iwlwifi: pcie: remove duplicate assignment of variable isr_stats
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47  * When setting this variable to true it enables Two-Dimensional-Paging
48  * where the hardware walks 2 page tables:
49  * 1. the guest-virtual to guest-physical
50  * 2. while doing 1. it walks guest-physical to host-physical
51  * If the hardware supports that we don't need to do shadow paging.
52  */
53 bool tdp_enabled = false;
54
55 enum {
56         AUDIT_PRE_PAGE_FAULT,
57         AUDIT_POST_PAGE_FAULT,
58         AUDIT_PRE_PTE_WRITE,
59         AUDIT_POST_PTE_WRITE,
60         AUDIT_PRE_SYNC,
61         AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM                8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100                                                 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111                                                 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114                                                 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121                                             * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124                         | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK    1
127 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
128 #define ACC_USER_MASK    PT_USER_MASK
129 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145         u64 *sptes[PTE_LIST_EXT];
146         struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150         u64 addr;
151         hpa_t shadow_addr;
152         u64 *sptep;
153         int level;
154         unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
158         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
159              shadow_walk_okay(&(_walker));                      \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
164              shadow_walk_okay(&(_walker)) &&                            \
165                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
166              __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178
179 static void mmu_spte_set(u64 *sptep, u64 spte);
180 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 {
184         shadow_mmio_mask = mmio_mask;
185 }
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188 /*
189  * the low bit of the generation number is always presumed to be zero.
190  * This disables mmio caching during memslot updates.  The concept is
191  * similar to a seqcount but instead of retrying the access we just punt
192  * and ignore the cache.
193  *
194  * spte bits 3-11 are used as bits 1-9 of the generation number,
195  * the bits 52-61 are used as bits 10-19 of the generation number.
196  */
197 #define MMIO_SPTE_GEN_LOW_SHIFT         2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
199
200 #define MMIO_GEN_SHIFT                  20
201 #define MMIO_GEN_LOW_SHIFT              10
202 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
204
205 static u64 generation_mmio_spte_mask(unsigned int gen)
206 {
207         u64 mask;
208
209         WARN_ON(gen & ~MMIO_GEN_MASK);
210
211         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213         return mask;
214 }
215
216 static unsigned int get_mmio_spte_generation(u64 spte)
217 {
218         unsigned int gen;
219
220         spte &= ~shadow_mmio_mask;
221
222         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224         return gen;
225 }
226
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 {
229         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233                            unsigned access)
234 {
235         unsigned int gen = kvm_current_mmio_generation(vcpu);
236         u64 mask = generation_mmio_spte_mask(gen);
237
238         access &= ACC_WRITE_MASK | ACC_USER_MASK;
239         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241         trace_mark_mmio_spte(sptep, gfn, access, gen);
242         mmu_spte_set(sptep, mask);
243 }
244
245 static bool is_mmio_spte(u64 spte)
246 {
247         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248 }
249
250 static gfn_t get_mmio_spte_gfn(u64 spte)
251 {
252         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253         return (spte & ~mask) >> PAGE_SHIFT;
254 }
255
256 static unsigned get_mmio_spte_access(u64 spte)
257 {
258         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259         return (spte & ~mask) & ~PAGE_MASK;
260 }
261
262 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263                           kvm_pfn_t pfn, unsigned access)
264 {
265         if (unlikely(is_noslot_pfn(pfn))) {
266                 mark_mmio_spte(vcpu, sptep, gfn, access);
267                 return true;
268         }
269
270         return false;
271 }
272
273 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 {
275         unsigned int kvm_gen, spte_gen;
276
277         kvm_gen = kvm_current_mmio_generation(vcpu);
278         spte_gen = get_mmio_spte_generation(spte);
279
280         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281         return likely(kvm_gen == spte_gen);
282 }
283
284 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 {
287         shadow_user_mask = user_mask;
288         shadow_accessed_mask = accessed_mask;
289         shadow_dirty_mask = dirty_mask;
290         shadow_nx_mask = nx_mask;
291         shadow_x_mask = x_mask;
292 }
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295 static int is_cpuid_PSE36(void)
296 {
297         return 1;
298 }
299
300 static int is_nx(struct kvm_vcpu *vcpu)
301 {
302         return vcpu->arch.efer & EFER_NX;
303 }
304
305 static int is_shadow_present_pte(u64 pte)
306 {
307         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 }
309
310 static int is_large_pte(u64 pte)
311 {
312         return pte & PT_PAGE_SIZE_MASK;
313 }
314
315 static int is_last_spte(u64 pte, int level)
316 {
317         if (level == PT_PAGE_TABLE_LEVEL)
318                 return 1;
319         if (is_large_pte(pte))
320                 return 1;
321         return 0;
322 }
323
324 static kvm_pfn_t spte_to_pfn(u64 pte)
325 {
326         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 }
328
329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333         return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339         *sptep = spte;
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344         *sptep = spte;
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349         return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354         return ACCESS_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358         struct {
359                 u32 spte_low;
360                 u32 spte_high;
361         };
362         u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
368
369         if (is_shadow_present_pte(spte))
370                 return;
371
372         /* Ensure the spte is completely set before we increase the count */
373         smp_wmb();
374         sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379         union split_spte *ssptep, sspte;
380
381         ssptep = (union split_spte *)sptep;
382         sspte = (union split_spte)spte;
383
384         ssptep->spte_high = sspte.spte_high;
385
386         /*
387          * If we map the spte from nonpresent to present, We should store
388          * the high bits firstly, then set present bit, so cpu can not
389          * fetch this spte while we are setting the spte.
390          */
391         smp_wmb();
392
393         ssptep->spte_low = sspte.spte_low;
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398         union split_spte *ssptep, sspte;
399
400         ssptep = (union split_spte *)sptep;
401         sspte = (union split_spte)spte;
402
403         ssptep->spte_low = sspte.spte_low;
404
405         /*
406          * If we map the spte from present to nonpresent, we should clear
407          * present bit firstly to avoid vcpu fetch the old high bits.
408          */
409         smp_wmb();
410
411         ssptep->spte_high = sspte.spte_high;
412         count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417         union split_spte *ssptep, sspte, orig;
418
419         ssptep = (union split_spte *)sptep;
420         sspte = (union split_spte)spte;
421
422         /* xchg acts as a barrier before the setting of the high bits */
423         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424         orig.spte_high = ssptep->spte_high;
425         ssptep->spte_high = sspte.spte_high;
426         count_spte_clear(sptep, spte);
427
428         return orig.spte;
429 }
430
431 /*
432  * The idea using the light way get the spte on x86_32 guest is from
433  * gup_get_pte(arch/x86/mm/gup.c).
434  *
435  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436  * coalesces them and we are running out of the MMU lock.  Therefore
437  * we need to protect against in-progress updates of the spte.
438  *
439  * Reading the spte while an update is in progress may get the old value
440  * for the high part of the spte.  The race is fine for a present->non-present
441  * change (because the high part of the spte is ignored for non-present spte),
442  * but for a present->present change we must reread the spte.
443  *
444  * All such changes are done in two steps (present->non-present and
445  * non-present->present), hence it is enough to count the number of
446  * present->non-present updates: if it changed while reading the spte,
447  * we might have hit the race.  This is done using clear_spte_count.
448  */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
452         union split_spte spte, *orig = (union split_spte *)sptep;
453         int count;
454
455 retry:
456         count = sp->clear_spte_count;
457         smp_rmb();
458
459         spte.spte_low = orig->spte_low;
460         smp_rmb();
461
462         spte.spte_high = orig->spte_high;
463         smp_rmb();
464
465         if (unlikely(spte.spte_low != orig->spte_low ||
466               count != sp->clear_spte_count))
467                 goto retry;
468
469         return spte.spte;
470 }
471 #endif
472
473 static bool spte_is_locklessly_modifiable(u64 spte)
474 {
475         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 }
478
479 static bool spte_has_volatile_bits(u64 spte)
480 {
481         /*
482          * Always atomicly update spte if it can be updated
483          * out of mmu-lock, it can ensure dirty bit is not lost,
484          * also, it can help us to get a stable is_writable_pte()
485          * to ensure tlb flush is not missed.
486          */
487         if (spte_is_locklessly_modifiable(spte))
488                 return true;
489
490         if (!shadow_accessed_mask)
491                 return false;
492
493         if (!is_shadow_present_pte(spte))
494                 return false;
495
496         if ((spte & shadow_accessed_mask) &&
497               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498                 return false;
499
500         return true;
501 }
502
503 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504 {
505         return (old_spte & bit_mask) && !(new_spte & bit_mask);
506 }
507
508 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509 {
510         return (old_spte & bit_mask) != (new_spte & bit_mask);
511 }
512
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521         WARN_ON(is_shadow_present_pte(*sptep));
522         __set_spte(sptep, new_spte);
523 }
524
525 /* Rules for using mmu_spte_update:
526  * Update the state bits, it means the mapped pfn is not changged.
527  *
528  * Whenever we overwrite a writable spte with a read-only one we
529  * should flush remote TLBs. Otherwise rmap_write_protect
530  * will find a read-only spte, even though the writable spte
531  * might be cached on a CPU's TLB, the return value indicates this
532  * case.
533  */
534 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535 {
536         u64 old_spte = *sptep;
537         bool ret = false;
538
539         WARN_ON(!is_shadow_present_pte(new_spte));
540
541         if (!is_shadow_present_pte(old_spte)) {
542                 mmu_spte_set(sptep, new_spte);
543                 return ret;
544         }
545
546         if (!spte_has_volatile_bits(old_spte))
547                 __update_clear_spte_fast(sptep, new_spte);
548         else
549                 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551         /*
552          * For the spte updated out of mmu-lock is safe, since
553          * we always atomicly update it, see the comments in
554          * spte_has_volatile_bits().
555          */
556         if (spte_is_locklessly_modifiable(old_spte) &&
557               !is_writable_pte(new_spte))
558                 ret = true;
559
560         if (!shadow_accessed_mask)
561                 return ret;
562
563         /*
564          * Flush TLB when accessed/dirty bits are changed in the page tables,
565          * to guarantee consistency between TLB and page tables.
566          */
567         if (spte_is_bit_changed(old_spte, new_spte,
568                                 shadow_accessed_mask | shadow_dirty_mask))
569                 ret = true;
570
571         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575
576         return ret;
577 }
578
579 /*
580  * Rules for using mmu_spte_clear_track_bits:
581  * It sets the sptep from present to nonpresent, and track the
582  * state bits, it is used to clear the last level sptep.
583  */
584 static int mmu_spte_clear_track_bits(u64 *sptep)
585 {
586         kvm_pfn_t pfn;
587         u64 old_spte = *sptep;
588
589         if (!spte_has_volatile_bits(old_spte))
590                 __update_clear_spte_fast(sptep, 0ull);
591         else
592                 old_spte = __update_clear_spte_slow(sptep, 0ull);
593
594         if (!is_shadow_present_pte(old_spte))
595                 return 0;
596
597         pfn = spte_to_pfn(old_spte);
598
599         /*
600          * KVM does not hold the refcount of the page used by
601          * kvm mmu, before reclaiming the page, we should
602          * unmap it from mmu first.
603          */
604         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605
606         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607                 kvm_set_pfn_accessed(pfn);
608         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609                 kvm_set_pfn_dirty(pfn);
610         return 1;
611 }
612
613 /*
614  * Rules for using mmu_spte_clear_no_track:
615  * Directly clear spte without caring the state bits of sptep,
616  * it is used to set the upper level spte.
617  */
618 static void mmu_spte_clear_no_track(u64 *sptep)
619 {
620         __update_clear_spte_fast(sptep, 0ull);
621 }
622
623 static u64 mmu_spte_get_lockless(u64 *sptep)
624 {
625         return __get_spte_lockless(sptep);
626 }
627
628 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629 {
630         /*
631          * Prevent page table teardown by making any free-er wait during
632          * kvm_flush_remote_tlbs() IPI to all active vcpus.
633          */
634         local_irq_disable();
635         vcpu->mode = READING_SHADOW_PAGE_TABLES;
636         /*
637          * Make sure a following spte read is not reordered ahead of the write
638          * to vcpu->mode.
639          */
640         smp_mb();
641 }
642
643 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644 {
645         /*
646          * Make sure the write to vcpu->mode is not reordered in front of
647          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
648          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649          */
650         smp_mb();
651         vcpu->mode = OUTSIDE_GUEST_MODE;
652         local_irq_enable();
653 }
654
655 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
656                                   struct kmem_cache *base_cache, int min)
657 {
658         void *obj;
659
660         if (cache->nobjs >= min)
661                 return 0;
662         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
663                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
664                 if (!obj)
665                         return -ENOMEM;
666                 cache->objects[cache->nobjs++] = obj;
667         }
668         return 0;
669 }
670
671 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672 {
673         return cache->nobjs;
674 }
675
676 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677                                   struct kmem_cache *cache)
678 {
679         while (mc->nobjs)
680                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
681 }
682
683 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
684                                        int min)
685 {
686         void *page;
687
688         if (cache->nobjs >= min)
689                 return 0;
690         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691                 page = (void *)__get_free_page(GFP_KERNEL);
692                 if (!page)
693                         return -ENOMEM;
694                 cache->objects[cache->nobjs++] = page;
695         }
696         return 0;
697 }
698
699 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700 {
701         while (mc->nobjs)
702                 free_page((unsigned long)mc->objects[--mc->nobjs]);
703 }
704
705 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
706 {
707         int r;
708
709         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
710                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
711         if (r)
712                 goto out;
713         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
714         if (r)
715                 goto out;
716         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
717                                    mmu_page_header_cache, 4);
718 out:
719         return r;
720 }
721
722 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723 {
724         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725                                 pte_list_desc_cache);
726         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
727         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728                                 mmu_page_header_cache);
729 }
730
731 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
732 {
733         void *p;
734
735         BUG_ON(!mc->nobjs);
736         p = mc->objects[--mc->nobjs];
737         return p;
738 }
739
740 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
741 {
742         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
743 }
744
745 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
746 {
747         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
748 }
749
750 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751 {
752         if (!sp->role.direct)
753                 return sp->gfns[index];
754
755         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756 }
757
758 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759 {
760         if (sp->role.direct)
761                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762         else
763                 sp->gfns[index] = gfn;
764 }
765
766 /*
767  * Return the pointer to the large page information for a given gfn,
768  * handling slots that are not large page aligned.
