);
5533 }
5534
5535 /* called to set cr0 as appropriate for clts instruction exit. */
5536 static void handle_clts(struct kvm_vcpu *vcpu)
5537 {
5538         if (is_guest_mode(vcpu)) {
5539                 /*
5540                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5541                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5542                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5543                  */
5544                 vmcs_writel(CR0_READ_SHADOW,
5545                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5546                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5547         } else
5548                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5549 }
5550
5551 static int handle_cr(struct kvm_vcpu *vcpu)
5552 {
5553         unsigned long exit_qualification, val;
5554         int cr;
5555         int reg;
5556         int err;
5557
5558         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5559         cr = exit_qualification & 15;
5560         reg = (exit_qualification >> 8) & 15;
5561         switch ((exit_qualification >> 4) & 3) {
5562         case 0: /* mov to cr */
5563                 val = kvm_register_readl(vcpu, reg);
5564                 trace_kvm_cr_write(cr, val);
5565                 switch (cr) {
5566                 case 0:
5567                         err = handle_set_cr0(vcpu, val);
5568                         kvm_complete_insn_gp(vcpu, err);
5569                         return 1;
5570                 case 3:
5571                         err = kvm_set_cr3(vcpu, val);
5572                         kvm_complete_insn_gp(vcpu, err);
5573                         return 1;
5574                 case 4:
5575                         err = handle_set_cr4(vcpu, val);
5576                         kvm_complete_insn_gp(vcpu, err);
5577                         return 1;
5578                 case 8: {
5579                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5580                                 u8 cr8 = (u8)val;
5581                                 err = kvm_set_cr8(vcpu, cr8);
5582                                 kvm_complete_insn_gp(vcpu, err);
5583                                 if (lapic_in_kernel(vcpu))
5584                                         return 1;
5585                                 if (cr8_prev <= cr8)
5586                                         return 1;
5587                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5588                                 return 0;
5589                         }
5590                 }
5591                 break;
5592         case 2: /* clts */
5593                 handle_clts(vcpu);
5594                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5595                 skip_emulated_instruction(vcpu);
5596                 vmx_fpu_activate(vcpu);
5597                 return 1;
5598         case 1: /*mov from cr*/
5599                 switch (cr) {
5600                 case 3:
5601                         val = kvm_read_cr3(vcpu);
5602                         kvm_register_write(vcpu, reg, val);
5603                         trace_kvm_cr_read(cr, val);
5604                         skip_emulated_instruction(vcpu);
5605                         return 1;
5606                 case 8:
5607                         val = kvm_get_cr8(vcpu);
5608                         kvm_register_write(vcpu, reg, val);
5609                         trace_kvm_cr_read(cr, val);
5610                         skip_emulated_instruction(vcpu);
5611                         return 1;
5612                 }
5613                 break;
5614         case 3: /* lmsw */
5615                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5616                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5617                 kvm_lmsw(vcpu, val);
5618
5619                 skip_emulated_instruction(vcpu);
5620                 return 1;
5621         default:
5622                 break;
5623         }
5624         vcpu->run->exit_reason = 0;
5625         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5626                (int)(exit_qualification >> 4) & 3, cr);
5627         return 0;
5628 }
5629
5630 static int handle_dr(struct kvm_vcpu *vcpu)
5631 {
5632         unsigned long exit_qualification;
5633         int dr, dr7, reg;
5634
5635         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5636         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5637
5638         /* First, if DR does not exist, trigger UD */
5639         if (!kvm_require_dr(vcpu, dr))
5640                 return 1;
5641
5642         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5643         if (!kvm_require_cpl(vcpu, 0))
5644                 return 1;
5645         dr7 = vmcs_readl(GUEST_DR7);
5646         if (dr7 & DR7_GD) {
5647                 /*
5648                  * As the vm-exit takes precedence over the debug trap, we
5649                  * need to emulate the latter, either for the host or the
5650                  * guest debugging itself.
5651                  */
5652                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5653                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5654                         vcpu->run->debug.arch.dr7 = dr7;
5655                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5656                         vcpu->run->debug.arch.exception = DB_VECTOR;
5657                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5658                         return 0;
5659                 } else {
5660                         vcpu->arch.dr6 &= ~15;
5661                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5662                         kvm_queue_exception(vcpu, DB_VECTOR);
5663                         return 1;
5664                 }
5665         }
5666
5667         if (vcpu->guest_debug == 0) {
5668                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5669                                 CPU_BASED_MOV_DR_EXITING);
5670
5671                 /*
5672                  * No more DR vmexits; force a reload of the debug registers
5673                  * and reenter on this instruction.  The next vmexit will
5674                  * retrieve the full state of the debug registers.
5675                  */
5676                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5677                 return 1;
5678         }
5679
5680         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5681         if (exit_qualification & TYPE_MOV_FROM_DR) {
5682                 unsigned long val;
5683
5684                 if (kvm_get_dr(vcpu, dr, &val))
5685                         return 1;
5686                 kvm_register_write(vcpu, reg, val);
5687         } else
5688                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5689                         return 1;
5690
5691         skip_emulated_instruction(vcpu);
5692         return 1;
5693 }
5694
5695 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5696 {
5697         return vcpu->arch.dr6;
5698 }
5699
5700 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5701 {
5702 }
5703
5704 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5705 {
5706         get_debugreg(vcpu->arch.db[0], 0);
5707         get_debugreg(vcpu->arch.db[1], 1);
5708         get_debugreg(vcpu->arch.db[2], 2);
5709         get_debugreg(vcpu->arch.db[3], 3);
5710         get_debugreg(vcpu->arch.dr6, 6);
5711         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5712
5713         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5714         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
5715 }
5716
5717 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5718 {
5719         vmcs_writel(GUEST_DR7, val);
5720 }
5721
5722 static int handle_cpuid(struct kvm_vcpu *vcpu)
5723 {
5724         kvm_emulate_cpuid(vcpu);
5725         return 1;
5726 }
5727
5728 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5729 {
5730         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5731         struct msr_data msr_info;
5732
5733         msr_info.index = ecx;
5734         msr_info.host_initiated = false;
5735         if (vmx_get_msr(vcpu, &msr_info)) {
5736                 trace_kvm_msr_read_ex(ecx);
5737                 kvm_inject_gp(vcpu, 0);
5738                 return 1;
5739         }
5740
5741         trace_kvm_msr_read(ecx, msr_info.data);
5742
5743         /* FIXME: handling of bits 32:63 of rax, rdx */
5744         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5745         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5746         skip_emulated_instruction(vcpu);
5747         return 1;
5748 }
5749
5750 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5751 {
5752         struct msr_data msr;
5753         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5754         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5755                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5756
5757         msr.data = data;
5758         msr.index = ecx;
5759         msr.host_initiated = false;
5760         if (kvm_set_msr(vcpu, &msr) != 0) {
5761                 trace_kvm_msr_write_ex(ecx, data);
5762                 kvm_inject_gp(vcpu, 0);
5763                 return 1;
5764         }
5765
5766         trace_kvm_msr_write(ecx, data);
5767         skip_emulated_instruction(vcpu);
5768         return 1;
5769 }
5770
5771 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5772 {
5773         kvm_make_request(KVM_REQ_EVENT, vcpu);
5774         return 1;
5775 }
5776
5777 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5778 {
5779         u32 cpu_based_vm_exec_control;
5780
5781         /* clear pending irq */
5782         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5783         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5784         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5785
5786         kvm_make_request(KVM_REQ_EVENT, vcpu);
5787
5788         ++vcpu->stat.irq_window_exits;
5789         return 1;
5790 }
5791
5792 static int handle_halt(struct kvm_vcpu *vcpu)
5793 {
5794         return kvm_emulate_halt(vcpu);
5795 }
5796
5797 static int handle_vmcall(struct kvm_vcpu *vcpu)
5798 {
5799         return kvm_emulate_hypercall(vcpu);
5800 }
5801
5802 static int handle_invd(struct kvm_vcpu *vcpu)
5803 {
5804         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5805 }
5806
5807 static int handle_invlpg(struct kvm_vcpu *vcpu)
5808 {
5809         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5810
5811         kvm_mmu_invlpg(vcpu, exit_qualification);
5812         skip_emulated_instruction(vcpu);
5813         return 1;
5814 }
5815
5816 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5817 {
5818         int err;
5819
5820         err = kvm_rdpmc(vcpu);
5821         kvm_complete_insn_gp(vcpu, err);
5822
5823         return 1;
5824 }
5825
5826 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5827 {
5828         kvm_emulate_wbinvd(vcpu);
5829         return 1;
5830 }
5831
5832 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5833 {
5834         u64 new_bv = kvm_read_edx_eax(vcpu);
5835         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5836
5837         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5838                 skip_emulated_instruction(vcpu);
5839         return 1;
5840 }
5841
5842 static int handle_xsaves(struct kvm_vcpu *vcpu)
5843 {
5844         skip_emulated_instruction(vcpu);
5845         WARN(1, "this should never happen\n");
5846         return 1;
5847 }
5848
5849 static int handle_xrstors(struct kvm_vcpu *vcpu)
5850 {
5851         skip_emulated_instruction(vcpu);
5852         WARN(1, "this should never happen\n");
5853         return 1;
5854 }
5855
5856 static int handle_apic_access(struct kvm_vcpu *vcpu)
5857 {
5858         if (likely(fasteoi)) {
5859                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5860                 int access_type, offset;
5861
5862                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5863                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5864                 /*
5865                  * Sane guest uses MOV to write EOI, with written value
5866                  * not cared. So make a short-circuit here by avoiding
5867                  * heavy instruction emulation.
5868                  */
5869                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5870                     (offset == APIC_EOI)) {
5871                         kvm_lapic_set_eoi(vcpu);
5872                         skip_emulated_instruction(vcpu);
5873                         return 1;
5874                 }
5875         }
5876         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5877 }
5878
5879 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5880 {
5881         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5882         int vector = exit_qualification & 0xff;
5883
5884         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5885         kvm_apic_set_eoi_accelerated(vcpu, vector);
5886         return 1;
5887 }
5888
5889 static int handle_apic_write(struct kvm_vcpu *vcpu)
5890 {
5891         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5892         u32 offset = exit_qualification & 0xfff;
5893
5894         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5895         kvm_apic_write_nodecode(vcpu, offset);
5896         return 1;
5897 }
5898
5899 static int handle_task_switch(struct kvm_vcpu *vcpu)
5900 {
5901         struct vcpu_vmx *vmx = to_vmx(vcpu);
5902         unsigned long exit_qualification;
5903         bool has_error_code = false;
5904         u32 error_code = 0;
5905         u16 tss_selector;
5906         int reason, type, idt_v, idt_index;
5907
5908         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5909         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5910         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5911
5912         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5913
5914         reason = (u32)exit_qualification >> 30;
5915         if (reason == TASK_SWITCH_GATE && idt_v) {
5916                 switch (type) {
5917                 case INTR_TYPE_NMI_INTR:
5918                         vcpu->arch.nmi_injected = false;
5919                         vmx_set_nmi_mask(vcpu, true);
5920                         break;
5921                 case INTR_TYPE_EXT_INTR:
5922                 case INTR_TYPE_SOFT_INTR:
5923                         kvm_clear_interrupt_queue(vcpu);
5924                         break;
5925                 case INTR_TYPE_HARD_EXCEPTION:
5926                         if (vmx->idt_vectoring_info &
5927                             VECTORING_INFO_DELIVER_CODE_MASK) {
5928                                 has_error_code = true;
5929                                 error_code =
5930                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5931                         }
5932                         /* fall through */
5933                 case INTR_TYPE_SOFT_EXCEPTION:
5934                         kvm_clear_exception_queue(vcpu);
5935                         break;
5936                 default:
5937                         break;
5938                 }
5939         }
5940         tss_selector = exit_qualification;
5941
5942         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5943                        type != INTR_TYPE_EXT_INTR &&
5944                        type != INTR_TYPE_NMI_INTR))
5945                 skip_emulated_instruction(vcpu);
5946
5947         if (kvm_task_switch(vcpu, tss_selector,
5948                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5949                             has_error_code, error_code) == EMULATE_FAIL) {
5950                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5951                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5952                 vcpu->run->internal.ndata = 0;
5953                 return 0;
5954         }
5955
5956         /*
5957          * TODO: What about debug traps on tss switch?
5958          *       Are we supposed to inject them and update dr6?
5959          */
5960
5961         return 1;
5962 }
5963
5964 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5965 {
5966         unsigned long exit_qualification;
5967         gpa_t gpa;
5968         u32 error_code;
5969         int gla_validity;
5970
5971         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5972
5973         gla_validity = (exit_qualification >> 7) & 0x3;
5974         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5975                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5976                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5977                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5978                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5979                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5980                         (long unsigned int)exit_qualification);
5981                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5982                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5983                 return 0;
5984         }
5985
5986         /*
5987          * EPT violation happened while executing iret from NMI,
5988          * "blocked by NMI" bit has to be set before next VM entry.
5989          * There are errata that may cause this bit to not be set:
5990          * AAK134, BY25.
5991          */
5992         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5993                         cpu_has_virtual_nmis() &&
5994                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5995                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5996
5997         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5998         trace_kvm_page_fault(gpa, exit_qualification);
5999
6000         /* It is a write fault? */
6001         error_code = exit_qualification & PFERR_WRITE_MASK;
6002         /* It is a fetch fault? */
6003         error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6004         /* ept page table is present? */
6005         error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
6006
6007         vcpu->arch.exit_qualification = exit_qualification;
6008
6009         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6010 }
6011
6012 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6013 {
6014         int ret;
6015         gpa_t gpa;
6016
6017         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6018         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6019                 skip_emulated_instruction(vcpu);
6020                 trace_kvm_fast_mmio(gpa);
6021                 return 1;
6022         }
6023
6024         ret = handle_mmio_page_fault(vcpu, gpa, true);
6025         if (likely(ret == RET_MMIO_PF_EMULATE))
6026                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6027                                               EMULATE_DONE;
6028
6029         if (unlikely(ret == RET_MMIO_PF_INVALID))
6030                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6031
6032         if (unlikely(ret == RET_MMIO_PF_RETRY))
6033                 return 1;
6034
6035         /* It is the real ept misconfig */
6036         WARN_ON(1);
6037
6038         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6039         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6040
6041         return 0;
6042 }
6043
6044 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6045 {
6046         u32 cpu_based_vm_exec_control;
6047
6048         /* clear pending NMI */
6049         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6050         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6051         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6052         ++vcpu->stat.nmi_window_exits;
6053         kvm_make_request(KVM_REQ_EVENT, vcpu);
6054
6055         return 1;
6056 }
6057
6058 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6059 {
6060         struct vcpu_vmx *vmx = to_vmx(vcpu);
6061         enum emulation_result err = EMULATE_DONE;
6062         int ret = 1;
6063         u32 cpu_exec_ctrl;
6064         bool intr_window_requested;
6065         unsigned count = 130;
6066
6067         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6068         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6069
6070         while (vmx->emulation_required && count-- != 0) {
6071                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6072                         return handle_interrupt_window(&vmx->vcpu);
6073
6074                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6075                         return 1;
6076
6077                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6078
6079                 if (err == EMULATE_USER_EXIT) {
6080                         ++vcpu->stat.mmio_exits;
6081                         ret = 0;
6082                         goto out;
6083                 }
6084
6085                 if (err != EMULATE_DONE) {
6086                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6087                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6088                         vcpu->run->internal.ndata = 0;
6089                         return 0;
6090                 }
6091
6092                 if (vcpu->arch.halt_request) {
6093                         vcpu->arch.halt_request = 0;
6094                         ret = kvm_vcpu_halt(vcpu);
6095                         goto out;
6096                 }
6097
6098                 if (signal_pending(current))
6099                         goto out;
6100                 if (need_resched())
6101                         schedule();
6102         }
6103
6104 out:
6105         return ret;
6106 }
6107
6108 static int __grow_ple_window(int val)
6109 {
6110         if (ple_window_grow < 1)
6111                 return ple_window;
6112
6113         val = min(val, ple_window_actual_max);
6114
6115         if (ple_window_grow < ple_window)
6116                 val *= ple_window_grow;
6117         else
6118                 val += ple_window_grow;
6119
6120         return val;
6121 }
6122
6123 static int __shrink_ple_window(int val, int modifier, int minimum)
6124 {
6125         if (modifier < 1)
6126                 return ple_window;
6127
6128         if (modifier < ple_window)
6129                 val /= modifier;
6130         else
6131                 val -= modifier;
6132
6133         return max(val, minimum);
6134 }
6135
6136 static void grow_ple_window(struct kvm_vcpu *vcpu)
6137 {
6138         struct vcpu_vmx *vmx = to_vmx(vcpu);
6139         int old = vmx->ple_window;
6140
6141         vmx->ple_window = __grow_ple_window(old);
6142
6143         if (vmx->ple_window != old)
6144                 vmx->ple_window_dirty = true;
6145
6146         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6147 }
6148
6149 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6150 {
6151         struct vcpu_vmx *vmx = to_vmx(vcpu);
6152         int old = vmx->ple_window;
6153
6154         vmx->ple_window = __shrink_ple_window(old,
6155                                               ple_window_shrink, ple_window);
6156
6157         if (vmx->ple_window != old)
6158                 vmx->ple_window_dirty = true;
6159
6160         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6161 }
6162
6163 /*
6164  * ple_window_actual_max is computed to be one grow_ple_window() below
6165  * ple_window_max. (See __grow_ple_window for the reason.)
6166  * This prevents overflows, because ple_window_max is int.
6167  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6168  * this process.
6169  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6170  */
6171 static void update_ple_window_actual_max(void)
6172 {
6173         ple_window_actual_max =
6174                         __shrink_ple_window(max(ple_window_max, ple_window),
6175                                             ple_window_grow, INT_MIN);
6176 }
6177
6178 /*
6179  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6180  */
6181 static void wakeup_handler(void)
6182 {
6183         struct kvm_vcpu *vcpu;
6184         int cpu = smp_processor_id();
6185
6186         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6187         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6188                         blocked_vcpu_list) {
6189                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6190
6191                 if (pi_test_on(pi_desc) == 1)
6192                         kvm_vcpu_kick(vcpu);
6193         }
6194         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6195 }
6196
6197 static __init int hardware_setup(void)
6198 {
6199         int r = -ENOMEM, i, msr;
6200
6201         rdmsrl_safe(MSR_EFER, &host_efer);
6202
6203         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6204                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6205
6206         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6207         if (!vmx_io_bitmap_a)
6208                 return r;
6209
6210         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6211         if (!vmx_io_bitmap_b)
6212                 goto out;
6213
6214         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6215         if (!vmx_msr_bitmap_legacy)
6216                 goto out1;
6217
6218         vmx_msr_bitmap_legacy_x2apic =
6219                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6220         if (!vmx_msr_bitmap_legacy_x2apic)
6221                 goto out2;
6222
6223         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6224         if (!vmx_msr_bitmap_longmode)
6225                 goto out3;
6226
6227         vmx_msr_bitmap_longmode_x2apic =
6228                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6229         if (!vmx_msr_bitmap_longmode_x2apic)
6230                 goto out4;
6231
6232         if (nested) {
6233                 vmx_msr_bitmap_nested =
6234                         (unsigned long *)__get_free_page(GFP_KERNEL);
6235                 if (!vmx_msr_bitmap_nested)
6236                         goto out5;
6237         }
6238
6239         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6240         if (!vmx_vmread_bitmap)
6241                 goto out6;
6242
6243         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6244         if (!vmx_vmwrite_bitmap)
6245                 goto out7;
6246
6247         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6248         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6249
6250         /*
6251          * Allow direct access to the PC debug port (it is often used for I/O
6252          * delays, but the vmexits simply slow things down).
