Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/pat.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 /*
53  * When setting this variable to true it enables Two-Dimensional-Paging
54  * where the hardware walks 2 page tables:
55  * 1. the guest-virtual to guest-physical
56  * 2. while doing 1. it walks guest-physical to host-physical
57  * If the hardware supports that we don't need to do shadow paging.
58  */
59 bool tdp_enabled = false;
60
61 enum {
62         AUDIT_PRE_PAGE_FAULT,
63         AUDIT_POST_PAGE_FAULT,
64         AUDIT_PRE_PTE_WRITE,
65         AUDIT_POST_PTE_WRITE,
66         AUDIT_PRE_SYNC,
67         AUDIT_POST_SYNC
68 };
69
70 #undef MMU_DEBUG
71
72 #ifdef MMU_DEBUG
73 static bool dbg = 0;
74 module_param(dbg, bool, 0644);
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #define MMU_WARN_ON(x) WARN_ON(x)
79 #else
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82 #define MMU_WARN_ON(x) do { } while (0)
83 #endif
84
85 #define PTE_PREFETCH_NUM                8
86
87 #define PT_FIRST_AVAIL_BITS_SHIFT 10
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90 #define PT64_LEVEL_BITS 9
91
92 #define PT64_LEVEL_SHIFT(level) \
93                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104 #define PT32_LVL_OFFSET_MASK(level) \
105         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106                                                 * PT32_LEVEL_BITS))) - 1))
107
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113 #define PT64_DIR_BASE_ADDR_MASK \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT64_LVL_ADDR_MASK(level) \
116         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117                                                 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                                 * PT64_LEVEL_BITS))) - 1))
121
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                             * PT32_LEVEL_BITS))) - 1))
128
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132 #define ACC_EXEC_MASK    1
133 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
134 #define ACC_USER_MASK    PT_USER_MASK
135 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK                  0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
140
141 #include <trace/events/kvm.h>
142
143 #define CREATE_TRACE_POINTS
144 #include "mmutrace.h"
145
146 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148
149 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
151 /* make pte_list_desc fit well in cache line */
152 #define PTE_LIST_EXT 3
153
154 /*
155  * Return values of handle_mmio_page_fault and mmu.page_fault:
156  * RET_PF_RETRY: let CPU fault again on the address.
157  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158  *
159  * For handle_mmio_page_fault only:
160  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161  */
162 enum {
163         RET_PF_RETRY = 0,
164         RET_PF_EMULATE = 1,
165         RET_PF_INVALID = 2,
166 };
167
168 struct pte_list_desc {
169         u64 *sptes[PTE_LIST_EXT];
170         struct pte_list_desc *more;
171 };
172
173 struct kvm_shadow_walk_iterator {
174         u64 addr;
175         hpa_t shadow_addr;
176         u64 *sptep;
177         int level;
178         unsigned index;
179 };
180
181 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
182         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
183              shadow_walk_okay(&(_walker));                      \
184              shadow_walk_next(&(_walker)))
185
186 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
187         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
188              shadow_walk_okay(&(_walker)) &&                            \
189                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
190              __shadow_walk_next(&(_walker), spte))
191
192 static struct kmem_cache *pte_list_desc_cache;
193 static struct kmem_cache *mmu_page_header_cache;
194 static struct percpu_counter kvm_total_used_mmu_pages;
195
196 static u64 __read_mostly shadow_nx_mask;
197 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
198 static u64 __read_mostly shadow_user_mask;
199 static u64 __read_mostly shadow_accessed_mask;
200 static u64 __read_mostly shadow_dirty_mask;
201 static u64 __read_mostly shadow_mmio_mask;
202 static u64 __read_mostly shadow_mmio_value;
203 static u64 __read_mostly shadow_present_mask;
204 static u64 __read_mostly shadow_me_mask;
205
206 /*
207  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
208  * Non-present SPTEs with shadow_acc_track_value set are in place for access
209  * tracking.
210  */
211 static u64 __read_mostly shadow_acc_track_mask;
212 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
213
214 /*
215  * The mask/shift to use for saving the original R/X bits when marking the PTE
216  * as not-present for access tracking purposes. We do not save the W bit as the
217  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
218  * restored only when a write is attempted to the page.
219  */
220 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
221                                                     PT64_EPT_EXECUTABLE_MASK;
222 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
223
224 static void mmu_spte_set(u64 *sptep, u64 spte);
225
226 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
227 {
228         BUG_ON((mmio_mask & mmio_value) != mmio_value);
229         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
230         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
231 }
232 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
233
234 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
235 {
236         return sp->role.ad_disabled;
237 }
238
239 static inline bool spte_ad_enabled(u64 spte)
240 {
241         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
242         return !(spte & shadow_acc_track_value);
243 }
244
245 static inline u64 spte_shadow_accessed_mask(u64 spte)
246 {
247         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
248         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
249 }
250
251 static inline u64 spte_shadow_dirty_mask(u64 spte)
252 {
253         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
254         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
255 }
256
257 static inline bool is_access_track_spte(u64 spte)
258 {
259         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
260 }
261
262 /*
263  * the low bit of the generation number is always presumed to be zero.
264  * This disables mmio caching during memslot updates.  The concept is
265  * similar to a seqcount but instead of retrying the access we just punt
266  * and ignore the cache.
267  *
268  * spte bits 3-11 are used as bits 1-9 of the generation number,
269  * the bits 52-61 are used as bits 10-19 of the generation number.
270  */
271 #define MMIO_SPTE_GEN_LOW_SHIFT         2
272 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
273
274 #define MMIO_GEN_SHIFT                  20
275 #define MMIO_GEN_LOW_SHIFT              10
276 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
277 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
278
279 static u64 generation_mmio_spte_mask(unsigned int gen)
280 {
281         u64 mask;
282
283         WARN_ON(gen & ~MMIO_GEN_MASK);
284
285         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
286         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
287         return mask;
288 }
289
290 static unsigned int get_mmio_spte_generation(u64 spte)
291 {
292         unsigned int gen;
293
294         spte &= ~shadow_mmio_mask;
295
296         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
297         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
298         return gen;
299 }
300
301 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
302 {
303         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
304 }
305
306 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
307                            unsigned access)
308 {
309         unsigned int gen = kvm_current_mmio_generation(vcpu);
310         u64 mask = generation_mmio_spte_mask(gen);
311
312         access &= ACC_WRITE_MASK | ACC_USER_MASK;
313         mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
314
315         trace_mark_mmio_spte(sptep, gfn, access, gen);
316         mmu_spte_set(sptep, mask);
317 }
318
319 static bool is_mmio_spte(u64 spte)
320 {
321         return (spte & shadow_mmio_mask) == shadow_mmio_value;
322 }
323
324 static gfn_t get_mmio_spte_gfn(u64 spte)
325 {
326         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
327         return (spte & ~mask) >> PAGE_SHIFT;
328 }
329
330 static unsigned get_mmio_spte_access(u64 spte)
331 {
332         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
333         return (spte & ~mask) & ~PAGE_MASK;
334 }
335
336 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
337                           kvm_pfn_t pfn, unsigned access)
338 {
339         if (unlikely(is_noslot_pfn(pfn))) {
340                 mark_mmio_spte(vcpu, sptep, gfn, access);
341                 return true;
342         }
343
344         return false;
345 }
346
347 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
348 {
349         unsigned int kvm_gen, spte_gen;
350
351         kvm_gen = kvm_current_mmio_generation(vcpu);
352         spte_gen = get_mmio_spte_generation(spte);
353
354         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
355         return likely(kvm_gen == spte_gen);
356 }
357
358 /*
359  * Sets the shadow PTE masks used by the MMU.