769  */
770 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771                                               struct kvm_memory_slot *slot,
772                                               int level)
773 {
774         unsigned long idx;
775
776         idx = gfn_to_index(gfn, slot->base_gfn, level);
777         return &slot->arch.lpage_info[level - 2][idx];
778 }
779
780 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781                                             gfn_t gfn, int count)
782 {
783         struct kvm_lpage_info *linfo;
784         int i;
785
786         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787                 linfo = lpage_info_slot(gfn, slot, i);
788                 linfo->disallow_lpage += count;
789                 WARN_ON(linfo->disallow_lpage < 0);
790         }
791 }
792
793 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794 {
795         update_gfn_disallow_lpage_count(slot, gfn, 1);
796 }
797
798 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799 {
800         update_gfn_disallow_lpage_count(slot, gfn, -1);
801 }
802
803 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
804 {
805         struct kvm_memslots *slots;
806         struct kvm_memory_slot *slot;
807         gfn_t gfn;
808
809         kvm->arch.indirect_shadow_pages++;
810         gfn = sp->gfn;
811         slots = kvm_memslots_for_spte_role(kvm, sp->role);
812         slot = __gfn_to_memslot(slots, gfn);
813
814         /* the non-leaf shadow pages are keeping readonly. */
815         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
816                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
817                                                     KVM_PAGE_TRACK_WRITE);
818
819         kvm_mmu_gfn_disallow_lpage(slot, gfn);
820 }
821
822 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
823 {
824         struct kvm_memslots *slots;
825         struct kvm_memory_slot *slot;
826         gfn_t gfn;
827
828         kvm->arch.indirect_shadow_pages--;
829         gfn = sp->gfn;
830         slots = kvm_memslots_for_spte_role(kvm, sp->role);
831         slot = __gfn_to_memslot(slots, gfn);
832         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
833                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
834                                                        KVM_PAGE_TRACK_WRITE);
835
836         kvm_mmu_gfn_allow_lpage(slot, gfn);
837 }
838
839 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
840                                           struct kvm_memory_slot *slot)
841 {
842         struct kvm_lpage_info *linfo;
843
844         if (slot) {
845                 linfo = lpage_info_slot(gfn, slot, level);
846                 return !!linfo->disallow_lpage;
847         }
848
849         return true;
850 }
851
852 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
853                                         int level)
854 {
855         struct kvm_memory_slot *slot;
856
857         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
858         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
859 }
860
861 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
862 {
863         unsigned long page_size;
864         int i, ret = 0;
865
866         page_size = kvm_host_page_size(kvm, gfn);
867
868         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
869                 if (page_size >= KVM_HPAGE_SIZE(i))
870                         ret = i;
871                 else
872                         break;
873         }
874
875         return ret;
876 }
877
878 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
879                                           bool no_dirty_log)
880 {
881         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
882                 return false;
883         if (no_dirty_log && slot->dirty_bitmap)
884                 return false;
885
886         return true;
887 }
888
889 static struct kvm_memory_slot *
890 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
891                             bool no_dirty_log)
892 {
893         struct kvm_memory_slot *slot;
894
895         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
896         if (!memslot_valid_for_gpte(slot, no_dirty_log))
897                 slot = NULL;
898
899         return slot;
900 }
901
902 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
903                          bool *force_pt_level)
904 {
905         int host_level, level, max_level;
906         struct kvm_memory_slot *slot;
907
908         if (unlikely(*force_pt_level))
909                 return PT_PAGE_TABLE_LEVEL;
910
911         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
912         *force_pt_level = !memslot_valid_for_gpte(slot, true);
913         if (unlikely(*force_pt_level))
914                 return PT_PAGE_TABLE_LEVEL;
915
916         host_level = host_mapping_level(vcpu->kvm, large_gfn);
917
918         if (host_level == PT_PAGE_TABLE_LEVEL)
919                 return host_level;
920
921         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
922
923         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
924                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
925                         break;
926
927         return level - 1;
928 }
929
930 /*
931  * About rmap_head encoding:
932  *
933  * If the bit zero of rmap_head->val is clear, then it points to the only spte
934  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
935  * pte_list_desc containing more mappings.
936  */
937
938 /*
939  * Returns the number of pointers in the rmap chain, not counting the new one.
940  */
941 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
942                         struct kvm_rmap_head *rmap_head)
943 {
944         struct pte_list_desc *desc;
945         int i, count = 0;
946
947         if (!rmap_head->val) {
948                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
949                 rmap_head->val = (unsigned long)spte;
950         } else if (!(rmap_head->val & 1)) {
951                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
952                 desc = mmu_alloc_pte_list_desc(vcpu);
953                 desc->sptes[0] = (u64 *)rmap_head->val;
954                 desc->sptes[1] = spte;
955                 rmap_head->val = (unsigned long)desc | 1;
956                 ++count;
957         } else {
958                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
959                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
961                         desc = desc->more;
962                         count += PTE_LIST_EXT;
963                 }
964                 if (desc->sptes[PTE_LIST_EXT-1]) {
965                         desc->more = mmu_alloc_pte_list_desc(vcpu);
966                         desc = desc->more;
967                 }
968                 for (i = 0; desc->sptes[i]; ++i)
969                         ++count;
970                 desc->sptes[i] = spte;
971         }
972         return count;
973 }
974
975 static void
976 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
977                            struct pte_list_desc *desc, int i,
978                            struct pte_list_desc *prev_desc)
979 {
980         int j;
981
982         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
983                 ;
984         desc->sptes[i] = desc->sptes[j];
985         desc->sptes[j] = NULL;
986         if (j != 0)
987                 return;
988         if (!prev_desc && !desc->more)
989                 rmap_head->val = (unsigned long)desc->sptes[0];
990         else
991                 if (prev_desc)
992                         prev_desc->more = desc->more;
993                 else
994                         rmap_head->val = (unsigned long)desc->more | 1;
995         mmu_free_pte_list_desc(desc);
996 }
997
998 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
999 {
1000         struct pte_list_desc *desc;
1001         struct pte_list_desc *prev_desc;
1002         int i;
1003
1004         if (!rmap_head->val) {
1005                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1006                 BUG();
1007         } else if (!(rmap_head->val & 1)) {
1008                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1009                 if ((u64 *)rmap_head->val != spte) {
1010                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1011                         BUG();
1012                 }
1013                 rmap_head->val = 0;
1014         } else {
1015                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1016                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1017                 prev_desc = NULL;
1018                 while (desc) {
1019                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1020                                 if (desc->sptes[i] == spte) {
1021                                         pte_list_desc_remove_entry(rmap_head,
1022                                                         desc, i, prev_desc);
1023                                         return;
1024                                 }
1025                         }
1026                         prev_desc = desc;
1027                         desc = desc->more;
1028                 }
1029                 pr_err("pte_list_remove: %p many->many\n", spte);
1030                 BUG();
1031         }
1032 }
1033
1034 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1035                                            struct kvm_memory_slot *slot)
1036 {
1037         unsigned long idx;
1038
1039         idx = gfn_to_index(gfn, slot->base_gfn, level);
1040         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1041 }
1042
1043 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1044                                          struct kvm_mmu_page *sp)
1045 {
1046         struct kvm_memslots *slots;
1047         struct kvm_memory_slot *slot;
1048
1049         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050         slot = __gfn_to_memslot(slots, gfn);
1051         return __gfn_to_rmap(gfn, sp->role.level, slot);
1052 }
1053
1054 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055 {
1056         struct kvm_mmu_memory_cache *cache;
1057
1058         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059         return mmu_memory_cache_free_objects(cache);
1060 }
1061
1062 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063 {
1064         struct kvm_mmu_page *sp;
1065         struct kvm_rmap_head *rmap_head;
1066
1067         sp = page_header(__pa(spte));
1068         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1070         return pte_list_add(vcpu, spte, rmap_head);
1071 }
1072
1073 static void rmap_remove(struct kvm *kvm, u64 *spte)
1074 {
1075         struct kvm_mmu_page *sp;
1076         gfn_t gfn;
1077         struct kvm_rmap_head *rmap_head;
1078
1079         sp = page_header(__pa(spte));
1080         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1082         pte_list_remove(spte, rmap_head);
1083 }
1084
1085 /*
1086  * Used by the following functions to iterate through the sptes linked by a
1087  * rmap.  All fields are private and not assumed to be used outside.
1088  */
1089 struct rmap_iterator {
1090         /* private fields */
1091         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1092         int pos;                        /* index of the sptep */
1093 };
1094
1095 /*
1096  * Iteration must be started by this function.  This should also be used after
1097  * removing/dropping sptes from the rmap link because in such cases the
1098  * information in the itererator may not be valid.
1099  *
1100  * Returns sptep if found, NULL otherwise.
1101  */
1102 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1103                            struct rmap_iterator *iter)
1104 {
1105         u64 *sptep;
1106
1107         if (!rmap_head->val)
1108                 return NULL;
1109
1110         if (!(rmap_head->val & 1)) {
1111                 iter->desc = NULL;
1112                 sptep = (u64 *)rmap_head->val;
1113                 goto out;
1114         }
1115
1116         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1117         iter->pos = 0;
1118         sptep = iter->desc->sptes[iter->pos];
1119 out:
1120         BUG_ON(!is_shadow_present_pte(*sptep));
1121         return sptep;
1122 }
1123
1124 /*
1125  * Must be used with a valid iterator: e.g. after rmap_get_first().
1126  *
1127  * Returns sptep if found, NULL otherwise.
1128  */
1129 static u64 *rmap_get_next(struct rmap_iterator *iter)
1130 {
1131         u64 *sptep;
1132
1133         if (iter->desc) {
1134                 if (iter->pos < PTE_LIST_EXT - 1) {
1135                         ++iter->pos;
1136                         sptep = iter->desc->sptes[iter->pos];
1137                         if (sptep)
1138                                 goto out;
1139                 }
1140
1141                 iter->desc = iter->desc->more;
1142
1143                 if (iter->desc) {
1144                         iter->pos = 0;
1145                         /* desc->sptes[0] cannot be NULL */
1146                         sptep = iter->desc->sptes[iter->pos];
1147                         goto out;
1148                 }
1149         }
1150
1151         return NULL;
1152 out:
1153         BUG_ON(!is_shadow_present_pte(*sptep));
1154         return sptep;
1155 }
1156
1157 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1158         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1159              _spte_; _spte_ = rmap_get_next(_iter_))
1160
1161 static void drop_spte(struct kvm *kvm, u64 *sptep)
1162 {
1163         if (mmu_spte_clear_track_bits(sptep))
1164                 rmap_remove(kvm, sptep);
1165 }
1166
1167
1168 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1169 {
1170         if (is_large_pte(*sptep)) {
1171                 WARN_ON(page_header(__pa(sptep))->role.level ==
1172                         PT_PAGE_TABLE_LEVEL);
1173                 drop_spte(kvm, sptep);
1174                 --kvm->stat.lpages;
1175                 return true;
1176         }
1177
1178         return false;
1179 }
1180
1181 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1182 {
1183         if (__drop_large_spte(vcpu->kvm, sptep))
1184                 kvm_flush_remote_tlbs(vcpu->kvm);
1185 }
1186
1187 /*
1188  * Write-protect on the specified @sptep, @pt_protect indicates whether
1189  * spte write-protection is caused by protecting shadow page table.
1190  *
1191  * Note: write protection is difference between dirty logging and spte
1192  * protection:
1193  * - for dirty logging, the spte can be set to writable at anytime if
1194  *   its dirty bitmap is properly set.
1195  * - for spte protection, the spte can be writable only after unsync-ing
1196  *   shadow page.
1197  *
1198  * Return true if tlb need be flushed.
1199  */
1200 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1201 {
1202         u64 spte = *sptep;
1203
1204         if (!is_writable_pte(spte) &&
1205               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1206                 return false;
1207
1208         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1209
1210         if (pt_protect)
1211                 spte &= ~SPTE_MMU_WRITEABLE;
1212         spte = spte & ~PT_WRITABLE_MASK;
1213
1214         return mmu_spte_update(sptep, spte);
1215 }
1216
1217 static bool __rmap_write_protect(struct kvm *kvm,
1218                                  struct kvm_rmap_head *rmap_head,
1219                                  bool pt_protect)
1220 {
1221         u64 *sptep;
1222         struct rmap_iterator iter;
1223         bool flush = false;
1224
1225         for_each_rmap_spte(rmap_head, &iter, sptep)
1226                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1227
1228         return flush;
1229 }
1230
1231 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1232 {
1233         u64 spte = *sptep;
1234
1235         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1236
1237         spte &= ~shadow_dirty_mask;
1238
1239         return mmu_spte_update(sptep, spte);
1240 }
1241
1242 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1243 {
1244         u64 *sptep;
1245         struct rmap_iterator iter;
1246         bool flush = false;
1247
1248         for_each_rmap_spte(rmap_head, &iter, sptep)
1249                 flush |= spte_clear_dirty(kvm, sptep);
1250
1251         return flush;
1252 }
1253
1254 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1255 {
1256         u64 spte = *sptep;
1257
1258         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1259
1260         spte |= shadow_dirty_mask;
1261
1262         return mmu_spte_update(sptep, spte);
1263 }
1264
1265 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1266 {
1267         u64 *sptep;
1268         struct rmap_iterator iter;
1269         bool flush = false;
1270
1271         for_each_rmap_spte(rmap_head, &iter, sptep)
1272                 flush |= spte_set_dirty(kvm, sptep);
1273
1274         return flush;
1275 }
1276
1277 /**
1278  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1279  * @kvm: kvm instance
1280  * @slot: slot to protect
1281  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1282  * @mask: indicates which pages we should protect
1283  *
1284  * Used when we do not need to care about huge page mappings: e.g. during dirty
1285  * logging we do not have any such mappings.
1286  */
1287 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1288                                      struct kvm_memory_slot *slot,
1289                                      gfn_t gfn_offset, unsigned long mask)
1290 {
1291         struct kvm_rmap_head *rmap_head;
1292
1293         while (mask) {
1294                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1295                                           PT_PAGE_TABLE_LEVEL, slot);
1296                 __rmap_write_protect(kvm, rmap_head, false);
1297
1298                 /* clear the first set bit */
1299                 mask &= mask - 1;
1300         }
1301 }
1302
1303 /**
1304  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1305  * @kvm: kvm instance
1306  * @slot: slot to clear D-bit
1307  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1308  * @mask: indicates which pages we should clear D-bit
1309  *
1310  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1311  */
1312 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1313                                      struct kvm_memory_slot *slot,
1314                                      gfn_t gfn_offset, unsigned long mask)
1315 {
1316         struct kvm_rmap_head *rmap_head;
1317
1318         while (mask) {
1319                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1320                                           PT_PAGE_TABLE_LEVEL, slot);
1321                 __rmap_clear_dirty(kvm, rmap_head);
1322
1323                 /* clear the first set bit */
1324                 mask &= mask - 1;
1325         }
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1328
1329 /**
1330  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1331  * PT level pages.
1332  *
1333  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1334  * enable dirty logging for them.
1335  *
1336  * Used when we do not need to care about huge page mappings: e.g. during dirty
1337  * logging we do not have any such mappings.