6253          */
6254         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6255         clear_bit(0x80, vmx_io_bitmap_a);
6256
6257         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6258
6259         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6260         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6261         if (nested)
6262                 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6263
6264         if (setup_vmcs_config(&vmcs_config) < 0) {
6265                 r = -EIO;
6266                 goto out8;
6267         }
6268
6269         if (boot_cpu_has(X86_FEATURE_NX))
6270                 kvm_enable_efer_bits(EFER_NX);
6271
6272         if (!cpu_has_vmx_vpid())
6273                 enable_vpid = 0;
6274         if (!cpu_has_vmx_shadow_vmcs())
6275                 enable_shadow_vmcs = 0;
6276         if (enable_shadow_vmcs)
6277                 init_vmcs_shadow_fields();
6278
6279         if (!cpu_has_vmx_ept() ||
6280             !cpu_has_vmx_ept_4levels()) {
6281                 enable_ept = 0;
6282                 enable_unrestricted_guest = 0;
6283                 enable_ept_ad_bits = 0;
6284         }
6285
6286         if (!cpu_has_vmx_ept_ad_bits())
6287                 enable_ept_ad_bits = 0;
6288
6289         if (!cpu_has_vmx_unrestricted_guest())
6290                 enable_unrestricted_guest = 0;
6291
6292         if (!cpu_has_vmx_flexpriority())
6293                 flexpriority_enabled = 0;
6294
6295         /*
6296          * set_apic_access_page_addr() is used to reload apic access
6297          * page upon invalidation.  No need to do anything if not
6298          * using the APIC_ACCESS_ADDR VMCS field.
6299          */
6300         if (!flexpriority_enabled)
6301                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6302
6303         if (!cpu_has_vmx_tpr_shadow())
6304                 kvm_x86_ops->update_cr8_intercept = NULL;
6305
6306         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6307                 kvm_disable_largepages();
6308
6309         if (!cpu_has_vmx_ple())
6310                 ple_gap = 0;
6311
6312         if (!cpu_has_vmx_apicv())
6313                 enable_apicv = 0;
6314
6315         if (cpu_has_vmx_tsc_scaling()) {
6316                 kvm_has_tsc_control = true;
6317                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6318                 kvm_tsc_scaling_ratio_frac_bits = 48;
6319         }
6320
6321         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6322         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6323         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6324         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6325         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6326         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6327         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6328
6329         memcpy(vmx_msr_bitmap_legacy_x2apic,
6330                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6331         memcpy(vmx_msr_bitmap_longmode_x2apic,
6332                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6333
6334         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6335
6336         if (enable_apicv) {
6337                 for (msr = 0x800; msr <= 0x8ff; msr++)
6338                         vmx_disable_intercept_msr_read_x2apic(msr);
6339
6340                 /* According SDM, in x2apic mode, the whole id reg is used.
6341                  * But in KVM, it only use the highest eight bits. Need to
6342                  * intercept it */
6343                 vmx_enable_intercept_msr_read_x2apic(0x802);
6344                 /* TMCCT */
6345                 vmx_enable_intercept_msr_read_x2apic(0x839);
6346                 /* TPR */
6347                 vmx_disable_intercept_msr_write_x2apic(0x808);
6348                 /* EOI */
6349                 vmx_disable_intercept_msr_write_x2apic(0x80b);
6350                 /* SELF-IPI */
6351                 vmx_disable_intercept_msr_write_x2apic(0x83f);
6352         }
6353
6354         if (enable_ept) {
6355                 kvm_mmu_set_mask_ptes(0ull,
6356                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6357                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6358                         0ull, VMX_EPT_EXECUTABLE_MASK);
6359                 ept_set_mmio_spte_mask();
6360                 kvm_enable_tdp();
6361         } else
6362                 kvm_disable_tdp();
6363
6364         update_ple_window_actual_max();
6365
6366         /*
6367          * Only enable PML when hardware supports PML feature, and both EPT
6368          * and EPT A/D bit features are enabled -- PML depends on them to work.
6369          */
6370         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6371                 enable_pml = 0;
6372
6373         if (!enable_pml) {
6374                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6375                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6376                 kvm_x86_ops->flush_log_dirty = NULL;
6377                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6378         }
6379
6380         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6381
6382         return alloc_kvm_area();
6383
6384 out8:
6385         free_page((unsigned long)vmx_vmwrite_bitmap);
6386 out7:
6387         free_page((unsigned long)vmx_vmread_bitmap);
6388 out6:
6389         if (nested)
6390                 free_page((unsigned long)vmx_msr_bitmap_nested);
6391 out5:
6392         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6393 out4:
6394         free_page((unsigned long)vmx_msr_bitmap_longmode);
6395 out3:
6396         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6397 out2:
6398         free_page((unsigned long)vmx_msr_bitmap_legacy);
6399 out1:
6400         free_page((unsigned long)vmx_io_bitmap_b);
6401 out:
6402         free_page((unsigned long)vmx_io_bitmap_a);
6403
6404     return r;
6405 }
6406
6407 static __exit void hardware_unsetup(void)
6408 {
6409         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6410         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6411         free_page((unsigned long)vmx_msr_bitmap_legacy);
6412         free_page((unsigned long)vmx_msr_bitmap_longmode);
6413         free_page((unsigned long)vmx_io_bitmap_b);
6414         free_page((unsigned long)vmx_io_bitmap_a);
6415         free_page((unsigned long)vmx_vmwrite_bitmap);
6416         free_page((unsigned long)vmx_vmread_bitmap);
6417         if (nested)
6418                 free_page((unsigned long)vmx_msr_bitmap_nested);
6419
6420         free_kvm_area();
6421 }
6422
6423 /*
6424  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6425  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6426  */
6427 static int handle_pause(struct kvm_vcpu *vcpu)
6428 {
6429         if (ple_gap)
6430                 grow_ple_window(vcpu);
6431
6432         skip_emulated_instruction(vcpu);
6433         kvm_vcpu_on_spin(vcpu);
6434
6435         return 1;
6436 }
6437
6438 static int handle_nop(struct kvm_vcpu *vcpu)
6439 {
6440         skip_emulated_instruction(vcpu);
6441         return 1;
6442 }
6443
6444 static int handle_mwait(struct kvm_vcpu *vcpu)
6445 {
6446         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6447         return handle_nop(vcpu);
6448 }
6449
6450 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6451 {
6452         return 1;
6453 }
6454
6455 static int handle_monitor(struct kvm_vcpu *vcpu)
6456 {
6457         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6458         return handle_nop(vcpu);
6459 }
6460
6461 /*
6462  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6463  * We could reuse a single VMCS for all the L2 guests, but we also want the
6464  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6465  * allows keeping them loaded on the processor, and in the future will allow
6466  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6467  * every entry if they never change.
6468  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6469  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6470  *
6471  * The following functions allocate and free a vmcs02 in this pool.
6472  */
6473
6474 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6475 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6476 {
6477         struct vmcs02_list *item;
6478         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6479                 if (item->vmptr == vmx->nested.current_vmptr) {
6480                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6481                         return &item->vmcs02;
6482                 }
6483
6484         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6485                 /* Recycle the least recently used VMCS. */
6486                 item = list_last_entry(&vmx->nested.vmcs02_pool,
6487                                        struct vmcs02_list, list);
6488                 item->vmptr = vmx->nested.current_vmptr;
6489                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6490                 return &item->vmcs02;
6491         }
6492
6493         /* Create a new VMCS */
6494         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6495         if (!item)
6496                 return NULL;
6497         item->vmcs02.vmcs = alloc_vmcs();
6498         if (!item->vmcs02.vmcs) {
6499                 kfree(item);
6500                 return NULL;
6501         }
6502         loaded_vmcs_init(&item->vmcs02);
6503         item->vmptr = vmx->nested.current_vmptr;
6504         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6505         vmx->nested.vmcs02_num++;
6506         return &item->vmcs02;
6507 }
6508
6509 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6510 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6511 {
6512         struct vmcs02_list *item;
6513         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6514                 if (item->vmptr == vmptr) {
6515                         free_loaded_vmcs(&item->vmcs02);
6516                         list_del(&item->list);
6517                         kfree(item);
6518                         vmx->nested.vmcs02_num--;
6519                         return;
6520                 }
6521 }
6522
6523 /*
6524  * Free all VMCSs saved for this vcpu, except the one pointed by
6525  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6526  * must be &vmx->vmcs01.
6527  */
6528 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6529 {
6530         struct vmcs02_list *item, *n;
6531
6532         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6533         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6534                 /*
6535                  * Something will leak if the above WARN triggers.  Better than
6536                  * a use-after-free.
6537                  */
6538                 if (vmx->loaded_vmcs == &item->vmcs02)
6539                         continue;
6540
6541                 free_loaded_vmcs(&item->vmcs02);
6542                 list_del(&item->list);
6543                 kfree(item);
6544                 vmx->nested.vmcs02_num--;
6545         }
6546 }
6547
6548 /*
6549  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6550  * set the success or error code of an emulated VMX instruction, as specified
6551  * by Vol 2B, VMX Instruction Reference, "Conventions".
6552  */
6553 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6554 {
6555         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6556                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6557                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6558 }
6559
6560 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6561 {
6562         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6563                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6564                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6565                         | X86_EFLAGS_CF);
6566 }
6567
6568 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6569                                         u32 vm_instruction_error)
6570 {
6571         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6572                 /*
6573                  * failValid writes the error number to the current VMCS, which
6574                  * can't be done there isn't a current VMCS.
6575                  */
6576                 nested_vmx_failInvalid(vcpu);
6577                 return;
6578         }
6579         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6580                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6581                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6582                         | X86_EFLAGS_ZF);
6583         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6584         /*
6585          * We don't need to force a shadow sync because
6586          * VM_INSTRUCTION_ERROR is not shadowed
6587          */
6588 }
6589
6590 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6591 {
6592         /* TODO: not to reset guest simply here. */
6593         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6594         pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6595 }
6596
6597 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6598 {
6599         struct vcpu_vmx *vmx =
6600                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6601
6602         vmx->nested.preemption_timer_expired = true;
6603         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6604         kvm_vcpu_kick(&vmx->vcpu);
6605
6606         return HRTIMER_NORESTART;
6607 }
6608
6609 /*
6610  * Decode the memory-address operand of a vmx instruction, as recorded on an
6611  * exit caused by such an instruction (run by a guest hypervisor).
6612  * On success, returns 0. When the operand is invalid, returns 1 and throws
6613  * #UD or #GP.
6614  */
6615 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6616                                  unsigned long exit_qualification,
6617                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
6618 {
6619         gva_t off;
6620         bool exn;
6621         struct kvm_segment s;
6622
6623         /*
6624          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6625          * Execution", on an exit, vmx_instruction_info holds most of the
6626          * addressing components of the operand. Only the displacement part
6627          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6628          * For how an actual address is calculated from all these components,
6629          * refer to Vol. 1, "Operand Addressing".
6630          */
6631         int  scaling = vmx_instruction_info & 3;
6632         int  addr_size = (vmx_instruction_info >> 7) & 7;
6633         bool is_reg = vmx_instruction_info & (1u << 10);
6634         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6635         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6636         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6637         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6638         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6639
6640         if (is_reg) {
6641                 kvm_queue_exception(vcpu, UD_VECTOR);
6642                 return 1;
6643         }
6644
6645         /* Addr = segment_base + offset */
6646         /* offset = base + [index * scale] + displacement */
6647         off = exit_qualification; /* holds the displacement */
6648         if (base_is_valid)
6649                 off += kvm_register_read(vcpu, base_reg);
6650         if (index_is_valid)
6651                 off += kvm_register_read(vcpu, index_reg)<<scaling;
6652         vmx_get_segment(vcpu, &s, seg_reg);
6653         *ret = s.base + off;
6654
6655         if (addr_size == 1) /* 32 bit */
6656                 *ret &= 0xffffffff;
6657
6658         /* Checks for #GP/#SS exceptions. */
6659         exn = false;
6660         if (is_protmode(vcpu)) {
6661                 /* Protected mode: apply checks for segment validity in the
6662                  * following order:
6663                  * - segment type check (#GP(0) may be thrown)
6664                  * - usability check (#GP(0)/#SS(0))
6665                  * - limit check (#GP(0)/#SS(0))
6666                  */
6667                 if (wr)
6668                         /* #GP(0) if the destination operand is located in a
6669                          * read-only data segment or any code segment.
6670                          */
6671                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
6672                 else
6673                         /* #GP(0) if the source operand is located in an
6674                          * execute-only code segment
6675                          */
6676                         exn = ((s.type & 0xa) == 8);
6677         }
6678         if (exn) {
6679                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6680                 return 1;
6681         }
6682         if (is_long_mode(vcpu)) {
6683                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6684                  * non-canonical form. This is an only check for long mode.
6685                  */
6686                 exn = is_noncanonical_address(*ret);
6687         } else if (is_protmode(vcpu)) {
6688                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6689                  */
6690                 exn = (s.unusable != 0);
6691                 /* Protected mode: #GP(0)/#SS(0) if the memory
6692                  * operand is outside the segment limit.
6693                  */
6694                 exn = exn || (off + sizeof(u64) > s.limit);
6695         }
6696         if (exn) {
6697                 kvm_queue_exception_e(vcpu,
6698                                       seg_reg == VCPU_SREG_SS ?
6699                                                 SS_VECTOR : GP_VECTOR,
6700                                       0);
6701                 return 1;
6702         }
6703
6704         return 0;
6705 }
6706
6707 /*
6708  * This function performs the various checks including
6709  * - if it's 4KB aligned
6710  * - No bits beyond the physical address width are set
6711  * - Returns 0 on success or else 1
6712  * (Intel SDM Section 30.3)
6713  */
6714 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6715                                   gpa_t *vmpointer)
6716 {
6717         gva_t gva;
6718         gpa_t vmptr;
6719         struct x86_exception e;
6720         struct page *page;
6721         struct vcpu_vmx *vmx = to_vmx(vcpu);
6722         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6723
6724         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6725                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6726                 return 1;
6727
6728         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6729                                 sizeof(vmptr), &e)) {
6730                 kvm_inject_page_fault(vcpu, &e);
6731                 return 1;
6732         }
6733
6734         switch (exit_reason) {
6735         case EXIT_REASON_VMON:
6736                 /*
6737                  * SDM 3: 24.11.5
6738                  * The first 4 bytes of VMXON region contain the supported
6739                  * VMCS revision identifier
6740                  *
6741                  * Note - IA32_VMX_BASIC[48] will never be 1
6742                  * for the nested case;
6743                  * which replaces physical address width with 32
6744                  *
6745                  */
6746                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6747                         nested_vmx_failInvalid(vcpu);
6748                         skip_emulated_instruction(vcpu);
6749                         return 1;
6750                 }
6751
6752                 page = nested_get_page(vcpu, vmptr);
6753                 if (page == NULL ||
6754                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6755                         nested_vmx_failInvalid(vcpu);
6756                         kunmap(page);
6757                         skip_emulated_instruction(vcpu);
6758                         return 1;
6759                 }
6760                 kunmap(page);
6761                 vmx->nested.vmxon_ptr = vmptr;
6762                 break;
6763         case EXIT_REASON_VMCLEAR:
6764                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6765                         nested_vmx_failValid(vcpu,
6766                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6767                         skip_emulated_instruction(vcpu);
6768                         return 1;
6769                 }
6770
6771                 if (vmptr == vmx->nested.vmxon_ptr) {
6772                         nested_vmx_failValid(vcpu,
6773                                              VMXERR_VMCLEAR_VMXON_POINTER);
6774                         skip_emulated_instruction(vcpu);
6775                         return 1;
6776                 }
6777                 break;
6778         case EXIT_REASON_VMPTRLD:
6779                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6780                         nested_vmx_failValid(vcpu,
6781                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6782                         skip_emulated_instruction(vcpu);
6783                         return 1;
6784                 }
6785
6786                 if (vmptr == vmx->nested.vmxon_ptr) {
6787                         nested_vmx_failValid(vcpu,
6788                                              VMXERR_VMCLEAR_VMXON_POINTER);
6789                         skip_emulated_instruction(vcpu);
6790                         return 1;
6791                 }
6792                 break;
6793         default:
6794                 return 1; /* shouldn't happen */
6795         }
6796
6797         if (vmpointer)
6798                 *vmpointer = vmptr;
6799         return 0;
6800 }
6801
6802 /*
6803  * Emulate the VMXON instruction.
6804  * Currently, we just remember that VMX is active, and do not save or even
6805  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6806  * do not currently need to store anything in that guest-allocated memory
6807  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6808  * argument is different from the VMXON pointer (which the spec says they do).
6809  */
6810 static int handle_vmon(struct kvm_vcpu *vcpu)
6811 {
6812         struct kvm_segment cs;
6813         struct vcpu_vmx *vmx = to_vmx(vcpu);
6814         struct vmcs *shadow_vmcs;
6815         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6816                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6817
6818         /* The Intel VMX Instruction Reference lists a bunch of bits that
6819          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6820          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6821          * Otherwise, we should fail with #UD. We test these now:
6822          */
6823         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6824             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6825             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6826                 kvm_queue_exception(vcpu, UD_VECTOR);
6827                 return 1;
6828         }
6829
6830         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6831         if (is_long_mode(vcpu) && !cs.l) {
6832                 kvm_queue_exception(vcpu, UD_VECTOR);
6833                 return 1;
6834         }
6835
6836         if (vmx_get_cpl(vcpu)) {
6837                 kvm_inject_gp(vcpu, 0);
6838                 return 1;
6839         }
6840
6841         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6842                 return 1;
6843
6844         if (vmx->nested.vmxon) {
6845                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6846                 skip_emulated_instruction(vcpu);
6847                 return 1;
6848         }
6849
6850         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6851                         != VMXON_NEEDED_FEATURES) {
6852                 kvm_inject_gp(vcpu, 0);
6853                 return 1;
6854         }
6855
6856         if (enable_shadow_vmcs) {
6857                 shadow_vmcs = alloc_vmcs();
6858                 if (!shadow_vmcs)
6859                         return -ENOMEM;
6860                 /* mark vmcs as shadow */
6861                 shadow_vmcs->revision_id |= (1u << 31);
6862                 /* init shadow vmcs */
6863                 vmcs_clear(shadow_vmcs);
6864                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6865         }
6866
6867         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6868         vmx->nested.vmcs02_num = 0;
6869
6870         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6871                      HRTIMER_MODE_REL);
6872         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6873
6874         vmx->nested.vmxon = true;
6875
6876         skip_emulated_instruction(vcpu);
6877         nested_vmx_succeed(vcpu);
6878         return 1;
6879 }
6880
6881 /*
6882  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6883  * for running VMX instructions (except VMXON, whose prerequisites are
6884  * slightly different). It also specifies what exception to inject otherwise.
6885  */
6886 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6887 {
6888         struct kvm_segment cs;
6889         struct vcpu_vmx *vmx = to_vmx(vcpu);
6890
6891         if (!vmx->nested.vmxon) {
6892                 kvm_queue_exception(vcpu, UD_VECTOR);
6893                 return 0;
6894         }
6895
6896         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6897         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6898             (is_long_mode(vcpu) && !cs.l)) {
6899                 kvm_queue_exception(vcpu, UD_VECTOR);
6900                 return 0;
6901         }
6902
6903         if (vmx_get_cpl(vcpu)) {
6904                 kvm_inject_gp(vcpu, 0);
6905                 return 0;
6906         }
6907
6908         return 1;
6909 }
6910
6911 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6912 {
6913         if (vmx->nested.current_vmptr == -1ull)
6914                 return;
6915
6916         /* current_vmptr and current_vmcs12 are always set/reset together */
6917         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6918                 return;
6919
6920         if (enable_shadow_vmcs) {
6921                 /* copy to memory all shadowed fields in case
6922                    they were modified */
6923                 copy_shadow_to_vmcs12(vmx);
6924                 vmx->nested.sync_shadow_vmcs = false;
6925                 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6926                                 SECONDARY_EXEC_SHADOW_VMCS);
6927                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6928         }
6929         vmx->nested.posted_intr_nv = -1;
6930         kunmap(vmx->nested.current_vmcs12_page);
6931         nested_release_page(vmx->nested.current_vmcs12_page);
6932         vmx->nested.current_vmptr = -1ull;
6933         vmx->nested.current_vmcs12 = NULL;
6934 }
6935
6936 /*
6937  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6938  * just stops using VMX.
