Merge branch 'topic/error' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 /*
22  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23  * so the code in this file is compiled twice, once per pte size.
24  */
25
26 /*
27  * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
28  * uses for EPT without A/D paging type.
29  */
30 extern u64 __pure __using_nonexistent_pte_bit(void)
31                __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
32
33 #if PTTYPE == 64
34         #define pt_element_t u64
35         #define guest_walker guest_walker64
36         #define FNAME(name) paging##64_##name
37         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
38         #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
39         #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
40         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
41         #define PT_LEVEL_BITS PT64_LEVEL_BITS
42         #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
43         #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
44         #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
45         #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
46         #ifdef CONFIG_X86_64
47         #define PT_MAX_FULL_LEVELS 4
48         #define CMPXCHG cmpxchg
49         #else
50         #define CMPXCHG cmpxchg64
51         #define PT_MAX_FULL_LEVELS 2
52         #endif
53 #elif PTTYPE == 32
54         #define pt_element_t u32
55         #define guest_walker guest_walker32
56         #define FNAME(name) paging##32_##name
57         #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
58         #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
59         #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
60         #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
61         #define PT_LEVEL_BITS PT32_LEVEL_BITS
62         #define PT_MAX_FULL_LEVELS 2
63         #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
64         #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
65         #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
66         #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
67         #define CMPXCHG cmpxchg
68 #elif PTTYPE == PTTYPE_EPT
69         #define pt_element_t u64
70         #define guest_walker guest_walkerEPT
71         #define FNAME(name) ept_##name
72         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
73         #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
74         #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
75         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
76         #define PT_LEVEL_BITS PT64_LEVEL_BITS
77         #define PT_GUEST_ACCESSED_MASK 0
78         #define PT_GUEST_DIRTY_MASK 0
79         #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
80         #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
81         #define CMPXCHG cmpxchg64
82         #define PT_MAX_FULL_LEVELS 4
83 #else
84         #error Invalid PTTYPE value
85 #endif
86
87 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
88 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
89
90 /*
91  * The guest_walker structure emulates the behavior of the hardware page
92  * table walker.
93  */
94 struct guest_walker {
95         int level;
96         unsigned max_level;
97         gfn_t table_gfn[PT_MAX_FULL_LEVELS];
98         pt_element_t ptes[PT_MAX_FULL_LEVELS];
99         pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
100         gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
101         pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
102         bool pte_writable[PT_MAX_FULL_LEVELS];
103         unsigned pt_access;
104         unsigned pte_access;
105         gfn_t gfn;
106         struct x86_exception fault;
107 };
108
109 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
110 {
111         return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
112 }
113
114 static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
115 {
116         unsigned mask;
117
118         /* dirty bit is not supported, so no need to track it */
119         if (!PT_GUEST_DIRTY_MASK)
120                 return;
121
122         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
123
124         mask = (unsigned)~ACC_WRITE_MASK;
125         /* Allow write access to dirty gptes */
126         mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
127                 PT_WRITABLE_MASK;
128         *access &= mask;
129 }
130
131 static inline int FNAME(is_present_gpte)(unsigned long pte)
132 {
133 #if PTTYPE != PTTYPE_EPT
134         return pte & PT_PRESENT_MASK;
135 #else
136         return pte & 7;
137 #endif
138 }
139
140 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
141                                pt_element_t __user *ptep_user, unsigned index,
142                                pt_element_t orig_pte, pt_element_t new_pte)
143 {
144         int npages;
145         pt_element_t ret;
146         pt_element_t *table;
147         struct page *page;
148
149         npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
150         /* Check if the user is doing something meaningless. */
151         if (unlikely(npages != 1))
152                 return -EFAULT;
153
154         table = kmap_atomic(page);
155         ret = CMPXCHG(&table[index], orig_pte, new_pte);
156         kunmap_atomic(table);
157
158         kvm_release_page_dirty(page);
159
160         return (ret != orig_pte);
161 }
162
163 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
164                                   struct kvm_mmu_page *sp, u64 *spte,
165                                   u64 gpte)
166 {
167         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