1338  */
1339 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1340                                 struct kvm_memory_slot *slot,
1341                                 gfn_t gfn_offset, unsigned long mask)
1342 {
1343         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1344                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1345                                 mask);
1346         else
1347                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1348 }
1349
1350 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1351                                     struct kvm_memory_slot *slot, u64 gfn)
1352 {
1353         struct kvm_rmap_head *rmap_head;
1354         int i;
1355         bool write_protected = false;
1356
1357         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1358                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1359                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1360         }
1361
1362         return write_protected;
1363 }
1364
1365 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1366 {
1367         struct kvm_memory_slot *slot;
1368
1369         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1370         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1371 }
1372
1373 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1374 {
1375         u64 *sptep;
1376         struct rmap_iterator iter;
1377         bool flush = false;
1378
1379         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1380                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1381
1382                 drop_spte(kvm, sptep);
1383                 flush = true;
1384         }
1385
1386         return flush;
1387 }
1388
1389 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1390                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1391                            unsigned long data)
1392 {
1393         return kvm_zap_rmapp(kvm, rmap_head);
1394 }
1395
1396 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398                              unsigned long data)
1399 {
1400         u64 *sptep;
1401         struct rmap_iterator iter;
1402         int need_flush = 0;
1403         u64 new_spte;
1404         pte_t *ptep = (pte_t *)data;
1405         kvm_pfn_t new_pfn;
1406
1407         WARN_ON(pte_huge(*ptep));
1408         new_pfn = pte_pfn(*ptep);
1409
1410 restart:
1411         for_each_rmap_spte(rmap_head, &iter, sptep) {
1412                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1413                              sptep, *sptep, gfn, level);
1414
1415                 need_flush = 1;
1416
1417                 if (pte_write(*ptep)) {
1418                         drop_spte(kvm, sptep);
1419                         goto restart;
1420                 } else {
1421                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1422                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1423
1424                         new_spte &= ~PT_WRITABLE_MASK;
1425                         new_spte &= ~SPTE_HOST_WRITEABLE;
1426                         new_spte &= ~shadow_accessed_mask;
1427
1428                         mmu_spte_clear_track_bits(sptep);
1429                         mmu_spte_set(sptep, new_spte);
1430                 }
1431         }
1432
1433         if (need_flush)
1434                 kvm_flush_remote_tlbs(kvm);
1435
1436         return 0;
1437 }
1438
1439 struct slot_rmap_walk_iterator {
1440         /* input fields. */
1441         struct kvm_memory_slot *slot;
1442         gfn_t start_gfn;
1443         gfn_t end_gfn;
1444         int start_level;
1445         int end_level;
1446
1447         /* output fields. */
1448         gfn_t gfn;
1449         struct kvm_rmap_head *rmap;
1450         int level;
1451
1452         /* private field. */
1453         struct kvm_rmap_head *end_rmap;
1454 };
1455
1456 static void
1457 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1458 {
1459         iterator->level = level;
1460         iterator->gfn = iterator->start_gfn;
1461         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1462         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1463                                            iterator->slot);
1464 }
1465
1466 static void
1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468                     struct kvm_memory_slot *slot, int start_level,
1469                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470 {
1471         iterator->slot = slot;
1472         iterator->start_level = start_level;
1473         iterator->end_level = end_level;
1474         iterator->start_gfn = start_gfn;
1475         iterator->end_gfn = end_gfn;
1476
1477         rmap_walk_init_level(iterator, iterator->start_level);
1478 }
1479
1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481 {
1482         return !!iterator->rmap;
1483 }
1484
1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486 {
1487         if (++iterator->rmap <= iterator->end_rmap) {
1488                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489                 return;
1490         }
1491
1492         if (++iterator->level > iterator->end_level) {
1493                 iterator->rmap = NULL;
1494                 return;
1495         }
1496
1497         rmap_walk_init_level(iterator, iterator->level);
1498 }
1499
1500 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1501            _start_gfn, _end_gfn, _iter_)                                \
1502         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1503                                  _end_level_, _start_gfn, _end_gfn);    \
1504              slot_rmap_walk_okay(_iter_);                               \
1505              slot_rmap_walk_next(_iter_))
1506
1507 static int kvm_handle_hva_range(struct kvm *kvm,
1508                                 unsigned long start,
1509                                 unsigned long end,
1510                                 unsigned long data,
1511                                 int (*handler)(struct kvm *kvm,
1512                                                struct kvm_rmap_head *rmap_head,
1513                                                struct kvm_memory_slot *slot,
1514                                                gfn_t gfn,
1515                                                int level,
1516                                                unsigned long data))
1517 {
1518         struct kvm_memslots *slots;
1519         struct kvm_memory_slot *memslot;
1520         struct slot_rmap_walk_iterator iterator;
1521         int ret = 0;
1522         int i;
1523
1524         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1525                 slots = __kvm_memslots(kvm, i);
1526                 kvm_for_each_memslot(memslot, slots) {
1527                         unsigned long hva_start, hva_end;
1528                         gfn_t gfn_start, gfn_end;
1529
1530                         hva_start = max(start, memslot->userspace_addr);
1531                         hva_end = min(end, memslot->userspace_addr +
1532                                       (memslot->npages << PAGE_SHIFT));
1533                         if (hva_start >= hva_end)
1534                                 continue;
1535                         /*
1536                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1537                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1538                          */
1539                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1540                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1541
1542                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1543                                                  PT_MAX_HUGEPAGE_LEVEL,
1544                                                  gfn_start, gfn_end - 1,
1545                                                  &iterator)
1546                                 ret |= handler(kvm, iterator.rmap, memslot,
1547                                                iterator.gfn, iterator.level, data);
1548                 }
1549         }
1550
1551         return ret;
1552 }
1553
1554 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1555                           unsigned long data,
1556                           int (*handler)(struct kvm *kvm,
1557                                          struct kvm_rmap_head *rmap_head,
1558                                          struct kvm_memory_slot *slot,
1559                                          gfn_t gfn, int level,
1560                                          unsigned long data))
1561 {
1562         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1563 }
1564
1565 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1566 {
1567         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1568 }
1569
1570 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1571 {
1572         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1573 }
1574
1575 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1576 {
1577         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1578 }
1579
1580 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1581                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1582                          unsigned long data)
1583 {
1584         u64 *sptep;
1585         struct rmap_iterator uninitialized_var(iter);
1586         int young = 0;
1587
1588         BUG_ON(!shadow_accessed_mask);
1589
1590         for_each_rmap_spte(rmap_head, &iter, sptep) {
1591                 if (*sptep & shadow_accessed_mask) {
1592                         young = 1;
1593                         clear_bit((ffs(shadow_accessed_mask) - 1),
1594                                  (unsigned long *)sptep);
1595                 }
1596         }
1597
1598         trace_kvm_age_page(gfn, level, slot, young);
1599         return young;
1600 }
1601
1602 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1603                               struct kvm_memory_slot *slot, gfn_t gfn,
1604                               int level, unsigned long data)
1605 {
1606         u64 *sptep;
1607         struct rmap_iterator iter;
1608         int young = 0;
1609
1610         /*
1611          * If there's no access bit in the secondary pte set by the
1612          * hardware it's up to gup-fast/gup to set the access bit in
1613          * the primary pte or in the page structure.
1614          */
1615         if (!shadow_accessed_mask)
1616                 goto out;
1617
1618         for_each_rmap_spte(rmap_head, &iter, sptep) {
1619                 if (*sptep & shadow_accessed_mask) {
1620                         young = 1;
1621                         break;
1622                 }
1623         }
1624 out:
1625         return young;
1626 }
1627
1628 #define RMAP_RECYCLE_THRESHOLD 1000
1629
1630 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1631 {
1632         struct kvm_rmap_head *rmap_head;
1633         struct kvm_mmu_page *sp;
1634
1635         sp = page_header(__pa(spte));
1636
1637         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1638
1639         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1640         kvm_flush_remote_tlbs(vcpu->kvm);
1641 }
1642
1643 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1644 {
1645         /*
1646          * In case of absence of EPT Access and Dirty Bits supports,
1647          * emulate the accessed bit for EPT, by checking if this page has
1648          * an EPT mapping, and clearing it if it does. On the next access,
1649          * a new EPT mapping will be established.
1650          * This has some overhead, but not as much as the cost of swapping
1651          * out actively used pages or breaking up actively used hugepages.
1652          */
1653         if (!shadow_accessed_mask) {
1654                 /*
1655                  * We are holding the kvm->mmu_lock, and we are blowing up
1656                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1657                  * This is correct as long as we don't decouple the mmu_lock
1658                  * protected regions (like invalidate_range_start|end does).
1659                  */
1660                 kvm->mmu_notifier_seq++;
1661                 return kvm_handle_hva_range(kvm, start, end, 0,
1662                                             kvm_unmap_rmapp);
1663         }
1664
1665         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1666 }
1667
1668 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1669 {
1670         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1671 }
1672
1673 #ifdef MMU_DEBUG
1674 static int is_empty_shadow_page(u64 *spt)
1675 {
1676         u64 *pos;
1677         u64 *end;
1678
1679         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1680                 if (is_shadow_present_pte(*pos)) {
1681                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1682                                pos, *pos);
1683                         return 0;
1684                 }
1685         return 1;
1686 }
1687 #endif
1688
1689 /*
1690  * This value is the sum of all of the kvm instances's
1691  * kvm->arch.n_used_mmu_pages values.  We need a global,
1692  * aggregate version in order to make the slab shrinker
1693  * faster
1694  */
1695 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1696 {
1697         kvm->arch.n_used_mmu_pages += nr;
1698         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1699 }
1700
1701 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1702 {
1703         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1704         hlist_del(&sp->hash_link);
1705         list_del(&sp->link);
1706         free_page((unsigned long)sp->spt);
1707         if (!sp->role.direct)
1708                 free_page((unsigned long)sp->gfns);
1709         kmem_cache_free(mmu_page_header_cache, sp);
1710 }
1711
1712 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1713 {
1714         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1715 }
1716
1717 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1718                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1719 {
1720         if (!parent_pte)
1721                 return;
1722
1723         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1724 }
1725
1726 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1727                                        u64 *parent_pte)
1728 {
1729         pte_list_remove(parent_pte, &sp->parent_ptes);
1730 }
1731
1732 static void drop_parent_pte(struct kvm_mmu_page *sp,
1733                             u64 *parent_pte)
1734 {
1735         mmu_page_remove_parent_pte(sp, parent_pte);
1736         mmu_spte_clear_no_track(parent_pte);
1737 }
1738
1739 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1740 {
1741         struct kvm_mmu_page *sp;
1742
1743         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1744         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1745         if (!direct)
1746                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1747         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1748
1749         /*
1750          * The active_mmu_pages list is the FIFO list, do not move the
1751          * page until it is zapped. kvm_zap_obsolete_pages depends on
1752          * this feature. See the comments in kvm_zap_obsolete_pages().
1753          */
1754         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1755         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1756         return sp;
1757 }
1758
1759 static void mark_unsync(u64 *spte);
1760 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1761 {
1762         u64 *sptep;
1763         struct rmap_iterator iter;
1764
1765         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1766                 mark_unsync(sptep);
1767         }
1768 }
1769
1770 static void mark_unsync(u64 *spte)
1771 {
1772         struct kvm_mmu_page *sp;
1773         unsigned int index;
1774
1775         sp = page_header(__pa(spte));
1776         index = spte - sp->spt;
1777         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1778                 return;
1779         if (sp->unsync_children++)
1780                 return;
1781         kvm_mmu_mark_parents_unsync(sp);
1782 }
1783
1784 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1785                                struct kvm_mmu_page *sp)
1786 {
1787         return 0;
1788 }
1789
1790 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1791 {
1792 }
1793
1794 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1795                                  struct kvm_mmu_page *sp, u64 *spte,
1796                                  const void *pte)
1797 {
1798         WARN_ON(1);
1799 }
1800
1801 #define KVM_PAGE_ARRAY_NR 16
1802
1803 struct kvm_mmu_pages {
1804         struct mmu_page_and_offset {
1805                 struct kvm_mmu_page *sp;
1806                 unsigned int idx;
1807         } page[KVM_PAGE_ARRAY_NR];
1808         unsigned int nr;
1809 };
1810
1811 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812                          int idx)
1813 {
1814         int i;
1815
1816         if (sp->unsync)
1817                 for (i=0; i < pvec->nr; i++)
1818                         if (pvec->page[i].sp == sp)
1819                                 return 0;
1820
1821         pvec->page[pvec->nr].sp = sp;
1822         pvec->page[pvec->nr].idx = idx;
1823         pvec->nr++;
1824         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825 }
1826
1827 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828 {
1829         --sp->unsync_children;
1830         WARN_ON((int)sp->unsync_children < 0);
1831         __clear_bit(idx, sp->unsync_child_bitmap);
1832 }
1833
1834 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835                            struct kvm_mmu_pages *pvec)
1836 {
1837         int i, ret, nr_unsync_leaf = 0;
1838
1839         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840                 struct kvm_mmu_page *child;
1841                 u64 ent = sp->spt[i];
1842
1843                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844                         clear_unsync_child_bit(sp, i);
1845                         continue;
1846                 }
1847
1848                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1849
1850                 if (child->unsync_children) {
1851                         if (mmu_pages_add(pvec, child, i))
1852                                 return -ENOSPC;
1853
1854                         ret = __mmu_unsync_walk(child, pvec);
1855                         if (!ret) {
1856                                 clear_unsync_child_bit(sp, i);
1857                                 continue;
1858                         } else if (ret > 0) {
1859                                 nr_unsync_leaf += ret;
1860                         } else
1861                                 return ret;
1862                 } else if (child->unsync) {
1863                         nr_unsync_leaf++;
1864                         if (mmu_pages_add(pvec, child, i))
1865                                 return -ENOSPC;
1866                 } else
1867                         clear_unsync_child_bit(sp, i);
1868         }
1869
1870         return nr_unsync_leaf;
1871 }
1872
1873 #define INVALID_INDEX (-1)
1874
1875 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1876                            struct kvm_mmu_pages *pvec)
1877 {
1878         pvec->nr = 0;
1879         if (!sp->unsync_children)
1880                 return 0;
1881
1882         mmu_pages_add(pvec, sp, INVALID_INDEX);
1883         return __mmu_unsync_walk(sp, pvec);
1884 }
1885
1886 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1887 {
1888         WARN_ON(!sp->unsync);
1889         trace_kvm_mmu_sync_page(sp);
1890         sp->unsync = 0;
1891         --kvm->stat.mmu_unsync;
1892 }
1893
1894 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895                                     struct list_head *invalid_list);
1896 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1897                                     struct list_head *invalid_list);
1898
1899 /*
1900  * NOTE: we should pay more attention on the zapped-obsolete page
1901  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1902  * since it has been deleted from active_mmu_pages but still can be found
1903  * at hast list.
1904  *
1905  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1906  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1907  * all the obsolete pages.
1908  */
1909 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1910         hlist_for_each_entry(_sp,                                       \
1911           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1912                 if ((_sp)->gfn != (_gfn)) {} else
1913
1914 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1915         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1916                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1917
1918 /* @sp->gfn should be write-protected at the call site */
1919 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1920                             struct list_head *invalid_list)
1921 {
1922         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1923                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1924                 return false;
1925         }
1926
1927         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1928                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1929                 return false;
1930         }
1931
1932         return true;
1933 }
1934
1935 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1936                                  struct list_head *invalid_list,
1937                                  bool remote_flush, bool local_flush)
1938 {
1939         if (!list_empty(invalid_list)) {
1940                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1941                 return;
1942         }
1943
1944         if (remote_flush)
1945                 kvm_flush_remote_tlbs(vcpu->kvm);
1946         else if (local_flush)
1947                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1948 }
1949
1950 #ifdef CONFIG_KVM_MMU_AUDIT
1951 #include "mmu_audit.c"
1952 #else
1953 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1954 static void mmu_audit_disable(void) { }
1955 #endif
1956
1957 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1958                          struct list_head *invalid_list)
1959 {
1960         kvm_unlink_unsync_page(vcpu->kvm, sp);
1961         return __kvm_sync_page(vcpu, sp, invalid_list);
1962 }
1963
1964 /* @gfn should be write-protected at the call site */
1965 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1966                            struct list_head *invalid_list)
1967 {
1968         struct kvm_mmu_page *s;
1969         bool ret = false;
1970
1971         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1972                 if (!s->unsync)
1973                         continue;
1974
1975                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1976                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1977         }
1978
1979         return ret;
1980 }
1981
1982 struct mmu_page_path {
1983         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1984         unsigned int idx[PT64_ROOT_LEVEL];
1985 };
1986
1987 #define for_each_sp(pvec, sp, parents, i)                       \
1988                 for (i = mmu_pages_first(&pvec, &parents);      \
1989                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1990                         i = mmu_pages_next(&pvec, &parents, i))
1991
1992 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1993                           struct mmu_page_path *parents,
1994                           int i)
1995 {
1996         int n;
1997
1998         for (n = i+1; n < pvec->nr; n++) {
1999                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2000                 unsigned idx = pvec->page[n].idx;
2001                 int level = sp->role.level;
2002
2003                 parents->idx[level-1] = idx;
2004                 if (level == PT_PAGE_TABLE_LEVEL)
2005                         break;
2006
2007                 parents->parent[level-2] = sp;
2008         }
2009
2010         return n;
2011 }
2012
2013 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2014                            struct mmu_page_path *parents)
2015 {
2016         struct kvm_mmu_page *sp;
2017         int level;
2018
2019         if (pvec->nr == 0)
2020                 return 0;
2021
2022         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2023
2024         sp = pvec->page[0].sp;
2025         level = sp->role.level;
2026         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2027
2028         parents->parent[level-2] = sp;
2029
2030         /* Also set up a sentinel.  Further entries in pvec are all
2031          * children of sp, so this element is never overwritten.