6939  */
6940 static void free_nested(struct vcpu_vmx *vmx)
6941 {
6942         if (!vmx->nested.vmxon)
6943                 return;
6944
6945         vmx->nested.vmxon = false;
6946         free_vpid(vmx->nested.vpid02);
6947         nested_release_vmcs12(vmx);
6948         if (enable_shadow_vmcs)
6949                 free_vmcs(vmx->nested.current_shadow_vmcs);
6950         /* Unpin physical memory we referred to in current vmcs02 */
6951         if (vmx->nested.apic_access_page) {
6952                 nested_release_page(vmx->nested.apic_access_page);
6953                 vmx->nested.apic_access_page = NULL;
6954         }
6955         if (vmx->nested.virtual_apic_page) {
6956                 nested_release_page(vmx->nested.virtual_apic_page);
6957                 vmx->nested.virtual_apic_page = NULL;
6958         }
6959         if (vmx->nested.pi_desc_page) {
6960                 kunmap(vmx->nested.pi_desc_page);
6961                 nested_release_page(vmx->nested.pi_desc_page);
6962                 vmx->nested.pi_desc_page = NULL;
6963                 vmx->nested.pi_desc = NULL;
6964         }
6965
6966         nested_free_all_saved_vmcss(vmx);
6967 }
6968
6969 /* Emulate the VMXOFF instruction */
6970 static int handle_vmoff(struct kvm_vcpu *vcpu)
6971 {
6972         if (!nested_vmx_check_permission(vcpu))
6973                 return 1;
6974         free_nested(to_vmx(vcpu));
6975         skip_emulated_instruction(vcpu);
6976         nested_vmx_succeed(vcpu);
6977         return 1;
6978 }
6979
6980 /* Emulate the VMCLEAR instruction */
6981 static int handle_vmclear(struct kvm_vcpu *vcpu)
6982 {
6983         struct vcpu_vmx *vmx = to_vmx(vcpu);
6984         gpa_t vmptr;
6985         struct vmcs12 *vmcs12;
6986         struct page *page;
6987
6988         if (!nested_vmx_check_permission(vcpu))
6989                 return 1;
6990
6991         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6992                 return 1;
6993
6994         if (vmptr == vmx->nested.current_vmptr)
6995                 nested_release_vmcs12(vmx);
6996
6997         page = nested_get_page(vcpu, vmptr);
6998         if (page == NULL) {
6999                 /*
7000                  * For accurate processor emulation, VMCLEAR beyond available
7001                  * physical memory should do nothing at all. However, it is
7002                  * possible that a nested vmx bug, not a guest hypervisor bug,
7003                  * resulted in this case, so let's shut down before doing any
7004                  * more damage:
7005                  */
7006                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7007                 return 1;
7008         }
7009         vmcs12 = kmap(page);
7010         vmcs12->launch_state = 0;
7011         kunmap(page);
7012         nested_release_page(page);
7013
7014         nested_free_vmcs02(vmx, vmptr);
7015
7016         skip_emulated_instruction(vcpu);
7017         nested_vmx_succeed(vcpu);
7018         return 1;
7019 }
7020
7021 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7022
7023 /* Emulate the VMLAUNCH instruction */
7024 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7025 {
7026         return nested_vmx_run(vcpu, true);
7027 }
7028
7029 /* Emulate the VMRESUME instruction */
7030 static int handle_vmresume(struct kvm_vcpu *vcpu)
7031 {
7032
7033         return nested_vmx_run(vcpu, false);
7034 }
7035
7036 enum vmcs_field_type {
7037         VMCS_FIELD_TYPE_U16 = 0,
7038         VMCS_FIELD_TYPE_U64 = 1,
7039         VMCS_FIELD_TYPE_U32 = 2,
7040         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7041 };
7042
7043 static inline int vmcs_field_type(unsigned long field)
7044 {
7045         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
7046                 return VMCS_FIELD_TYPE_U32;
7047         return (field >> 13) & 0x3 ;
7048 }
7049
7050 static inline int vmcs_field_readonly(unsigned long field)
7051 {
7052         return (((field >> 10) & 0x3) == 1);
7053 }
7054
7055 /*
7056  * Read a vmcs12 field. Since these can have varying lengths and we return
7057  * one type, we chose the biggest type (u64) and zero-extend the return value
7058  * to that size. Note that the caller, handle_vmread, might need to use only
7059  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7060  * 64-bit fields are to be returned).
7061  */
7062 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7063                                   unsigned long field, u64 *ret)
7064 {
7065         short offset = vmcs_field_to_offset(field);
7066         char *p;
7067
7068         if (offset < 0)
7069                 return offset;
7070
7071         p = ((char *)(get_vmcs12(vcpu))) + offset;
7072
7073         switch (vmcs_field_type(field)) {
7074         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7075                 *ret = *((natural_width *)p);
7076                 return 0;
7077         case VMCS_FIELD_TYPE_U16:
7078                 *ret = *((u16 *)p);
7079                 return 0;
7080         case VMCS_FIELD_TYPE_U32:
7081                 *ret = *((u32 *)p);
7082                 return 0;
7083         case VMCS_FIELD_TYPE_U64:
7084                 *ret = *((u64 *)p);
7085                 return 0;
7086         default:
7087                 WARN_ON(1);
7088                 return -ENOENT;
7089         }
7090 }
7091
7092
7093 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7094                                    unsigned long field, u64 field_value){
7095         short offset = vmcs_field_to_offset(field);
7096         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7097         if (offset < 0)
7098                 return offset;
7099
7100         switch (vmcs_field_type(field)) {
7101         case VMCS_FIELD_TYPE_U16:
7102                 *(u16 *)p = field_value;
7103                 return 0;
7104         case VMCS_FIELD_TYPE_U32:
7105                 *(u32 *)p = field_value;
7106                 return 0;
7107         case VMCS_FIELD_TYPE_U64:
7108                 *(u64 *)p = field_value;
7109                 return 0;
7110         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7111                 *(natural_width *)p = field_value;
7112                 return 0;
7113         default:
7114                 WARN_ON(1);
7115                 return -ENOENT;
7116         }
7117
7118 }
7119
7120 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7121 {
7122         int i;
7123         unsigned long field;
7124         u64 field_value;
7125         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7126         const unsigned long *fields = shadow_read_write_fields;
7127         const int num_fields = max_shadow_read_write_fields;
7128
7129         preempt_disable();
7130
7131         vmcs_load(shadow_vmcs);
7132
7133         for (i = 0; i < num_fields; i++) {
7134                 field = fields[i];
7135                 switch (vmcs_field_type(field)) {
7136                 case VMCS_FIELD_TYPE_U16:
7137                         field_value = vmcs_read16(field);
7138                         break;
7139                 case VMCS_FIELD_TYPE_U32:
7140                         field_value = vmcs_read32(field);
7141                         break;
7142                 case VMCS_FIELD_TYPE_U64:
7143                         field_value = vmcs_read64(field);
7144                         break;
7145                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7146                         field_value = vmcs_readl(field);
7147                         break;
7148                 default:
7149                         WARN_ON(1);
7150                         continue;
7151                 }
7152                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7153         }
7154
7155         vmcs_clear(shadow_vmcs);
7156         vmcs_load(vmx->loaded_vmcs->vmcs);
7157
7158         preempt_enable();
7159 }
7160
7161 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7162 {
7163         const unsigned long *fields[] = {
7164                 shadow_read_write_fields,
7165                 shadow_read_only_fields
7166         };
7167         const int max_fields[] = {
7168                 max_shadow_read_write_fields,
7169                 max_shadow_read_only_fields
7170         };
7171         int i, q;
7172         unsigned long field;
7173         u64 field_value = 0;
7174         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7175
7176         vmcs_load(shadow_vmcs);
7177
7178         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7179                 for (i = 0; i < max_fields[q]; i++) {
7180                         field = fields[q][i];
7181                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7182
7183                         switch (vmcs_field_type(field)) {
7184                         case VMCS_FIELD_TYPE_U16:
7185                                 vmcs_write16(field, (u16)field_value);
7186                                 break;
7187                         case VMCS_FIELD_TYPE_U32:
7188                                 vmcs_write32(field, (u32)field_value);
7189                                 break;
7190                         case VMCS_FIELD_TYPE_U64:
7191                                 vmcs_write64(field, (u64)field_value);
7192                                 break;
7193                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7194                                 vmcs_writel(field, (long)field_value);
7195                                 break;
7196                         default:
7197                                 WARN_ON(1);
7198                                 break;
7199                         }
7200                 }
7201         }
7202
7203         vmcs_clear(shadow_vmcs);
7204         vmcs_load(vmx->loaded_vmcs->vmcs);
7205 }
7206
7207 /*
7208  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7209  * used before) all generate the same failure when it is missing.
7210  */
7211 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7212 {
7213         struct vcpu_vmx *vmx = to_vmx(vcpu);
7214         if (vmx->nested.current_vmptr == -1ull) {
7215                 nested_vmx_failInvalid(vcpu);
7216                 skip_emulated_instruction(vcpu);
7217                 return 0;
7218         }
7219         return 1;
7220 }
7221
7222 static int handle_vmread(struct kvm_vcpu *vcpu)
7223 {
7224         unsigned long field;
7225         u64 field_value;
7226         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7227         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7228         gva_t gva = 0;
7229
7230         if (!nested_vmx_check_permission(vcpu) ||
7231             !nested_vmx_check_vmcs12(vcpu))
7232                 return 1;
7233
7234         /* Decode instruction info and find the field to read */
7235         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7236         /* Read the field, zero-extended to a u64 field_value */
7237         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7238                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7239                 skip_emulated_instruction(vcpu);
7240                 return 1;
7241         }
7242         /*
7243          * Now copy part of this value to register or memory, as requested.
7244          * Note that the number of bits actually copied is 32 or 64 depending
7245          * on the guest's mode (32 or 64 bit), not on the given field's length.
7246          */
7247         if (vmx_instruction_info & (1u << 10)) {
7248                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7249                         field_value);
7250         } else {
7251                 if (get_vmx_mem_address(vcpu, exit_qualification,
7252                                 vmx_instruction_info, true, &gva))
7253                         return 1;
7254                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7255                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7256                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7257         }
7258
7259         nested_vmx_succeed(vcpu);
7260         skip_emulated_instruction(vcpu);
7261         return 1;
7262 }
7263
7264
7265 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7266 {
7267         unsigned long field;
7268         gva_t gva;
7269         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7270         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7271         /* The value to write might be 32 or 64 bits, depending on L1's long
7272          * mode, and eventually we need to write that into a field of several
7273          * possible lengths. The code below first zero-extends the value to 64
7274          * bit (field_value), and then copies only the appropriate number of
7275          * bits into the vmcs12 field.
7276          */
7277         u64 field_value = 0;
7278         struct x86_exception e;
7279
7280         if (!nested_vmx_check_permission(vcpu) ||
7281             !nested_vmx_check_vmcs12(vcpu))
7282                 return 1;
7283
7284         if (vmx_instruction_info & (1u << 10))
7285                 field_value = kvm_register_readl(vcpu,
7286                         (((vmx_instruction_info) >> 3) & 0xf));
7287         else {
7288                 if (get_vmx_mem_address(vcpu, exit_qualification,
7289                                 vmx_instruction_info, false, &gva))
7290                         return 1;
7291                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7292                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7293                         kvm_inject_page_fault(vcpu, &e);
7294                         return 1;
7295                 }
7296         }
7297
7298
7299         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7300         if (vmcs_field_readonly(field)) {
7301                 nested_vmx_failValid(vcpu,
7302                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7303                 skip_emulated_instruction(vcpu);
7304                 return 1;
7305         }
7306
7307         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7308                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7309                 skip_emulated_instruction(vcpu);
7310                 return 1;
7311         }
7312
7313         nested_vmx_succeed(vcpu);
7314         skip_emulated_instruction(vcpu);
7315         return 1;
7316 }
7317
7318 /* Emulate the VMPTRLD instruction */
7319 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7320 {
7321         struct vcpu_vmx *vmx = to_vmx(vcpu);
7322         gpa_t vmptr;
7323
7324         if (!nested_vmx_check_permission(vcpu))
7325                 return 1;
7326
7327         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7328                 return 1;
7329
7330         if (vmx->nested.current_vmptr != vmptr) {
7331                 struct vmcs12 *new_vmcs12;
7332                 struct page *page;
7333                 page = nested_get_page(vcpu, vmptr);
7334                 if (page == NULL) {
7335                         nested_vmx_failInvalid(vcpu);
7336                         skip_emulated_instruction(vcpu);
7337                         return 1;
7338                 }
7339                 new_vmcs12 = kmap(page);
7340                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7341                         kunmap(page);
7342                         nested_release_page_clean(page);
7343                         nested_vmx_failValid(vcpu,
7344                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7345                         skip_emulated_instruction(vcpu);
7346                         return 1;
7347                 }
7348
7349                 nested_release_vmcs12(vmx);
7350                 vmx->nested.current_vmptr = vmptr;
7351                 vmx->nested.current_vmcs12 = new_vmcs12;
7352                 vmx->nested.current_vmcs12_page = page;
7353                 if (enable_shadow_vmcs) {
7354                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7355                                       SECONDARY_EXEC_SHADOW_VMCS);
7356                         vmcs_write64(VMCS_LINK_POINTER,
7357                                      __pa(vmx->nested.current_shadow_vmcs));
7358                         vmx->nested.sync_shadow_vmcs = true;
7359                 }
7360         }
7361
7362         nested_vmx_succeed(vcpu);
7363         skip_emulated_instruction(vcpu);
7364         return 1;
7365 }
7366
7367 /* Emulate the VMPTRST instruction */
7368 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7369 {
7370         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7371         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7372         gva_t vmcs_gva;
7373         struct x86_exception e;
7374
7375         if (!nested_vmx_check_permission(vcpu))
7376                 return 1;
7377
7378         if (get_vmx_mem_address(vcpu, exit_qualification,
7379                         vmx_instruction_info, true, &vmcs_gva))
7380                 return 1;
7381         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7382         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7383                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7384                                  sizeof(u64), &e)) {
7385                 kvm_inject_page_fault(vcpu, &e);
7386                 return 1;
7387         }
7388         nested_vmx_succeed(vcpu);
7389         skip_emulated_instruction(vcpu);
7390         return 1;
7391 }
7392
7393 /* Emulate the INVEPT instruction */
7394 static int handle_invept(struct kvm_vcpu *vcpu)
7395 {
7396         struct vcpu_vmx *vmx = to_vmx(vcpu);
7397         u32 vmx_instruction_info, types;
7398         unsigned long type;
7399         gva_t gva;
7400         struct x86_exception e;
7401         struct {
7402                 u64 eptp, gpa;
7403         } operand;
7404
7405         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7406               SECONDARY_EXEC_ENABLE_EPT) ||
7407             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7408                 kvm_queue_exception(vcpu, UD_VECTOR);
7409                 return 1;
7410         }
7411
7412         if (!nested_vmx_check_permission(vcpu))
7413                 return 1;
7414
7415         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7416                 kvm_queue_exception(vcpu, UD_VECTOR);
7417                 return 1;
7418         }
7419
7420         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7421         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7422
7423         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7424
7425         if (!(types & (1UL << type))) {
7426                 nested_vmx_failValid(vcpu,
7427                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7428                 skip_emulated_instruction(vcpu);
7429                 return 1;
7430         }
7431
7432         /* According to the Intel VMX instruction reference, the memory
7433          * operand is read even if it isn't needed (e.g., for type==global)
7434          */
7435         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7436                         vmx_instruction_info, false, &gva))
7437                 return 1;
7438         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7439                                 sizeof(operand), &e)) {
7440                 kvm_inject_page_fault(vcpu, &e);
7441                 return 1;
7442         }
7443
7444         switch (type) {
7445         case VMX_EPT_EXTENT_GLOBAL:
7446                 kvm_mmu_sync_roots(vcpu);
7447                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7448                 nested_vmx_succeed(vcpu);
7449                 break;
7450         default:
7451                 /* Trap single context invalidation invept calls */
7452                 BUG_ON(1);
7453                 break;
7454         }
7455
7456         skip_emulated_instruction(vcpu);
7457         return 1;
7458 }
7459
7460 static int handle_invvpid(struct kvm_vcpu *vcpu)
7461 {
7462         struct vcpu_vmx *vmx = to_vmx(vcpu);
7463         u32 vmx_instruction_info;
7464         unsigned long type, types;
7465         gva_t gva;
7466         struct x86_exception e;
7467         int vpid;
7468
7469         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7470               SECONDARY_EXEC_ENABLE_VPID) ||
7471                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7472                 kvm_queue_exception(vcpu, UD_VECTOR);
7473                 return 1;
7474         }
7475
7476         if (!nested_vmx_check_permission(vcpu))
7477                 return 1;
7478
7479         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7480         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7481
7482         types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7483
7484         if (!(types & (1UL << type))) {
7485                 nested_vmx_failValid(vcpu,
7486                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7487                 skip_emulated_instruction(vcpu);
7488                 return 1;
7489         }
7490
7491         /* according to the intel vmx instruction reference, the memory
7492          * operand is read even if it isn't needed (e.g., for type==global)
7493          */
7494         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7495                         vmx_instruction_info, false, &gva))
7496                 return 1;
7497         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7498                                 sizeof(u32), &e)) {
7499                 kvm_inject_page_fault(vcpu, &e);
7500                 return 1;
7501         }
7502
7503         switch (type) {
7504         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7505                 /*
7506                  * Old versions of KVM use the single-context version so we
7507                  * have to support it; just treat it the same as all-context.
7508                  */
7509         case VMX_VPID_EXTENT_ALL_CONTEXT:
7510                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7511                 nested_vmx_succeed(vcpu);
7512                 break;
7513         default:
7514                 /* Trap individual address invalidation invvpid calls */
7515                 BUG_ON(1);
7516                 break;
7517         }
7518
7519         skip_emulated_instruction(vcpu);
7520         return 1;
7521 }
7522
7523 static int handle_pml_full(struct kvm_vcpu *vcpu)
7524 {
7525         unsigned long exit_qualification;
7526
7527         trace_kvm_pml_full(vcpu->vcpu_id);
7528
7529         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7530
7531         /*
7532          * PML buffer FULL happened while executing iret from NMI,
7533          * "blocked by NMI" bit has to be set before next VM entry.
7534          */
7535         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7536                         cpu_has_virtual_nmis() &&
7537                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7538                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7539                                 GUEST_INTR_STATE_NMI);
7540
7541         /*
7542          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7543          * here.., and there's no userspace involvement needed for PML.
7544          */
7545         return 1;
7546 }
7547
7548 static int handle_pcommit(struct kvm_vcpu *vcpu)
7549 {
7550         /* we never catch pcommit instruct for L1 guest. */
7551         WARN_ON(1);
7552         return 1;
7553 }
7554
7555 /*
7556  * The exit handlers return 1 if the exit was handled fully and guest execution
7557  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7558  * to be done to userspace and return 0.
7559  */
7560 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7561         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7562         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7563         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7564         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7565         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7566         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7567         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7568         [EXIT_REASON_CPUID]                   = handle_cpuid,
7569         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7570         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7571         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7572         [EXIT_REASON_HLT]                     = handle_halt,
7573         [EXIT_REASON_INVD]                    = handle_invd,
7574         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7575         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7576         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7577         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7578         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7579         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7580         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7581         [EXIT_REASON_VMREAD]                  = handle_vmread,
7582         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7583         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7584         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7585         [EXIT_REASON_VMON]                    = handle_vmon,
7586         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7587         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7588         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7589         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7590         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7591         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7592         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7593         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7594         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7595         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7596         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7597         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7598         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7599         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7600         [EXIT_REASON_INVEPT]                  = handle_invept,
7601         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7602         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7603         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7604         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7605         [EXIT_REASON_PCOMMIT]                 = handle_pcommit,
7606 };
7607
7608 static const int kvm_vmx_max_exit_handlers =
7609         ARRAY_SIZE(kvm_vmx_exit_handlers);
7610
7611 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7612                                        struct vmcs12 *vmcs12)
7613 {
7614         unsigned long exit_qualification;
7615         gpa_t bitmap, last_bitmap;
7616         unsigned int port;
7617         int size;
7618         u8 b;
7619
7620         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7621                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7622
7623         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7624
7625         port = exit_qualification >> 16;
7626         size = (exit_qualification & 7) + 1;
7627
7628         last_bitmap = (gpa_t)-1;
7629         b = -1;
7630
7631         while (size > 0) {
7632                 if (port < 0x8000)
7633                         bitmap = vmcs12->io_bitmap_a;
7634                 else if (port < 0x10000)
7635                         bitmap = vmcs12->io_bitmap_b;
7636                 else
7637                         return true;
7638                 bitmap += (port & 0x7fff) / 8;
7639
7640                 if (last_bitmap != bitmap)
7641                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7642                                 return true;
7643                 if (b & (1 << (port & 7)))
7644                         return true;
7645
7646                 port++;
7647                 size--;
7648                 last_bitmap = bitmap;
7649         }
7650
7651         return false;
7652 }
7653
7654 /*
7655  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7656  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7657  * disinterest in the current event (read or write a specific MSR) by using an
7658  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7659  */
7660 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7661         struct vmcs12 *vmcs12, u32 exit_reason)
7662 {
7663         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7664         gpa_t bitmap;
7665
7666         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7667                 return true;
7668
7669         /*
7670          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7671          * for the four combinations of read/write and low/high MSR numbers.