360  *
361  * Assumptions:
362  *  - Setting either @accessed_mask or @dirty_mask requires setting both
363  *  - At least one of @accessed_mask or @acc_track_mask must be set
364  */
365 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
366                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
367                 u64 acc_track_mask, u64 me_mask)
368 {
369         BUG_ON(!dirty_mask != !accessed_mask);
370         BUG_ON(!accessed_mask && !acc_track_mask);
371         BUG_ON(acc_track_mask & shadow_acc_track_value);
372
373         shadow_user_mask = user_mask;
374         shadow_accessed_mask = accessed_mask;
375         shadow_dirty_mask = dirty_mask;
376         shadow_nx_mask = nx_mask;
377         shadow_x_mask = x_mask;
378         shadow_present_mask = p_mask;
379         shadow_acc_track_mask = acc_track_mask;
380         shadow_me_mask = me_mask;
381 }
382 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
383
384 static void kvm_mmu_clear_all_pte_masks(void)
385 {
386         shadow_user_mask = 0;
387         shadow_accessed_mask = 0;
388         shadow_dirty_mask = 0;
389         shadow_nx_mask = 0;
390         shadow_x_mask = 0;
391         shadow_mmio_mask = 0;
392         shadow_present_mask = 0;
393         shadow_acc_track_mask = 0;
394 }
395
396 static int is_cpuid_PSE36(void)
397 {
398         return 1;
399 }
400
401 static int is_nx(struct kvm_vcpu *vcpu)
402 {
403         return vcpu->arch.efer & EFER_NX;
404 }
405
406 static int is_shadow_present_pte(u64 pte)
407 {
408         return (pte != 0) && !is_mmio_spte(pte);
409 }
410
411 static int is_large_pte(u64 pte)
412 {
413         return pte & PT_PAGE_SIZE_MASK;
414 }
415
416 static int is_last_spte(u64 pte, int level)
417 {
418         if (level == PT_PAGE_TABLE_LEVEL)
419                 return 1;
420         if (is_large_pte(pte))
421                 return 1;
422         return 0;
423 }
424
425 static bool is_executable_pte(u64 spte)
426 {
427         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
428 }
429
430 static kvm_pfn_t spte_to_pfn(u64 pte)
431 {
432         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
433 }
434
435 static gfn_t pse36_gfn_delta(u32 gpte)
436 {
437         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
438
439         return (gpte & PT32_DIR_PSE36_MASK) << shift;
440 }
441
442 #ifdef CONFIG_X86_64
443 static void __set_spte(u64 *sptep, u64 spte)
444 {
445         WRITE_ONCE(*sptep, spte);
446 }
447
448 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
449 {
450         WRITE_ONCE(*sptep, spte);
451 }
452
453 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
454 {
455         return xchg(sptep, spte);
456 }
457
458 static u64 __get_spte_lockless(u64 *sptep)
459 {
460         return READ_ONCE(*sptep);
461 }
462 #else
463 union split_spte {
464         struct {
465                 u32 spte_low;
466                 u32 spte_high;
467         };
468         u64 spte;
469 };
470
471 static void count_spte_clear(u64 *sptep, u64 spte)
472 {
473         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
474
475         if (is_shadow_present_pte(spte))
476                 return;
477
478         /* Ensure the spte is completely set before we increase the count */
479         smp_wmb();
480         sp->clear_spte_count++;
481 }
482
483 static void __set_spte(u64 *sptep, u64 spte)
484 {
485         union split_spte *ssptep, sspte;
486
487         ssptep = (union split_spte *)sptep;
488         sspte = (union split_spte)spte;
489
490         ssptep->spte_high = sspte.spte_high;
491
492         /*
493          * If we map the spte from nonpresent to present, We should store
494          * the high bits firstly, then set present bit, so cpu can not
495          * fetch this spte while we are setting the spte.
496          */
497         smp_wmb();
498
499         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
500 }
501
502 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
503 {
504         union split_spte *ssptep, sspte;
505
506         ssptep = (union split_spte *)sptep;
507         sspte = (union split_spte)spte;
508
509         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
510
511         /*
512          * If we map the spte from present to nonpresent, we should clear
513          * present bit firstly to avoid vcpu fetch the old high bits.
514          */
515         smp_wmb();
516
517         ssptep->spte_high = sspte.spte_high;
518         count_spte_clear(sptep, spte);
519 }
520
521 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
522 {
523         union split_spte *ssptep, sspte, orig;
524
525         ssptep = (union split_spte *)sptep;
526         sspte = (union split_spte)spte;
527
528         /* xchg acts as a barrier before the setting of the high bits */
529         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
530         orig.spte_high = ssptep->spte_high;
531         ssptep->spte_high = sspte.spte_high;
532         count_spte_clear(sptep, spte);
533
534         return orig.spte;
535 }
536
537 /*
538  * The idea using the light way get the spte on x86_32 guest is from
539  * gup_get_pte(arch/x86/mm/gup.c).
540  *
541  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
542  * coalesces them and we are running out of the MMU lock.  Therefore
543  * we need to protect against in-progress updates of the spte.
544  *
545  * Reading the spte while an update is in progress may get the old value
546  * for the high part of the spte.  The race is fine for a present->non-present
547  * change (because the high part of the spte is ignored for non-present spte),
548  * but for a present->present change we must reread the spte.
549  *
550  * All such changes are done in two steps (present->non-present and
551  * non-present->present), hence it is enough to count the number of
552  * present->non-present updates: if it changed while reading the spte,
553  * we might have hit the race.  This is done using clear_spte_count.