168                 goto no_present;
169
170         if (!FNAME(is_present_gpte)(gpte))
171                 goto no_present;
172
173         /* if accessed bit is not supported prefetch non accessed gpte */
174         if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
175                 goto no_present;
176
177         return false;
178
179 no_present:
180         drop_spte(vcpu->kvm, spte);
181         return true;
182 }
183
184 /*
185  * For PTTYPE_EPT, a page table can be executable but not readable
186  * on supported processors. Therefore, set_spte does not automatically
187  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
188  * to signify readability since it isn't used in the EPT case
189  */
190 static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
191 {
192         unsigned access;
193 #if PTTYPE == PTTYPE_EPT
194         access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
195                 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
196                 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
197 #else
198         BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
199         BUILD_BUG_ON(ACC_EXEC_MASK != 1);
200         access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
201         /* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
202         access ^= (gpte >> PT64_NX_SHIFT);
203 #endif
204
205         return access;
206 }
207
208 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
209                                              struct kvm_mmu *mmu,
210                                              struct guest_walker *walker,
211                                              int write_fault)
212 {
213         unsigned level, index;
214         pt_element_t pte, orig_pte;
215         pt_element_t __user *ptep_user;
216         gfn_t table_gfn;
217         int ret;
218
219         /* dirty/accessed bits are not supported, so no need to update them */
220         if (!PT_GUEST_DIRTY_MASK)
221                 return 0;
222
223         for (level = walker->max_level; level >= walker->level; --level) {
224                 pte = orig_pte = walker->ptes[level - 1];
225                 table_gfn = walker->table_gfn[level - 1];
226                 ptep_user = walker->ptep_user[level - 1];
227                 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
228                 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
229                         trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
230                         pte |= PT_GUEST_ACCESSED_MASK;
231                 }
232                 if (level == walker->level && write_fault &&
233                                 !(pte & PT_GUEST_DIRTY_MASK)) {
234                         trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
235                         pte |= PT_GUEST_DIRTY_MASK;
236                 }
237                 if (pte == orig_pte)
238                         continue;
239
240                 /*
241                  * If the slot is read-only, simply do not process the accessed
242                  * and dirty bits.  This is the correct thing to do if the slot
243                  * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
244                  * are only supported if the accessed and dirty bits are already
245                  * set in the ROM (so that MMIO writes are never needed).
246                  *
247                  * Note that NPT does not allow this at all and faults, since
248                  * it always wants nested page table entries for the guest
249                  * page tables to be writable.  And EPT works but will simply
250                  * overwrite the read-only memory to set the accessed and dirty
251                  * bits.
252                  */
253                 if (unlikely(!walker->pte_writable[level - 1]))
254                         continue;
255
256                 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
257                 if (ret)
258                         return ret;
259
260                 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
261                 walker->ptes[level - 1] = pte;
262         }
263         return 0;
264 }
265
266 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
267 {
268         unsigned pkeys = 0;
269 #if PTTYPE == 64
270         pte_t pte = {.pte = gpte};
271
272         pkeys = pte_flags_pkey(pte_flags(pte));
273 #endif
274         return pkeys;
275 }
276
277 /*
278  * Fetch a guest pte for a guest virtual address
279  */
280 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
281                                     struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
282                                     gva_t addr, u32 access)
283 {
284         int ret;
285         pt_element_t pte;
286         pt_element_t __user *uninitialized_var(ptep_user);
287         gfn_t table_gfn;
288         unsigned index, pt_access, pte_access, accessed_dirty, pte_pkey;
289         gpa_t pte_gpa;
290         int offset;
291         const int write_fault = access & PFERR_WRITE_MASK;
292         const int user_fault  = access & PFERR_USER_MASK;
293         const int fetch_fault = access & PFERR_FETCH_MASK;
294         u16 errcode = 0;
295         gpa_t real_gpa;
296         gfn_t gfn;
297
298         trace_kvm_mmu_pagetable_walk(addr, access);
299 retry_walk:
300         walker->level = mmu->root_level;
301         pte           = mmu->get_cr3(vcpu);
302
303 #if PTTYPE == 64
304         if (walker->level == PT32E_ROOT_LEVEL) {
305                 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
306                 trace_kvm_mmu_paging_element(pte, walker->level);
307                 if (!FNAME(is_present_gpte)(pte))