7672          * First we need to figure out which of the four to use:
7673          */
7674         bitmap = vmcs12->msr_bitmap;
7675         if (exit_reason == EXIT_REASON_MSR_WRITE)
7676                 bitmap += 2048;
7677         if (msr_index >= 0xc0000000) {
7678                 msr_index -= 0xc0000000;
7679                 bitmap += 1024;
7680         }
7681
7682         /* Then read the msr_index'th bit from this bitmap: */
7683         if (msr_index < 1024*8) {
7684                 unsigned char b;
7685                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7686                         return true;
7687                 return 1 & (b >> (msr_index & 7));
7688         } else
7689                 return true; /* let L1 handle the wrong parameter */
7690 }
7691
7692 /*
7693  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7694  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7695  * intercept (via guest_host_mask etc.) the current event.
7696  */
7697 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7698         struct vmcs12 *vmcs12)
7699 {
7700         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7701         int cr = exit_qualification & 15;
7702         int reg = (exit_qualification >> 8) & 15;
7703         unsigned long val = kvm_register_readl(vcpu, reg);
7704
7705         switch ((exit_qualification >> 4) & 3) {
7706         case 0: /* mov to cr */
7707                 switch (cr) {
7708                 case 0:
7709                         if (vmcs12->cr0_guest_host_mask &
7710                             (val ^ vmcs12->cr0_read_shadow))
7711                                 return true;
7712                         break;
7713                 case 3:
7714                         if ((vmcs12->cr3_target_count >= 1 &&
7715                                         vmcs12->cr3_target_value0 == val) ||
7716                                 (vmcs12->cr3_target_count >= 2 &&
7717                                         vmcs12->cr3_target_value1 == val) ||
7718                                 (vmcs12->cr3_target_count >= 3 &&
7719                                         vmcs12->cr3_target_value2 == val) ||
7720                                 (vmcs12->cr3_target_count >= 4 &&
7721                                         vmcs12->cr3_target_value3 == val))
7722                                 return false;
7723                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7724                                 return true;
7725                         break;
7726                 case 4:
7727                         if (vmcs12->cr4_guest_host_mask &
7728                             (vmcs12->cr4_read_shadow ^ val))
7729                                 return true;
7730                         break;
7731                 case 8:
7732                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7733                                 return true;
7734                         break;
7735                 }
7736                 break;
7737         case 2: /* clts */
7738                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7739                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7740                         return true;
7741                 break;
7742         case 1: /* mov from cr */
7743                 switch (cr) {
7744                 case 3:
7745                         if (vmcs12->cpu_based_vm_exec_control &
7746                             CPU_BASED_CR3_STORE_EXITING)
7747                                 return true;
7748                         break;
7749                 case 8:
7750                         if (vmcs12->cpu_based_vm_exec_control &
7751                             CPU_BASED_CR8_STORE_EXITING)
7752                                 return true;
7753                         break;
7754                 }
7755                 break;
7756         case 3: /* lmsw */
7757                 /*
7758                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7759                  * cr0. Other attempted changes are ignored, with no exit.
7760                  */
7761                 if (vmcs12->cr0_guest_host_mask & 0xe &
7762                     (val ^ vmcs12->cr0_read_shadow))
7763                         return true;
7764                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7765                     !(vmcs12->cr0_read_shadow & 0x1) &&
7766                     (val & 0x1))
7767                         return true;
7768                 break;
7769         }
7770         return false;
7771 }
7772
7773 /*
7774  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7775  * should handle it ourselves in L0 (and then continue L2). Only call this
7776  * when in is_guest_mode (L2).
7777  */
7778 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7779 {
7780         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7781         struct vcpu_vmx *vmx = to_vmx(vcpu);
7782         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7783         u32 exit_reason = vmx->exit_reason;
7784
7785         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7786                                 vmcs_readl(EXIT_QUALIFICATION),
7787                                 vmx->idt_vectoring_info,
7788                                 intr_info,
7789                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7790                                 KVM_ISA_VMX);
7791
7792         if (vmx->nested.nested_run_pending)
7793                 return false;
7794
7795         if (unlikely(vmx->fail)) {
7796                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7797                                     vmcs_read32(VM_INSTRUCTION_ERROR));
7798                 return true;
7799         }
7800
7801         switch (exit_reason) {
7802         case EXIT_REASON_EXCEPTION_NMI:
7803                 if (!is_exception(intr_info))
7804                         return false;
7805                 else if (is_page_fault(intr_info))
7806                         return enable_ept;
7807                 else if (is_no_device(intr_info) &&
7808                          !(vmcs12->guest_cr0 & X86_CR0_TS))
7809                         return false;
7810                 else if (is_debug(intr_info) &&
7811                          vcpu->guest_debug &
7812                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
7813                         return false;
7814                 else if (is_breakpoint(intr_info) &&
7815                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
7816                         return false;
7817                 return vmcs12->exception_bitmap &
7818                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7819         case EXIT_REASON_EXTERNAL_INTERRUPT:
7820                 return false;
7821         case EXIT_REASON_TRIPLE_FAULT:
7822                 return true;
7823         case EXIT_REASON_PENDING_INTERRUPT:
7824                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7825         case EXIT_REASON_NMI_WINDOW:
7826                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7827         case EXIT_REASON_TASK_SWITCH:
7828                 return true;
7829         case EXIT_REASON_CPUID:
7830                 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7831                         return false;
7832                 return true;
7833         case EXIT_REASON_HLT:
7834                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7835         case EXIT_REASON_INVD:
7836                 return true;
7837         case EXIT_REASON_INVLPG:
7838                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7839         case EXIT_REASON_RDPMC:
7840                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7841         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7842                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7843         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7844         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7845         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7846         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7847         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7848         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7849                 /*
7850                  * VMX instructions trap unconditionally. This allows L1 to
7851                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
7852                  */
7853                 return true;
7854         case EXIT_REASON_CR_ACCESS:
7855                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7856         case EXIT_REASON_DR_ACCESS:
7857                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7858         case EXIT_REASON_IO_INSTRUCTION:
7859                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7860         case EXIT_REASON_MSR_READ:
7861         case EXIT_REASON_MSR_WRITE:
7862                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7863         case EXIT_REASON_INVALID_STATE:
7864                 return true;
7865         case EXIT_REASON_MWAIT_INSTRUCTION:
7866                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7867         case EXIT_REASON_MONITOR_TRAP_FLAG:
7868                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7869         case EXIT_REASON_MONITOR_INSTRUCTION:
7870                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7871         case EXIT_REASON_PAUSE_INSTRUCTION:
7872                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7873                         nested_cpu_has2(vmcs12,
7874                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7875         case EXIT_REASON_MCE_DURING_VMENTRY:
7876                 return false;
7877         case EXIT_REASON_TPR_BELOW_THRESHOLD:
7878                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7879         case EXIT_REASON_APIC_ACCESS:
7880                 return nested_cpu_has2(vmcs12,
7881                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7882         case EXIT_REASON_APIC_WRITE:
7883         case EXIT_REASON_EOI_INDUCED:
7884                 /* apic_write and eoi_induced should exit unconditionally. */
7885                 return true;
7886         case EXIT_REASON_EPT_VIOLATION:
7887                 /*
7888                  * L0 always deals with the EPT violation. If nested EPT is
7889                  * used, and the nested mmu code discovers that the address is
7890                  * missing in the guest EPT table (EPT12), the EPT violation
7891                  * will be injected with nested_ept_inject_page_fault()
7892                  */
7893                 return false;
7894         case EXIT_REASON_EPT_MISCONFIG:
7895                 /*
7896                  * L2 never uses directly L1's EPT, but rather L0's own EPT
7897                  * table (shadow on EPT) or a merged EPT table that L0 built
7898                  * (EPT on EPT). So any problems with the structure of the
7899                  * table is L0's fault.
7900                  */
7901                 return false;
7902         case EXIT_REASON_WBINVD:
7903                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7904         case EXIT_REASON_XSETBV:
7905                 return true;
7906         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7907                 /*
7908                  * This should never happen, since it is not possible to
7909                  * set XSS to a non-zero value---neither in L1 nor in L2.
7910                  * If if it were, XSS would have to be checked against
7911                  * the XSS exit bitmap in vmcs12.
7912                  */
7913                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7914         case EXIT_REASON_PCOMMIT:
7915                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7916         default:
7917                 return true;
7918         }
7919 }
7920
7921 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7922 {
7923         *info1 = vmcs_readl(EXIT_QUALIFICATION);
7924         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7925 }
7926
7927 static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
7928 {
7929         struct page *pml_pg;
7930
7931         pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7932         if (!pml_pg)
7933                 return -ENOMEM;
7934
7935         vmx->pml_pg = pml_pg;
7936
7937         vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7938         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7939
7940         return 0;
7941 }
7942
7943 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
7944 {
7945         if (vmx->pml_pg) {
7946                 __free_page(vmx->pml_pg);
7947                 vmx->pml_pg = NULL;
7948         }
7949 }
7950
7951 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7952 {
7953         struct vcpu_vmx *vmx = to_vmx(vcpu);
7954         u64 *pml_buf;
7955         u16 pml_idx;
7956
7957         pml_idx = vmcs_read16(GUEST_PML_INDEX);
7958
7959         /* Do nothing if PML buffer is empty */
7960         if (pml_idx == (PML_ENTITY_NUM - 1))
7961                 return;
7962
7963         /* PML index always points to next available PML buffer entity */
7964         if (pml_idx >= PML_ENTITY_NUM)
7965                 pml_idx = 0;
7966         else
7967                 pml_idx++;
7968
7969         pml_buf = page_address(vmx->pml_pg);
7970         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7971                 u64 gpa;
7972
7973                 gpa = pml_buf[pml_idx];
7974                 WARN_ON(gpa & (PAGE_SIZE - 1));
7975                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7976         }
7977
7978         /* reset PML index */
7979         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7980 }
7981
7982 /*
7983  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7984  * Called before reporting dirty_bitmap to userspace.
7985  */
7986 static void kvm_flush_pml_buffers(struct kvm *kvm)
7987 {
7988         int i;
7989         struct kvm_vcpu *vcpu;
7990         /*
7991          * We only need to kick vcpu out of guest mode here, as PML buffer
7992          * is flushed at beginning of all VMEXITs, and it's obvious that only
7993          * vcpus running in guest are possible to have unflushed GPAs in PML
7994          * buffer.
7995          */
7996         kvm_for_each_vcpu(i, vcpu, kvm)
7997                 kvm_vcpu_kick(vcpu);
7998 }
7999
8000 static void vmx_dump_sel(char *name, uint32_t sel)
8001 {
8002         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8003                name, vmcs_read32(sel),
8004                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8005                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8006                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8007 }
8008
8009 static void vmx_dump_dtsel(char *name, uint32_t limit)
8010 {
8011         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8012                name, vmcs_read32(limit),
8013                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8014 }
8015
8016 static void dump_vmcs(void)
8017 {
8018         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8019         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8020         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8021         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8022         u32 secondary_exec_control = 0;
8023         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8024         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8025         int i, n;
8026
8027         if (cpu_has_secondary_exec_ctrls())
8028                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8029
8030         pr_err("*** Guest State ***\n");
8031         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8032                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8033                vmcs_readl(CR0_GUEST_HOST_MASK));
8034         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8035                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8036         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8037         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8038             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8039         {
8040                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8041                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8042                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8043                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8044         }
8045         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8046                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8047         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8048                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8049         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8050                vmcs_readl(GUEST_SYSENTER_ESP),
8051                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8052         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8053         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8054         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8055         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8056         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8057         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8058         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8059         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8060         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8061         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8062         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8063             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8064                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8065                        efer, vmcs_read64(GUEST_IA32_PAT));
8066         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8067                vmcs_read64(GUEST_IA32_DEBUGCTL),
8068                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8069         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8070                 pr_err("PerfGlobCtl = 0x%016llx\n",
8071                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8072         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8073                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8074         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8075                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8076                vmcs_read32(GUEST_ACTIVITY_STATE));
8077         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8078                 pr_err("InterruptStatus = %04x\n",
8079                        vmcs_read16(GUEST_INTR_STATUS));
8080
8081         pr_err("*** Host State ***\n");
8082         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8083                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8084         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8085                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8086                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8087                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8088                vmcs_read16(HOST_TR_SELECTOR));
8089         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8090                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8091                vmcs_readl(HOST_TR_BASE));
8092         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8093                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8094         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8095                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8096                vmcs_readl(HOST_CR4));
8097         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8098                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8099                vmcs_read32(HOST_IA32_SYSENTER_CS),
8100                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8101         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8102                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8103                        vmcs_read64(HOST_IA32_EFER),
8104                        vmcs_read64(HOST_IA32_PAT));
8105         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8106                 pr_err("PerfGlobCtl = 0x%016llx\n",
8107                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8108
8109         pr_err("*** Control State ***\n");
8110         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8111                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8112         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8113         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8114                vmcs_read32(EXCEPTION_BITMAP),
8115                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8116                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8117         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8118                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8119                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8120                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8121         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8122                vmcs_read32(VM_EXIT_INTR_INFO),
8123                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8124                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8125         pr_err("        reason=%08x qualification=%016lx\n",
8126                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8127         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8128                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8129                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8130         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8131         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8132                 pr_err("TSC Multiplier = 0x%016llx\n",
8133                        vmcs_read64(TSC_MULTIPLIER));
8134         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8135                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8136         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8137                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8138         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8139                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8140         n = vmcs_read32(CR3_TARGET_COUNT);
8141         for (i = 0; i + 1 < n; i += 4)
8142                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8143                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8144                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8145         if (i < n)
8146                 pr_err("CR3 target%u=%016lx\n",
8147                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8148         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8149                 pr_err("PLE Gap=%08x Window=%08x\n",
8150                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8151         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8152                 pr_err("Virtual processor ID = 0x%04x\n",
8153                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8154 }
8155
8156 /*
8157  * The guest has exited.  See if we can fix it or if we need userspace
8158  * assistance.
8159  */
8160 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8161 {
8162         struct vcpu_vmx *vmx = to_vmx(vcpu);
8163         u32 exit_reason = vmx->exit_reason;
8164         u32 vectoring_info = vmx->idt_vectoring_info;
8165
8166         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8167
8168         /*
8169          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8170          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8171          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8172          * mode as if vcpus is in root mode, the PML buffer must has been
8173          * flushed already.
8174          */
8175         if (enable_pml)
8176                 vmx_flush_pml_buffer(vcpu);
8177
8178         /* If guest state is invalid, start emulating */
8179         if (vmx->emulation_required)
8180                 return handle_invalid_guest_state(vcpu);
8181
8182         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8183                 nested_vmx_vmexit(vcpu, exit_reason,
8184                                   vmcs_read32(VM_EXIT_INTR_INFO),
8185                                   vmcs_readl(EXIT_QUALIFICATION));
8186                 return 1;
8187         }
8188
8189         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8190                 dump_vmcs();
8191                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8192                 vcpu->run->fail_entry.hardware_entry_failure_reason
8193                         = exit_reason;
8194                 return 0;
8195         }
8196
8197         if (unlikely(vmx->fail)) {
8198                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8199                 vcpu->run->fail_entry.hardware_entry_failure_reason
8200                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8201                 return 0;
8202         }
8203
8204         /*
8205          * Note:
8206          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8207          * delivery event since it indicates guest is accessing MMIO.
8208          * The vm-exit can be triggered again after return to guest that
8209          * will cause infinite loop.
8210          */
8211         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8212                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8213                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8214                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8215                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8216                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8217                 vcpu->run->internal.ndata = 2;
8218                 vcpu->run->internal.data[0] = vectoring_info;
8219                 vcpu->run->internal.data[1] = exit_reason;
8220                 return 0;
8221         }
8222
8223         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8224             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8225                                         get_vmcs12(vcpu))))) {
8226                 if (vmx_interrupt_allowed(vcpu)) {
8227                         vmx->soft_vnmi_blocked = 0;
8228                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8229                            vcpu->arch.nmi_pending) {
8230                         /*
8231                          * This CPU don't support us in finding the end of an
8232                          * NMI-blocked window if the guest runs with IRQs
8233                          * disabled. So we pull the trigger after 1 s of
8234                          * futile waiting, but inform the user about this.
8235                          */
8236                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8237                                "state on VCPU %d after 1 s timeout\n",
8238                                __func__, vcpu->vcpu_id);
8239                         vmx->soft_vnmi_blocked = 0;
8240                 }
8241         }
8242
8243         if (exit_reason < kvm_vmx_max_exit_handlers
8244             && kvm_vmx_exit_handlers[exit_reason])
8245                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8246         else {
8247                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8248                 kvm_queue_exception(vcpu, UD_VECTOR);
8249                 return 1;
8250         }
8251 }
8252
8253 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8254 {
8255         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8256
8257         if (is_guest_mode(vcpu) &&
8258                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8259                 return;
8260
8261         if (irr == -1 || tpr < irr) {
8262                 vmcs_write32(TPR_THRESHOLD, 0);
8263                 return;
8264         }
8265
8266         vmcs_write32(TPR_THRESHOLD, irr);
8267 }
8268
8269 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8270 {
8271         u32 sec_exec_control;
8272
8273         /*
8274          * There is not point to enable virtualize x2apic without enable
8275          * apicv
8276          */
8277         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8278                                 !kvm_vcpu_apicv_active(vcpu))
8279                 return;
8280
8281         if (!cpu_need_tpr_shadow(vcpu))
8282                 return;
8283
8284         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8285
8286         if (set) {
8287                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8288                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8289         } else {
8290                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8291                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8292         }
8293         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8294
8295         vmx_set_msr_bitmap(vcpu);
8296 }
8297
8298 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8299 {
8300         struct vcpu_vmx *vmx = to_vmx(vcpu);
8301
8302         /*
8303          * Currently we do not handle the nested case where L2 has an
8304          * APIC access page of its own; that page is still pinned.
8305          * Hence, we skip the case where the VCPU is in guest mode _and_
8306          * L1 prepared an APIC access page for L2.
8307          *
8308          * For the case where L1 and L2 share the same APIC access page
8309          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8310          * in the vmcs12), this function will only update either the vmcs01
8311          * or the vmcs02.  If the former, the vmcs02 will be updated by
8312          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8313          * the next L2->L1 exit.
8314          */
8315         if (!is_guest_mode(vcpu) ||
8316             !nested_cpu_has2(vmx->nested.current_vmcs12,
8317                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8318                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8319 }
8320
8321 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8322 {
8323         u16 status;
8324         u8 old;
8325
8326         if (isr == -1)
8327                 isr = 0;
8328
8329         status = vmcs_read16(GUEST_INTR_STATUS);
8330         old = status >> 8;
8331         if (isr != old) {
8332                 status &= 0xff;
8333                 status |= isr << 8;
8334                 vmcs_write16(GUEST_INTR_STATUS, status);
8335         }
8336 }
8337
8338 static void vmx_set_rvi(int vector)
8339 {
8340         u16 status;
8341         u8 old;
8342
8343         if (vector == -1)
8344                 vector = 0;
8345
8346         status = vmcs_read16(GUEST_INTR_STATUS);
8347         old = (u8)status & 0xff;
8348         if ((u8)vector != old) {
8349                 status &= ~0xff;
8350                 status |= (u8)vector;
8351                 vmcs_write16(GUEST_INTR_STATUS, status);
8352         }
8353 }
8354
8355 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8356 {
8357         if (!is_guest_mode(vcpu)) {
8358                 vmx_set_rvi(max_irr);
8359                 return;
8360         }
8361
8362         if (max_irr == -1)
8363                 return;
8364
8365         /*
8366          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8367          * handles it.