554  */
555 static u64 __get_spte_lockless(u64 *sptep)
556 {
557         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
558         union split_spte spte, *orig = (union split_spte *)sptep;
559         int count;
560
561 retry:
562         count = sp->clear_spte_count;
563         smp_rmb();
564
565         spte.spte_low = orig->spte_low;
566         smp_rmb();
567
568         spte.spte_high = orig->spte_high;
569         smp_rmb();
570
571         if (unlikely(spte.spte_low != orig->spte_low ||
572               count != sp->clear_spte_count))
573                 goto retry;
574
575         return spte.spte;
576 }
577 #endif
578
579 static bool spte_can_locklessly_be_made_writable(u64 spte)
580 {
581         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
582                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
583 }
584
585 static bool spte_has_volatile_bits(u64 spte)
586 {
587         if (!is_shadow_present_pte(spte))
588                 return false;
589
590         /*
591          * Always atomically update spte if it can be updated
592          * out of mmu-lock, it can ensure dirty bit is not lost,
593          * also, it can help us to get a stable is_writable_pte()
594          * to ensure tlb flush is not missed.
595          */
596         if (spte_can_locklessly_be_made_writable(spte) ||
597             is_access_track_spte(spte))
598                 return true;
599
600         if (spte_ad_enabled(spte)) {
601                 if ((spte & shadow_accessed_mask) == 0 ||
602                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
603                         return true;
604         }
605
606         return false;
607 }
608
609 static bool is_accessed_spte(u64 spte)
610 {
611         u64 accessed_mask = spte_shadow_accessed_mask(spte);
612
613         return accessed_mask ? spte & accessed_mask
614                              : !is_access_track_spte(spte);
615 }
616
617 static bool is_dirty_spte(u64 spte)
618 {
619         u64 dirty_mask = spte_shadow_dirty_mask(spte);
620
621         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
622 }
623
624 /* Rules for using mmu_spte_set:
625  * Set the sptep from nonpresent to present.
626  * Note: the sptep being assigned *must* be either not present
627  * or in a state where the hardware will not attempt to update
628  * the spte.
629  */
630 static void mmu_spte_set(u64 *sptep, u64 new_spte)
631 {
632         WARN_ON(is_shadow_present_pte(*sptep));
633         __set_spte(sptep, new_spte);
634 }
635
636 /*
637  * Update the SPTE (excluding the PFN), but do not track changes in its
638  * accessed/dirty status.
639  */
640 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
641 {
642         u64 old_spte = *sptep;
643
644         WARN_ON(!is_shadow_present_pte(new_spte));
645
646         if (!is_shadow_present_pte(old_spte)) {
647                 mmu_spte_set(sptep, new_spte);
648                 return old_spte;
649         }
650
651         if (!spte_has_volatile_bits(old_spte))
652                 __update_clear_spte_fast(sptep, new_spte);
653         else
654                 old_spte = __update_clear_spte_slow(sptep, new_spte);
655
656         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
657
658         return old_spte;
659 }
660
661 /* Rules for using mmu_spte_update:
662  * Update the state bits, it means the mapped pfn is not changed.
663  *
664  * Whenever we overwrite a writable spte with a read-only one we
665  * should flush remote TLBs. Otherwise rmap_write_protect
666  * will find a read-only spte, even though the writable spte
667  * might be cached on a CPU's TLB, the return value indicates this
668  * case.
669  *
670  * Returns true if the TLB needs to be flushed
671  */
672 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
673 {
674         bool flush = false;
675         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
676
677         if (!is_shadow_present_pte(old_spte))
678                 return false;
679
680         /*
681          * For the spte updated out of mmu-lock is safe, since
682          * we always atomically update it, see the comments in
683          * spte_has_volatile_bits().
684          */
685         if (spte_can_locklessly_be_made_writable(old_spte) &&
686               !is_writable_pte(new_spte))
687                 flush = true;
688
689         /*
690          * Flush TLB when accessed/dirty states are changed in the page tables,
691          * to guarantee consistency between TLB and page tables.
692          */
693
694         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
695                 flush = true;
696                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
697         }
698
699         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
700                 flush = true;
701                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
702         }
703
704         return flush;
705 }
706
707 /*
708  * Rules for using mmu_spte_clear_track_bits:
709  * It sets the sptep from present to nonpresent, and track the
710  * state bits, it is used to clear the last level sptep.
711  * Returns non-zero if the PTE was previously valid.
712  */
713 static int mmu_spte_clear_track_bits(u64 *sptep)
714 {
715         kvm_pfn_t pfn;
716         u64 old_spte = *sptep;
717
718         if (!spte_has_volatile_bits(old_spte))
719                 __update_clear_spte_fast(sptep, 0ull);
720         else
721                 old_spte = __update_clear_spte_slow(sptep, 0ull);
722
723         if (!is_shadow_present_pte(old_spte))
724                 return 0;
725
726         pfn = spte_to_pfn(old_spte);
727
728         /*
729          * KVM does not hold the refcount of the page used by
730          * kvm mmu, before reclaiming the page, we should
731          * unmap it from mmu first.
732          */
733         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
734
735         if (is_accessed_spte(old_spte))
736                 kvm_set_pfn_accessed(pfn);
737
738         if (is_dirty_spte(old_spte))
739                 kvm_set_pfn_dirty(pfn);
740
741         return 1;
742 }
743
744 /*
745  * Rules for using mmu_spte_clear_no_track:
746  * Directly clear spte without caring the state bits of sptep,
747  * it is used to set the upper level spte.
748  */
749 static void mmu_spte_clear_no_track(u64 *sptep)
750 {
751         __update_clear_spte_fast(sptep, 0ull);
752 }
753
754 static u64 mmu_spte_get_lockless(u64 *sptep)
755 {
756         return __get_spte_lockless(sptep);
757 }
758
759 static u64 mark_spte_for_access_track(u64 spte)
760 {
761         if (spte_ad_enabled(spte))
762                 return spte & ~shadow_accessed_mask;
763
764         if (is_access_track_spte(spte))
765                 return spte;
766
767         /*
768          * Making an Access Tracking PTE will result in removal of write access
769          * from the PTE. So, verify that we will be able to restore the write
770          * access in the fast page fault path later on.