308                         goto error;
309                 --walker->level;
310         }
311 #endif
312         walker->max_level = walker->level;
313         ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
314
315         accessed_dirty = PT_GUEST_ACCESSED_MASK;
316         pt_access = pte_access = ACC_ALL;
317         ++walker->level;
318
319         do {
320                 gfn_t real_gfn;
321                 unsigned long host_addr;
322
323                 pt_access &= pte_access;
324                 --walker->level;
325
326                 index = PT_INDEX(addr, walker->level);
327
328                 table_gfn = gpte_to_gfn(pte);
329                 offset    = index * sizeof(pt_element_t);
330                 pte_gpa   = gfn_to_gpa(table_gfn) + offset;
331                 walker->table_gfn[walker->level - 1] = table_gfn;
332                 walker->pte_gpa[walker->level - 1] = pte_gpa;
333
334                 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
335                                               PFERR_USER_MASK|PFERR_WRITE_MASK,
336                                               &walker->fault);
337
338                 /*
339                  * FIXME: This can happen if emulation (for of an INS/OUTS
340                  * instruction) triggers a nested page fault.  The exit
341                  * qualification / exit info field will incorrectly have
342                  * "guest page access" as the nested page fault's cause,
343                  * instead of "guest page structure access".  To fix this,
344                  * the x86_exception struct should be augmented with enough
345                  * information to fix the exit_qualification or exit_info_1
346                  * fields.
347                  */
348                 if (unlikely(real_gfn == UNMAPPED_GVA))
349                         return 0;
350
351                 real_gfn = gpa_to_gfn(real_gfn);
352
353                 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
354                                             &walker->pte_writable[walker->level - 1]);
355                 if (unlikely(kvm_is_error_hva(host_addr)))
356                         goto error;
357
358                 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
359                 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
360                         goto error;
361                 walker->ptep_user[walker->level - 1] = ptep_user;
362
363                 trace_kvm_mmu_paging_element(pte, walker->level);
364
365                 if (unlikely(!FNAME(is_present_gpte)(pte)))
366                         goto error;
367
368                 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
369                         errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
370                         goto error;
371                 }
372
373                 accessed_dirty &= pte;
374                 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
375
376                 walker->ptes[walker->level - 1] = pte;
377         } while (!is_last_gpte(mmu, walker->level, pte));
378
379         pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
380         errcode = permission_fault(vcpu, mmu, pte_access, pte_pkey, access);
381         if (unlikely(errcode))
382                 goto error;
383
384         gfn = gpte_to_gfn_lvl(pte, walker->level);
385         gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
386
387         if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
388                 gfn += pse36_gfn_delta(pte);
389
390         real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
391         if (real_gpa == UNMAPPED_GVA)
392                 return 0;
393
394         walker->gfn = real_gpa >> PAGE_SHIFT;
395
396         if (!write_fault)
397                 FNAME(protect_clean_gpte)(&pte_access, pte);
398         else
399                 /*
400                  * On a write fault, fold the dirty bit into accessed_dirty.
401                  * For modes without A/D bits support accessed_dirty will be
402                  * always clear.
403                  */
404                 accessed_dirty &= pte >>
405                         (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
406
407         if (unlikely(!accessed_dirty)) {
408                 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
409                 if (unlikely(ret < 0))
410                         goto error;
411                 else if (ret)
412                         goto retry_walk;
413         }
414
415         walker->pt_access = pt_access;
416         walker->pte_access = pte_access;
417         pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
418                  __func__, (u64)pte, pte_access, pt_access);
419         return 1;
420
421 error:
422         errcode |= write_fault | user_fault;
423         if (fetch_fault && (mmu->nx ||
424                             kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
425                 errcode |= PFERR_FETCH_MASK;
426
427         walker->fault.vector = PF_VECTOR;
428         walker->fault.error_code_valid = true;
429         walker->fault.error_code = errcode;
430
431 #if PTTYPE == PTTYPE_EPT
432         /*
433          * Use PFERR_RSVD_MASK in error_code to to tell if EPT
434          * misconfiguration requires to be injected. The detection is
435          * done by is_rsvd_bits_set() above.
436          *
437          * We set up the value of exit_qualification to inject:
438          * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
439          * [5:3] - Calculated by the page walk of the guest EPT page tables
440          * [7:8] - Derived from [7:8] of real exit_qualification
441          *
442          * The other bits are set to 0.