8368          */
8369         if (nested_exit_on_intr(vcpu))
8370                 return;
8371
8372         /*
8373          * Else, fall back to pre-APICv interrupt injection since L2
8374          * is run without virtual interrupt delivery.
8375          */
8376         if (!kvm_event_needs_reinjection(vcpu) &&
8377             vmx_interrupt_allowed(vcpu)) {
8378                 kvm_queue_interrupt(vcpu, max_irr, false);
8379                 vmx_inject_irq(vcpu);
8380         }
8381 }
8382
8383 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8384 {
8385         if (!kvm_vcpu_apicv_active(vcpu))
8386                 return;
8387
8388         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8389         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8390         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8391         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8392 }
8393
8394 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8395 {
8396         u32 exit_intr_info;
8397
8398         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8399               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8400                 return;
8401
8402         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8403         exit_intr_info = vmx->exit_intr_info;
8404
8405         /* Handle machine checks before interrupts are enabled */
8406         if (is_machine_check(exit_intr_info))
8407                 kvm_machine_check();
8408
8409         /* We need to handle NMIs before interrupts are enabled */
8410         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8411             (exit_intr_info & INTR_INFO_VALID_MASK)) {
8412                 kvm_before_handle_nmi(&vmx->vcpu);
8413                 asm("int $2");
8414                 kvm_after_handle_nmi(&vmx->vcpu);
8415         }
8416 }
8417
8418 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8419 {
8420         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8421         register void *__sp asm(_ASM_SP);
8422
8423         /*
8424          * If external interrupt exists, IF bit is set in rflags/eflags on the
8425          * interrupt stack frame, and interrupt will be enabled on a return
8426          * from interrupt handler.
8427          */
8428         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8429                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8430                 unsigned int vector;
8431                 unsigned long entry;
8432                 gate_desc *desc;
8433                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8434 #ifdef CONFIG_X86_64
8435                 unsigned long tmp;
8436 #endif
8437
8438                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8439                 desc = (gate_desc *)vmx->host_idt_base + vector;
8440                 entry = gate_offset(*desc);
8441                 asm volatile(
8442 #ifdef CONFIG_X86_64
8443                         "mov %%" _ASM_SP ", %[sp]\n\t"
8444                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8445                         "push $%c[ss]\n\t"
8446                         "push %[sp]\n\t"
8447 #endif
8448                         "pushf\n\t"
8449                         "orl $0x200, (%%" _ASM_SP ")\n\t"
8450                         __ASM_SIZE(push) " $%c[cs]\n\t"
8451                         "call *%[entry]\n\t"
8452                         :
8453 #ifdef CONFIG_X86_64
8454                         [sp]"=&r"(tmp),
8455 #endif
8456                         "+r"(__sp)
8457                         :
8458                         [entry]"r"(entry),
8459                         [ss]"i"(__KERNEL_DS),
8460                         [cs]"i"(__KERNEL_CS)
8461                         );
8462         } else
8463                 local_irq_enable();
8464 }
8465
8466 static bool vmx_has_high_real_mode_segbase(void)
8467 {
8468         return enable_unrestricted_guest || emulate_invalid_guest_state;
8469 }
8470
8471 static bool vmx_mpx_supported(void)
8472 {
8473         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8474                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8475 }
8476
8477 static bool vmx_xsaves_supported(void)
8478 {
8479         return vmcs_config.cpu_based_2nd_exec_ctrl &
8480                 SECONDARY_EXEC_XSAVES;
8481 }
8482
8483 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8484 {
8485         u32 exit_intr_info;
8486         bool unblock_nmi;
8487         u8 vector;
8488         bool idtv_info_valid;
8489
8490         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8491
8492         if (cpu_has_virtual_nmis()) {
8493                 if (vmx->nmi_known_unmasked)
8494                         return;
8495                 /*
8496                  * Can't use vmx->exit_intr_info since we're not sure what
8497                  * the exit reason is.
8498                  */
8499                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8500                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8501                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8502                 /*
8503                  * SDM 3: 27.7.1.2 (September 2008)
8504                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
8505                  * a guest IRET fault.
8506                  * SDM 3: 23.2.2 (September 2008)
8507                  * Bit 12 is undefined in any of the following cases:
8508                  *  If the VM exit sets the valid bit in the IDT-vectoring
8509                  *   information field.
8510                  *  If the VM exit is due to a double fault.
8511                  */
8512                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8513                     vector != DF_VECTOR && !idtv_info_valid)
8514                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8515                                       GUEST_INTR_STATE_NMI);
8516                 else
8517                         vmx->nmi_known_unmasked =
8518                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8519                                   & GUEST_INTR_STATE_NMI);
8520         } else if (unlikely(vmx->soft_vnmi_blocked))
8521                 vmx->vnmi_blocked_time +=
8522                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8523 }
8524
8525 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8526                                       u32 idt_vectoring_info,
8527                                       int instr_len_field,
8528                                       int error_code_field)
8529 {
8530         u8 vector;
8531         int type;
8532         bool idtv_info_valid;
8533
8534         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8535
8536         vcpu->arch.nmi_injected = false;
8537         kvm_clear_exception_queue(vcpu);
8538         kvm_clear_interrupt_queue(vcpu);
8539
8540         if (!idtv_info_valid)
8541                 return;
8542
8543         kvm_make_request(KVM_REQ_EVENT, vcpu);
8544
8545         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8546         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8547
8548         switch (type) {
8549         case INTR_TYPE_NMI_INTR:
8550                 vcpu->arch.nmi_injected = true;
8551                 /*
8552                  * SDM 3: 27.7.1.2 (September 2008)
8553                  * Clear bit "block by NMI" before VM entry if a NMI
8554                  * delivery faulted.
8555                  */
8556                 vmx_set_nmi_mask(vcpu, false);
8557                 break;
8558         case INTR_TYPE_SOFT_EXCEPTION:
8559                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8560                 /* fall through */
8561         case INTR_TYPE_HARD_EXCEPTION:
8562                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8563                         u32 err = vmcs_read32(error_code_field);
8564                         kvm_requeue_exception_e(vcpu, vector, err);
8565                 } else
8566                         kvm_requeue_exception(vcpu, vector);
8567                 break;
8568         case INTR_TYPE_SOFT_INTR:
8569                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8570                 /* fall through */
8571         case INTR_TYPE_EXT_INTR:
8572                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8573                 break;
8574         default:
8575                 break;
8576         }
8577 }
8578
8579 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8580 {
8581         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8582                                   VM_EXIT_INSTRUCTION_LEN,
8583                                   IDT_VECTORING_ERROR_CODE);
8584 }
8585
8586 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8587 {
8588         __vmx_complete_interrupts(vcpu,
8589                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8590                                   VM_ENTRY_INSTRUCTION_LEN,
8591                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8592
8593         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8594 }
8595
8596 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8597 {
8598         int i, nr_msrs;
8599         struct perf_guest_switch_msr *msrs;
8600
8601         msrs = perf_guest_get_msrs(&nr_msrs);
8602
8603         if (!msrs)
8604                 return;
8605
8606         for (i = 0; i < nr_msrs; i++)
8607                 if (msrs[i].host == msrs[i].guest)
8608                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8609                 else
8610                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8611                                         msrs[i].host);
8612 }
8613
8614 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8615 {
8616         struct vcpu_vmx *vmx = to_vmx(vcpu);
8617         unsigned long debugctlmsr, cr4;
8618
8619         /* Record the guest's net vcpu time for enforced NMI injections. */
8620         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8621                 vmx->entry_time = ktime_get();
8622
8623         /* Don't enter VMX if guest state is invalid, let the exit handler
8624            start emulation until we arrive back to a valid state */
8625         if (vmx->emulation_required)
8626                 return;
8627
8628         if (vmx->ple_window_dirty) {
8629                 vmx->ple_window_dirty = false;
8630                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8631         }
8632
8633         if (vmx->nested.sync_shadow_vmcs) {
8634                 copy_vmcs12_to_shadow(vmx);
8635                 vmx->nested.sync_shadow_vmcs = false;
8636         }
8637
8638         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8639                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8640         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8641                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8642
8643         cr4 = cr4_read_shadow();
8644         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8645                 vmcs_writel(HOST_CR4, cr4);
8646                 vmx->host_state.vmcs_host_cr4 = cr4;
8647         }
8648
8649         /* When single-stepping over STI and MOV SS, we must clear the
8650          * corresponding interruptibility bits in the guest state. Otherwise
8651          * vmentry fails as it then expects bit 14 (BS) in pending debug
8652          * exceptions being set, but that's not correct for the guest debugging
8653          * case. */
8654         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8655                 vmx_set_interrupt_shadow(vcpu, 0);
8656
8657         if (vmx->guest_pkru_valid)
8658                 __write_pkru(vmx->guest_pkru);
8659
8660         atomic_switch_perf_msrs(vmx);
8661         debugctlmsr = get_debugctlmsr();
8662
8663         vmx->__launched = vmx->loaded_vmcs->launched;
8664         asm(
8665                 /* Store host registers */
8666                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8667                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8668                 "push %%" _ASM_CX " \n\t"
8669                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8670                 "je 1f \n\t"
8671                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8672                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8673                 "1: \n\t"
8674                 /* Reload cr2 if changed */
8675                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8676                 "mov %%cr2, %%" _ASM_DX " \n\t"
8677                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8678                 "je 2f \n\t"
8679                 "mov %%" _ASM_AX", %%cr2 \n\t"
8680                 "2: \n\t"
8681                 /* Check if vmlaunch of vmresume is needed */
8682                 "cmpl $0, %c[launched](%0) \n\t"
8683                 /* Load guest registers.  Don't clobber flags. */
8684                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8685                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8686                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8687                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8688                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8689                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8690 #ifdef CONFIG_X86_64
8691                 "mov %c[r8](%0),  %%r8  \n\t"
8692                 "mov %c[r9](%0),  %%r9  \n\t"
8693                 "mov %c[r10](%0), %%r10 \n\t"
8694                 "mov %c[r11](%0), %%r11 \n\t"
8695                 "mov %c[r12](%0), %%r12 \n\t"
8696                 "mov %c[r13](%0), %%r13 \n\t"
8697                 "mov %c[r14](%0), %%r14 \n\t"
8698                 "mov %c[r15](%0), %%r15 \n\t"
8699 #endif
8700                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8701
8702                 /* Enter guest mode */
8703                 "jne 1f \n\t"
8704                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8705                 "jmp 2f \n\t"
8706                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8707                 "2: "
8708                 /* Save guest registers, load host registers, keep flags */
8709                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8710                 "pop %0 \n\t"
8711                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8712                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8713                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8714                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8715                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8716                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8717                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8718 #ifdef CONFIG_X86_64
8719                 "mov %%r8,  %c[r8](%0) \n\t"
8720                 "mov %%r9,  %c[r9](%0) \n\t"
8721                 "mov %%r10, %c[r10](%0) \n\t"
8722                 "mov %%r11, %c[r11](%0) \n\t"
8723                 "mov %%r12, %c[r12](%0) \n\t"
8724                 "mov %%r13, %c[r13](%0) \n\t"
8725                 "mov %%r14, %c[r14](%0) \n\t"
8726                 "mov %%r15, %c[r15](%0) \n\t"
8727 #endif
8728                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8729                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8730
8731                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8732                 "setbe %c[fail](%0) \n\t"
8733                 ".pushsection .rodata \n\t"
8734                 ".global vmx_return \n\t"
8735                 "vmx_return: " _ASM_PTR " 2b \n\t"
8736                 ".popsection"
8737               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8738                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8739                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8740                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8741                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8742                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8743                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8744                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8745                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8746                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8747                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8748 #ifdef CONFIG_X86_64
8749                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8750                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8751                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8752                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8753                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8754                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8755                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8756                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8757 #endif
8758                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8759                 [wordsize]"i"(sizeof(ulong))
8760               : "cc", "memory"
8761 #ifdef CONFIG_X86_64
8762                 , "rax", "rbx", "rdi", "rsi"
8763                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8764 #else
8765                 , "eax", "ebx", "edi", "esi"
8766 #endif
8767               );
8768
8769         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8770         if (debugctlmsr)
8771                 update_debugctlmsr(debugctlmsr);
8772
8773 #ifndef CONFIG_X86_64
8774         /*
8775          * The sysexit path does not restore ds/es, so we must set them to
8776          * a reasonable value ourselves.
8777          *
8778          * We can't defer this to vmx_load_host_state() since that function
8779          * may be executed in interrupt context, which saves and restore segments
8780          * around it, nullifying its effect.
8781          */
8782         loadsegment(ds, __USER_DS);
8783         loadsegment(es, __USER_DS);
8784 #endif
8785
8786         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8787                                   | (1 << VCPU_EXREG_RFLAGS)
8788                                   | (1 << VCPU_EXREG_PDPTR)
8789                                   | (1 << VCPU_EXREG_SEGMENTS)
8790                                   | (1 << VCPU_EXREG_CR3));
8791         vcpu->arch.regs_dirty = 0;
8792
8793         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8794
8795         vmx->loaded_vmcs->launched = 1;
8796
8797         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8798
8799         /*
8800          * eager fpu is enabled if PKEY is supported and CR4 is switched
8801          * back on host, so it is safe to read guest PKRU from current
8802          * XSAVE.
8803          */
8804         if (boot_cpu_has(X86_FEATURE_OSPKE)) {
8805                 vmx->guest_pkru = __read_pkru();
8806                 if (vmx->guest_pkru != vmx->host_pkru) {
8807                         vmx->guest_pkru_valid = true;
8808                         __write_pkru(vmx->host_pkru);
8809                 } else
8810                         vmx->guest_pkru_valid = false;
8811         }
8812
8813         /*
8814          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8815          * we did not inject a still-pending event to L1 now because of
8816          * nested_run_pending, we need to re-enable this bit.
8817          */
8818         if (vmx->nested.nested_run_pending)
8819                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8820
8821         vmx->nested.nested_run_pending = 0;
8822
8823         vmx_complete_atomic_exit(vmx);
8824         vmx_recover_nmi_blocking(vmx);
8825         vmx_complete_interrupts(vmx);
8826 }
8827
8828 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8829 {
8830         struct vcpu_vmx *vmx = to_vmx(vcpu);
8831         int cpu;
8832
8833         if (vmx->loaded_vmcs == &vmx->vmcs01)
8834                 return;
8835
8836         cpu = get_cpu();
8837         vmx->loaded_vmcs = &vmx->vmcs01;
8838         vmx_vcpu_put(vcpu);
8839         vmx_vcpu_load(vcpu, cpu);
8840         vcpu->cpu = cpu;
8841         put_cpu();
8842 }
8843
8844 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8845 {
8846         struct vcpu_vmx *vmx = to_vmx(vcpu);
8847
8848         if (enable_pml)
8849                 vmx_destroy_pml_buffer(vmx);
8850         free_vpid(vmx->vpid);
8851         leave_guest_mode(vcpu);
8852         vmx_load_vmcs01(vcpu);
8853         free_nested(vmx);
8854         free_loaded_vmcs(vmx->loaded_vmcs);
8855         kfree(vmx->guest_msrs);
8856         kvm_vcpu_uninit(vcpu);
8857         kmem_cache_free(kvm_vcpu_cache, vmx);
8858 }
8859
8860 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8861 {
8862         int err;
8863         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8864         int cpu;
8865
8866         if (!vmx)
8867                 return ERR_PTR(-ENOMEM);
8868
8869         vmx->vpid = allocate_vpid();
8870
8871         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8872         if (err)
8873                 goto free_vcpu;
8874
8875         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8876         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8877                      > PAGE_SIZE);
8878
8879         err = -ENOMEM;
8880         if (!vmx->guest_msrs) {
8881                 goto uninit_vcpu;
8882         }
8883
8884         vmx->loaded_vmcs = &vmx->vmcs01;
8885         vmx->loaded_vmcs->vmcs = alloc_vmcs();
8886         if (!vmx->loaded_vmcs->vmcs)
8887                 goto free_msrs;
8888         if (!vmm_exclusive)
8889                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8890         loaded_vmcs_init(vmx->loaded_vmcs);
8891         if (!vmm_exclusive)
8892                 kvm_cpu_vmxoff();
8893
8894         cpu = get_cpu();
8895         vmx_vcpu_load(&vmx->vcpu, cpu);
8896         vmx->vcpu.cpu = cpu;
8897         err = vmx_vcpu_setup(vmx);
8898         vmx_vcpu_put(&vmx->vcpu);
8899         put_cpu();
8900         if (err)
8901                 goto free_vmcs;
8902         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
8903                 err = alloc_apic_access_page(kvm);
8904                 if (err)
8905                         goto free_vmcs;
8906         }
8907
8908         if (enable_ept) {
8909                 if (!kvm->arch.ept_identity_map_addr)
8910                         kvm->arch.ept_identity_map_addr =
8911                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8912                 err = init_rmode_identity_map(kvm);
8913                 if (err)
8914                         goto free_vmcs;
8915         }
8916
8917         if (nested) {
8918                 nested_vmx_setup_ctls_msrs(vmx);
8919                 vmx->nested.vpid02 = allocate_vpid();
8920         }
8921
8922         vmx->nested.posted_intr_nv = -1;
8923         vmx->nested.current_vmptr = -1ull;
8924         vmx->nested.current_vmcs12 = NULL;
8925
8926         /*
8927          * If PML is turned on, failure on enabling PML just results in failure
8928          * of creating the vcpu, therefore we can simplify PML logic (by
8929          * avoiding dealing with cases, such as enabling PML partially on vcpus
8930          * for the guest, etc.
8931          */
8932         if (enable_pml) {
8933                 err = vmx_create_pml_buffer(vmx);
8934                 if (err)
8935                         goto free_vmcs;
8936         }
8937
8938         return &vmx->vcpu;
8939
8940 free_vmcs:
8941         free_vpid(vmx->nested.vpid02);
8942         free_loaded_vmcs(vmx->loaded_vmcs);
8943 free_msrs:
8944         kfree(vmx->guest_msrs);
8945 uninit_vcpu:
8946         kvm_vcpu_uninit(&vmx->vcpu);
8947 free_vcpu:
8948         free_vpid(vmx->vpid);
8949         kmem_cache_free(kvm_vcpu_cache, vmx);
8950         return ERR_PTR(err);
8951 }
8952
8953 static void __init vmx_check_processor_compat(void *rtn)
8954 {
8955         struct vmcs_config vmcs_conf;
8956
8957         *(int *)rtn = 0;
8958         if (setup_vmcs_config(&vmcs_conf) < 0)
8959                 *(int *)rtn = -EIO;
8960         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8961                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8962                                 smp_processor_id());
8963                 *(int *)rtn = -EIO;
8964         }
8965 }
8966
8967 static int get_ept_level(void)
8968 {
8969         return VMX_EPT_DEFAULT_GAW + 1;
8970 }
8971
8972 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8973 {
8974         u8 cache;
8975         u64 ipat = 0;
8976
8977         /* For VT-d and EPT combination
8978          * 1. MMIO: always map as UC
8979          * 2. EPT with VT-d:
8980          *   a. VT-d without snooping control feature: can't guarantee the
8981          *      result, try to trust guest.
8982          *   b. VT-d with snooping control feature: snooping control feature of
8983          *      VT-d engine can guarantee the cache correctness. Just set it
8984          *      to WB to keep consistent with host. So the same as item 3.