771          */
772         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
773                   !spte_can_locklessly_be_made_writable(spte),
774                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
775
776         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
777                           shadow_acc_track_saved_bits_shift),
778                   "kvm: Access Tracking saved bit locations are not zero\n");
779
780         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
781                 shadow_acc_track_saved_bits_shift;
782         spte &= ~shadow_acc_track_mask;
783
784         return spte;
785 }
786
787 /* Restore an acc-track PTE back to a regular PTE */
788 static u64 restore_acc_track_spte(u64 spte)
789 {
790         u64 new_spte = spte;
791         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
792                          & shadow_acc_track_saved_bits_mask;
793
794         WARN_ON_ONCE(spte_ad_enabled(spte));
795         WARN_ON_ONCE(!is_access_track_spte(spte));
796
797         new_spte &= ~shadow_acc_track_mask;
798         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
799                       shadow_acc_track_saved_bits_shift);
800         new_spte |= saved_bits;
801
802         return new_spte;
803 }
804
805 /* Returns the Accessed status of the PTE and resets it at the same time. */
806 static bool mmu_spte_age(u64 *sptep)
807 {
808         u64 spte = mmu_spte_get_lockless(sptep);
809
810         if (!is_accessed_spte(spte))
811                 return false;
812
813         if (spte_ad_enabled(spte)) {
814                 clear_bit((ffs(shadow_accessed_mask) - 1),
815                           (unsigned long *)sptep);
816         } else {
817                 /*
818                  * Capture the dirty status of the page, so that it doesn't get
819                  * lost when the SPTE is marked for access tracking.
820                  */
821                 if (is_writable_pte(spte))
822                         kvm_set_pfn_dirty(spte_to_pfn(spte));
823
824                 spte = mark_spte_for_access_track(spte);
825                 mmu_spte_update_no_track(sptep, spte);
826         }
827
828         return true;
829 }
830
831 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
832 {
833         /*
834          * Prevent page table teardown by making any free-er wait during
835          * kvm_flush_remote_tlbs() IPI to all active vcpus.
836          */
837         local_irq_disable();
838
839         /*
840          * Make sure a following spte read is not reordered ahead of the write
841          * to vcpu->mode.
842          */
843         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
844 }
845
846 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
847 {
848         /*
849          * Make sure the write to vcpu->mode is not reordered in front of
850          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
851          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
852          */
853         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
854         local_irq_enable();
855 }
856
857 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
858                                   struct kmem_cache *base_cache, int min)
859 {
860         void *obj;
861
862         if (cache->nobjs >= min)
863                 return 0;
864         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
865                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
866                 if (!obj)
867                         return -ENOMEM;
868                 cache->objects[cache->nobjs++] = obj;
869         }
870         return 0;
871 }
872
873 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
874 {
875         return cache->nobjs;
876 }
877
878 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
879                                   struct kmem_cache *cache)
880 {
881         while (mc->nobjs)
882                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
883 }
884
885 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
886                                        int min)
887 {
888         void *page;
889
890         if (cache->nobjs >= min)
891                 return 0;
892         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
893                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
894                 if (!page)
895                         return -ENOMEM;
896                 cache->objects[cache->nobjs++] = page;
897         }
898         return 0;
899 }
900
901 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
902 {
903         while (mc->nobjs)
904                 free_page((unsigned long)mc->objects[--mc->nobjs]);
905 }
906
907 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
908 {
909         int r;
910
911         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
912                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
913         if (r)
914                 goto out;
915         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
916         if (r)
917                 goto out;
918         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
919                                    mmu_page_header_cache, 4);
920 out:
921         return r;
922 }
923
924 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
925 {
926         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
927                                 pte_list_desc_cache);
928         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
929         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
930                                 mmu_page_header_cache);
931 }
932
933 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
934 {
935         void *p;
936
937         BUG_ON(!mc->nobjs);
938         p = mc->objects[--mc->nobjs];
939         return p;
940 }
941
942 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
943 {
944         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
945 }
946
947 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
948 {
949         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
950 }
951
952 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
953 {
954         if (!sp->role.direct)
955                 return sp->gfns[index];
956
957         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
958 }
959
960 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
961 {
962         if (sp->role.direct)
963                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
964         else
965                 sp->gfns[index] = gfn;
966 }
967
968 /*
969  * Return the pointer to the large page information for a given gfn,
970  * handling slots that are not large page aligned.
971  */
972 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
973                                               struct kvm_memory_slot *slot,
974                                               int level)
975 {
976         unsigned long idx;
977
978         idx = gfn_to_index(gfn, slot->base_gfn, level);
979         return &slot->arch.lpage_info[level - 2][idx];
980 }
981
982 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
983                                             gfn_t gfn, int count)
984 {
985         struct kvm_lpage_info *linfo;
986         int i;
987
988         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
989                 linfo = lpage_info_slot(gfn, slot, i);
990                 linfo->disallow_lpage += count;
991                 WARN_ON(linfo->disallow_lpage < 0);
992         }
993 }
994
995 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
996 {
997         update_gfn_disallow_lpage_count(slot, gfn, 1);
998 }
999
1000 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1001 {
1002         update_gfn_disallow_lpage_count(slot, gfn, -1);
1003 }
1004
1005 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1006 {
1007         struct kvm_memslots *slots;
1008         struct kvm_memory_slot *slot;
1009         gfn_t gfn;
1010
1011         kvm->arch.indirect_shadow_pages++;
1012         gfn = sp->gfn;
1013         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1014         slot = __gfn_to_memslot(slots, gfn);
1015
1016         /* the non-leaf shadow pages are keeping readonly. */
1017         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1018                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1019                                                     KVM_PAGE_TRACK_WRITE);
1020
1021         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1022 }
1023
1024 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1025 {
1026         struct kvm_memslots *slots;
1027         struct kvm_memory_slot *slot;
1028         gfn_t gfn;
1029
1030         kvm->arch.indirect_shadow_pages--;
1031         gfn = sp->gfn;
1032         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1033         slot = __gfn_to_memslot(slots, gfn);
1034         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1035                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1036                                                        KVM_PAGE_TRACK_WRITE);
1037
1038         kvm_mmu_gfn_allow_lpage(slot, gfn);
1039 }
1040
1041 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1042                                           struct kvm_memory_slot *slot)
1043 {
1044         struct kvm_lpage_info *linfo;
1045
1046         if (slot) {
1047                 linfo = lpage_info_slot(gfn, slot, level);
1048                 return !!linfo->disallow_lpage;
1049         }
1050
1051         return true;
1052 }
1053
1054 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1055                                         int level)
1056 {
1057         struct kvm_memory_slot *slot;
1058
1059         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1060         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1061 }
1062
1063 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1064 {
1065         unsigned long page_size;
1066         int i, ret = 0;
1067
1068         page_size = kvm_host_page_size(kvm, gfn);
1069
1070         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1071                 if (page_size >= KVM_HPAGE_SIZE(i))
1072                         ret = i;
1073                 else
1074                         break;
1075         }
1076
1077         return ret;
1078 }
1079
1080 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1081                                           bool no_dirty_log)
1082 {
1083         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1084                 return false;
1085         if (no_dirty_log && slot->dirty_bitmap)
1086                 return false;
1087
1088         return true;
1089 }
1090
1091 static struct kvm_memory_slot *
1092 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1093                             bool no_dirty_log)
1094 {
1095         struct kvm_memory_slot *slot;
1096
1097         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1098         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1099                 slot = NULL;
1100
1101         return slot;
1102 }
1103
1104 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1105                          bool *force_pt_level)
1106 {
1107         int host_level, level, max_level;
1108         struct kvm_memory_slot *slot;
1109
1110         if (unlikely(*force_pt_level))
1111                 return PT_PAGE_TABLE_LEVEL;
1112
1113         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1114         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1115         if (unlikely(*force_pt_level))
1116                 return PT_PAGE_TABLE_LEVEL;
1117
1118         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1119
1120         if (host_level == PT_PAGE_TABLE_LEVEL)
1121                 return host_level;
1122
1123         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1124
1125         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1126                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1127                         break;
1128
1129         return level - 1;
1130 }
1131
1132 /*
1133  * About rmap_head encoding:
1134  *
1135  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1136  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1137  * pte_list_desc containing more mappings.