2032          */
2033         parents->parent[level-1] = NULL;
2034         return mmu_pages_next(pvec, parents, 0);
2035 }
2036
2037 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2038 {
2039         struct kvm_mmu_page *sp;
2040         unsigned int level = 0;
2041
2042         do {
2043                 unsigned int idx = parents->idx[level];
2044                 sp = parents->parent[level];
2045                 if (!sp)
2046                         return;
2047
2048                 WARN_ON(idx == INVALID_INDEX);
2049                 clear_unsync_child_bit(sp, idx);
2050                 level++;
2051         } while (!sp->unsync_children);
2052 }
2053
2054 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2055                               struct kvm_mmu_page *parent)
2056 {
2057         int i;
2058         struct kvm_mmu_page *sp;
2059         struct mmu_page_path parents;
2060         struct kvm_mmu_pages pages;
2061         LIST_HEAD(invalid_list);
2062         bool flush = false;
2063
2064         while (mmu_unsync_walk(parent, &pages)) {
2065                 bool protected = false;
2066
2067                 for_each_sp(pages, sp, parents, i)
2068                         protected |= rmap_write_protect(vcpu, sp->gfn);
2069
2070                 if (protected) {
2071                         kvm_flush_remote_tlbs(vcpu->kvm);
2072                         flush = false;
2073                 }
2074
2075                 for_each_sp(pages, sp, parents, i) {
2076                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2077                         mmu_pages_clear_parents(&parents);
2078                 }
2079                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2080                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2081                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2082                         flush = false;
2083                 }
2084         }
2085
2086         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2087 }
2088
2089 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2090 {
2091         atomic_set(&sp->write_flooding_count,  0);
2092 }
2093
2094 static void clear_sp_write_flooding_count(u64 *spte)
2095 {
2096         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2097
2098         __clear_sp_write_flooding_count(sp);
2099 }
2100
2101 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2102 {
2103         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2104 }
2105
2106 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2107                                              gfn_t gfn,
2108                                              gva_t gaddr,
2109                                              unsigned level,
2110                                              int direct,
2111                                              unsigned access)
2112 {
2113         union kvm_mmu_page_role role;
2114         unsigned quadrant;
2115         struct kvm_mmu_page *sp;
2116         bool need_sync = false;
2117         bool flush = false;
2118         LIST_HEAD(invalid_list);
2119
2120         role = vcpu->arch.mmu.base_role;
2121         role.level = level;
2122         role.direct = direct;
2123         if (role.direct)
2124                 role.cr4_pae = 0;
2125         role.access = access;
2126         if (!vcpu->arch.mmu.direct_map
2127             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2128                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2129                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2130                 role.quadrant = quadrant;
2131         }
2132         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2133                 if (is_obsolete_sp(vcpu->kvm, sp))
2134                         continue;
2135
2136                 if (!need_sync && sp->unsync)
2137                         need_sync = true;
2138
2139                 if (sp->role.word != role.word)
2140                         continue;
2141
2142                 if (sp->unsync) {
2143                         /* The page is good, but __kvm_sync_page might still end
2144                          * up zapping it.  If so, break in order to rebuild it.
2145                          */
2146                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2147                                 break;
2148
2149                         WARN_ON(!list_empty(&invalid_list));
2150                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2151                 }
2152
2153                 if (sp->unsync_children)
2154                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2155
2156                 __clear_sp_write_flooding_count(sp);
2157                 trace_kvm_mmu_get_page(sp, false);
2158                 return sp;
2159         }
2160
2161         ++vcpu->kvm->stat.mmu_cache_miss;
2162
2163         sp = kvm_mmu_alloc_page(vcpu, direct);
2164
2165         sp->gfn = gfn;
2166         sp->role = role;
2167         hlist_add_head(&sp->hash_link,
2168                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2169         if (!direct) {
2170                 /*
2171                  * we should do write protection before syncing pages
2172                  * otherwise the content of the synced shadow page may
2173                  * be inconsistent with guest page table.
2174                  */
2175                 account_shadowed(vcpu->kvm, sp);
2176                 if (level == PT_PAGE_TABLE_LEVEL &&
2177                       rmap_write_protect(vcpu, gfn))
2178                         kvm_flush_remote_tlbs(vcpu->kvm);
2179
2180                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2181                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2182         }
2183         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2184         clear_page(sp->spt);
2185         trace_kvm_mmu_get_page(sp, true);
2186
2187         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2188         return sp;
2189 }
2190
2191 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2192                              struct kvm_vcpu *vcpu, u64 addr)
2193 {
2194         iterator->addr = addr;
2195         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2196         iterator->level = vcpu->arch.mmu.shadow_root_level;
2197
2198         if (iterator->level == PT64_ROOT_LEVEL &&
2199             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2200             !vcpu->arch.mmu.direct_map)
2201                 --iterator->level;
2202
2203         if (iterator->level == PT32E_ROOT_LEVEL) {
2204                 iterator->shadow_addr
2205                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2206                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2207                 --iterator->level;
2208                 if (!iterator->shadow_addr)
2209                         iterator->level = 0;
2210         }
2211 }
2212
2213 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2214 {
2215         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2216                 return false;
2217
2218         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2219         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2220         return true;
2221 }
2222
2223 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2224                                u64 spte)
2225 {
2226         if (is_last_spte(spte, iterator->level)) {
2227                 iterator->level = 0;
2228                 return;
2229         }
2230
2231         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2232         --iterator->level;
2233 }
2234
2235 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2236 {
2237         return __shadow_walk_next(iterator, *iterator->sptep);
2238 }
2239
2240 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2241                              struct kvm_mmu_page *sp)
2242 {
2243         u64 spte;
2244
2245         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2246                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2247
2248         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2249                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2250
2251         mmu_spte_set(sptep, spte);
2252
2253         mmu_page_add_parent_pte(vcpu, sp, sptep);
2254
2255         if (sp->unsync_children || sp->unsync)
2256                 mark_unsync(sptep);
2257 }
2258
2259 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2260                                    unsigned direct_access)
2261 {
2262         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2263                 struct kvm_mmu_page *child;
2264
2265                 /*
2266                  * For the direct sp, if the guest pte's dirty bit
2267                  * changed form clean to dirty, it will corrupt the
2268                  * sp's access: allow writable in the read-only sp,
2269                  * so we should update the spte at this point to get
2270                  * a new sp with the correct access.
2271                  */
2272                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2273                 if (child->role.access == direct_access)
2274                         return;
2275
2276                 drop_parent_pte(child, sptep);
2277                 kvm_flush_remote_tlbs(vcpu->kvm);
2278         }
2279 }
2280
2281 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2282                              u64 *spte)
2283 {
2284         u64 pte;
2285         struct kvm_mmu_page *child;
2286
2287         pte = *spte;
2288         if (is_shadow_present_pte(pte)) {
2289                 if (is_last_spte(pte, sp->role.level)) {
2290                         drop_spte(kvm, spte);
2291                         if (is_large_pte(pte))
2292                                 --kvm->stat.lpages;
2293                 } else {
2294                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2295                         drop_parent_pte(child, spte);
2296                 }
2297                 return true;
2298         }
2299
2300         if (is_mmio_spte(pte))
2301                 mmu_spte_clear_no_track(spte);
2302
2303         return false;
2304 }
2305
2306 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2307                                          struct kvm_mmu_page *sp)
2308 {
2309         unsigned i;
2310
2311         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2312                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2313 }
2314
2315 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2316 {
2317         u64 *sptep;
2318         struct rmap_iterator iter;
2319
2320         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2321                 drop_parent_pte(sp, sptep);
2322 }
2323
2324 static int mmu_zap_unsync_children(struct kvm *kvm,
2325                                    struct kvm_mmu_page *parent,
2326                                    struct list_head *invalid_list)
2327 {
2328         int i, zapped = 0;
2329         struct mmu_page_path parents;
2330         struct kvm_mmu_pages pages;
2331
2332         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2333                 return 0;
2334
2335         while (mmu_unsync_walk(parent, &pages)) {
2336                 struct kvm_mmu_page *sp;
2337
2338                 for_each_sp(pages, sp, parents, i) {
2339                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2340                         mmu_pages_clear_parents(&parents);
2341                         zapped++;
2342                 }
2343         }
2344
2345         return zapped;
2346 }
2347
2348 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2349                                     struct list_head *invalid_list)
2350 {
2351         int ret;
2352
2353         trace_kvm_mmu_prepare_zap_page(sp);
2354         ++kvm->stat.mmu_shadow_zapped;
2355         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2356         kvm_mmu_page_unlink_children(kvm, sp);
2357         kvm_mmu_unlink_parents(kvm, sp);
2358
2359         if (!sp->role.invalid && !sp->role.direct)
2360                 unaccount_shadowed(kvm, sp);
2361
2362         if (sp->unsync)
2363                 kvm_unlink_unsync_page(kvm, sp);
2364         if (!sp->root_count) {
2365                 /* Count self */
2366                 ret++;
2367                 list_move(&sp->link, invalid_list);
2368                 kvm_mod_used_mmu_pages(kvm, -1);
2369         } else {
2370                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2371
2372                 /*
2373                  * The obsolete pages can not be used on any vcpus.
2374                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2375                  */
2376                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2377                         kvm_reload_remote_mmus(kvm);
2378         }
2379
2380         sp->role.invalid = 1;
2381         return ret;
2382 }
2383
2384 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2385                                     struct list_head *invalid_list)
2386 {
2387         struct kvm_mmu_page *sp, *nsp;
2388
2389         if (list_empty(invalid_list))
2390                 return;
2391
2392         /*
2393          * wmb: make sure everyone sees our modifications to the page tables
2394          * rmb: make sure we see changes to vcpu->mode
2395          */
2396         smp_mb();
2397
2398         /*
2399          * Wait for all vcpus to exit guest mode and/or lockless shadow
2400          * page table walks.
2401          */
2402         kvm_flush_remote_tlbs(kvm);
2403
2404         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2405                 WARN_ON(!sp->role.invalid || sp->root_count);
2406                 kvm_mmu_free_page(sp);
2407         }
2408 }
2409
2410 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2411                                         struct list_head *invalid_list)
2412 {
2413         struct kvm_mmu_page *sp;
2414
2415         if (list_empty(&kvm->arch.active_mmu_pages))
2416                 return false;
2417
2418         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2419                              struct kvm_mmu_page, link);
2420         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2421
2422         return true;
2423 }
2424
2425 /*
2426  * Changing the number of mmu pages allocated to the vm
2427  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2428  */
2429 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2430 {
2431         LIST_HEAD(invalid_list);
2432
2433         spin_lock(&kvm->mmu_lock);
2434
2435         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2436                 /* Need to free some mmu pages to achieve the goal. */
2437                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2438                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2439                                 break;
2440
2441                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2442                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2443         }
2444
2445         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2446
2447         spin_unlock(&kvm->mmu_lock);
2448 }
2449
2450 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2451 {
2452         struct kvm_mmu_page *sp;
2453         LIST_HEAD(invalid_list);
2454         int r;
2455
2456         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2457         r = 0;
2458         spin_lock(&kvm->mmu_lock);
2459         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2460                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2461                          sp->role.word);
2462                 r = 1;
2463                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2464         }
2465         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2466         spin_unlock(&kvm->mmu_lock);
2467
2468         return r;
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2471
2472 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2473 {
2474         trace_kvm_mmu_unsync_page(sp);
2475         ++vcpu->kvm->stat.mmu_unsync;
2476         sp->unsync = 1;
2477
2478         kvm_mmu_mark_parents_unsync(sp);
2479 }
2480
2481 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2482                                    bool can_unsync)
2483 {
2484         struct kvm_mmu_page *sp;
2485
2486         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2487                 return true;
2488
2489         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2490                 if (!can_unsync)
2491                         return true;
2492
2493                 if (sp->unsync)
2494                         continue;
2495
2496                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2497                 kvm_unsync_page(vcpu, sp);
2498         }
2499
2500         return false;
2501 }
2502
2503 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2504 {
2505         if (pfn_valid(pfn))
2506                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2507
2508         return true;
2509 }
2510
2511 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2512                     unsigned pte_access, int level,
2513                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2514                     bool can_unsync, bool host_writable)
2515 {
2516         u64 spte;
2517         int ret = 0;
2518
2519         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2520                 return 0;
2521
2522         spte = PT_PRESENT_MASK;
2523         if (!speculative)
2524                 spte |= shadow_accessed_mask;
2525
2526         if (pte_access & ACC_EXEC_MASK)
2527                 spte |= shadow_x_mask;
2528         else
2529                 spte |= shadow_nx_mask;
2530
2531         if (pte_access & ACC_USER_MASK)
2532                 spte |= shadow_user_mask;
2533
2534         if (level > PT_PAGE_TABLE_LEVEL)
2535                 spte |= PT_PAGE_SIZE_MASK;
2536         if (tdp_enabled)
2537                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2538                         kvm_is_mmio_pfn(pfn));
2539
2540         if (host_writable)
2541                 spte |= SPTE_HOST_WRITEABLE;
2542         else
2543                 pte_access &= ~ACC_WRITE_MASK;
2544
2545         spte |= (u64)pfn << PAGE_SHIFT;
2546
2547         if (pte_access & ACC_WRITE_MASK) {
2548
2549                 /*
2550                  * Other vcpu creates new sp in the window between
2551                  * mapping_level() and acquiring mmu-lock. We can
2552                  * allow guest to retry the access, the mapping can
2553                  * be fixed if guest refault.
2554                  */
2555                 if (level > PT_PAGE_TABLE_LEVEL &&
2556                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2557                         goto done;
2558
2559                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2560
2561                 /*
2562                  * Optimization: for pte sync, if spte was writable the hash
2563                  * lookup is unnecessary (and expensive). Write protection
2564                  * is responsibility of mmu_get_page / kvm_sync_page.
2565                  * Same reasoning can be applied to dirty page accounting.
2566                  */
2567                 if (!can_unsync && is_writable_pte(*sptep))
2568                         goto set_pte;
2569
2570                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2571                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2572                                  __func__, gfn);
2573                         ret = 1;
2574                         pte_access &= ~ACC_WRITE_MASK;
2575                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2576                 }
2577         }
2578
2579         if (pte_access & ACC_WRITE_MASK) {
2580                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2581                 spte |= shadow_dirty_mask;
2582         }
2583
2584 set_pte:
2585         if (mmu_spte_update(sptep, spte))
2586                 kvm_flush_remote_tlbs(vcpu->kvm);
2587 done:
2588         return ret;
2589 }
2590
2591 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2592                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2593                          bool speculative, bool host_writable)
2594 {
2595         int was_rmapped = 0;
2596         int rmap_count;
2597         bool emulate = false;
2598
2599         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2600                  *sptep, write_fault, gfn);
2601
2602         if (is_shadow_present_pte(*sptep)) {
2603                 /*
2604                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2605                  * the parent of the now unreachable PTE.
2606                  */
2607                 if (level > PT_PAGE_TABLE_LEVEL &&
2608                     !is_large_pte(*sptep)) {
2609                         struct kvm_mmu_page *child;
2610                         u64 pte = *sptep;
2611
2612                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2613                         drop_parent_pte(child, sptep);
2614                         kvm_flush_remote_tlbs(vcpu->kvm);
2615                 } else if (pfn != spte_to_pfn(*sptep)) {
2616                         pgprintk("hfn old %llx new %llx\n",
2617                                  spte_to_pfn(*sptep), pfn);
2618                         drop_spte(vcpu->kvm, sptep);
2619                         kvm_flush_remote_tlbs(vcpu->kvm);
2620                 } else
2621                         was_rmapped = 1;
2622         }
2623
2624         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2625               true, host_writable)) {
2626                 if (write_fault)
2627                         emulate = true;
2628                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2629         }
2630
2631         if (unlikely(is_mmio_spte(*sptep)))
2632                 emulate = true;
2633
2634         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2635         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2636                  is_large_pte(*sptep)? "2MB" : "4kB",
2637                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2638                  *sptep, sptep);
2639         if (!was_rmapped && is_large_pte(*sptep))
2640                 ++vcpu->kvm->stat.lpages;
2641
2642         if (is_shadow_present_pte(*sptep)) {
2643                 if (!was_rmapped) {
2644                         rmap_count = rmap_add(vcpu, sptep, gfn);
2645                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2646                                 rmap_recycle(vcpu, sptep, gfn);
2647                 }
2648         }
2649
2650         kvm_release_pfn_clean(pfn);
2651
2652         return emulate;
2653 }
2654
2655 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2656                                      bool no_dirty_log)
2657 {
2658         struct kvm_memory_slot *slot;
2659
2660         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2661         if (!slot)
2662                 return KVM_PFN_ERR_FAULT;
2663
2664         return gfn_to_pfn_memslot_atomic(slot, gfn);
2665 }
2666
2667 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2668                                     struct kvm_mmu_page *sp,
2669                                     u64 *start, u64 *end)
2670 {
2671         struct page *pages[PTE_PREFETCH_NUM];
2672         struct kvm_memory_slot *slot;
2673         unsigned access = sp->role.access;
2674         int i, ret;
2675         gfn_t gfn;
2676
2677         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2678         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2679         if (!slot)
2680                 return -1;
2681
2682         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2683         if (ret <= 0)
2684                 return -1;
2685
2686         for (i = 0; i < ret; i++, gfn++, start++)
2687                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2688                              page_to_pfn(pages[i]), true, true);
2689
2690         return 0;
2691 }
2692
2693 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2694                                   struct kvm_mmu_page *sp, u64 *sptep)
2695 {
2696         u64 *spte, *start = NULL;
2697         int i;
2698
2699         WARN_ON(!sp->role.direct);
2700
2701         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2702         spte = sp->spt + i;
2703
2704         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2705                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2706                         if (!start)
2707                                 continue;
2708                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2709                                 break;
2710                         start = NULL;
2711                 } else if (!start)
2712                         start = spte;
2713         }
2714 }
2715
2716 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2717 {
2718         struct kvm_mmu_page *sp;
2719
2720         /*
2721          * Since it's no accessed bit on EPT, it's no way to
2722          * distinguish between actually accessed translations
2723          * and prefetched, so disable pte prefetch if EPT is
2724          * enabled.