8985          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8986          *    consistent with host MTRR
8987          */
8988         if (is_mmio) {
8989                 cache = MTRR_TYPE_UNCACHABLE;
8990                 goto exit;
8991         }
8992
8993         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8994                 ipat = VMX_EPT_IPAT_BIT;
8995                 cache = MTRR_TYPE_WRBACK;
8996                 goto exit;
8997         }
8998
8999         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9000                 ipat = VMX_EPT_IPAT_BIT;
9001                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9002                         cache = MTRR_TYPE_WRBACK;
9003                 else
9004                         cache = MTRR_TYPE_UNCACHABLE;
9005                 goto exit;
9006         }
9007
9008         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9009
9010 exit:
9011         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9012 }
9013
9014 static int vmx_get_lpage_level(void)
9015 {
9016         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9017                 return PT_DIRECTORY_LEVEL;
9018         else
9019                 /* For shadow and EPT supported 1GB page */
9020                 return PT_PDPE_LEVEL;
9021 }
9022
9023 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9024 {
9025         /*
9026          * These bits in the secondary execution controls field
9027          * are dynamic, the others are mostly based on the hypervisor
9028          * architecture and the guest's CPUID.  Do not touch the
9029          * dynamic bits.
9030          */
9031         u32 mask =
9032                 SECONDARY_EXEC_SHADOW_VMCS |
9033                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9034                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9035
9036         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9037
9038         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9039                      (new_ctl & ~mask) | (cur_ctl & mask));
9040 }
9041
9042 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9043 {
9044         struct kvm_cpuid_entry2 *best;
9045         struct vcpu_vmx *vmx = to_vmx(vcpu);
9046         u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9047
9048         if (vmx_rdtscp_supported()) {
9049                 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9050                 if (!rdtscp_enabled)
9051                         secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9052
9053                 if (nested) {
9054                         if (rdtscp_enabled)
9055                                 vmx->nested.nested_vmx_secondary_ctls_high |=
9056                                         SECONDARY_EXEC_RDTSCP;
9057                         else
9058                                 vmx->nested.nested_vmx_secondary_ctls_high &=
9059                                         ~SECONDARY_EXEC_RDTSCP;
9060                 }
9061         }
9062
9063         /* Exposing INVPCID only when PCID is exposed */
9064         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9065         if (vmx_invpcid_supported() &&
9066             (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9067             !guest_cpuid_has_pcid(vcpu))) {
9068                 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9069
9070                 if (best)
9071                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
9072         }
9073
9074         if (cpu_has_secondary_exec_ctrls())
9075                 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9076
9077         if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9078                 if (guest_cpuid_has_pcommit(vcpu))
9079                         vmx->nested.nested_vmx_secondary_ctls_high |=
9080                                 SECONDARY_EXEC_PCOMMIT;
9081                 else
9082                         vmx->nested.nested_vmx_secondary_ctls_high &=
9083                                 ~SECONDARY_EXEC_PCOMMIT;
9084         }
9085 }
9086
9087 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9088 {
9089         if (func == 1 && nested)
9090                 entry->ecx |= bit(X86_FEATURE_VMX);
9091 }
9092
9093 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9094                 struct x86_exception *fault)
9095 {
9096         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9097         u32 exit_reason;
9098
9099         if (fault->error_code & PFERR_RSVD_MASK)
9100                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9101         else
9102                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9103         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9104         vmcs12->guest_physical_address = fault->address;
9105 }
9106
9107 /* Callbacks for nested_ept_init_mmu_context: */
9108
9109 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9110 {
9111         /* return the page table to be shadowed - in our case, EPT12 */
9112         return get_vmcs12(vcpu)->ept_pointer;
9113 }
9114
9115 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9116 {
9117         WARN_ON(mmu_is_nested(vcpu));
9118         kvm_init_shadow_ept_mmu(vcpu,
9119                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9120                         VMX_EPT_EXECUTE_ONLY_BIT);
9121         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9122         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9123         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9124
9125         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9126 }
9127
9128 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9129 {
9130         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9131 }
9132
9133 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9134                                             u16 error_code)
9135 {
9136         bool inequality, bit;
9137
9138         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9139         inequality =
9140                 (error_code & vmcs12->page_fault_error_code_mask) !=
9141                  vmcs12->page_fault_error_code_match;
9142         return inequality ^ bit;
9143 }
9144
9145 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9146                 struct x86_exception *fault)
9147 {
9148         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9149
9150         WARN_ON(!is_guest_mode(vcpu));
9151
9152         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9153                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9154                                   vmcs_read32(VM_EXIT_INTR_INFO),
9155                                   vmcs_readl(EXIT_QUALIFICATION));
9156         else
9157                 kvm_inject_page_fault(vcpu, fault);
9158 }
9159
9160 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9161                                         struct vmcs12 *vmcs12)
9162 {
9163         struct vcpu_vmx *vmx = to_vmx(vcpu);
9164         int maxphyaddr = cpuid_maxphyaddr(vcpu);
9165
9166         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9167                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9168                     vmcs12->apic_access_addr >> maxphyaddr)
9169                         return false;
9170
9171                 /*
9172                  * Translate L1 physical address to host physical
9173                  * address for vmcs02. Keep the page pinned, so this
9174                  * physical address remains valid. We keep a reference
9175                  * to it so we can release it later.
9176                  */
9177                 if (vmx->nested.apic_access_page) /* shouldn't happen */
9178                         nested_release_page(vmx->nested.apic_access_page);
9179                 vmx->nested.apic_access_page =
9180                         nested_get_page(vcpu, vmcs12->apic_access_addr);
9181         }
9182
9183         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9184                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9185                     vmcs12->virtual_apic_page_addr >> maxphyaddr)
9186                         return false;
9187
9188                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9189                         nested_release_page(vmx->nested.virtual_apic_page);
9190                 vmx->nested.virtual_apic_page =
9191                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9192
9193                 /*
9194                  * Failing the vm entry is _not_ what the processor does
9195                  * but it's basically the only possibility we have.
9196                  * We could still enter the guest if CR8 load exits are
9197                  * enabled, CR8 store exits are enabled, and virtualize APIC
9198                  * access is disabled; in this case the processor would never
9199                  * use the TPR shadow and we could simply clear the bit from
9200                  * the execution control.  But such a configuration is useless,
9201                  * so let's keep the code simple.
9202                  */
9203                 if (!vmx->nested.virtual_apic_page)
9204                         return false;
9205         }
9206
9207         if (nested_cpu_has_posted_intr(vmcs12)) {
9208                 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9209                     vmcs12->posted_intr_desc_addr >> maxphyaddr)
9210                         return false;
9211
9212                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9213                         kunmap(vmx->nested.pi_desc_page);
9214                         nested_release_page(vmx->nested.pi_desc_page);
9215                 }
9216                 vmx->nested.pi_desc_page =
9217                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9218                 if (!vmx->nested.pi_desc_page)
9219                         return false;
9220
9221                 vmx->nested.pi_desc =
9222                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9223                 if (!vmx->nested.pi_desc) {
9224                         nested_release_page_clean(vmx->nested.pi_desc_page);
9225                         return false;
9226                 }
9227                 vmx->nested.pi_desc =
9228                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
9229                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9230                         (PAGE_SIZE - 1)));
9231         }
9232
9233         return true;
9234 }
9235
9236 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9237 {
9238         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9239         struct vcpu_vmx *vmx = to_vmx(vcpu);
9240
9241         if (vcpu->arch.virtual_tsc_khz == 0)
9242                 return;
9243
9244         /* Make sure short timeouts reliably trigger an immediate vmexit.
9245          * hrtimer_start does not guarantee this. */
9246         if (preemption_timeout <= 1) {
9247                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9248                 return;
9249         }
9250
9251         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9252         preemption_timeout *= 1000000;
9253         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9254         hrtimer_start(&vmx->nested.preemption_timer,
9255                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9256 }
9257
9258 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9259                                                 struct vmcs12 *vmcs12)
9260 {
9261         int maxphyaddr;
9262         u64 addr;
9263
9264         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9265                 return 0;
9266
9267         if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9268                 WARN_ON(1);
9269                 return -EINVAL;
9270         }
9271         maxphyaddr = cpuid_maxphyaddr(vcpu);
9272
9273         if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9274            ((addr + PAGE_SIZE) >> maxphyaddr))
9275                 return -EINVAL;
9276
9277         return 0;
9278 }
9279
9280 /*
9281  * Merge L0's and L1's MSR bitmap, return false to indicate that
9282  * we do not use the hardware.
9283  */
9284 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9285                                                struct vmcs12 *vmcs12)
9286 {
9287         int msr;
9288         struct page *page;
9289         unsigned long *msr_bitmap;
9290
9291         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9292                 return false;
9293
9294         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9295         if (!page) {
9296                 WARN_ON(1);
9297                 return false;
9298         }
9299         msr_bitmap = (unsigned long *)kmap(page);
9300         if (!msr_bitmap) {
9301                 nested_release_page_clean(page);
9302                 WARN_ON(1);
9303                 return false;
9304         }
9305
9306         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9307                 if (nested_cpu_has_apic_reg_virt(vmcs12))
9308                         for (msr = 0x800; msr <= 0x8ff; msr++)
9309                                 nested_vmx_disable_intercept_for_msr(
9310                                         msr_bitmap,
9311                                         vmx_msr_bitmap_nested,
9312                                         msr, MSR_TYPE_R);
9313                 /* TPR is allowed */
9314                 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9315                                 vmx_msr_bitmap_nested,
9316                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9317                                 MSR_TYPE_R | MSR_TYPE_W);
9318                 if (nested_cpu_has_vid(vmcs12)) {
9319                         /* EOI and self-IPI are allowed */
9320                         nested_vmx_disable_intercept_for_msr(
9321                                 msr_bitmap,
9322                                 vmx_msr_bitmap_nested,
9323                                 APIC_BASE_MSR + (APIC_EOI >> 4),
9324                                 MSR_TYPE_W);
9325                         nested_vmx_disable_intercept_for_msr(
9326                                 msr_bitmap,
9327                                 vmx_msr_bitmap_nested,
9328                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9329                                 MSR_TYPE_W);
9330                 }
9331         } else {
9332                 /*
9333                  * Enable reading intercept of all the x2apic
9334                  * MSRs. We should not rely on vmcs12 to do any
9335                  * optimizations here, it may have been modified
9336                  * by L1.
9337                  */
9338                 for (msr = 0x800; msr <= 0x8ff; msr++)
9339                         __vmx_enable_intercept_for_msr(
9340                                 vmx_msr_bitmap_nested,
9341                                 msr,
9342                                 MSR_TYPE_R);
9343
9344                 __vmx_enable_intercept_for_msr(
9345                                 vmx_msr_bitmap_nested,
9346                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9347                                 MSR_TYPE_W);
9348                 __vmx_enable_intercept_for_msr(
9349                                 vmx_msr_bitmap_nested,
9350                                 APIC_BASE_MSR + (APIC_EOI >> 4),
9351                                 MSR_TYPE_W);
9352                 __vmx_enable_intercept_for_msr(
9353                                 vmx_msr_bitmap_nested,
9354                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9355                                 MSR_TYPE_W);
9356         }
9357         kunmap(page);
9358         nested_release_page_clean(page);
9359
9360         return true;
9361 }
9362
9363 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9364                                            struct vmcs12 *vmcs12)
9365 {
9366         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9367             !nested_cpu_has_apic_reg_virt(vmcs12) &&
9368             !nested_cpu_has_vid(vmcs12) &&
9369             !nested_cpu_has_posted_intr(vmcs12))
9370                 return 0;
9371
9372         /*
9373          * If virtualize x2apic mode is enabled,
9374          * virtualize apic access must be disabled.
9375          */
9376         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9377             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9378                 return -EINVAL;
9379
9380         /*
9381          * If virtual interrupt delivery is enabled,
9382          * we must exit on external interrupts.
9383          */
9384         if (nested_cpu_has_vid(vmcs12) &&
9385            !nested_exit_on_intr(vcpu))
9386                 return -EINVAL;
9387
9388         /*
9389          * bits 15:8 should be zero in posted_intr_nv,
9390          * the descriptor address has been already checked
9391          * in nested_get_vmcs12_pages.
9392          */
9393         if (nested_cpu_has_posted_intr(vmcs12) &&
9394            (!nested_cpu_has_vid(vmcs12) ||
9395             !nested_exit_intr_ack_set(vcpu) ||
9396             vmcs12->posted_intr_nv & 0xff00))
9397                 return -EINVAL;
9398
9399         /* tpr shadow is needed by all apicv features. */
9400         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9401                 return -EINVAL;
9402
9403         return 0;
9404 }
9405
9406 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9407                                        unsigned long count_field,
9408                                        unsigned long addr_field)
9409 {
9410         int maxphyaddr;
9411         u64 count, addr;
9412
9413         if (vmcs12_read_any(vcpu, count_field, &count) ||
9414             vmcs12_read_any(vcpu, addr_field, &addr)) {
9415                 WARN_ON(1);
9416                 return -EINVAL;
9417         }
9418         if (count == 0)
9419                 return 0;
9420         maxphyaddr = cpuid_maxphyaddr(vcpu);
9421         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9422             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9423                 pr_warn_ratelimited(
9424                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9425                         addr_field, maxphyaddr, count, addr);
9426                 return -EINVAL;
9427         }
9428         return 0;
9429 }
9430
9431 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9432                                                 struct vmcs12 *vmcs12)
9433 {
9434         if (vmcs12->vm_exit_msr_load_count == 0 &&
9435             vmcs12->vm_exit_msr_store_count == 0 &&
9436             vmcs12->vm_entry_msr_load_count == 0)
9437                 return 0; /* Fast path */
9438         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9439                                         VM_EXIT_MSR_LOAD_ADDR) ||
9440             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9441                                         VM_EXIT_MSR_STORE_ADDR) ||
9442             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9443                                         VM_ENTRY_MSR_LOAD_ADDR))
9444                 return -EINVAL;
9445         return 0;
9446 }
9447
9448 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9449                                        struct vmx_msr_entry *e)
9450 {
9451         /* x2APIC MSR accesses are not allowed */
9452         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9453                 return -EINVAL;
9454         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9455             e->index == MSR_IA32_UCODE_REV)
9456                 return -EINVAL;
9457         if (e->reserved != 0)
9458                 return -EINVAL;
9459         return 0;
9460 }
9461
9462 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9463                                      struct vmx_msr_entry *e)
9464 {
9465         if (e->index == MSR_FS_BASE ||
9466             e->index == MSR_GS_BASE ||
9467             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9468             nested_vmx_msr_check_common(vcpu, e))
9469                 return -EINVAL;
9470         return 0;
9471 }
9472
9473 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9474                                       struct vmx_msr_entry *e)
9475 {
9476         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9477             nested_vmx_msr_check_common(vcpu, e))
9478                 return -EINVAL;
9479         return 0;
9480 }
9481
9482 /*
9483  * Load guest's/host's msr at nested entry/exit.
9484  * return 0 for success, entry index for failure.
9485  */
9486 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9487 {
9488         u32 i;
9489         struct vmx_msr_entry e;
9490         struct msr_data msr;
9491
9492         msr.host_initiated = false;
9493         for (i = 0; i < count; i++) {
9494                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9495                                         &e, sizeof(e))) {
9496                         pr_warn_ratelimited(
9497                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9498                                 __func__, i, gpa + i * sizeof(e));
9499                         goto fail;
9500                 }
9501                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9502                         pr_warn_ratelimited(
9503                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9504                                 __func__, i, e.index, e.reserved);
9505                         goto fail;
9506                 }
9507                 msr.index = e.index;
9508                 msr.data = e.value;
9509                 if (kvm_set_msr(vcpu, &msr)) {
9510                         pr_warn_ratelimited(
9511                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9512                                 __func__, i, e.index, e.value);
9513                         goto fail;
9514                 }
9515         }
9516         return 0;
9517 fail:
9518         return i + 1;
9519 }
9520
9521 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9522 {
9523         u32 i;
9524         struct vmx_msr_entry e;
9525
9526         for (i = 0; i < count; i++) {
9527                 struct msr_data msr_info;
9528                 if (kvm_vcpu_read_guest(vcpu,
9529                                         gpa + i * sizeof(e),
9530                                         &e, 2 * sizeof(u32))) {
9531                         pr_warn_ratelimited(
9532                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9533                                 __func__, i, gpa + i * sizeof(e));
9534                         return -EINVAL;
9535                 }
9536                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9537                         pr_warn_ratelimited(
9538                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9539                                 __func__, i, e.index, e.reserved);
9540                         return -EINVAL;
9541                 }
9542                 msr_info.host_initiated = false;
9543                 msr_info.index = e.index;
9544                 if (kvm_get_msr(vcpu, &msr_info)) {
9545                         pr_warn_ratelimited(
9546                                 "%s cannot read MSR (%u, 0x%x)\n",
9547                                 __func__, i, e.index);
9548                         return -EINVAL;
9549                 }
9550                 if (kvm_vcpu_write_guest(vcpu,
9551                                          gpa + i * sizeof(e) +
9552                                              offsetof(struct vmx_msr_entry, value),
9553                                          &msr_info.data, sizeof(msr_info.data))) {
9554                         pr_warn_ratelimited(
9555                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9556                                 __func__, i, e.index, msr_info.data);
9557                         return -EINVAL;
9558                 }
9559         }
9560         return 0;
9561 }
9562
9563 /*
9564  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9565  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9566  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9567  * guest in a way that will both be appropriate to L1's requests, and our
9568  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9569  * function also has additional necessary side-effects, like setting various
9570  * vcpu->arch fields.
9571  */
9572 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9573 {
9574         struct vcpu_vmx *vmx = to_vmx(vcpu);
9575         u32 exec_control;
9576
9577         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9578         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9579         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9580         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9581         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9582         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9583         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9584         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9585         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9586         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9587         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9588         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9589         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9590         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9591         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9592         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9593         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9594         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9595         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9596         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9597         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9598         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9599         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9600         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9601         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9602         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9603         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9604         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9605         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9606         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9607         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9608         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9609         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9610         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9611         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9612         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9613
9614         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9615                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9616                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9617         } else {
9618                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9619                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9620         }
9621         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9622                 vmcs12->vm_entry_intr_info_field);
9623         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9624                 vmcs12->vm_entry_exception_error_code);
9625         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9626                 vmcs12->vm_entry_instruction_len);
9627         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9628                 vmcs12->guest_interruptibility_info);
9629         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9630         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9631         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9632                 vmcs12->guest_pending_dbg_exceptions);
9633         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9634         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9635
9636         if (nested_cpu_has_xsaves(vmcs12))
9637                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9638         vmcs_write64(VMCS_LINK_POINTER, -1ull);
9639
9640         exec_control = vmcs12->pin_based_vm_exec_control;
9641         exec_control |= vmcs_config.pin_based_exec_ctrl;
9642         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9643
9644         if (nested_cpu_has_posted_intr(vmcs12)) {
9645                 /*
9646                  * Note that we use L0's vector here and in
9647                  * vmx_deliver_nested_posted_interrupt.
9648                  */
9649                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9650                 vmx->nested.pi_pending = false;
9651                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9652                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9653                         page_to_phys(vmx->nested.pi_desc_page) +
9654                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9655                         (PAGE_SIZE - 1)));
9656         } else
9657                 exec_control &= ~PIN_BASED_POSTED_INTR;
9658
9659         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9660
9661         vmx->nested.preemption_timer_expired = false;
9662         if (nested_cpu_has_preemption_timer(vmcs12))
9663                 vmx_start_preemption_timer(vcpu);
9664
9665         /*
9666          * Whether page-faults are trapped is determined by a combination of
9667          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9668          * If enable_ept, L0 doesn't care about page faults and we should
9669          * set all of these to L1's desires. However, if !enable_ept, L0 does
9670          * care about (at least some) page faults, and because it is not easy
9671          * (if at all possible?) to merge L0 and L1's desires, we simply ask
9672          * to exit on each and every L2 page fault. This is done by setting
9673          * MASK=MATCH=0 and (see below) EB.PF=1.
9674          * Note that below we don't need special code to set EB.PF beyond the
9675          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9676          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9677          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9678          *
9679          * A problem with this approach (when !enable_ept) is that L1 may be
9680          * injected with more page faults than it asked for. This could have
9681          * caused problems, but in practice existing hypervisors don't care.