1138  */
1139
1140 /*
1141  * Returns the number of pointers in the rmap chain, not counting the new one.
1142  */
1143 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1144                         struct kvm_rmap_head *rmap_head)
1145 {
1146         struct pte_list_desc *desc;
1147         int i, count = 0;
1148
1149         if (!rmap_head->val) {
1150                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1151                 rmap_head->val = (unsigned long)spte;
1152         } else if (!(rmap_head->val & 1)) {
1153                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1154                 desc = mmu_alloc_pte_list_desc(vcpu);
1155                 desc->sptes[0] = (u64 *)rmap_head->val;
1156                 desc->sptes[1] = spte;
1157                 rmap_head->val = (unsigned long)desc | 1;
1158                 ++count;
1159         } else {
1160                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1161                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1162                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1163                         desc = desc->more;
1164                         count += PTE_LIST_EXT;
1165                 }
1166                 if (desc->sptes[PTE_LIST_EXT-1]) {
1167                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1168                         desc = desc->more;
1169                 }
1170                 for (i = 0; desc->sptes[i]; ++i)
1171                         ++count;
1172                 desc->sptes[i] = spte;
1173         }
1174         return count;
1175 }
1176
1177 static void
1178 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1179                            struct pte_list_desc *desc, int i,
1180                            struct pte_list_desc *prev_desc)
1181 {
1182         int j;
1183
1184         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1185                 ;
1186         desc->sptes[i] = desc->sptes[j];
1187         desc->sptes[j] = NULL;
1188         if (j != 0)
1189                 return;
1190         if (!prev_desc && !desc->more)
1191                 rmap_head->val = (unsigned long)desc->sptes[0];
1192         else
1193                 if (prev_desc)
1194                         prev_desc->more = desc->more;
1195                 else
1196                         rmap_head->val = (unsigned long)desc->more | 1;
1197         mmu_free_pte_list_desc(desc);
1198 }
1199
1200 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1201 {
1202         struct pte_list_desc *desc;
1203         struct pte_list_desc *prev_desc;
1204         int i;
1205
1206         if (!rmap_head->val) {
1207                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1208                 BUG();
1209         } else if (!(rmap_head->val & 1)) {
1210                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1211                 if ((u64 *)rmap_head->val != spte) {
1212                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1213                         BUG();
1214                 }
1215                 rmap_head->val = 0;
1216         } else {
1217                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1218                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1219                 prev_desc = NULL;
1220                 while (desc) {
1221                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1222                                 if (desc->sptes[i] == spte) {
1223                                         pte_list_desc_remove_entry(rmap_head,
1224                                                         desc, i, prev_desc);
1225                                         return;
1226                                 }
1227                         }
1228                         prev_desc = desc;
1229                         desc = desc->more;
1230                 }
1231                 pr_err("pte_list_remove: %p many->many\n", spte);
1232                 BUG();
1233         }
1234 }
1235
1236 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1237                                            struct kvm_memory_slot *slot)
1238 {
1239         unsigned long idx;
1240
1241         idx = gfn_to_index(gfn, slot->base_gfn, level);
1242         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1243 }
1244
1245 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1246                                          struct kvm_mmu_page *sp)
1247 {
1248         struct kvm_memslots *slots;
1249         struct kvm_memory_slot *slot;
1250
1251         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252         slot = __gfn_to_memslot(slots, gfn);
1253         return __gfn_to_rmap(gfn, sp->role.level, slot);
1254 }
1255
1256 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1257 {
1258         struct kvm_mmu_memory_cache *cache;
1259
1260         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1261         return mmu_memory_cache_free_objects(cache);
1262 }
1263
1264 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1265 {
1266         struct kvm_mmu_page *sp;
1267         struct kvm_rmap_head *rmap_head;
1268
1269         sp = page_header(__pa(spte));
1270         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1271         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1272         return pte_list_add(vcpu, spte, rmap_head);
1273 }
1274
1275 static void rmap_remove(struct kvm *kvm, u64 *spte)
1276 {
1277         struct kvm_mmu_page *sp;
1278         gfn_t gfn;
1279         struct kvm_rmap_head *rmap_head;
1280
1281         sp = page_header(__pa(spte));
1282         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1283         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1284         pte_list_remove(spte, rmap_head);
1285 }
1286
1287 /*
1288  * Used by the following functions to iterate through the sptes linked by a
1289  * rmap.  All fields are private and not assumed to be used outside.
1290  */
1291 struct rmap_iterator {
1292         /* private fields */
1293         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1294         int pos;                        /* index of the sptep */
1295 };
1296
1297 /*
1298  * Iteration must be started by this function.  This should also be used after
1299  * removing/dropping sptes from the rmap link because in such cases the
1300  * information in the itererator may not be valid.
1301  *
1302  * Returns sptep if found, NULL otherwise.
1303  */
1304 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1305                            struct rmap_iterator *iter)
1306 {
1307         u64 *sptep;
1308
1309         if (!rmap_head->val)
1310                 return NULL;
1311
1312         if (!(rmap_head->val & 1)) {
1313                 iter->desc = NULL;
1314                 sptep = (u64 *)rmap_head->val;
1315                 goto out;
1316         }
1317
1318         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1319         iter->pos = 0;
1320         sptep = iter->desc->sptes[iter->pos];
1321 out:
1322         BUG_ON(!is_shadow_present_pte(*sptep));
1323         return sptep;
1324 }
1325
1326 /*
1327  * Must be used with a valid iterator: e.g. after rmap_get_first().