443          */
444         if (!(errcode & PFERR_RSVD_MASK)) {
445                 vcpu->arch.exit_qualification &= 0x187;
446                 vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
447         }
448 #endif
449         walker->fault.address = addr;
450         walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
451
452         trace_kvm_mmu_walker_error(walker->fault.error_code);
453         return 0;
454 }
455
456 static int FNAME(walk_addr)(struct guest_walker *walker,
457                             struct kvm_vcpu *vcpu, gva_t addr, u32 access)
458 {
459         return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
460                                         access);
461 }
462
463 #if PTTYPE != PTTYPE_EPT
464 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
465                                    struct kvm_vcpu *vcpu, gva_t addr,
466                                    u32 access)
467 {
468         return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
469                                         addr, access);
470 }
471 #endif
472
473 static bool
474 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
475                      u64 *spte, pt_element_t gpte, bool no_dirty_log)
476 {
477         unsigned pte_access;
478         gfn_t gfn;
479         kvm_pfn_t pfn;
480
481         if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
482                 return false;
483
484         pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
485
486         gfn = gpte_to_gfn(gpte);
487         pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
488         FNAME(protect_clean_gpte)(&pte_access, gpte);
489         pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
490                         no_dirty_log && (pte_access & ACC_WRITE_MASK));
491         if (is_error_pfn(pfn))
492                 return false;
493
494         /*
495          * we call mmu_set_spte() with host_writable = true because
496          * pte_prefetch_gfn_to_pfn always gets a writable pfn.
497          */
498         mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
499                      true, true);
500
501         return true;
502 }
503
504 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
505                               u64 *spte, const void *pte)
506 {
507         pt_element_t gpte = *(const pt_element_t *)pte;
508
509         FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
510 }
511
512 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
513                                 struct guest_walker *gw, int level)
514 {
515         pt_element_t curr_pte;
516         gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
517         u64 mask;
518         int r, index;
519
520         if (level == PT_PAGE_TABLE_LEVEL) {
521                 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
522                 base_gpa = pte_gpa & ~mask;
523                 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
524
525                 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
526                                 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
527                 curr_pte = gw->prefetch_ptes[index];
528         } else
529                 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
530                                   &curr_pte, sizeof(curr_pte));
531
532         return r || curr_pte != gw->ptes[level - 1];
533 }
534
535 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
536                                 u64 *sptep)
537 {
538         struct kvm_mmu_page *sp;
539         pt_element_t *gptep = gw->prefetch_ptes;
540         u64 *spte;
541         int i;
542
543         sp = page_header(__pa(sptep));
544
545         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
546                 return;
547
548         if (sp->role.direct)
549                 return __direct_pte_prefetch(vcpu, sp, sptep);
550
551         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
552         spte = sp->spt + i;
553
554         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
555                 if (spte == sptep)
556                         continue;
557
558                 if (is_shadow_present_pte(*spte))
559                         continue;
560
561                 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
562                         break;
563         }
564 }
565
566 /*
567  * Fetch a shadow pte for a specific level in the paging hierarchy.
568  * If the guest tries to write a write-protected page, we need to
569  * emulate this operation, return 1 to indicate this case.
570  */
571 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
572                          struct guest_walker *gw,
573                          int write_fault, int hlevel,
574                          kvm_pfn_t pfn, bool map_writable, bool prefault)
575 {
576         struct kvm_mmu_page *sp = NULL;
577         struct kvm_shadow_walk_iterator it;
578         unsigned direct_access, access = gw->pt_access;
579         int top_level, emulate;
580
581         direct_access = gw->pte_access;
582
583         top_level = vcpu->arch.mmu.root_level;
584         if (top_level == PT32E_ROOT_LEVEL)
585                 top_level = PT32_ROOT_LEVEL;
586         /*
587          * Verify that the top-level gpte is still there.  Since the page
588          * is a root page, it is either write protected (and cannot be
589          * changed from now on) or it is invalid (in which case, we don't
590          * really care if it changes underneath us after this point).