2725          */
2726         if (!shadow_accessed_mask)
2727                 return;
2728
2729         sp = page_header(__pa(sptep));
2730         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2731                 return;
2732
2733         __direct_pte_prefetch(vcpu, sp, sptep);
2734 }
2735
2736 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2737                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2738 {
2739         struct kvm_shadow_walk_iterator iterator;
2740         struct kvm_mmu_page *sp;
2741         int emulate = 0;
2742         gfn_t pseudo_gfn;
2743
2744         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2745                 return 0;
2746
2747         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2748                 if (iterator.level == level) {
2749                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2750                                                write, level, gfn, pfn, prefault,
2751                                                map_writable);
2752                         direct_pte_prefetch(vcpu, iterator.sptep);
2753                         ++vcpu->stat.pf_fixed;
2754                         break;
2755                 }
2756
2757                 drop_large_spte(vcpu, iterator.sptep);
2758                 if (!is_shadow_present_pte(*iterator.sptep)) {
2759                         u64 base_addr = iterator.addr;
2760
2761                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2762                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2763                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2764                                               iterator.level - 1, 1, ACC_ALL);
2765
2766                         link_shadow_page(vcpu, iterator.sptep, sp);
2767                 }
2768         }
2769         return emulate;
2770 }
2771
2772 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2773 {
2774         siginfo_t info;
2775
2776         info.si_signo   = SIGBUS;
2777         info.si_errno   = 0;
2778         info.si_code    = BUS_MCEERR_AR;
2779         info.si_addr    = (void __user *)address;
2780         info.si_addr_lsb = PAGE_SHIFT;
2781
2782         send_sig_info(SIGBUS, &info, tsk);
2783 }
2784
2785 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2786 {
2787         /*
2788          * Do not cache the mmio info caused by writing the readonly gfn
2789          * into the spte otherwise read access on readonly gfn also can
2790          * caused mmio page fault and treat it as mmio access.
2791          * Return 1 to tell kvm to emulate it.
2792          */
2793         if (pfn == KVM_PFN_ERR_RO_FAULT)
2794                 return 1;
2795
2796         if (pfn == KVM_PFN_ERR_HWPOISON) {
2797                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2798                 return 0;
2799         }
2800
2801         return -EFAULT;
2802 }
2803
2804 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2805                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2806                                         int *levelp)
2807 {
2808         kvm_pfn_t pfn = *pfnp;
2809         gfn_t gfn = *gfnp;
2810         int level = *levelp;
2811
2812         /*
2813          * Check if it's a transparent hugepage. If this would be an
2814          * hugetlbfs page, level wouldn't be set to
2815          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2816          * here.
2817          */
2818         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2819             level == PT_PAGE_TABLE_LEVEL &&
2820             PageTransCompound(pfn_to_page(pfn)) &&
2821             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2822                 unsigned long mask;
2823                 /*
2824                  * mmu_notifier_retry was successful and we hold the
2825                  * mmu_lock here, so the pmd can't become splitting
2826                  * from under us, and in turn
2827                  * __split_huge_page_refcount() can't run from under
2828                  * us and we can safely transfer the refcount from
2829                  * PG_tail to PG_head as we switch the pfn to tail to
2830                  * head.
2831                  */
2832                 *levelp = level = PT_DIRECTORY_LEVEL;
2833                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2834                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2835                 if (pfn & mask) {
2836                         gfn &= ~mask;
2837                         *gfnp = gfn;
2838                         kvm_release_pfn_clean(pfn);
2839                         pfn &= ~mask;
2840                         kvm_get_pfn(pfn);
2841                         *pfnp = pfn;
2842                 }
2843         }
2844 }
2845
2846 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2847                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2848 {
2849         /* The pfn is invalid, report the error! */
2850         if (unlikely(is_error_pfn(pfn))) {
2851                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2852                 return true;
2853         }
2854
2855         if (unlikely(is_noslot_pfn(pfn)))
2856                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2857
2858         return false;
2859 }
2860
2861 static bool page_fault_can_be_fast(u32 error_code)
2862 {
2863         /*
2864          * Do not fix the mmio spte with invalid generation number which
2865          * need to be updated by slow page fault path.
2866          */
2867         if (unlikely(error_code & PFERR_RSVD_MASK))
2868                 return false;
2869
2870         /*
2871          * #PF can be fast only if the shadow page table is present and it
2872          * is caused by write-protect, that means we just need change the
2873          * W bit of the spte which can be done out of mmu-lock.
2874          */
2875         if (!(error_code & PFERR_PRESENT_MASK) ||
2876               !(error_code & PFERR_WRITE_MASK))
2877                 return false;
2878
2879         return true;
2880 }
2881
2882 static bool
2883 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2884                         u64 *sptep, u64 spte)
2885 {
2886         gfn_t gfn;
2887
2888         WARN_ON(!sp->role.direct);
2889
2890         /*
2891          * The gfn of direct spte is stable since it is calculated
2892          * by sp->gfn.
2893          */
2894         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2895
2896         /*
2897          * Theoretically we could also set dirty bit (and flush TLB) here in
2898          * order to eliminate unnecessary PML logging. See comments in
2899          * set_spte. But fast_page_fault is very unlikely to happen with PML
2900          * enabled, so we do not do this. This might result in the same GPA
2901          * to be logged in PML buffer again when the write really happens, and
2902          * eventually to be called by mark_page_dirty twice. But it's also no
2903          * harm. This also avoids the TLB flush needed after setting dirty bit
2904          * so non-PML cases won't be impacted.
2905          *
2906          * Compare with set_spte where instead shadow_dirty_mask is set.
2907          */
2908         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2909                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2910
2911         return true;
2912 }
2913
2914 /*
2915  * Return value:
2916  * - true: let the vcpu to access on the same address again.
2917  * - false: let the real page fault path to fix it.
2918  */
2919 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2920                             u32 error_code)
2921 {
2922         struct kvm_shadow_walk_iterator iterator;
2923         struct kvm_mmu_page *sp;
2924         bool ret = false;
2925         u64 spte = 0ull;
2926
2927         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2928                 return false;
2929
2930         if (!page_fault_can_be_fast(error_code))
2931                 return false;
2932
2933         walk_shadow_page_lockless_begin(vcpu);
2934         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2935                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2936                         break;
2937
2938         /*
2939          * If the mapping has been changed, let the vcpu fault on the
2940          * same address again.
2941          */
2942         if (!is_shadow_present_pte(spte)) {
2943                 ret = true;
2944                 goto exit;
2945         }
2946
2947         sp = page_header(__pa(iterator.sptep));
2948         if (!is_last_spte(spte, sp->role.level))
2949                 goto exit;
2950
2951         /*
2952          * Check if it is a spurious fault caused by TLB lazily flushed.
2953          *
2954          * Need not check the access of upper level table entries since
2955          * they are always ACC_ALL.
2956          */
2957          if (is_writable_pte(spte)) {
2958                 ret = true;
2959                 goto exit;
2960         }
2961
2962         /*
2963          * Currently, to simplify the code, only the spte write-protected
2964          * by dirty-log can be fast fixed.
2965          */
2966         if (!spte_is_locklessly_modifiable(spte))
2967                 goto exit;
2968
2969         /*
2970          * Do not fix write-permission on the large spte since we only dirty
2971          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2972          * that means other pages are missed if its slot is dirty-logged.
2973          *
2974          * Instead, we let the slow page fault path create a normal spte to
2975          * fix the access.
2976          *
2977          * See the comments in kvm_arch_commit_memory_region().
2978          */
2979         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2980                 goto exit;
2981
2982         /*
2983          * Currently, fast page fault only works for direct mapping since
2984          * the gfn is not stable for indirect shadow page.
2985          * See Documentation/virtual/kvm/locking.txt to get more detail.
2986          */
2987         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2988 exit:
2989         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2990                               spte, ret);
2991         walk_shadow_page_lockless_end(vcpu);
2992
2993         return ret;
2994 }
2995
2996 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2997                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2998 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2999
3000 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3001                          gfn_t gfn, bool prefault)
3002 {
3003         int r;
3004         int level;
3005         bool force_pt_level = false;
3006         kvm_pfn_t pfn;
3007         unsigned long mmu_seq;
3008         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3009
3010         level = mapping_level(vcpu, gfn, &force_pt_level);
3011         if (likely(!force_pt_level)) {
3012                 /*
3013                  * This path builds a PAE pagetable - so we can map
3014                  * 2mb pages at maximum. Therefore check if the level
3015                  * is larger than that.
3016                  */
3017                 if (level > PT_DIRECTORY_LEVEL)
3018                         level = PT_DIRECTORY_LEVEL;
3019
3020                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3021         }
3022
3023         if (fast_page_fault(vcpu, v, level, error_code))
3024                 return 0;
3025
3026         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3027         smp_rmb();
3028
3029         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3030                 return 0;
3031
3032         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3033                 return r;
3034
3035         spin_lock(&vcpu->kvm->mmu_lock);
3036         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3037                 goto out_unlock;
3038         make_mmu_pages_available(vcpu);
3039         if (likely(!force_pt_level))
3040                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3041         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3042         spin_unlock(&vcpu->kvm->mmu_lock);
3043
3044         return r;
3045
3046 out_unlock:
3047         spin_unlock(&vcpu->kvm->mmu_lock);
3048         kvm_release_pfn_clean(pfn);
3049         return 0;
3050 }
3051
3052
3053 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3054 {
3055         int i;
3056         struct kvm_mmu_page *sp;
3057         LIST_HEAD(invalid_list);
3058
3059         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3060                 return;
3061
3062         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3063             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3064              vcpu->arch.mmu.direct_map)) {
3065                 hpa_t root = vcpu->arch.mmu.root_hpa;
3066
3067                 spin_lock(&vcpu->kvm->mmu_lock);
3068                 sp = page_header(root);
3069                 --sp->root_count;
3070                 if (!sp->root_count && sp->role.invalid) {
3071                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3072                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3073                 }
3074                 spin_unlock(&vcpu->kvm->mmu_lock);
3075                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3076                 return;
3077         }
3078
3079         spin_lock(&vcpu->kvm->mmu_lock);
3080         for (i = 0; i < 4; ++i) {
3081                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3082
3083                 if (root) {
3084                         root &= PT64_BASE_ADDR_MASK;
3085                         sp = page_header(root);
3086                         --sp->root_count;
3087                         if (!sp->root_count && sp->role.invalid)
3088                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3089                                                          &invalid_list);
3090                 }
3091                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3092         }
3093         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3094         spin_unlock(&vcpu->kvm->mmu_lock);
3095         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3096 }
3097
3098 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3099 {
3100         int ret = 0;
3101
3102         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3103                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3104                 ret = 1;
3105         }
3106
3107         return ret;
3108 }
3109
3110 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3111 {
3112         struct kvm_mmu_page *sp;
3113         unsigned i;
3114
3115         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3116                 spin_lock(&vcpu->kvm->mmu_lock);
3117                 make_mmu_pages_available(vcpu);
3118                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3119                 ++sp->root_count;
3120                 spin_unlock(&vcpu->kvm->mmu_lock);
3121                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3122         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3123                 for (i = 0; i < 4; ++i) {
3124                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3125
3126                         MMU_WARN_ON(VALID_PAGE(root));
3127                         spin_lock(&vcpu->kvm->mmu_lock);
3128                         make_mmu_pages_available(vcpu);
3129                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3130                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3131                         root = __pa(sp->spt);
3132                         ++sp->root_count;
3133                         spin_unlock(&vcpu->kvm->mmu_lock);
3134                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3135                 }
3136                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3137         } else
3138                 BUG();
3139
3140         return 0;
3141 }
3142
3143 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3144 {
3145         struct kvm_mmu_page *sp;
3146         u64 pdptr, pm_mask;
3147         gfn_t root_gfn;
3148         int i;
3149
3150         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3151
3152         if (mmu_check_root(vcpu, root_gfn))
3153                 return 1;
3154
3155         /*
3156          * Do we shadow a long mode page table? If so we need to
3157          * write-protect the guests page table root.
3158          */
3159         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3160                 hpa_t root = vcpu->arch.mmu.root_hpa;
3161
3162                 MMU_WARN_ON(VALID_PAGE(root));
3163
3164                 spin_lock(&vcpu->kvm->mmu_lock);
3165                 make_mmu_pages_available(vcpu);
3166                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3167                                       0, ACC_ALL);
3168                 root = __pa(sp->spt);
3169                 ++sp->root_count;
3170                 spin_unlock(&vcpu->kvm->mmu_lock);
3171                 vcpu->arch.mmu.root_hpa = root;
3172                 return 0;
3173         }
3174
3175         /*
3176          * We shadow a 32 bit page table. This may be a legacy 2-level
3177          * or a PAE 3-level page table. In either case we need to be aware that
3178          * the shadow page table may be a PAE or a long mode page table.
3179          */
3180         pm_mask = PT_PRESENT_MASK;
3181         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3182                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3183
3184         for (i = 0; i < 4; ++i) {
3185                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3186
3187                 MMU_WARN_ON(VALID_PAGE(root));
3188                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3189                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3190                         if (!is_present_gpte(pdptr)) {
3191                                 vcpu->arch.mmu.pae_root[i] = 0;
3192                                 continue;
3193                         }
3194                         root_gfn = pdptr >> PAGE_SHIFT;
3195                         if (mmu_check_root(vcpu, root_gfn))
3196                                 return 1;
3197                 }
3198                 spin_lock(&vcpu->kvm->mmu_lock);
3199                 make_mmu_pages_available(vcpu);
3200                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3201                                       0, ACC_ALL);
3202                 root = __pa(sp->spt);
3203                 ++sp->root_count;
3204                 spin_unlock(&vcpu->kvm->mmu_lock);
3205
3206                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3207         }
3208         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3209
3210         /*
3211          * If we shadow a 32 bit page table with a long mode page
3212          * table we enter this path.
3213          */
3214         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3215                 if (vcpu->arch.mmu.lm_root == NULL) {
3216                         /*
3217                          * The additional page necessary for this is only
3218                          * allocated on demand.