9682          * To fix this, we will need to emulate the PFEC checking (on the L1
9683          * page tables), using walk_addr(), when injecting PFs to L1.
9684          */
9685         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9686                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9687         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9688                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9689
9690         if (cpu_has_secondary_exec_ctrls()) {
9691                 exec_control = vmx_secondary_exec_control(vmx);
9692
9693                 /* Take the following fields only from vmcs12 */
9694                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9695                                   SECONDARY_EXEC_RDTSCP |
9696                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9697                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
9698                                   SECONDARY_EXEC_PCOMMIT);
9699                 if (nested_cpu_has(vmcs12,
9700                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9701                         exec_control |= vmcs12->secondary_vm_exec_control;
9702
9703                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9704                         /*
9705                          * If translation failed, no matter: This feature asks
9706                          * to exit when accessing the given address, and if it
9707                          * can never be accessed, this feature won't do
9708                          * anything anyway.
9709                          */
9710                         if (!vmx->nested.apic_access_page)
9711                                 exec_control &=
9712                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9713                         else
9714                                 vmcs_write64(APIC_ACCESS_ADDR,
9715                                   page_to_phys(vmx->nested.apic_access_page));
9716                 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9717                             cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9718                         exec_control |=
9719                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9720                         kvm_vcpu_reload_apic_access_page(vcpu);
9721                 }
9722
9723                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9724                         vmcs_write64(EOI_EXIT_BITMAP0,
9725                                 vmcs12->eoi_exit_bitmap0);
9726                         vmcs_write64(EOI_EXIT_BITMAP1,
9727                                 vmcs12->eoi_exit_bitmap1);
9728                         vmcs_write64(EOI_EXIT_BITMAP2,
9729                                 vmcs12->eoi_exit_bitmap2);
9730                         vmcs_write64(EOI_EXIT_BITMAP3,
9731                                 vmcs12->eoi_exit_bitmap3);
9732                         vmcs_write16(GUEST_INTR_STATUS,
9733                                 vmcs12->guest_intr_status);
9734                 }
9735
9736                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9737         }
9738
9739
9740         /*
9741          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9742          * Some constant fields are set here by vmx_set_constant_host_state().
9743          * Other fields are different per CPU, and will be set later when
9744          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9745          */
9746         vmx_set_constant_host_state(vmx);
9747
9748         /*
9749          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9750          * entry, but only if the current (host) sp changed from the value
9751          * we wrote last (vmx->host_rsp). This cache is no longer relevant
9752          * if we switch vmcs, and rather than hold a separate cache per vmcs,
9753          * here we just force the write to happen on entry.
9754          */
9755         vmx->host_rsp = 0;
9756
9757         exec_control = vmx_exec_control(vmx); /* L0's desires */
9758         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9759         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9760         exec_control &= ~CPU_BASED_TPR_SHADOW;
9761         exec_control |= vmcs12->cpu_based_vm_exec_control;
9762
9763         if (exec_control & CPU_BASED_TPR_SHADOW) {
9764                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9765                                 page_to_phys(vmx->nested.virtual_apic_page));
9766                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9767         }
9768
9769         if (cpu_has_vmx_msr_bitmap() &&
9770             exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9771                 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9772                 /* MSR_BITMAP will be set by following vmx_set_efer. */
9773         } else
9774                 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9775
9776         /*
9777          * Merging of IO bitmap not currently supported.
9778          * Rather, exit every time.
9779          */
9780         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9781         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9782
9783         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9784
9785         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9786          * bitwise-or of what L1 wants to trap for L2, and what we want to
9787          * trap. Note that CR0.TS also needs updating - we do this later.
9788          */
9789         update_exception_bitmap(vcpu);
9790         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9791         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9792
9793         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9794          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9795          * bits are further modified by vmx_set_efer() below.
9796          */
9797         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9798
9799         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9800          * emulated by vmx_set_efer(), below.
9801          */
9802         vm_entry_controls_init(vmx, 
9803                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9804                         ~VM_ENTRY_IA32E_MODE) |
9805                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9806
9807         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9808                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9809                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9810         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9811                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9812
9813
9814         set_cr4_guest_host_mask(vmx);
9815
9816         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9817                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9818
9819         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9820                 vmcs_write64(TSC_OFFSET,
9821                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9822         else
9823                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9824
9825         if (enable_vpid) {
9826                 /*
9827                  * There is no direct mapping between vpid02 and vpid12, the
9828                  * vpid02 is per-vCPU for L0 and reused while the value of
9829                  * vpid12 is changed w/ one invvpid during nested vmentry.
9830                  * The vpid12 is allocated by L1 for L2, so it will not
9831                  * influence global bitmap(for vpid01 and vpid02 allocation)
9832                  * even if spawn a lot of nested vCPUs.
9833                  */
9834                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9835                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9836                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9837                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9838                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9839                         }
9840                 } else {
9841                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9842                         vmx_flush_tlb(vcpu);
9843                 }
9844
9845         }
9846
9847         if (nested_cpu_has_ept(vmcs12)) {
9848                 kvm_mmu_unload(vcpu);
9849                 nested_ept_init_mmu_context(vcpu);
9850         }
9851
9852         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9853                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9854         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9855                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9856         else
9857                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9858         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9859         vmx_set_efer(vcpu, vcpu->arch.efer);
9860
9861         /*
9862          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9863          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9864          * The CR0_READ_SHADOW is what L2 should have expected to read given
9865          * the specifications by L1; It's not enough to take
9866          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9867          * have more bits than L1 expected.
9868          */
9869         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9870         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9871
9872         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9873         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9874
9875         /* shadow page tables on either EPT or shadow page tables */
9876         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9877         kvm_mmu_reset_context(vcpu);
9878
9879         if (!enable_ept)
9880                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9881
9882         /*
9883          * L1 may access the L2's PDPTR, so save them to construct vmcs12
9884          */
9885         if (enable_ept) {
9886                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9887                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9888                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9889                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9890         }
9891
9892         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9893         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9894 }
9895
9896 /*
9897  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9898  * for running an L2 nested guest.
9899  */
9900 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9901 {
9902         struct vmcs12 *vmcs12;
9903         struct vcpu_vmx *vmx = to_vmx(vcpu);
9904         int cpu;
9905         struct loaded_vmcs *vmcs02;
9906         bool ia32e;
9907         u32 msr_entry_idx;
9908
9909         if (!nested_vmx_check_permission(vcpu) ||
9910             !nested_vmx_check_vmcs12(vcpu))
9911                 return 1;
9912
9913         skip_emulated_instruction(vcpu);
9914         vmcs12 = get_vmcs12(vcpu);
9915
9916         if (enable_shadow_vmcs)
9917                 copy_shadow_to_vmcs12(vmx);
9918
9919         /*
9920          * The nested entry process starts with enforcing various prerequisites
9921          * on vmcs12 as required by the Intel SDM, and act appropriately when
9922          * they fail: As the SDM explains, some conditions should cause the
9923          * instruction to fail, while others will cause the instruction to seem
9924          * to succeed, but return an EXIT_REASON_INVALID_STATE.
9925          * To speed up the normal (success) code path, we should avoid checking
9926          * for misconfigurations which will anyway be caught by the processor
9927          * when using the merged vmcs02.
9928          */
9929         if (vmcs12->launch_state == launch) {
9930                 nested_vmx_failValid(vcpu,
9931                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9932                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9933                 return 1;
9934         }
9935
9936         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9937             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9938                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9939                 return 1;
9940         }
9941
9942         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9943                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9944                 return 1;
9945         }
9946
9947         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9948                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9949                 return 1;
9950         }
9951
9952         if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9953                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9954                 return 1;
9955         }
9956
9957         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9958                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9959                 return 1;
9960         }
9961
9962         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9963                                 vmx->nested.nested_vmx_true_procbased_ctls_low,
9964                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
9965             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9966                                 vmx->nested.nested_vmx_secondary_ctls_low,
9967                                 vmx->nested.nested_vmx_secondary_ctls_high) ||
9968             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9969                                 vmx->nested.nested_vmx_pinbased_ctls_low,
9970                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9971             !vmx_control_verify(vmcs12->vm_exit_controls,
9972                                 vmx->nested.nested_vmx_true_exit_ctls_low,
9973                                 vmx->nested.nested_vmx_exit_ctls_high) ||
9974             !vmx_control_verify(vmcs12->vm_entry_controls,
9975                                 vmx->nested.nested_vmx_true_entry_ctls_low,
9976                                 vmx->nested.nested_vmx_entry_ctls_high))
9977         {
9978                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9979                 return 1;
9980         }
9981
9982         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9983             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9984                 nested_vmx_failValid(vcpu,
9985                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9986                 return 1;
9987         }
9988
9989         if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9990             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9991                 nested_vmx_entry_failure(vcpu, vmcs12,
9992                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9993                 return 1;
9994         }
9995         if (vmcs12->vmcs_link_pointer != -1ull) {
9996                 nested_vmx_entry_failure(vcpu, vmcs12,
9997                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9998                 return 1;
9999         }
10000
10001         /*
10002          * If the load IA32_EFER VM-entry control is 1, the following checks
10003          * are performed on the field for the IA32_EFER MSR:
10004          * - Bits reserved in the IA32_EFER MSR must be 0.
10005          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10006          *   the IA-32e mode guest VM-exit control. It must also be identical
10007          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10008          *   CR0.PG) is 1.
10009          */
10010         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10011                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10012                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10013                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10014                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10015                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10016                         nested_vmx_entry_failure(vcpu, vmcs12,
10017                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10018                         return 1;
10019                 }
10020         }
10021
10022         /*
10023          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10024          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10025          * the values of the LMA and LME bits in the field must each be that of
10026          * the host address-space size VM-exit control.
10027          */
10028         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10029                 ia32e = (vmcs12->vm_exit_controls &
10030                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10031                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10032                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10033                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10034                         nested_vmx_entry_failure(vcpu, vmcs12,
10035                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10036                         return 1;
10037                 }
10038         }
10039
10040         /*
10041          * We're finally done with prerequisite checking, and can start with
10042          * the nested entry.
10043          */
10044
10045         vmcs02 = nested_get_current_vmcs02(vmx);
10046         if (!vmcs02)
10047                 return -ENOMEM;
10048
10049         enter_guest_mode(vcpu);
10050
10051         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10052
10053         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10054                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10055
10056         cpu = get_cpu();
10057         vmx->loaded_vmcs = vmcs02;
10058         vmx_vcpu_put(vcpu);
10059         vmx_vcpu_load(vcpu, cpu);
10060         vcpu->cpu = cpu;
10061         put_cpu();
10062
10063         vmx_segment_cache_clear(vmx);
10064
10065         prepare_vmcs02(vcpu, vmcs12);
10066
10067         msr_entry_idx = nested_vmx_load_msr(vcpu,
10068                                             vmcs12->vm_entry_msr_load_addr,
10069                                             vmcs12->vm_entry_msr_load_count);
10070         if (msr_entry_idx) {
10071                 leave_guest_mode(vcpu);
10072                 vmx_load_vmcs01(vcpu);
10073                 nested_vmx_entry_failure(vcpu, vmcs12,
10074                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10075                 return 1;
10076         }
10077
10078         vmcs12->launch_state = 1;
10079
10080         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10081                 return kvm_vcpu_halt(vcpu);
10082
10083         vmx->nested.nested_run_pending = 1;
10084
10085         /*
10086          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10087          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10088          * returned as far as L1 is concerned. It will only return (and set
10089          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10090          */
10091         return 1;
10092 }
10093
10094 /*
10095  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10096  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10097  * This function returns the new value we should put in vmcs12.guest_cr0.
10098  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10099  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10100  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10101  *     didn't trap the bit, because if L1 did, so would L0).
10102  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10103  *     been modified by L2, and L1 knows it. So just leave the old value of
10104  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10105  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10106  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10107  *     changed these bits, and therefore they need to be updated, but L0
10108  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10109  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10110  */
10111 static inline unsigned long
10112 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10113 {
10114         return
10115         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10116         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10117         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10118                         vcpu->arch.cr0_guest_owned_bits));
10119 }
10120
10121 static inline unsigned long
10122 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10123 {
10124         return
10125         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10126         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10127         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10128                         vcpu->arch.cr4_guest_owned_bits));
10129 }
10130
10131 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10132                                        struct vmcs12 *vmcs12)
10133 {
10134         u32 idt_vectoring;
10135         unsigned int nr;
10136
10137         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10138                 nr = vcpu->arch.exception.nr;
10139                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10140
10141                 if (kvm_exception_is_soft(nr)) {
10142                         vmcs12->vm_exit_instruction_len =
10143                                 vcpu->arch.event_exit_inst_len;
10144                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10145                 } else
10146                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10147
10148                 if (vcpu->arch.exception.has_error_code) {
10149                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10150                         vmcs12->idt_vectoring_error_code =
10151                                 vcpu->arch.exception.error_code;
10152                 }
10153
10154                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10155         } else if (vcpu->arch.nmi_injected) {
10156                 vmcs12->idt_vectoring_info_field =
10157                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10158         } else if (vcpu->arch.interrupt.pending) {
10159                 nr = vcpu->arch.interrupt.nr;
10160                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10161
10162                 if (vcpu->arch.interrupt.soft) {
10163                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
10164                         vmcs12->vm_entry_instruction_len =
10165                                 vcpu->arch.event_exit_inst_len;
10166                 } else
10167                         idt_vectoring |= INTR_TYPE_EXT_INTR;
10168
10169                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10170         }
10171 }
10172
10173 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10174 {
10175         struct vcpu_vmx *vmx = to_vmx(vcpu);
10176
10177         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10178             vmx->nested.preemption_timer_expired) {
10179                 if (vmx->nested.nested_run_pending)
10180                         return -EBUSY;
10181                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10182                 return 0;
10183         }
10184
10185         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10186                 if (vmx->nested.nested_run_pending ||
10187                     vcpu->arch.interrupt.pending)
10188                         return -EBUSY;
10189                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10190                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
10191                                   INTR_INFO_VALID_MASK, 0);
10192                 /*
10193                  * The NMI-triggered VM exit counts as injection:
10194                  * clear this one and block further NMIs.
10195                  */
10196                 vcpu->arch.nmi_pending = 0;
10197                 vmx_set_nmi_mask(vcpu, true);
10198                 return 0;
10199         }
10200
10201         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10202             nested_exit_on_intr(vcpu)) {
10203                 if (vmx->nested.nested_run_pending)
10204                         return -EBUSY;
10205                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10206                 return 0;
10207         }
10208
10209         return vmx_complete_nested_posted_interrupt(vcpu);
10210 }
10211
10212 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10213 {
10214         ktime_t remaining =
10215                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10216         u64 value;
10217
10218         if (ktime_to_ns(remaining) <= 0)
10219                 return 0;
10220
10221         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10222         do_div(value, 1000000);
10223         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10224 }
10225
10226 /*
10227  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10228  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10229  * and this function updates it to reflect the changes to the guest state while
10230  * L2 was running (and perhaps made some exits which were handled directly by L0
10231  * without going back to L1), and to reflect the exit reason.
10232  * Note that we do not have to copy here all VMCS fields, just those that
10233  * could have changed by the L2 guest or the exit - i.e., the guest-state and
10234  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10235  * which already writes to vmcs12 directly.
10236  */
10237 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10238                            u32 exit_reason, u32 exit_intr_info,
10239                            unsigned long exit_qualification)
10240 {
10241         /* update guest state fields: */
10242         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10243         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10244
10245         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10246         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10247         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10248
10249         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10250         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10251         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10252         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10253         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10254         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10255         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10256         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10257         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10258         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10259         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10260         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10261         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10262         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10263         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10264         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10265         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10266         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10267         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10268         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10269         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10270         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10271         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10272         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10273         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10274         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10275         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10276         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10277         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10278         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10279         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10280         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10281         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10282         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10283         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10284         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10285
10286         vmcs12->guest_interruptibility_info =
10287                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10288         vmcs12->guest_pending_dbg_exceptions =
10289                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10290         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10291                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10292         else
10293                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10294
10295         if (nested_cpu_has_preemption_timer(vmcs12)) {
10296                 if (vmcs12->vm_exit_controls &
10297                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10298                         vmcs12->vmx_preemption_timer_value =
10299                                 vmx_get_preemption_timer_value(vcpu);
10300                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10301         }
10302
10303         /*
10304          * In some cases (usually, nested EPT), L2 is allowed to change its
10305          * own CR3 without exiting. If it has changed it, we must keep it.
10306          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10307          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10308          *
10309          * Additionally, restore L2's PDPTR to vmcs12.
10310          */
10311         if (enable_ept) {
10312                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10313                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10314                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10315                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10316                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10317         }
10318
10319         if (nested_cpu_has_vid(vmcs12))
10320                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10321
10322         vmcs12->vm_entry_controls =
10323                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10324                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10325
10326         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10327                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10328                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10329         }
10330
10331         /* TODO: These cannot have changed unless we have MSR bitmaps and
10332          * the relevant bit asks not to trap the change */
10333         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10334                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10335         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10336                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10337         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10338         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10339         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10340         if (kvm_mpx_supported())
10341                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10342         if (nested_cpu_has_xsaves(vmcs12))
10343                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10344
10345         /* update exit information fields: */
10346
10347         vmcs12->vm_exit_reason = exit_reason;
10348         vmcs12->exit_qualification = exit_qualification;
10349
10350         vmcs12->vm_exit_intr_info = exit_intr_info;
10351         if ((vmcs12->vm_exit_intr_info &
10352              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10353             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10354                 vmcs12->vm_exit_intr_error_code =
10355                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10356         vmcs12->idt_vectoring_info_field = 0;
10357         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10358         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10359
10360         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10361                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10362                  * instead of reading the real value. */
10363                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10364
10365                 /*
10366                  * Transfer the event that L0 or L1 may wanted to inject into
10367                  * L2 to IDT_VECTORING_INFO_FIELD.
10368                  */
10369                 vmcs12_save_pending_event(vcpu, vmcs12);
10370         }
10371
10372         /*
10373          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10374          * preserved above and would only end up incorrectly in L1.
10375          */
10376         vcpu->arch.nmi_injected = false;
10377         kvm_clear_exception_queue(vcpu);
10378         kvm_clear_interrupt_queue(vcpu);
10379 }
10380
10381 /*
10382  * A part of what we need to when the nested L2 guest exits and we want to
10383  * run its L1 parent, is to reset L1's guest state to the host state specified
10384  * in vmcs12.
10385  * This function is to be called not only on normal nested exit, but also on
10386  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10387  * Failures During or After Loading Guest State").
10388  * This function should be called when the active VMCS is L1's (vmcs01).
10389  */
10390 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10391                                    struct vmcs12 *vmcs12)
10392 {
10393         struct kvm_segment seg;
10394
10395         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10396                 vcpu->arch.efer = vmcs12->host_ia32_efer;
10397         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10398                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10399         else
10400                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10401         vmx_set_efer(vcpu, vcpu->arch.efer);
10402
10403         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10404         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10405         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10406         /*
10407          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10408          * actually changed, because it depends on the current state of
10409          * fpu_active (which may have changed).
10410          * Note that vmx_set_cr0 refers to efer set above.
10411          */
10412         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10413         /*
10414          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10415          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10416          * but we also need to update cr0_guest_host_mask and exception_bitmap.
10417          */
10418         update_exception_bitmap(vcpu);
10419         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10420         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10421
10422         /*
10423          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10424          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10425          */
10426         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10427         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10428
10429         nested_ept_uninit_mmu_context(vcpu);
10430
10431         kvm_set_cr3(vcpu, vmcs12->host_cr3);
10432         kvm_mmu_reset_context(vcpu);
10433
10434         if (!enable_ept)
10435                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10436
10437         if (enable_vpid) {
10438                 /*
10439                  * Trivially support vpid by letting L2s share their parent
10440                  * L1's vpid. TODO: move to a more elaborate solution, giving
10441                  * each L2 its own vpid and exposing the vpid feature to L1.