1328  *
1329  * Returns sptep if found, NULL otherwise.
1330  */
1331 static u64 *rmap_get_next(struct rmap_iterator *iter)
1332 {
1333         u64 *sptep;
1334
1335         if (iter->desc) {
1336                 if (iter->pos < PTE_LIST_EXT - 1) {
1337                         ++iter->pos;
1338                         sptep = iter->desc->sptes[iter->pos];
1339                         if (sptep)
1340                                 goto out;
1341                 }
1342
1343                 iter->desc = iter->desc->more;
1344
1345                 if (iter->desc) {
1346                         iter->pos = 0;
1347                         /* desc->sptes[0] cannot be NULL */
1348                         sptep = iter->desc->sptes[iter->pos];
1349                         goto out;
1350                 }
1351         }
1352
1353         return NULL;
1354 out:
1355         BUG_ON(!is_shadow_present_pte(*sptep));
1356         return sptep;
1357 }
1358
1359 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1360         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1361              _spte_; _spte_ = rmap_get_next(_iter_))
1362
1363 static void drop_spte(struct kvm *kvm, u64 *sptep)
1364 {
1365         if (mmu_spte_clear_track_bits(sptep))
1366                 rmap_remove(kvm, sptep);
1367 }
1368
1369
1370 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1371 {
1372         if (is_large_pte(*sptep)) {
1373                 WARN_ON(page_header(__pa(sptep))->role.level ==
1374                         PT_PAGE_TABLE_LEVEL);
1375                 drop_spte(kvm, sptep);
1376                 --kvm->stat.lpages;
1377                 return true;
1378         }
1379
1380         return false;
1381 }
1382
1383 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1384 {
1385         if (__drop_large_spte(vcpu->kvm, sptep))
1386                 kvm_flush_remote_tlbs(vcpu->kvm);
1387 }
1388
1389 /*
1390  * Write-protect on the specified @sptep, @pt_protect indicates whether
1391  * spte write-protection is caused by protecting shadow page table.
1392  *
1393  * Note: write protection is difference between dirty logging and spte
1394  * protection:
1395  * - for dirty logging, the spte can be set to writable at anytime if
1396  *   its dirty bitmap is properly set.
1397  * - for spte protection, the spte can be writable only after unsync-ing
1398  *   shadow page.
1399  *
1400  * Return true if tlb need be flushed.
1401  */
1402 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1403 {
1404         u64 spte = *sptep;
1405
1406         if (!is_writable_pte(spte) &&
1407               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1408                 return false;
1409
1410         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1411
1412         if (pt_protect)
1413                 spte &= ~SPTE_MMU_WRITEABLE;
1414         spte = spte & ~PT_WRITABLE_MASK;
1415
1416         return mmu_spte_update(sptep, spte);
1417 }
1418
1419 static bool __rmap_write_protect(struct kvm *kvm,
1420                                  struct kvm_rmap_head *rmap_head,
1421                                  bool pt_protect)
1422 {
1423         u64 *sptep;
1424         struct rmap_iterator iter;
1425         bool flush = false;
1426
1427         for_each_rmap_spte(rmap_head, &iter, sptep)
1428                 flush |= spte_write_protect(sptep, pt_protect);
1429
1430         return flush;
1431 }
1432
1433 static bool spte_clear_dirty(u64 *sptep)
1434 {
1435         u64 spte = *sptep;
1436
1437         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1438
1439         spte &= ~shadow_dirty_mask;
1440
1441         return mmu_spte_update(sptep, spte);
1442 }
1443
1444 static bool wrprot_ad_disabled_spte(u64 *sptep)
1445 {
1446         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1447                                                (unsigned long *)sptep);
1448         if (was_writable)
1449                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1450
1451         return was_writable;
1452 }
1453
1454 /*
1455  * Gets the GFN ready for another round of dirty logging by clearing the
1456  *      - D bit on ad-enabled SPTEs, and
1457  *      - W bit on ad-disabled SPTEs.
1458  * Returns true iff any D or W bits were cleared.
1459  */
1460 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1461 {
1462         u64 *sptep;
1463         struct rmap_iterator iter;
1464         bool flush = false;
1465
1466         for_each_rmap_spte(rmap_head, &iter, sptep)
1467                 if (spte_ad_enabled(*sptep))
1468                         flush |= spte_clear_dirty(sptep);
1469                 else
1470                         flush |= wrprot_ad_disabled_spte(sptep);
1471
1472         return flush;
1473 }
1474
1475 static bool spte_set_dirty(u64 *sptep)
1476 {
1477         u64 spte = *sptep;
1478
1479         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1480
1481         spte |= shadow_dirty_mask;
1482
1483         return mmu_spte_update(sptep, spte);
1484 }
1485
1486 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1487 {
1488         u64 *sptep;
1489         struct rmap_iterator iter;
1490         bool flush = false;
1491
1492         for_each_rmap_spte(rmap_head, &iter, sptep)
1493                 if (spte_ad_enabled(*sptep))
1494                         flush |= spte_set_dirty(sptep);
1495
1496         return flush;
1497 }
1498
1499 /**
1500  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1501  * @kvm: kvm instance
1502  * @slot: slot to protect
1503  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1504  * @mask: indicates which pages we should protect
1505  *
1506  * Used when we do not need to care about huge page mappings: e.g. during dirty
1507  * logging we do not have any such mappings.
1508  */
1509 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1510                                      struct kvm_memory_slot *slot,
1511                                      gfn_t gfn_offset, unsigned long mask)
1512 {
1513         struct kvm_rmap_head *rmap_head;
1514
1515         while (mask) {
1516                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1517                                           PT_PAGE_TABLE_LEVEL, slot);
1518                 __rmap_write_protect(kvm, rmap_head, false);
1519
1520                 /* clear the first set bit */
1521                 mask &= mask - 1;
1522         }
1523 }
1524
1525 /**
1526  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1527  * protect the page if the D-bit isn't supported.
1528  * @kvm: kvm instance
1529  * @slot: slot to clear D-bit
1530  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1531  * @mask: indicates which pages we should clear D-bit
1532  *
1533  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1534  */
1535 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1536                                      struct kvm_memory_slot *slot,
1537                                      gfn_t gfn_offset, unsigned long mask)
1538 {
1539         struct kvm_rmap_head *rmap_head;
1540
1541         while (mask) {
1542                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1543                                           PT_PAGE_TABLE_LEVEL, slot);
1544                 __rmap_clear_dirty(kvm, rmap_head);
1545
1546                 /* clear the first set bit */
1547                 mask &= mask - 1;
1548         }
1549 }
1550 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1551
1552 /**
1553  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1554  * PT level pages.