3219                          */
3220
3221                         u64 *lm_root;
3222
3223                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3224                         if (lm_root == NULL)
3225                                 return 1;
3226
3227                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3228
3229                         vcpu->arch.mmu.lm_root = lm_root;
3230                 }
3231
3232                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3233         }
3234
3235         return 0;
3236 }
3237
3238 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3239 {
3240         if (vcpu->arch.mmu.direct_map)
3241                 return mmu_alloc_direct_roots(vcpu);
3242         else
3243                 return mmu_alloc_shadow_roots(vcpu);
3244 }
3245
3246 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3247 {
3248         int i;
3249         struct kvm_mmu_page *sp;
3250
3251         if (vcpu->arch.mmu.direct_map)
3252                 return;
3253
3254         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3255                 return;
3256
3257         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3258         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3259         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3260                 hpa_t root = vcpu->arch.mmu.root_hpa;
3261                 sp = page_header(root);
3262                 mmu_sync_children(vcpu, sp);
3263                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3264                 return;
3265         }
3266         for (i = 0; i < 4; ++i) {
3267                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3268
3269                 if (root && VALID_PAGE(root)) {
3270                         root &= PT64_BASE_ADDR_MASK;
3271                         sp = page_header(root);
3272                         mmu_sync_children(vcpu, sp);
3273                 }
3274         }
3275         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3276 }
3277
3278 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3279 {
3280         spin_lock(&vcpu->kvm->mmu_lock);
3281         mmu_sync_roots(vcpu);
3282         spin_unlock(&vcpu->kvm->mmu_lock);
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3285
3286 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3287                                   u32 access, struct x86_exception *exception)
3288 {
3289         if (exception)
3290                 exception->error_code = 0;
3291         return vaddr;
3292 }
3293
3294 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3295                                          u32 access,
3296                                          struct x86_exception *exception)
3297 {
3298         if (exception)
3299                 exception->error_code = 0;
3300         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3301 }
3302
3303 static bool
3304 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3305 {
3306         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3307
3308         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3309                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3310 }
3311
3312 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3313 {
3314         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3315 }
3316
3317 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3318 {
3319         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3320 }
3321
3322 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3323 {
3324         if (direct)
3325                 return vcpu_match_mmio_gpa(vcpu, addr);
3326
3327         return vcpu_match_mmio_gva(vcpu, addr);
3328 }
3329
3330 /* return true if reserved bit is detected on spte. */
3331 static bool
3332 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3333 {
3334         struct kvm_shadow_walk_iterator iterator;
3335         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3336         int root, leaf;
3337         bool reserved = false;
3338
3339         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3340                 goto exit;
3341
3342         walk_shadow_page_lockless_begin(vcpu);
3343
3344         for (shadow_walk_init(&iterator, vcpu, addr),
3345                  leaf = root = iterator.level;
3346              shadow_walk_okay(&iterator);
3347              __shadow_walk_next(&iterator, spte)) {
3348                 spte = mmu_spte_get_lockless(iterator.sptep);
3349
3350                 sptes[leaf - 1] = spte;
3351                 leaf--;
3352
3353                 if (!is_shadow_present_pte(spte))
3354                         break;
3355
3356                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3357                                                     iterator.level);
3358         }
3359
3360         walk_shadow_page_lockless_end(vcpu);
3361
3362         if (reserved) {
3363                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3364                        __func__, addr);
3365                 while (root > leaf) {
3366                         pr_err("------ spte 0x%llx level %d.\n",
3367                                sptes[root - 1], root);
3368                         root--;
3369                 }
3370         }
3371 exit:
3372         *sptep = spte;
3373         return reserved;
3374 }
3375
3376 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3377 {
3378         u64 spte;
3379         bool reserved;
3380
3381         if (mmio_info_in_cache(vcpu, addr, direct))
3382                 return RET_MMIO_PF_EMULATE;
3383
3384         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3385         if (WARN_ON(reserved))
3386                 return RET_MMIO_PF_BUG;
3387
3388         if (is_mmio_spte(spte)) {
3389                 gfn_t gfn = get_mmio_spte_gfn(spte);
3390                 unsigned access = get_mmio_spte_access(spte);
3391
3392                 if (!check_mmio_spte(vcpu, spte))
3393                         return RET_MMIO_PF_INVALID;
3394
3395                 if (direct)
3396                         addr = 0;
3397
3398                 trace_handle_mmio_page_fault(addr, gfn, access);
3399                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3400                 return RET_MMIO_PF_EMULATE;
3401         }
3402
3403         /*
3404          * If the page table is zapped by other cpus, let CPU fault again on
3405          * the address.
3406          */
3407         return RET_MMIO_PF_RETRY;
3408 }
3409 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3410
3411 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3412                                          u32 error_code, gfn_t gfn)
3413 {
3414         if (unlikely(error_code & PFERR_RSVD_MASK))
3415                 return false;
3416
3417         if (!(error_code & PFERR_PRESENT_MASK) ||
3418               !(error_code & PFERR_WRITE_MASK))
3419                 return false;
3420
3421         /*
3422          * guest is writing the page which is write tracked which can
3423          * not be fixed by page fault handler.
3424          */
3425         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3426                 return true;
3427
3428         return false;
3429 }
3430
3431 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3432 {
3433         struct kvm_shadow_walk_iterator iterator;
3434         u64 spte;
3435
3436         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3437                 return;
3438
3439         walk_shadow_page_lockless_begin(vcpu);
3440         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3441                 clear_sp_write_flooding_count(iterator.sptep);
3442                 if (!is_shadow_present_pte(spte))
3443                         break;
3444         }
3445         walk_shadow_page_lockless_end(vcpu);
3446 }
3447
3448 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3449                                 u32 error_code, bool prefault)
3450 {
3451         gfn_t gfn = gva >> PAGE_SHIFT;
3452         int r;
3453
3454         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3455
3456         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3457                 return 1;
3458
3459         r = mmu_topup_memory_caches(vcpu);
3460         if (r)
3461                 return r;
3462
3463         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3464
3465
3466         return nonpaging_map(vcpu, gva & PAGE_MASK,
3467                              error_code, gfn, prefault);
3468 }
3469
3470 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3471 {
3472         struct kvm_arch_async_pf arch;
3473
3474         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3475         arch.gfn = gfn;
3476         arch.direct_map = vcpu->arch.mmu.direct_map;
3477         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3478
3479         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3480 }
3481
3482 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3483 {
3484         if (unlikely(!lapic_in_kernel(vcpu) ||
3485                      kvm_event_needs_reinjection(vcpu)))
3486                 return false;
3487
3488         return kvm_x86_ops->interrupt_allowed(vcpu);
3489 }
3490
3491 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3492                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3493 {
3494         struct kvm_memory_slot *slot;
3495         bool async;
3496
3497         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3498         async = false;
3499         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3500         if (!async)
3501                 return false; /* *pfn has correct page already */
3502
3503         if (!prefault && can_do_async_pf(vcpu)) {
3504                 trace_kvm_try_async_get_page(gva, gfn);
3505                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3506                         trace_kvm_async_pf_doublefault(gva, gfn);
3507                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3508                         return true;
3509                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3510                         return true;
3511         }
3512
3513         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3514         return false;
3515 }
3516
3517 static bool
3518 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3519 {
3520         int page_num = KVM_PAGES_PER_HPAGE(level);
3521
3522         gfn &= ~(page_num - 1);
3523
3524         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3525 }
3526
3527 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3528                           bool prefault)
3529 {
3530         kvm_pfn_t pfn;
3531         int r;
3532         int level;
3533         bool force_pt_level;
3534         gfn_t gfn = gpa >> PAGE_SHIFT;
3535         unsigned long mmu_seq;
3536         int write = error_code & PFERR_WRITE_MASK;
3537         bool map_writable;
3538
3539         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3540
3541         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3542                 return 1;
3543
3544         r = mmu_topup_memory_caches(vcpu);
3545         if (r)
3546                 return r;
3547
3548         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3549                                                            PT_DIRECTORY_LEVEL);
3550         level = mapping_level(vcpu, gfn, &force_pt_level);
3551         if (likely(!force_pt_level)) {
3552                 if (level > PT_DIRECTORY_LEVEL &&
3553                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3554                         level = PT_DIRECTORY_LEVEL;
3555                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3556         }
3557
3558         if (fast_page_fault(vcpu, gpa, level, error_code))
3559                 return 0;
3560
3561         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3562         smp_rmb();
3563
3564         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3565                 return 0;
3566
3567         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3568                 return r;
3569
3570         spin_lock(&vcpu->kvm->mmu_lock);
3571         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3572                 goto out_unlock;
3573         make_mmu_pages_available(vcpu);
3574         if (likely(!force_pt_level))
3575                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3576         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3577         spin_unlock(&vcpu->kvm->mmu_lock);
3578
3579         return r;
3580
3581 out_unlock:
3582         spin_unlock(&vcpu->kvm->mmu_lock);
3583         kvm_release_pfn_clean(pfn);
3584         return 0;
3585 }
3586
3587 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3588                                    struct kvm_mmu *context)
3589 {
3590         context->page_fault = nonpaging_page_fault;
3591         context->gva_to_gpa = nonpaging_gva_to_gpa;
3592         context->sync_page = nonpaging_sync_page;
3593         context->invlpg = nonpaging_invlpg;
3594         context->update_pte = nonpaging_update_pte;
3595         context->root_level = 0;
3596         context->shadow_root_level = PT32E_ROOT_LEVEL;
3597         context->root_hpa = INVALID_PAGE;
3598         context->direct_map = true;
3599         context->nx = false;
3600 }
3601
3602 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3603 {
3604         mmu_free_roots(vcpu);
3605 }
3606
3607 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3608 {
3609         return kvm_read_cr3(vcpu);
3610 }
3611
3612 static void inject_page_fault(struct kvm_vcpu *vcpu,
3613                               struct x86_exception *fault)
3614 {
3615         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3616 }
3617
3618 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3619                            unsigned access, int *nr_present)
3620 {
3621         if (unlikely(is_mmio_spte(*sptep))) {
3622                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3623                         mmu_spte_clear_no_track(sptep);
3624                         return true;
3625                 }
3626
3627                 (*nr_present)++;
3628                 mark_mmio_spte(vcpu, sptep, gfn, access);
3629                 return true;
3630         }
3631
3632         return false;
3633 }
3634
3635 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3636                                 unsigned level, unsigned gpte)
3637 {
3638         /*
3639          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3640          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3641          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3642          */
3643         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3644
3645         /*
3646          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3647          * If it is clear, there are no large pages at this level, so clear
3648          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3649          */
3650         gpte &= level - mmu->last_nonleaf_level;
3651
3652         return gpte & PT_PAGE_SIZE_MASK;
3653 }
3654
3655 #define PTTYPE_EPT 18 /* arbitrary */
3656 #define PTTYPE PTTYPE_EPT
3657 #include "paging_tmpl.h"
3658 #undef PTTYPE
3659
3660 #define PTTYPE 64
3661 #include "paging_tmpl.h"
3662 #undef PTTYPE
3663
3664 #define PTTYPE 32
3665 #include "paging_tmpl.h"
3666 #undef PTTYPE
3667
3668 static void
3669 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3670                         struct rsvd_bits_validate *rsvd_check,
3671                         int maxphyaddr, int level, bool nx, bool gbpages,
3672                         bool pse, bool amd)
3673 {
3674         u64 exb_bit_rsvd = 0;
3675         u64 gbpages_bit_rsvd = 0;
3676         u64 nonleaf_bit8_rsvd = 0;
3677
3678         rsvd_check->bad_mt_xwr = 0;
3679
3680         if (!nx)
3681                 exb_bit_rsvd = rsvd_bits(63, 63);
3682         if (!gbpages)
3683                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3684
3685         /*
3686          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3687          * leaf entries) on AMD CPUs only.
3688          */
3689         if (amd)
3690                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3691
3692         switch (level) {
3693         case PT32_ROOT_LEVEL:
3694                 /* no rsvd bits for 2 level 4K page table entries */
3695                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3696                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3697                 rsvd_check->rsvd_bits_mask[1][0] =
3698                         rsvd_check->rsvd_bits_mask[0][0];
3699
3700                 if (!pse) {
3701                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3702                         break;
3703                 }
3704
3705                 if (is_cpuid_PSE36())
3706                         /* 36bits PSE 4MB page */
3707                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3708                 else
3709                         /* 32 bits PSE 4MB page */
3710                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3711                 break;
3712         case PT32E_ROOT_LEVEL:
3713                 rsvd_check->rsvd_bits_mask[0][2] =
3714                         rsvd_bits(maxphyaddr, 63) |
3715                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3716                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3717                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3718                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3719                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3720                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3721                         rsvd_bits(maxphyaddr, 62) |
3722                         rsvd_bits(13, 20);              /* large page */
3723                 rsvd_check->rsvd_bits_mask[1][0] =
3724                         rsvd_check->rsvd_bits_mask[0][0];
3725                 break;
3726         case PT64_ROOT_LEVEL:
3727                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3728                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3729                         rsvd_bits(maxphyaddr, 51);
3730                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3731                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3732                         rsvd_bits(maxphyaddr, 51);
3733                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3734                         rsvd_bits(maxphyaddr, 51);
3735                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3736                         rsvd_bits(maxphyaddr, 51);
3737                 rsvd_check->rsvd_bits_mask[1][3] =
3738                         rsvd_check->rsvd_bits_mask[0][3];
3739                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3740                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3741                         rsvd_bits(13, 29);
3742                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3743                         rsvd_bits(maxphyaddr, 51) |
3744                         rsvd_bits(13, 20);              /* large page */
3745                 rsvd_check->rsvd_bits_mask[1][0] =
3746                         rsvd_check->rsvd_bits_mask[0][0];
3747                 break;
3748         }
3749 }
3750
3751 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3752                                   struct kvm_mmu *context)
3753 {
3754         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3755                                 cpuid_maxphyaddr(vcpu), context->root_level,
3756                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3757                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3758 }
3759
3760 static void
3761 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3762                             int maxphyaddr, bool execonly)
3763 {
3764         u64 bad_mt_xwr;
3765
3766         rsvd_check->rsvd_bits_mask[0][3] =
3767                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3768         rsvd_check->rsvd_bits_mask[0][2] =
3769                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3770         rsvd_check->rsvd_bits_mask[0][1] =
3771                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3772         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3773
3774         /* large page */
3775         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3776         rsvd_check->rsvd_bits_mask[1][2] =
3777                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3778         rsvd_check->rsvd_bits_mask[1][1] =
3779                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3780         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3781
3782         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3783         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3784         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3785         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3786         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3787         if (!execonly) {
3788                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3789                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3790         }
3791         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3792 }
3793
3794 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3795                 struct kvm_mmu *context, bool execonly)
3796 {
3797         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3798                                     cpuid_maxphyaddr(vcpu), execonly);
3799 }
3800
3801 /*
3802  * the page table on host is the shadow page table for the page
3803  * table in guest or amd nested guest, its mmu features completely
3804  * follow the features in guest.
3805  */
3806 void
3807 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3808 {
3809         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3810
3811         /*
3812          * Passing "true" to the last argument is okay; it adds a check
3813          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3814          */
3815         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3816                                 boot_cpu_data.x86_phys_bits,
3817                                 context->shadow_root_level, uses_nx,
3818                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3819                                 true);
3820 }
3821 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3822
3823 static inline bool boot_cpu_is_amd(void)
3824 {
3825         WARN_ON_ONCE(!tdp_enabled);
3826         return shadow_x_mask == 0;
3827 }
3828
3829 /*
3830  * the direct page table on host, use as much mmu features as
3831  * possible, however, kvm currently does not do execution-protection.
3832  */
3833 static void
3834 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3835                                 struct kvm_mmu *context)
3836 {
3837         if (boot_cpu_is_amd())
3838                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3839                                         boot_cpu_data.x86_phys_bits,
3840                                         context->shadow_root_level, false,
3841                                         cpu_has_gbpages, true, true);
3842         else
3843                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3844                                             boot_cpu_data.x86_phys_bits,
3845                                             false);
3846
3847 }
3848
3849 /*
3850  * as the comments in reset_shadow_zero_bits_mask() except it
3851  * is the shadow page table for intel nested guest.
3852  */
3853 static void
3854 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3855                                 struct kvm_mmu *context, bool execonly)
3856 {
3857         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3858                                     boot_cpu_data.x86_phys_bits, execonly);
3859 }
3860
3861 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3862                                       struct kvm_mmu *mmu, bool ept)
3863 {
3864         unsigned bit, byte, pfec;
3865         u8 map;
3866         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3867
3868         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3869         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3870         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3871                 pfec = byte << 1;
3872                 map = 0;
3873                 wf = pfec & PFERR_WRITE_MASK;
3874                 uf = pfec & PFERR_USER_MASK;
3875                 ff = pfec & PFERR_FETCH_MASK;
3876                 /*
3877                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3878                  * subject to SMAP restrictions, and cleared otherwise. The
3879                  * bit is only meaningful if the SMAP bit is set in CR4.
3880                  */
3881                 smapf = !(pfec & PFERR_RSVD_MASK);
3882                 for (bit = 0; bit < 8; ++bit) {
3883                         x = bit & ACC_EXEC_MASK;
3884                         w = bit & ACC_WRITE_MASK;
3885                         u = bit & ACC_USER_MASK;
3886
3887                         if (!ept) {
3888                                 /* Not really needed: !nx will cause pte.nx to fault */
3889                                 x |= !mmu->nx;
3890                                 /* Allow supervisor writes if !cr0.wp */
3891                                 w |= !is_write_protection(vcpu) && !uf;
3892                                 /* Disallow supervisor fetches of user code if cr4.smep */
3893                                 x &= !(cr4_smep && u && !uf);
3894
3895                                 /*
3896                                  * SMAP:kernel-mode data accesses from user-mode
3897                                  * mappings should fault. A fault is considered
3898                                  * as a SMAP violation if all of the following
3899                                  * conditions are ture:
3900                                  *   - X86_CR4_SMAP is set in CR4
3901                                  *   - An user page is accessed
3902                                  *   - Page fault in kernel mode
3903                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3904                                  *
3905                                  *   Here, we cover the first three conditions.