591          */
592         if (FNAME(gpte_changed)(vcpu, gw, top_level))
593                 goto out_gpte_changed;
594
595         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
596                 goto out_gpte_changed;
597
598         for (shadow_walk_init(&it, vcpu, addr);
599              shadow_walk_okay(&it) && it.level > gw->level;
600              shadow_walk_next(&it)) {
601                 gfn_t table_gfn;
602
603                 clear_sp_write_flooding_count(it.sptep);
604                 drop_large_spte(vcpu, it.sptep);
605
606                 sp = NULL;
607                 if (!is_shadow_present_pte(*it.sptep)) {
608                         table_gfn = gw->table_gfn[it.level - 2];
609                         sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
610                                               false, access);
611                 }
612
613                 /*
614                  * Verify that the gpte in the page we've just write
615                  * protected is still there.
616                  */
617                 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
618                         goto out_gpte_changed;
619
620                 if (sp)
621                         link_shadow_page(vcpu, it.sptep, sp);
622         }
623
624         for (;
625              shadow_walk_okay(&it) && it.level > hlevel;
626              shadow_walk_next(&it)) {
627                 gfn_t direct_gfn;
628
629                 clear_sp_write_flooding_count(it.sptep);
630                 validate_direct_spte(vcpu, it.sptep, direct_access);
631
632                 drop_large_spte(vcpu, it.sptep);
633
634                 if (is_shadow_present_pte(*it.sptep))
635                         continue;
636
637                 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
638
639                 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
640                                       true, direct_access);
641                 link_shadow_page(vcpu, it.sptep, sp);
642         }
643
644         clear_sp_write_flooding_count(it.sptep);
645         emulate = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
646                                it.level, gw->gfn, pfn, prefault, map_writable);
647         FNAME(pte_prefetch)(vcpu, gw, it.sptep);
648
649         return emulate;
650
651 out_gpte_changed:
652         kvm_release_pfn_clean(pfn);
653         return 0;
654 }
655
656  /*
657  * To see whether the mapped gfn can write its page table in the current
658  * mapping.
659  *
660  * It is the helper function of FNAME(page_fault). When guest uses large page
661  * size to map the writable gfn which is used as current page table, we should
662  * force kvm to use small page size to map it because new shadow page will be
663  * created when kvm establishes shadow page table that stop kvm using large
664  * page size. Do it early can avoid unnecessary #PF and emulation.
665  *
666  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
667  * currently used as its page table.
668  *
669  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
670  * since the PDPT is always shadowed, that means, we can not use large page
671  * size to map the gfn which is used as PDPT.
672  */
673 static bool
674 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
675                               struct guest_walker *walker, int user_fault,
676                               bool *write_fault_to_shadow_pgtable)
677 {
678         int level;
679         gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
680         bool self_changed = false;
681
682         if (!(walker->pte_access & ACC_WRITE_MASK ||
683               (!is_write_protection(vcpu) && !user_fault)))
684                 return false;
685
686         for (level = walker->level; level <= walker->max_level; level++) {
687                 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
688
689                 self_changed |= !(gfn & mask);
690                 *write_fault_to_shadow_pgtable |= !gfn;
691         }
692
693         return self_changed;
694 }
695
696 /*
697  * Page fault handler.  There are several causes for a page fault:
698  *   - there is no shadow pte for the guest pte
699  *   - write access through a shadow pte marked read only so that we can set
700  *     the dirty bit
701  *   - write access to a shadow pte marked read only so we can update the page
702  *     dirty bitmap, when userspace requests it
703  *   - mmio access; in this case we will never install a present shadow pte
704  *   - normal guest page fault due to the guest pte marked not present, not
705  *     writable, or not executable
706  *
707  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
708  *           a negative value on error.
709  */
710 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
711                              bool prefault)
712 {
713         int write_fault = error_code & PFERR_WRITE_MASK;
714         int user_fault = error_code & PFERR_USER_MASK;
715         struct guest_walker walker;
716         int r;
717         kvm_pfn_t pfn;
718         int level = PT_PAGE_TABLE_LEVEL;
719         bool force_pt_level = false;
720         unsigned long mmu_seq;
721         bool map_writable, is_self_change_mapping;
722
723         pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
724
725         r = mmu_topup_memory_caches(vcpu);
726         if (r)
727                 return r;
728
729         /*
730          * If PFEC.RSVD is set, this is a shadow page fault.