1555  *
1556  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1557  * enable dirty logging for them.
1558  *
1559  * Used when we do not need to care about huge page mappings: e.g. during dirty
1560  * logging we do not have any such mappings.
1561  */
1562 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1563                                 struct kvm_memory_slot *slot,
1564                                 gfn_t gfn_offset, unsigned long mask)
1565 {
1566         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1567                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1568                                 mask);
1569         else
1570                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1571 }
1572
1573 /**
1574  * kvm_arch_write_log_dirty - emulate dirty page logging
1575  * @vcpu: Guest mode vcpu
1576  *
1577  * Emulate arch specific page modification logging for the
1578  * nested hypervisor
1579  */
1580 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1581 {
1582         if (kvm_x86_ops->write_log_dirty)
1583                 return kvm_x86_ops->write_log_dirty(vcpu);
1584
1585         return 0;
1586 }
1587
1588 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1589                                     struct kvm_memory_slot *slot, u64 gfn)
1590 {
1591         struct kvm_rmap_head *rmap_head;
1592         int i;
1593         bool write_protected = false;
1594
1595         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1596                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1597                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1598         }
1599
1600         return write_protected;
1601 }
1602
1603 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1604 {
1605         struct kvm_memory_slot *slot;
1606
1607         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1608         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1609 }
1610
1611 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1612 {
1613         u64 *sptep;
1614         struct rmap_iterator iter;
1615         bool flush = false;
1616
1617         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1618                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1619
1620                 drop_spte(kvm, sptep);
1621                 flush = true;
1622         }
1623
1624         return flush;
1625 }
1626
1627 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1628                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1629                            unsigned long data)
1630 {
1631         return kvm_zap_rmapp(kvm, rmap_head);
1632 }
1633
1634 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1635                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1636                              unsigned long data)
1637 {
1638         u64 *sptep;
1639         struct rmap_iterator iter;
1640         int need_flush = 0;
1641         u64 new_spte;
1642         pte_t *ptep = (pte_t *)data;
1643         kvm_pfn_t new_pfn;
1644
1645         WARN_ON(pte_huge(*ptep));
1646         new_pfn = pte_pfn(*ptep);
1647
1648 restart:
1649         for_each_rmap_spte(rmap_head, &iter, sptep) {
1650                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1651                             sptep, *sptep, gfn, level);
1652
1653                 need_flush = 1;
1654
1655                 if (pte_write(*ptep)) {
1656                         drop_spte(kvm, sptep);
1657                         goto restart;
1658                 } else {
1659                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1660                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1661
1662                         new_spte &= ~PT_WRITABLE_MASK;
1663                         new_spte &= ~SPTE_HOST_WRITEABLE;
1664
1665                         new_spte = mark_spte_for_access_track(new_spte);
1666
1667                         mmu_spte_clear_track_bits(sptep);
1668                         mmu_spte_set(sptep, new_spte);
1669                 }
1670         }
1671
1672         if (need_flush)
1673                 kvm_flush_remote_tlbs(kvm);
1674
1675         return 0;
1676 }
1677
1678 struct slot_rmap_walk_iterator {
1679         /* input fields. */
1680         struct kvm_memory_slot *slot;
1681         gfn_t start_gfn;
1682         gfn_t end_gfn;
1683         int start_level;
1684         int end_level;
1685
1686         /* output fields. */
1687         gfn_t gfn;
1688         struct kvm_rmap_head *rmap;
1689         int level;
1690
1691         /* private field. */
1692         struct kvm_rmap_head *end_rmap;
1693 };
1694
1695 static void
1696 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1697 {
1698         iterator->level = level;
1699         iterator->gfn = iterator->start_gfn;
1700         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1701         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1702                                            iterator->slot);
1703 }
1704
1705 static void
1706 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1707                     struct kvm_memory_slot *slot, int start_level,
1708                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1709 {
1710         iterator->slot = slot;
1711         iterator->start_level = start_level;
1712         iterator->end_level = end_level;
1713         iterator->start_gfn = start_gfn;
1714         iterator->end_gfn = end_gfn;
1715
1716         rmap_walk_init_level(iterator, iterator->start_level);
1717 }
1718
1719 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1720 {
1721         return !!iterator->rmap;
1722 }
1723
1724 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1725 {
1726         if (++iterator->rmap <= iterator->end_rmap) {
1727                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1728                 return;
1729         }
1730
1731         if (++iterator->level > iterator->end_level) {
1732                 iterator->rmap = NULL;
1733                 return;
1734         }
1735
1736         rmap_walk_init_level(iterator, iterator->level);
1737 }
1738
1739 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1740            _start_gfn, _end_gfn, _iter_)                                \
1741         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1742                                  _end_level_, _start_gfn, _end_gfn);    \
1743              slot_rmap_walk_okay(_iter_);                               \
1744              slot_rmap_walk_next(_iter_))
1745
1746 static int kvm_handle_hva_range(struct kvm *kvm,
1747                                 unsigned long start,
1748                                 unsigned long end,
1749                                 unsigned long data,
1750                                 int (*handler)(struct kvm *kvm,
1751                                                struct kvm_rmap_head *rmap_head,
1752                                                struct kvm_memory_slot *slot,
1753                                                gfn_t gfn,
1754                                                int level,
1755                                                unsigned long data))
1756 {
1757         struct kvm_memslots *slots;
1758         struct kvm_memory_slot *memslot;
1759         struct slot_rmap_walk_iterator iterator;
1760         int ret = 0;
1761         int i;
1762
1763         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1764                 slots = __kvm_memslots(kvm, i);
1765                 kvm_for_each_memslot(memslot, slots) {
1766                         unsigned long hva_start, hva_end;
1767                         gfn_t gfn_start, gfn_end;
1768
1769                         hva_start = max(start, memslot->userspace_addr);
1770                         hva_end = min(end, memslot->userspace_addr +
1771                                       (memslot->npages << PAGE_SHIFT));
1772                         if (hva_start >= hva_end)
1773                                 continue;
1774                         /*
1775                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1776                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1777                          */
1778                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1779                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1780
1781                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1782                                                  PT_MAX_HUGEPAGE_LEVEL,
1783                                                  gfn_start, gfn_end - 1,
1784                                                  &iterator)
1785                                 ret |= handler(kvm, iterator.rmap, memslot,