10442                  */
10443                 vmx_flush_tlb(vcpu);
10444         }
10445
10446
10447         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10448         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10449         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10450         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10451         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10452
10453         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10454         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10455                 vmcs_write64(GUEST_BNDCFGS, 0);
10456
10457         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10458                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10459                 vcpu->arch.pat = vmcs12->host_ia32_pat;
10460         }
10461         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10462                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10463                         vmcs12->host_ia32_perf_global_ctrl);
10464
10465         /* Set L1 segment info according to Intel SDM
10466             27.5.2 Loading Host Segment and Descriptor-Table Registers */
10467         seg = (struct kvm_segment) {
10468                 .base = 0,
10469                 .limit = 0xFFFFFFFF,
10470                 .selector = vmcs12->host_cs_selector,
10471                 .type = 11,
10472                 .present = 1,
10473                 .s = 1,
10474                 .g = 1
10475         };
10476         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10477                 seg.l = 1;
10478         else
10479                 seg.db = 1;
10480         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10481         seg = (struct kvm_segment) {
10482                 .base = 0,
10483                 .limit = 0xFFFFFFFF,
10484                 .type = 3,
10485                 .present = 1,
10486                 .s = 1,
10487                 .db = 1,
10488                 .g = 1
10489         };
10490         seg.selector = vmcs12->host_ds_selector;
10491         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10492         seg.selector = vmcs12->host_es_selector;
10493         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10494         seg.selector = vmcs12->host_ss_selector;
10495         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10496         seg.selector = vmcs12->host_fs_selector;
10497         seg.base = vmcs12->host_fs_base;
10498         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10499         seg.selector = vmcs12->host_gs_selector;
10500         seg.base = vmcs12->host_gs_base;
10501         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10502         seg = (struct kvm_segment) {
10503                 .base = vmcs12->host_tr_base,
10504                 .limit = 0x67,
10505                 .selector = vmcs12->host_tr_selector,
10506                 .type = 11,
10507                 .present = 1
10508         };
10509         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10510
10511         kvm_set_dr(vcpu, 7, 0x400);
10512         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10513
10514         if (cpu_has_vmx_msr_bitmap())
10515                 vmx_set_msr_bitmap(vcpu);
10516
10517         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10518                                 vmcs12->vm_exit_msr_load_count))
10519                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10520 }
10521
10522 /*
10523  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10524  * and modify vmcs12 to make it see what it would expect to see there if
10525  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10526  */
10527 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10528                               u32 exit_intr_info,
10529                               unsigned long exit_qualification)
10530 {
10531         struct vcpu_vmx *vmx = to_vmx(vcpu);
10532         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10533
10534         /* trying to cancel vmlaunch/vmresume is a bug */
10535         WARN_ON_ONCE(vmx->nested.nested_run_pending);
10536
10537         leave_guest_mode(vcpu);
10538         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10539                        exit_qualification);
10540
10541         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10542                                  vmcs12->vm_exit_msr_store_count))
10543                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10544
10545         vmx_load_vmcs01(vcpu);
10546
10547         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10548             && nested_exit_intr_ack_set(vcpu)) {
10549                 int irq = kvm_cpu_get_interrupt(vcpu);
10550                 WARN_ON(irq < 0);
10551                 vmcs12->vm_exit_intr_info = irq |
10552                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10553         }
10554
10555         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10556                                        vmcs12->exit_qualification,
10557                                        vmcs12->idt_vectoring_info_field,
10558                                        vmcs12->vm_exit_intr_info,
10559                                        vmcs12->vm_exit_intr_error_code,
10560                                        KVM_ISA_VMX);
10561
10562         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10563         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10564         vmx_segment_cache_clear(vmx);
10565
10566         /* if no vmcs02 cache requested, remove the one we used */
10567         if (VMCS02_POOL_SIZE == 0)
10568                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10569
10570         load_vmcs12_host_state(vcpu, vmcs12);
10571
10572         /* Update TSC_OFFSET if TSC was changed while L2 ran */
10573         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10574
10575         /* This is needed for same reason as it was needed in prepare_vmcs02 */
10576         vmx->host_rsp = 0;
10577
10578         /* Unpin physical memory we referred to in vmcs02 */
10579         if (vmx->nested.apic_access_page) {
10580                 nested_release_page(vmx->nested.apic_access_page);
10581                 vmx->nested.apic_access_page = NULL;
10582         }
10583         if (vmx->nested.virtual_apic_page) {
10584                 nested_release_page(vmx->nested.virtual_apic_page);
10585                 vmx->nested.virtual_apic_page = NULL;
10586         }
10587         if (vmx->nested.pi_desc_page) {
10588                 kunmap(vmx->nested.pi_desc_page);
10589                 nested_release_page(vmx->nested.pi_desc_page);
10590                 vmx->nested.pi_desc_page = NULL;
10591                 vmx->nested.pi_desc = NULL;
10592         }
10593
10594         /*
10595          * We are now running in L2, mmu_notifier will force to reload the
10596          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10597          */
10598         kvm_vcpu_reload_apic_access_page(vcpu);
10599
10600         /*
10601          * Exiting from L2 to L1, we're now back to L1 which thinks it just
10602          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10603          * success or failure flag accordingly.
10604          */
10605         if (unlikely(vmx->fail)) {
10606                 vmx->fail = 0;
10607                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10608         } else
10609                 nested_vmx_succeed(vcpu);
10610         if (enable_shadow_vmcs)
10611                 vmx->nested.sync_shadow_vmcs = true;
10612
10613         /* in case we halted in L2 */
10614         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10615 }
10616
10617 /*
10618  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10619  */
10620 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10621 {
10622         if (is_guest_mode(vcpu))
10623                 nested_vmx_vmexit(vcpu, -1, 0, 0);
10624         free_nested(to_vmx(vcpu));
10625 }
10626
10627 /*
10628  * L1's failure to enter L2 is a subset of a normal exit, as explained in
10629  * 23.7 "VM-entry failures during or after loading guest state" (this also
10630  * lists the acceptable exit-reason and exit-qualification parameters).
10631  * It should only be called before L2 actually succeeded to run, and when
10632  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10633  */
10634 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10635                         struct vmcs12 *vmcs12,
10636                         u32 reason, unsigned long qualification)
10637 {
10638         load_vmcs12_host_state(vcpu, vmcs12);
10639         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10640         vmcs12->exit_qualification = qualification;
10641         nested_vmx_succeed(vcpu);
10642         if (enable_shadow_vmcs)
10643                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10644 }
10645
10646 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10647                                struct x86_instruction_info *info,
10648                                enum x86_intercept_stage stage)
10649 {
10650         return X86EMUL_CONTINUE;
10651 }
10652
10653 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10654 {
10655         if (ple_gap)
10656                 shrink_ple_window(vcpu);
10657 }
10658
10659 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10660                                      struct kvm_memory_slot *slot)
10661 {
10662         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10663         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10664 }
10665
10666 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10667                                        struct kvm_memory_slot *slot)
10668 {
10669         kvm_mmu_slot_set_dirty(kvm, slot);
10670 }
10671
10672 static void vmx_flush_log_dirty(struct kvm *kvm)
10673 {
10674         kvm_flush_pml_buffers(kvm);
10675 }
10676
10677 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10678                                            struct kvm_memory_slot *memslot,
10679                                            gfn_t offset, unsigned long mask)
10680 {
10681         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10682 }
10683
10684 /*
10685  * This routine does the following things for vCPU which is going
10686  * to be blocked if VT-d PI is enabled.
10687  * - Store the vCPU to the wakeup list, so when interrupts happen
10688  *   we can find the right vCPU to wake up.
10689  * - Change the Posted-interrupt descriptor as below:
10690  *      'NDST' <-- vcpu->pre_pcpu
10691  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10692  * - If 'ON' is set during this process, which means at least one
10693  *   interrupt is posted for this vCPU, we cannot block it, in
10694  *   this case, return 1, otherwise, return 0.
10695  *
10696  */
10697 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10698 {
10699         unsigned long flags;
10700         unsigned int dest;
10701         struct pi_desc old, new;
10702         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10703
10704         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10705                 !irq_remapping_cap(IRQ_POSTING_CAP))
10706                 return 0;
10707
10708         vcpu->pre_pcpu = vcpu->cpu;
10709         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10710                           vcpu->pre_pcpu), flags);
10711         list_add_tail(&vcpu->blocked_vcpu_list,
10712                       &per_cpu(blocked_vcpu_on_cpu,
10713                       vcpu->pre_pcpu));
10714         spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10715                                vcpu->pre_pcpu), flags);
10716
10717         do {
10718                 old.control = new.control = pi_desc->control;
10719
10720                 /*
10721                  * We should not block the vCPU if
10722                  * an interrupt is posted for it.
10723                  */
10724                 if (pi_test_on(pi_desc) == 1) {
10725                         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10726                                           vcpu->pre_pcpu), flags);
10727                         list_del(&vcpu->blocked_vcpu_list);
10728                         spin_unlock_irqrestore(
10729                                         &per_cpu(blocked_vcpu_on_cpu_lock,
10730                                         vcpu->pre_pcpu), flags);
10731                         vcpu->pre_pcpu = -1;
10732
10733                         return 1;
10734                 }
10735
10736                 WARN((pi_desc->sn == 1),
10737                      "Warning: SN field of posted-interrupts "
10738                      "is set before blocking\n");
10739
10740                 /*
10741                  * Since vCPU can be preempted during this process,
10742                  * vcpu->cpu could be different with pre_pcpu, we
10743                  * need to set pre_pcpu as the destination of wakeup
10744                  * notification event, then we can find the right vCPU
10745                  * to wakeup in wakeup handler if interrupts happen
10746                  * when the vCPU is in blocked state.
10747                  */
10748                 dest = cpu_physical_id(vcpu->pre_pcpu);
10749
10750                 if (x2apic_enabled())
10751                         new.ndst = dest;
10752                 else
10753                         new.ndst = (dest << 8) & 0xFF00;
10754
10755                 /* set 'NV' to 'wakeup vector' */
10756                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10757         } while (cmpxchg(&pi_desc->control, old.control,
10758                         new.control) != old.control);
10759
10760         return 0;
10761 }
10762
10763 static void vmx_post_block(struct kvm_vcpu *vcpu)
10764 {
10765         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10766         struct pi_desc old, new;
10767         unsigned int dest;
10768         unsigned long flags;
10769
10770         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10771                 !irq_remapping_cap(IRQ_POSTING_CAP))
10772                 return;
10773
10774         do {
10775                 old.control = new.control = pi_desc->control;
10776
10777                 dest = cpu_physical_id(vcpu->cpu);
10778
10779                 if (x2apic_enabled())
10780                         new.ndst = dest;
10781                 else
10782                         new.ndst = (dest << 8) & 0xFF00;
10783
10784                 /* Allow posting non-urgent interrupts */
10785                 new.sn = 0;
10786
10787                 /* set 'NV' to 'notification vector' */
10788                 new.nv = POSTED_INTR_VECTOR;
10789         } while (cmpxchg(&pi_desc->control, old.control,
10790                         new.control) != old.control);
10791
10792         if(vcpu->pre_pcpu != -1) {
10793                 spin_lock_irqsave(
10794                         &per_cpu(blocked_vcpu_on_cpu_lock,
10795                         vcpu->pre_pcpu), flags);
10796                 list_del(&vcpu->blocked_vcpu_list);
10797                 spin_unlock_irqrestore(
10798                         &per_cpu(blocked_vcpu_on_cpu_lock,
10799                         vcpu->pre_pcpu), flags);
10800                 vcpu->pre_pcpu = -1;
10801         }
10802 }
10803
10804 /*
10805  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10806  *
10807  * @kvm: kvm
10808  * @host_irq: host irq of the interrupt
10809  * @guest_irq: gsi of the interrupt
10810  * @set: set or unset PI
10811  * returns 0 on success, < 0 on failure
10812  */
10813 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10814                               uint32_t guest_irq, bool set)
10815 {
10816         struct kvm_kernel_irq_routing_entry *e;
10817         struct kvm_irq_routing_table *irq_rt;
10818         struct kvm_lapic_irq irq;
10819         struct kvm_vcpu *vcpu;
10820         struct vcpu_data vcpu_info;
10821         int idx, ret = -EINVAL;
10822
10823         if (!kvm_arch_has_assigned_device(kvm) ||
10824                 !irq_remapping_cap(IRQ_POSTING_CAP))
10825                 return 0;
10826
10827         idx = srcu_read_lock(&kvm->irq_srcu);
10828         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10829         BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10830
10831         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10832                 if (e->type != KVM_IRQ_ROUTING_MSI)
10833                         continue;
10834                 /*
10835                  * VT-d PI cannot support posting multicast/broadcast
10836                  * interrupts to a vCPU, we still use interrupt remapping
10837                  * for these kind of interrupts.
10838                  *
10839                  * For lowest-priority interrupts, we only support
10840                  * those with single CPU as the destination, e.g. user
10841                  * configures the interrupts via /proc/irq or uses
10842                  * irqbalance to make the interrupts single-CPU.
10843                  *
10844                  * We will support full lowest-priority interrupt later.
10845                  */
10846
10847                 kvm_set_msi_irq(e, &irq);
10848                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
10849                         /*
10850                          * Make sure the IRTE is in remapped mode if
10851                          * we don't handle it in posted mode.
10852                          */
10853                         ret = irq_set_vcpu_affinity(host_irq, NULL);
10854                         if (ret < 0) {
10855                                 printk(KERN_INFO
10856                                    "failed to back to remapped mode, irq: %u\n",
10857                                    host_irq);
10858                                 goto out;
10859                         }
10860
10861                         continue;
10862                 }
10863
10864                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10865                 vcpu_info.vector = irq.vector;
10866
10867                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
10868                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10869
10870                 if (set)
10871                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10872                 else {
10873                         /* suppress notification event before unposting */
10874                         pi_set_sn(vcpu_to_pi_desc(vcpu));
10875                         ret = irq_set_vcpu_affinity(host_irq, NULL);
10876                         pi_clear_sn(vcpu_to_pi_desc(vcpu));
10877                 }
10878
10879                 if (ret < 0) {
10880                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
10881                                         __func__);
10882                         goto out;
10883                 }
10884         }
10885
10886         ret = 0;
10887 out:
10888         srcu_read_unlock(&kvm->irq_srcu, idx);
10889         return ret;
10890 }
10891
10892 static struct kvm_x86_ops vmx_x86_ops = {
10893         .cpu_has_kvm_support = cpu_has_kvm_support,
10894         .disabled_by_bios = vmx_disabled_by_bios,
10895         .hardware_setup = hardware_setup,
10896         .hardware_unsetup = hardware_unsetup,
10897         .check_processor_compatibility = vmx_check_processor_compat,
10898         .hardware_enable = hardware_enable,
10899         .hardware_disable = hardware_disable,
10900         .cpu_has_accelerated_tpr = report_flexpriority,
10901         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10902
10903         .vcpu_create = vmx_create_vcpu,
10904         .vcpu_free = vmx_free_vcpu,
10905         .vcpu_reset = vmx_vcpu_reset,
10906
10907         .prepare_guest_switch = vmx_save_host_state,
10908         .vcpu_load = vmx_vcpu_load,
10909         .vcpu_put = vmx_vcpu_put,
10910
10911         .update_bp_intercept = update_exception_bitmap,
10912         .get_msr = vmx_get_msr,
10913         .set_msr = vmx_set_msr,
10914         .get_segment_base = vmx_get_segment_base,
10915         .get_segment = vmx_get_segment,
10916         .set_segment = vmx_set_segment,
10917         .get_cpl = vmx_get_cpl,
10918         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10919         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10920         .decache_cr3 = vmx_decache_cr3,
10921         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10922         .set_cr0 = vmx_set_cr0,
10923         .set_cr3 = vmx_set_cr3,
10924         .set_cr4 = vmx_set_cr4,
10925         .set_efer = vmx_set_efer,
10926         .get_idt = vmx_get_idt,
10927         .set_idt = vmx_set_idt,
10928         .get_gdt = vmx_get_gdt,
10929         .set_gdt = vmx_set_gdt,
10930         .get_dr6 = vmx_get_dr6,
10931         .set_dr6 = vmx_set_dr6,
10932         .set_dr7 = vmx_set_dr7,
10933         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10934         .cache_reg = vmx_cache_reg,
10935         .get_rflags = vmx_get_rflags,
10936         .set_rflags = vmx_set_rflags,
10937
10938         .get_pkru = vmx_get_pkru,
10939
10940         .fpu_activate = vmx_fpu_activate,
10941         .fpu_deactivate = vmx_fpu_deactivate,
10942
10943         .tlb_flush = vmx_flush_tlb,
10944
10945         .run = vmx_vcpu_run,
10946         .handle_exit = vmx_handle_exit,
10947         .skip_emulated_instruction = skip_emulated_instruction,
10948         .set_interrupt_shadow = vmx_set_interrupt_shadow,
10949         .get_interrupt_shadow = vmx_get_interrupt_shadow,
10950         .patch_hypercall = vmx_patch_hypercall,
10951         .set_irq = vmx_inject_irq,
10952         .set_nmi = vmx_inject_nmi,
10953         .queue_exception = vmx_queue_exception,
10954         .cancel_injection = vmx_cancel_injection,
10955         .interrupt_allowed = vmx_interrupt_allowed,
10956         .nmi_allowed = vmx_nmi_allowed,
10957         .get_nmi_mask = vmx_get_nmi_mask,
10958         .set_nmi_mask = vmx_set_nmi_mask,
10959         .enable_nmi_window = enable_nmi_window,
10960         .enable_irq_window = enable_irq_window,
10961         .update_cr8_intercept = update_cr8_intercept,
10962         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10963         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10964         .get_enable_apicv = vmx_get_enable_apicv,
10965         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
10966         .load_eoi_exitmap = vmx_load_eoi_exitmap,
10967         .hwapic_irr_update = vmx_hwapic_irr_update,
10968         .hwapic_isr_update = vmx_hwapic_isr_update,
10969         .sync_pir_to_irr = vmx_sync_pir_to_irr,
10970         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10971
10972         .set_tss_addr = vmx_set_tss_addr,
10973         .get_tdp_level = get_ept_level,
10974         .get_mt_mask = vmx_get_mt_mask,
10975
10976         .get_exit_info = vmx_get_exit_info,
10977
10978         .get_lpage_level = vmx_get_lpage_level,
10979
10980         .cpuid_update = vmx_cpuid_update,
10981
10982         .rdtscp_supported = vmx_rdtscp_supported,
10983         .invpcid_supported = vmx_invpcid_supported,
10984
10985         .set_supported_cpuid = vmx_set_supported_cpuid,
10986
10987         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10988
10989         .read_tsc_offset = vmx_read_tsc_offset,
10990         .write_tsc_offset = vmx_write_tsc_offset,
10991         .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
10992         .read_l1_tsc = vmx_read_l1_tsc,
10993
10994         .set_tdp_cr3 = vmx_set_cr3,
10995
10996         .check_intercept = vmx_check_intercept,
10997         .handle_external_intr = vmx_handle_external_intr,
10998         .mpx_supported = vmx_mpx_supported,
10999         .xsaves_supported = vmx_xsaves_supported,
11000
11001         .check_nested_events = vmx_check_nested_events,
11002
11003         .sched_in = vmx_sched_in,
11004
11005         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11006         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11007         .flush_log_dirty = vmx_flush_log_dirty,
11008         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11009
11010         .pre_block = vmx_pre_block,
11011         .post_block = vmx_post_block,
11012
11013         .pmu_ops = &intel_pmu_ops,
11014
11015         .update_pi_irte = vmx_update_pi_irte,
11016 };
11017
11018 static int __init vmx_init(void)
11019 {
11020         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11021                      __alignof__(struct vcpu_vmx), THIS_MODULE);
11022         if (r)
11023                 return r;
11024
11025 #ifdef CONFIG_KEXEC_CORE
11026         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11027                            crash_vmclear_local_loaded_vmcss);
11028 #endif
11029
11030         return 0;
11031 }
11032
11033 static void __exit vmx_exit(void)
11034 {
11035 #ifdef CONFIG_KEXEC_CORE
11036         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11037         synchronize_rcu();
11038 #endif
11039
11040         kvm_exit();
11041 }
11042
11043 module_init(vmx_init)
11044 module_exit(vmx_exit)