731          * The bit needs to be cleared before walking guest page tables.
732          */
733         error_code &= ~PFERR_RSVD_MASK;
734
735         /*
736          * Look up the guest pte for the faulting address.
737          */
738         r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
739
740         /*
741          * The page is not mapped by the guest.  Let the guest handle it.
742          */
743         if (!r) {
744                 pgprintk("%s: guest page fault\n", __func__);
745                 if (!prefault)
746                         inject_page_fault(vcpu, &walker.fault);
747
748                 return 0;
749         }
750
751         if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
752                 shadow_page_table_clear_flood(vcpu, addr);
753                 return 1;
754         }
755
756         vcpu->arch.write_fault_to_shadow_pgtable = false;
757
758         is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
759               &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
760
761         if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
762                 level = mapping_level(vcpu, walker.gfn, &force_pt_level);
763                 if (likely(!force_pt_level)) {
764                         level = min(walker.level, level);
765                         walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
766                 }
767         } else
768                 force_pt_level = true;
769
770         mmu_seq = vcpu->kvm->mmu_notifier_seq;
771         smp_rmb();
772
773         if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
774                          &map_writable))
775                 return 0;
776
777         if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
778                                 walker.gfn, pfn, walker.pte_access, &r))
779                 return r;
780
781         /*
782          * Do not change pte_access if the pfn is a mmio page, otherwise
783          * we will cache the incorrect access into mmio spte.
784          */
785         if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
786              !is_write_protection(vcpu) && !user_fault &&
787               !is_noslot_pfn(pfn)) {
788                 walker.pte_access |= ACC_WRITE_MASK;
789                 walker.pte_access &= ~ACC_USER_MASK;
790
791                 /*
792                  * If we converted a user page to a kernel page,
793                  * so that the kernel can write to it when cr0.wp=0,
794                  * then we should prevent the kernel from executing it
795                  * if SMEP is enabled.
796                  */
797                 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
798                         walker.pte_access &= ~ACC_EXEC_MASK;
799         }
800
801         spin_lock(&vcpu->kvm->mmu_lock);
802         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
803                 goto out_unlock;
804
805         kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
806         make_mmu_pages_available(vcpu);
807         if (!force_pt_level)
808                 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
809         r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
810                          level, pfn, map_writable, prefault);
811         ++vcpu->stat.pf_fixed;
812         kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
813         spin_unlock(&vcpu->kvm->mmu_lock);
814
815         return r;
816
817 out_unlock:
818         spin_unlock(&vcpu->kvm->mmu_lock);
819         kvm_release_pfn_clean(pfn);
820         return 0;
821 }
822
823 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
824 {
825         int offset = 0;
826
827         WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
828
829         if (PTTYPE == 32)
830                 offset = sp->role.quadrant << PT64_LEVEL_BITS;
831
832         return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
833 }
834
835 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
836 {
837         struct kvm_shadow_walk_iterator iterator;
838         struct kvm_mmu_page *sp;
839         int level;
840         u64 *sptep;
841
842         vcpu_clear_mmio_info(vcpu, gva);
843
844         /*
845          * No need to check return value here, rmap_can_add() can
846          * help us to skip pte prefetch later.