3906                                  *   The fourth is computed dynamically in
3907                                  *   permission_fault() and is in smapf.
3908                                  *
3909                                  *   Also, SMAP does not affect instruction
3910                                  *   fetches, add the !ff check here to make it
3911                                  *   clearer.
3912                                  */
3913                                 smap = cr4_smap && u && !uf && !ff;
3914                         } else
3915                                 /* Not really needed: no U/S accesses on ept  */
3916                                 u = 1;
3917
3918                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3919                                 (smapf && smap);
3920                         map |= fault << bit;
3921                 }
3922                 mmu->permissions[byte] = map;
3923         }
3924 }
3925
3926 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3927 {
3928         unsigned root_level = mmu->root_level;
3929
3930         mmu->last_nonleaf_level = root_level;
3931         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
3932                 mmu->last_nonleaf_level++;
3933 }
3934
3935 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3936                                          struct kvm_mmu *context,
3937                                          int level)
3938 {
3939         context->nx = is_nx(vcpu);
3940         context->root_level = level;
3941
3942         reset_rsvds_bits_mask(vcpu, context);
3943         update_permission_bitmask(vcpu, context, false);
3944         update_last_nonleaf_level(vcpu, context);
3945
3946         MMU_WARN_ON(!is_pae(vcpu));
3947         context->page_fault = paging64_page_fault;
3948         context->gva_to_gpa = paging64_gva_to_gpa;
3949         context->sync_page = paging64_sync_page;
3950         context->invlpg = paging64_invlpg;
3951         context->update_pte = paging64_update_pte;
3952         context->shadow_root_level = level;
3953         context->root_hpa = INVALID_PAGE;
3954         context->direct_map = false;
3955 }
3956
3957 static void paging64_init_context(struct kvm_vcpu *vcpu,
3958                                   struct kvm_mmu *context)
3959 {
3960         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3961 }
3962
3963 static void paging32_init_context(struct kvm_vcpu *vcpu,
3964                                   struct kvm_mmu *context)
3965 {
3966         context->nx = false;
3967         context->root_level = PT32_ROOT_LEVEL;
3968
3969         reset_rsvds_bits_mask(vcpu, context);
3970         update_permission_bitmask(vcpu, context, false);
3971         update_last_nonleaf_level(vcpu, context);
3972
3973         context->page_fault = paging32_page_fault;
3974         context->gva_to_gpa = paging32_gva_to_gpa;
3975         context->sync_page = paging32_sync_page;
3976         context->invlpg = paging32_invlpg;
3977         context->update_pte = paging32_update_pte;
3978         context->shadow_root_level = PT32E_ROOT_LEVEL;
3979         context->root_hpa = INVALID_PAGE;
3980         context->direct_map = false;
3981 }
3982
3983 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3984                                    struct kvm_mmu *context)
3985 {
3986         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3987 }
3988
3989 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3990 {
3991         struct kvm_mmu *context = &vcpu->arch.mmu;
3992
3993         context->base_role.word = 0;
3994         context->base_role.smm = is_smm(vcpu);
3995         context->page_fault = tdp_page_fault;
3996         context->sync_page = nonpaging_sync_page;
3997         context->invlpg = nonpaging_invlpg;
3998         context->update_pte = nonpaging_update_pte;
3999         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4000         context->root_hpa = INVALID_PAGE;
4001         context->direct_map = true;
4002         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4003         context->get_cr3 = get_cr3;
4004         context->get_pdptr = kvm_pdptr_read;
4005         context->inject_page_fault = kvm_inject_page_fault;
4006
4007         if (!is_paging(vcpu)) {
4008                 context->nx = false;
4009                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4010                 context->root_level = 0;
4011         } else if (is_long_mode(vcpu)) {
4012                 context->nx = is_nx(vcpu);
4013                 context->root_level = PT64_ROOT_LEVEL;
4014                 reset_rsvds_bits_mask(vcpu, context);
4015                 context->gva_to_gpa = paging64_gva_to_gpa;
4016         } else if (is_pae(vcpu)) {
4017                 context->nx = is_nx(vcpu);
4018                 context->root_level = PT32E_ROOT_LEVEL;
4019                 reset_rsvds_bits_mask(vcpu, context);
4020                 context->gva_to_gpa = paging64_gva_to_gpa;
4021         } else {
4022                 context->nx = false;
4023                 context->root_level = PT32_ROOT_LEVEL;
4024                 reset_rsvds_bits_mask(vcpu, context);
4025                 context->gva_to_gpa = paging32_gva_to_gpa;
4026         }
4027
4028         update_permission_bitmask(vcpu, context, false);
4029         update_last_nonleaf_level(vcpu, context);
4030         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4031 }
4032
4033 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4034 {
4035         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4036         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4037         struct kvm_mmu *context = &vcpu->arch.mmu;
4038
4039         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4040
4041         if (!is_paging(vcpu))
4042                 nonpaging_init_context(vcpu, context);
4043         else if (is_long_mode(vcpu))
4044                 paging64_init_context(vcpu, context);
4045         else if (is_pae(vcpu))
4046                 paging32E_init_context(vcpu, context);
4047         else
4048                 paging32_init_context(vcpu, context);
4049
4050         context->base_role.nxe = is_nx(vcpu);
4051         context->base_role.cr4_pae = !!is_pae(vcpu);
4052         context->base_role.cr0_wp  = is_write_protection(vcpu);
4053         context->base_role.smep_andnot_wp
4054                 = smep && !is_write_protection(vcpu);
4055         context->base_role.smap_andnot_wp
4056                 = smap && !is_write_protection(vcpu);
4057         context->base_role.smm = is_smm(vcpu);
4058         reset_shadow_zero_bits_mask(vcpu, context);
4059 }
4060 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4061
4062 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4063 {
4064         struct kvm_mmu *context = &vcpu->arch.mmu;
4065
4066         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4067
4068         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4069
4070         context->nx = true;
4071         context->page_fault = ept_page_fault;
4072         context->gva_to_gpa = ept_gva_to_gpa;
4073         context->sync_page = ept_sync_page;
4074         context->invlpg = ept_invlpg;
4075         context->update_pte = ept_update_pte;
4076         context->root_level = context->shadow_root_level;
4077         context->root_hpa = INVALID_PAGE;
4078         context->direct_map = false;
4079
4080         update_permission_bitmask(vcpu, context, true);
4081         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4082         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4083 }
4084 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4085
4086 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4087 {
4088         struct kvm_mmu *context = &vcpu->arch.mmu;
4089
4090         kvm_init_shadow_mmu(vcpu);
4091         context->set_cr3           = kvm_x86_ops->set_cr3;
4092         context->get_cr3           = get_cr3;
4093         context->get_pdptr         = kvm_pdptr_read;
4094         context->inject_page_fault = kvm_inject_page_fault;
4095 }
4096
4097 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4098 {
4099         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4100
4101         g_context->get_cr3           = get_cr3;
4102         g_context->get_pdptr         = kvm_pdptr_read;
4103         g_context->inject_page_fault = kvm_inject_page_fault;
4104
4105         /*
4106          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4107          * L1's nested page tables (e.g. EPT12). The nested translation
4108          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4109          * L2's page tables as the first level of translation and L1's
4110          * nested page tables as the second level of translation. Basically
4111          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4112          */
4113         if (!is_paging(vcpu)) {
4114                 g_context->nx = false;
4115                 g_context->root_level = 0;
4116                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4117         } else if (is_long_mode(vcpu)) {
4118                 g_context->nx = is_nx(vcpu);
4119                 g_context->root_level = PT64_ROOT_LEVEL;
4120                 reset_rsvds_bits_mask(vcpu, g_context);
4121                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4122         } else if (is_pae(vcpu)) {
4123                 g_context->nx = is_nx(vcpu);
4124                 g_context->root_level = PT32E_ROOT_LEVEL;
4125                 reset_rsvds_bits_mask(vcpu, g_context);
4126                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4127         } else {
4128                 g_context->nx = false;
4129                 g_context->root_level = PT32_ROOT_LEVEL;
4130                 reset_rsvds_bits_mask(vcpu, g_context);
4131                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4132         }
4133
4134         update_permission_bitmask(vcpu, g_context, false);
4135         update_last_nonleaf_level(vcpu, g_context);
4136 }
4137
4138 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4139 {
4140         if (mmu_is_nested(vcpu))
4141                 init_kvm_nested_mmu(vcpu);
4142         else if (tdp_enabled)
4143                 init_kvm_tdp_mmu(vcpu);
4144         else
4145                 init_kvm_softmmu(vcpu);
4146 }
4147
4148 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4149 {
4150         kvm_mmu_unload(vcpu);
4151         init_kvm_mmu(vcpu);
4152 }
4153 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4154
4155 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4156 {
4157         int r;
4158
4159         r = mmu_topup_memory_caches(vcpu);
4160         if (r)
4161                 goto out;
4162         r = mmu_alloc_roots(vcpu);
4163         kvm_mmu_sync_roots(vcpu);
4164         if (r)
4165                 goto out;
4166         /* set_cr3() should ensure TLB has been flushed */
4167         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4168 out:
4169         return r;
4170 }
4171 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4172
4173 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4174 {
4175         mmu_free_roots(vcpu);
4176         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4177 }
4178 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4179
4180 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4181                                   struct kvm_mmu_page *sp, u64 *spte,
4182                                   const void *new)
4183 {
4184         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4185                 ++vcpu->kvm->stat.mmu_pde_zapped;
4186                 return;
4187         }
4188
4189         ++vcpu->kvm->stat.mmu_pte_updated;
4190         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4191 }
4192
4193 static bool need_remote_flush(u64 old, u64 new)
4194 {
4195         if (!is_shadow_present_pte(old))
4196                 return false;
4197         if (!is_shadow_present_pte(new))
4198                 return true;
4199         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4200                 return true;
4201         old ^= shadow_nx_mask;
4202         new ^= shadow_nx_mask;
4203         return (old & ~new & PT64_PERM_MASK) != 0;
4204 }
4205
4206 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4207                                     const u8 *new, int *bytes)
4208 {
4209         u64 gentry;
4210         int r;
4211
4212         /*
4213          * Assume that the pte write on a page table of the same type
4214          * as the current vcpu paging mode since we update the sptes only
4215          * when they have the same mode.
4216          */
4217         if (is_pae(vcpu) && *bytes == 4) {
4218                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4219                 *gpa &= ~(gpa_t)7;
4220                 *bytes = 8;
4221                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4222                 if (r)
4223                         gentry = 0;
4224                 new = (const u8 *)&gentry;
4225         }
4226
4227         switch (*bytes) {
4228         case 4:
4229                 gentry = *(const u32 *)new;
4230                 break;
4231         case 8:
4232                 gentry = *(const u64 *)new;
4233                 break;
4234         default:
4235                 gentry = 0;
4236                 break;
4237         }
4238
4239         return gentry;
4240 }
4241
4242 /*
4243  * If we're seeing too many writes to a page, it may no longer be a page table,
4244  * or we may be forking, in which case it is better to unmap the page.
4245  */
4246 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4247 {
4248         /*
4249          * Skip write-flooding detected for the sp whose level is 1, because
4250          * it can become unsync, then the guest page is not write-protected.
4251          */
4252         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4253                 return false;
4254
4255         atomic_inc(&sp->write_flooding_count);
4256         return atomic_read(&sp->write_flooding_count) >= 3;
4257 }
4258
4259 /*
4260  * Misaligned accesses are too much trouble to fix up; also, they usually
4261  * indicate a page is not used as a page table.
4262  */
4263 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4264                                     int bytes)
4265 {
4266         unsigned offset, pte_size, misaligned;
4267
4268         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4269                  gpa, bytes, sp->role.word);
4270
4271         offset = offset_in_page(gpa);
4272         pte_size = sp->role.cr4_pae ? 8 : 4;
4273
4274         /*
4275          * Sometimes, the OS only writes the last one bytes to update status
4276          * bits, for example, in linux, andb instruction is used in clear_bit().
4277          */
4278         if (!(offset & (pte_size - 1)) && bytes == 1)
4279                 return false;
4280
4281         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4282         misaligned |= bytes < 4;
4283
4284         return misaligned;
4285 }
4286
4287 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4288 {
4289         unsigned page_offset, quadrant;
4290         u64 *spte;
4291         int level;
4292
4293         page_offset = offset_in_page(gpa);
4294         level = sp->role.level;
4295         *nspte = 1;
4296         if (!sp->role.cr4_pae) {
4297                 page_offset <<= 1;      /* 32->64 */
4298                 /*
4299                  * A 32-bit pde maps 4MB while the shadow pdes map
4300                  * only 2MB.  So we need to double the offset again
4301                  * and zap two pdes instead of one.
4302                  */
4303                 if (level == PT32_ROOT_LEVEL) {
4304                         page_offset &= ~7; /* kill rounding error */
4305                         page_offset <<= 1;
4306                         *nspte = 2;
4307                 }
4308                 quadrant = page_offset >> PAGE_SHIFT;
4309                 page_offset &= ~PAGE_MASK;
4310                 if (quadrant != sp->role.quadrant)
4311                         return NULL;
4312         }
4313
4314         spte = &sp->spt[page_offset / sizeof(*spte)];
4315         return spte;
4316 }
4317
4318 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4319                               const u8 *new, int bytes)
4320 {
4321         gfn_t gfn = gpa >> PAGE_SHIFT;
4322         struct kvm_mmu_page *sp;
4323         LIST_HEAD(invalid_list);
4324         u64 entry, gentry, *spte;
4325         int npte;
4326         bool remote_flush, local_flush;
4327         union kvm_mmu_page_role mask = { };
4328
4329         mask.cr0_wp = 1;
4330         mask.cr4_pae = 1;
4331         mask.nxe = 1;
4332         mask.smep_andnot_wp = 1;
4333         mask.smap_andnot_wp = 1;
4334         mask.smm = 1;
4335
4336         /*
4337          * If we don't have indirect shadow pages, it means no page is
4338          * write-protected, so we can exit simply.
4339          */
4340         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4341                 return;
4342
4343         remote_flush = local_flush = false;
4344
4345         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4346
4347         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4348
4349         /*
4350          * No need to care whether allocation memory is successful
4351          * or not since pte prefetch is skiped if it does not have
4352          * enough objects in the cache.
4353          */
4354         mmu_topup_memory_caches(vcpu);
4355
4356         spin_lock(&vcpu->kvm->mmu_lock);
4357         ++vcpu->kvm->stat.mmu_pte_write;
4358         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4359
4360         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4361                 if (detect_write_misaligned(sp, gpa, bytes) ||
4362                       detect_write_flooding(sp)) {
4363                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4364                         ++vcpu->kvm->stat.mmu_flooded;
4365                         continue;
4366                 }
4367
4368                 spte = get_written_sptes(sp, gpa, &npte);
4369                 if (!spte)
4370                         continue;
4371
4372                 local_flush = true;
4373                 while (npte--) {
4374                         entry = *spte;
4375                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4376                         if (gentry &&
4377                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4378                               & mask.word) && rmap_can_add(vcpu))
4379                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4380                         if (need_remote_flush(entry, *spte))
4381                                 remote_flush = true;
4382                         ++spte;
4383                 }
4384         }
4385         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4386         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4387         spin_unlock(&vcpu->kvm->mmu_lock);
4388 }
4389
4390 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4391 {
4392         gpa_t gpa;
4393         int r;
4394
4395         if (vcpu->arch.mmu.direct_map)
4396                 return 0;
4397
4398         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4399
4400         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4401
4402         return r;
4403 }
4404 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4405
4406 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4407 {
4408         LIST_HEAD(invalid_list);
4409
4410         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4411                 return;
4412
4413         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4414                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4415                         break;
4416
4417                 ++vcpu->kvm->stat.mmu_recycled;
4418         }
4419         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4420 }
4421
4422 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4423                        void *insn, int insn_len)
4424 {
4425         int r, emulation_type = EMULTYPE_RETRY;
4426         enum emulation_result er;
4427         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4428
4429         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4430                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4431                 if (r == RET_MMIO_PF_EMULATE) {
4432                         emulation_type = 0;
4433                         goto emulate;
4434                 }
4435                 if (r == RET_MMIO_PF_RETRY)
4436                         return 1;
4437                 if (r < 0)
4438                         return r;
4439         }
4440
4441         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4442         if (r < 0)
4443                 return r;
4444         if (!r)
4445                 return 1;
4446
4447         if (mmio_info_in_cache(vcpu, cr2, direct))
4448                 emulation_type = 0;
4449 emulate:
4450         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4451
4452         switch (er) {
4453         case EMULATE_DONE:
4454                 return 1;
4455         case EMULATE_USER_EXIT:
4456                 ++vcpu->stat.mmio_exits;
4457                 /* fall through */
4458         case EMULATE_FAIL:
4459                 return 0;
4460         default:
4461                 BUG();
4462         }
4463 }
4464 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4465
4466 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4467 {
4468         vcpu->arch.mmu.invlpg(vcpu, gva);
4469         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4470         ++vcpu->stat.invlpg;
4471 }
4472 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4473
4474 void kvm_enable_tdp(void)
4475 {
4476         tdp_enabled = true;
4477 }
4478 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4479
4480 void kvm_disable_tdp(void)
4481 {
4482         tdp_enabled = false;
4483 }
4484 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4485
4486 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4487 {
4488         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4489         if (vcpu->arch.mmu.lm_root != NULL)
4490                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4491 }
4492
4493 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4494 {
4495         struct page *page;
4496         int i;
4497
4498         /*
4499          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4500          * Therefore we need to allocate shadow page tables in the first
4501          * 4GB of memory, which happens to fit the DMA32 zone.