847          */
848         mmu_topup_memory_caches(vcpu);
849
850         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
851                 WARN_ON(1);
852                 return;
853         }
854
855         spin_lock(&vcpu->kvm->mmu_lock);
856         for_each_shadow_entry(vcpu, gva, iterator) {
857                 level = iterator.level;
858                 sptep = iterator.sptep;
859
860                 sp = page_header(__pa(sptep));
861                 if (is_last_spte(*sptep, level)) {
862                         pt_element_t gpte;
863                         gpa_t pte_gpa;
864
865                         if (!sp->unsync)
866                                 break;
867
868                         pte_gpa = FNAME(get_level1_sp_gpa)(sp);
869                         pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
870
871                         if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
872                                 kvm_flush_remote_tlbs(vcpu->kvm);
873
874                         if (!rmap_can_add(vcpu))
875                                 break;
876
877                         if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
878                                                        sizeof(pt_element_t)))
879                                 break;
880
881                         FNAME(update_pte)(vcpu, sp, sptep, &gpte);
882                 }
883
884                 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
885                         break;
886         }
887         spin_unlock(&vcpu->kvm->mmu_lock);
888 }
889
890 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
891                                struct x86_exception *exception)
892 {
893         struct guest_walker walker;
894         gpa_t gpa = UNMAPPED_GVA;
895         int r;
896
897         r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
898
899         if (r) {
900                 gpa = gfn_to_gpa(walker.gfn);
901                 gpa |= vaddr & ~PAGE_MASK;
902         } else if (exception)
903                 *exception = walker.fault;
904
905         return gpa;
906 }
907
908 #if PTTYPE != PTTYPE_EPT
909 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
910                                       u32 access,
911                                       struct x86_exception *exception)
912 {
913         struct guest_walker walker;
914         gpa_t gpa = UNMAPPED_GVA;
915         int r;
916
917         r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
918
919         if (r) {
920                 gpa = gfn_to_gpa(walker.gfn);
921                 gpa |= vaddr & ~PAGE_MASK;
922         } else if (exception)
923                 *exception = walker.fault;
924
925         return gpa;
926 }
927 #endif
928
929 /*
930  * Using the cached information from sp->gfns is safe because:
931  * - The spte has a reference to the struct page, so the pfn for a given gfn
932  *   can't change unless all sptes pointing to it are nuked first.
933  *
934  * Note:
935  *   We should flush all tlbs if spte is dropped even though guest is
936  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
937  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
938  *   used by guest then tlbs are not flushed, so guest is allowed to access the
939  *   freed pages.
940  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
941  */
942 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
943 {
944         int i, nr_present = 0;
945         bool host_writable;
946         gpa_t first_pte_gpa;
947
948         /* direct kvm_mmu_page can not be unsync. */
949         BUG_ON(sp->role.direct);
950
951         first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
952
953         for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
954                 unsigned pte_access;
955                 pt_element_t gpte;
956                 gpa_t pte_gpa;
957                 gfn_t gfn;
958
959                 if (!sp->spt[i])
960                         continue;
961
962                 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
963
964                 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
965                                                sizeof(pt_element_t)))
966                         return 0;
967
968                 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
969                         /*
970                          * Update spte before increasing tlbs_dirty to make
971                          * sure no tlb flush is lost after spte is zapped; see
972                          * the comments in kvm_flush_remote_tlbs().
973                          */
974                         smp_wmb();
975                         vcpu->kvm->tlbs_dirty++;
976                         continue;
977                 }
978
979                 gfn = gpte_to_gfn(gpte);
980                 pte_access = sp->role.access;
981                 pte_access &= FNAME(gpte_access)(vcpu, gpte);
982                 FNAME(protect_clean_gpte)(&pte_access, gpte);
983
984                 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
985                       &nr_present))
986                         continue;
987
988                 if (gfn != sp->gfns[i]) {
989                         drop_spte(vcpu->kvm, &sp->spt[i]);
990                         /*
991                          * The same as above where we are doing
992                          * prefetch_invalid_gpte().
993                          */
994                         smp_wmb();
995                         vcpu->kvm->tlbs_dirty++;
996                         continue;
997                 }
998
999                 nr_present++;
1000
1001                 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1002
1003                 set_spte(vcpu, &sp->spt[i], pte_access,
1004                          PT_PAGE_TABLE_LEVEL, gfn,
1005                          spte_to_pfn(sp->spt[i]), true, false,
1006                          host_writable);
1007         }
1008
1009         return nr_present;
1010 }
1011
1012 #undef pt_element_t
1013 #undef guest_walker
1014 #undef FNAME
1015 #undef PT_BASE_ADDR_MASK
1016 #undef PT_INDEX
1017 #undef PT_LVL_ADDR_MASK
1018 #undef PT_LVL_OFFSET_MASK
1019 #undef PT_LEVEL_BITS
1020 #undef PT_MAX_FULL_LEVELS
1021 #undef gpte_to_gfn
1022 #undef gpte_to_gfn_lvl
1023 #undef CMPXCHG
1024 #undef PT_GUEST_ACCESSED_MASK
1025 #undef PT_GUEST_DIRTY_MASK
1026 #undef PT_GUEST_DIRTY_SHIFT
1027 #undef PT_GUEST_ACCESSED_SHIFT