4502          */
4503         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4504         if (!page)
4505                 return -ENOMEM;
4506
4507         vcpu->arch.mmu.pae_root = page_address(page);
4508         for (i = 0; i < 4; ++i)
4509                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4510
4511         return 0;
4512 }
4513
4514 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4515 {
4516         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4517         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4518         vcpu->arch.mmu.translate_gpa = translate_gpa;
4519         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4520
4521         return alloc_mmu_pages(vcpu);
4522 }
4523
4524 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4525 {
4526         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4527
4528         init_kvm_mmu(vcpu);
4529 }
4530
4531 void kvm_mmu_init_vm(struct kvm *kvm)
4532 {
4533         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4534
4535         node->track_write = kvm_mmu_pte_write;
4536         kvm_page_track_register_notifier(kvm, node);
4537 }
4538
4539 void kvm_mmu_uninit_vm(struct kvm *kvm)
4540 {
4541         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4542
4543         kvm_page_track_unregister_notifier(kvm, node);
4544 }
4545
4546 /* The return value indicates if tlb flush on all vcpus is needed. */
4547 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4548
4549 /* The caller should hold mmu-lock before calling this function. */
4550 static bool
4551 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4552                         slot_level_handler fn, int start_level, int end_level,
4553                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4554 {
4555         struct slot_rmap_walk_iterator iterator;
4556         bool flush = false;
4557
4558         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4559                         end_gfn, &iterator) {
4560                 if (iterator.rmap)
4561                         flush |= fn(kvm, iterator.rmap);
4562
4563                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4564                         if (flush && lock_flush_tlb) {
4565                                 kvm_flush_remote_tlbs(kvm);
4566                                 flush = false;
4567                         }
4568                         cond_resched_lock(&kvm->mmu_lock);
4569                 }
4570         }
4571
4572         if (flush && lock_flush_tlb) {
4573                 kvm_flush_remote_tlbs(kvm);
4574                 flush = false;
4575         }
4576
4577         return flush;
4578 }
4579
4580 static bool
4581 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4582                   slot_level_handler fn, int start_level, int end_level,
4583                   bool lock_flush_tlb)
4584 {
4585         return slot_handle_level_range(kvm, memslot, fn, start_level,
4586                         end_level, memslot->base_gfn,
4587                         memslot->base_gfn + memslot->npages - 1,
4588                         lock_flush_tlb);
4589 }
4590
4591 static bool
4592 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4593                       slot_level_handler fn, bool lock_flush_tlb)
4594 {
4595         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4596                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4597 }
4598
4599 static bool
4600 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4601                         slot_level_handler fn, bool lock_flush_tlb)
4602 {
4603         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4604                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4605 }
4606
4607 static bool
4608 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4609                  slot_level_handler fn, bool lock_flush_tlb)
4610 {
4611         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4612                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4613 }
4614
4615 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4616 {
4617         struct kvm_memslots *slots;
4618         struct kvm_memory_slot *memslot;
4619         int i;
4620
4621         spin_lock(&kvm->mmu_lock);
4622         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4623                 slots = __kvm_memslots(kvm, i);
4624                 kvm_for_each_memslot(memslot, slots) {
4625                         gfn_t start, end;
4626
4627                         start = max(gfn_start, memslot->base_gfn);
4628                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4629                         if (start >= end)
4630                                 continue;
4631
4632                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4633                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4634                                                 start, end - 1, true);
4635                 }
4636         }
4637
4638         spin_unlock(&kvm->mmu_lock);
4639 }
4640
4641 static bool slot_rmap_write_protect(struct kvm *kvm,
4642                                     struct kvm_rmap_head *rmap_head)
4643 {
4644         return __rmap_write_protect(kvm, rmap_head, false);
4645 }
4646
4647 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4648                                       struct kvm_memory_slot *memslot)
4649 {
4650         bool flush;
4651
4652         spin_lock(&kvm->mmu_lock);
4653         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4654                                       false);
4655         spin_unlock(&kvm->mmu_lock);
4656
4657         /*
4658          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4659          * which do tlb flush out of mmu-lock should be serialized by
4660          * kvm->slots_lock otherwise tlb flush would be missed.
4661          */
4662         lockdep_assert_held(&kvm->slots_lock);
4663
4664         /*
4665          * We can flush all the TLBs out of the mmu lock without TLB
4666          * corruption since we just change the spte from writable to
4667          * readonly so that we only need to care the case of changing
4668          * spte from present to present (changing the spte from present
4669          * to nonpresent will flush all the TLBs immediately), in other
4670          * words, the only case we care is mmu_spte_update() where we
4671          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4672          * instead of PT_WRITABLE_MASK, that means it does not depend
4673          * on PT_WRITABLE_MASK anymore.
4674          */
4675         if (flush)
4676                 kvm_flush_remote_tlbs(kvm);
4677 }
4678
4679 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4680                                          struct kvm_rmap_head *rmap_head)
4681 {
4682         u64 *sptep;
4683         struct rmap_iterator iter;
4684         int need_tlb_flush = 0;
4685         kvm_pfn_t pfn;
4686         struct kvm_mmu_page *sp;
4687
4688 restart:
4689         for_each_rmap_spte(rmap_head, &iter, sptep) {
4690                 sp = page_header(__pa(sptep));
4691                 pfn = spte_to_pfn(*sptep);
4692
4693                 /*
4694                  * We cannot do huge page mapping for indirect shadow pages,
4695                  * which are found on the last rmap (level = 1) when not using
4696                  * tdp; such shadow pages are synced with the page table in
4697                  * the guest, and the guest page table is using 4K page size
4698                  * mapping if the indirect sp has level = 1.
4699                  */
4700                 if (sp->role.direct &&
4701                         !kvm_is_reserved_pfn(pfn) &&
4702                         PageTransCompound(pfn_to_page(pfn))) {
4703                         drop_spte(kvm, sptep);
4704                         need_tlb_flush = 1;
4705                         goto restart;
4706                 }
4707         }
4708
4709         return need_tlb_flush;
4710 }
4711
4712 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4713                                    const struct kvm_memory_slot *memslot)
4714 {
4715         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4716         spin_lock(&kvm->mmu_lock);
4717         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4718                          kvm_mmu_zap_collapsible_spte, true);
4719         spin_unlock(&kvm->mmu_lock);
4720 }
4721
4722 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4723                                    struct kvm_memory_slot *memslot)
4724 {
4725         bool flush;
4726
4727         spin_lock(&kvm->mmu_lock);
4728         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4729         spin_unlock(&kvm->mmu_lock);
4730
4731         lockdep_assert_held(&kvm->slots_lock);
4732
4733         /*
4734          * It's also safe to flush TLBs out of mmu lock here as currently this
4735          * function is only used for dirty logging, in which case flushing TLB
4736          * out of mmu lock also guarantees no dirty pages will be lost in
4737          * dirty_bitmap.
4738          */
4739         if (flush)
4740                 kvm_flush_remote_tlbs(kvm);
4741 }
4742 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4743
4744 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4745                                         struct kvm_memory_slot *memslot)
4746 {
4747         bool flush;
4748
4749         spin_lock(&kvm->mmu_lock);
4750         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4751                                         false);
4752         spin_unlock(&kvm->mmu_lock);
4753
4754         /* see kvm_mmu_slot_remove_write_access */
4755         lockdep_assert_held(&kvm->slots_lock);
4756
4757         if (flush)
4758                 kvm_flush_remote_tlbs(kvm);
4759 }
4760 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4761
4762 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4763                             struct kvm_memory_slot *memslot)
4764 {
4765         bool flush;
4766
4767         spin_lock(&kvm->mmu_lock);
4768         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4769         spin_unlock(&kvm->mmu_lock);
4770
4771         lockdep_assert_held(&kvm->slots_lock);
4772
4773         /* see kvm_mmu_slot_leaf_clear_dirty */
4774         if (flush)
4775                 kvm_flush_remote_tlbs(kvm);
4776 }
4777 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4778
4779 #define BATCH_ZAP_PAGES 10
4780 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4781 {
4782         struct kvm_mmu_page *sp, *node;
4783         int batch = 0;
4784
4785 restart:
4786         list_for_each_entry_safe_reverse(sp, node,
4787               &kvm->arch.active_mmu_pages, link) {
4788                 int ret;
4789
4790                 /*
4791                  * No obsolete page exists before new created page since
4792                  * active_mmu_pages is the FIFO list.
4793                  */
4794                 if (!is_obsolete_sp(kvm, sp))
4795                         break;
4796
4797                 /*
4798                  * Since we are reversely walking the list and the invalid
4799                  * list will be moved to the head, skip the invalid page
4800                  * can help us to avoid the infinity list walking.
4801                  */
4802                 if (sp->role.invalid)
4803                         continue;
4804
4805                 /*
4806                  * Need not flush tlb since we only zap the sp with invalid
4807                  * generation number.
4808                  */
4809                 if (batch >= BATCH_ZAP_PAGES &&
4810                       cond_resched_lock(&kvm->mmu_lock)) {
4811                         batch = 0;
4812                         goto restart;
4813                 }
4814
4815                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4816                                 &kvm->arch.zapped_obsolete_pages);
4817                 batch += ret;
4818
4819                 if (ret)
4820                         goto restart;
4821         }
4822
4823         /*
4824          * Should flush tlb before free page tables since lockless-walking
4825          * may use the pages.
4826          */
4827         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4828 }
4829
4830 /*
4831  * Fast invalidate all shadow pages and use lock-break technique
4832  * to zap obsolete pages.
4833  *
4834  * It's required when memslot is being deleted or VM is being
4835  * destroyed, in these cases, we should ensure that KVM MMU does
4836  * not use any resource of the being-deleted slot or all slots
4837  * after calling the function.
4838  */
4839 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4840 {
4841         spin_lock(&kvm->mmu_lock);
4842         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4843         kvm->arch.mmu_valid_gen++;
4844
4845         /*
4846          * Notify all vcpus to reload its shadow page table
4847          * and flush TLB. Then all vcpus will switch to new
4848          * shadow page table with the new mmu_valid_gen.
4849          *
4850          * Note: we should do this under the protection of
4851          * mmu-lock, otherwise, vcpu would purge shadow page
4852          * but miss tlb flush.
4853          */
4854         kvm_reload_remote_mmus(kvm);
4855
4856         kvm_zap_obsolete_pages(kvm);
4857         spin_unlock(&kvm->mmu_lock);
4858 }
4859
4860 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4861 {
4862         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4863 }
4864
4865 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4866 {
4867         /*
4868          * The very rare case: if the generation-number is round,
4869          * zap all shadow pages.
4870          */
4871         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4872                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4873                 kvm_mmu_invalidate_zap_all_pages(kvm);
4874         }
4875 }
4876
4877 static unsigned long
4878 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4879 {
4880         struct kvm *kvm;
4881         int nr_to_scan = sc->nr_to_scan;
4882         unsigned long freed = 0;
4883
4884         spin_lock(&kvm_lock);
4885
4886         list_for_each_entry(kvm, &vm_list, vm_list) {
4887                 int idx;
4888                 LIST_HEAD(invalid_list);
4889
4890                 /*
4891                  * Never scan more than sc->nr_to_scan VM instances.
4892                  * Will not hit this condition practically since we do not try
4893                  * to shrink more than one VM and it is very unlikely to see
4894                  * !n_used_mmu_pages so many times.
4895                  */
4896                 if (!nr_to_scan--)
4897                         break;
4898                 /*
4899                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4900                  * here. We may skip a VM instance errorneosly, but we do not
4901                  * want to shrink a VM that only started to populate its MMU
4902                  * anyway.
4903                  */
4904                 if (!kvm->arch.n_used_mmu_pages &&
4905                       !kvm_has_zapped_obsolete_pages(kvm))
4906                         continue;
4907
4908                 idx = srcu_read_lock(&kvm->srcu);
4909                 spin_lock(&kvm->mmu_lock);
4910
4911                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4912                         kvm_mmu_commit_zap_page(kvm,
4913                               &kvm->arch.zapped_obsolete_pages);
4914                         goto unlock;
4915                 }
4916
4917                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4918                         freed++;
4919                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4920
4921 unlock:
4922                 spin_unlock(&kvm->mmu_lock);
4923                 srcu_read_unlock(&kvm->srcu, idx);
4924
4925                 /*
4926                  * unfair on small ones
4927                  * per-vm shrinkers cry out
4928                  * sadness comes quickly
4929                  */
4930                 list_move_tail(&kvm->vm_list, &vm_list);
4931                 break;
4932         }
4933
4934         spin_unlock(&kvm_lock);
4935         return freed;
4936 }
4937
4938 static unsigned long
4939 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4940 {
4941         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4942 }
4943
4944 static struct shrinker mmu_shrinker = {
4945         .count_objects = mmu_shrink_count,
4946         .scan_objects = mmu_shrink_scan,
4947         .seeks = DEFAULT_SEEKS * 10,
4948 };
4949
4950 static void mmu_destroy_caches(void)
4951 {
4952         if (pte_list_desc_cache)
4953                 kmem_cache_destroy(pte_list_desc_cache);
4954         if (mmu_page_header_cache)
4955                 kmem_cache_destroy(mmu_page_header_cache);
4956 }
4957
4958 int kvm_mmu_module_init(void)
4959 {
4960         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4961                                             sizeof(struct pte_list_desc),
4962                                             0, 0, NULL);
4963         if (!pte_list_desc_cache)
4964                 goto nomem;
4965
4966         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4967                                                   sizeof(struct kvm_mmu_page),
4968                                                   0, 0, NULL);
4969         if (!mmu_page_header_cache)
4970                 goto nomem;
4971
4972         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4973                 goto nomem;
4974
4975         register_shrinker(&mmu_shrinker);
4976
4977         return 0;
4978
4979 nomem:
4980         mmu_destroy_caches();
4981         return -ENOMEM;
4982 }
4983
4984 /*
4985  * Caculate mmu pages needed for kvm.
4986  */
4987 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4988 {
4989         unsigned int nr_mmu_pages;
4990         unsigned int  nr_pages = 0;
4991         struct kvm_memslots *slots;
4992         struct kvm_memory_slot *memslot;
4993         int i;
4994
4995         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4996                 slots = __kvm_memslots(kvm, i);
4997
4998                 kvm_for_each_memslot(memslot, slots)
4999                         nr_pages += memslot->npages;
5000         }
5001
5002         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5003         nr_mmu_pages = max(nr_mmu_pages,
5004                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5005
5006         return nr_mmu_pages;
5007 }
5008
5009 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5010 {
5011         kvm_mmu_unload(vcpu);
5012         free_mmu_pages(vcpu);
5013         mmu_free_memory_caches(vcpu);
5014 }
5015
5016 void kvm_mmu_module_exit(void)
5017 {
5018         mmu_destroy_caches();
5019         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5020         unregister_shrinker(&mmu_shrinker);
5021         mmu_audit_disable();
5022 }