1786                                                iterator.gfn, iterator.level, data);
1787                 }
1788         }
1789
1790         return ret;
1791 }
1792
1793 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1794                           unsigned long data,
1795                           int (*handler)(struct kvm *kvm,
1796                                          struct kvm_rmap_head *rmap_head,
1797                                          struct kvm_memory_slot *slot,
1798                                          gfn_t gfn, int level,
1799                                          unsigned long data))
1800 {
1801         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1802 }
1803
1804 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1805 {
1806         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1807 }
1808
1809 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1810 {
1811         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1812 }
1813
1814 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1815 {
1816         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1817 }
1818
1819 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1820                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1821                          unsigned long data)
1822 {
1823         u64 *sptep;
1824         struct rmap_iterator uninitialized_var(iter);
1825         int young = 0;
1826
1827         for_each_rmap_spte(rmap_head, &iter, sptep)
1828                 young |= mmu_spte_age(sptep);
1829
1830         trace_kvm_age_page(gfn, level, slot, young);
1831         return young;
1832 }
1833
1834 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1835                               struct kvm_memory_slot *slot, gfn_t gfn,
1836                               int level, unsigned long data)
1837 {
1838         u64 *sptep;
1839         struct rmap_iterator iter;
1840
1841         for_each_rmap_spte(rmap_head, &iter, sptep)
1842                 if (is_accessed_spte(*sptep))
1843                         return 1;
1844         return 0;
1845 }
1846
1847 #define RMAP_RECYCLE_THRESHOLD 1000
1848
1849 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1850 {
1851         struct kvm_rmap_head *rmap_head;
1852         struct kvm_mmu_page *sp;
1853
1854         sp = page_header(__pa(spte));
1855
1856         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1857
1858         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1859         kvm_flush_remote_tlbs(vcpu->kvm);
1860 }
1861
1862 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1863 {
1864         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1865 }
1866
1867 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1868 {
1869         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1870 }
1871
1872 #ifdef MMU_DEBUG
1873 static int is_empty_shadow_page(u64 *spt)
1874 {
1875         u64 *pos;
1876         u64 *end;
1877
1878         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1879                 if (is_shadow_present_pte(*pos)) {
1880                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1881                                pos, *pos);
1882                         return 0;
1883                 }
1884         return 1;
1885 }
1886 #endif
1887
1888 /*
1889  * This value is the sum of all of the kvm instances's
1890  * kvm->arch.n_used_mmu_pages values.  We need a global,
1891  * aggregate version in order to make the slab shrinker
1892  * faster
1893  */
1894 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1895 {
1896         kvm->arch.n_used_mmu_pages += nr;
1897         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1898 }
1899
1900 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1901 {
1902         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1903         hlist_del(&sp->hash_link);
1904         list_del(&sp->link);
1905         free_page((unsigned long)sp->spt);
1906         if (!sp->role.direct)
1907                 free_page((unsigned long)sp->gfns);
1908         kmem_cache_free(mmu_page_header_cache, sp);
1909 }
1910
1911 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1912 {
1913         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1914 }
1915
1916 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1917                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1918 {
1919         if (!parent_pte)
1920                 return;
1921
1922         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1923 }
1924
1925 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1926                                        u64 *parent_pte)
1927 {
1928         pte_list_remove(parent_pte, &sp->parent_ptes);
1929 }
1930
1931 static void drop_parent_pte(struct kvm_mmu_page *sp,
1932                             u64 *parent_pte)
1933 {
1934         mmu_page_remove_parent_pte(sp, parent_pte);
1935         mmu_spte_clear_no_track(parent_pte);
1936 }
1937
1938 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1939 {
1940         struct kvm_mmu_page *sp;
1941
1942         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1943         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1944         if (!direct)
1945                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1946         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1947
1948         /*
1949          * The active_mmu_pages list is the FIFO list, do not move the
1950          * page until it is zapped. kvm_zap_obsolete_pages depends on
1951          * this feature. See the comments in kvm_zap_obsolete_pages().
1952          */
1953         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1954         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1955         return sp;
1956 }
1957
1958 static void mark_unsync(u64 *spte);
1959 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1960 {
1961         u64 *sptep;
1962         struct rmap_iterator iter;
1963
1964         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1965                 mark_unsync(sptep);
1966         }
1967 }
1968
1969 static void mark_unsync(u64 *spte)
1970 {
1971         struct kvm_mmu_page *sp;
1972         unsigned int index;
1973
1974         sp = page_header(__pa(spte));
1975         index = spte - sp->spt;
1976         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1977                 return;
1978         if (sp->unsync_children++)
1979                 return;
1980         kvm_mmu_mark_parents_unsync(sp);
1981 }
1982
1983 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1984                                struct kvm_mmu_page *sp)
1985 {
1986         return 0;
1987 }
1988
1989 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1990 {
1991 }
1992
1993 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1994                                  struct kvm_mmu_page *sp, u64 *spte,
1995                                  const void *pte)
1996 {
1997         WARN_ON(1);
1998 }
1999
2000 #define KVM_PAGE_ARRAY_NR 16
2001
2002 struct kvm_mmu_pages {
2003         struct mmu_page_and_offset {
2004                 struct kvm_mmu_page *sp;
2005                 unsigned int idx;
2006         } page[KVM_PAGE_ARRAY_NR];
2007         unsigned int nr;
2008 };
2009
2010 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2011                          int idx)
2012 {
2013         int i;
2014
2015         if (sp->unsync)
2016                 for (i=0; i < pvec->nr; i++)
2017                         if (pvec->page[i].sp == sp)
2018                                 return 0;
2019
2020         pvec->page[pvec->nr].sp = sp;
2021         pvec->page[pvec->nr].idx = idx;
2022         pvec->nr++;
2023         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2024 }
2025
2026 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2027 {
2028         --sp->unsync_children;
2029         WARN_ON((int)sp->unsync_children < 0);
2030         __clear_bit(idx, sp->unsync_child_bitmap);
2031 }
2032
2033 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2034                            struct kvm_mmu_pages *pvec)
2035 {
2036         int i, ret, nr_unsync_leaf = 0;
2037
2038         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2039                 struct kvm_mmu_page *child;
2040                 u64 ent = sp->spt[i];
2041
2042                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2043                         clear_unsync_child_bit(sp, i);
2044                         continue;
2045                 }
2046
2047                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2048
2049                 if (child->unsync_children) {
2050                         if (mmu_pages_add(pvec, child, i))
2051                                 return -ENOSPC;
2052
2053                         ret = __mmu_unsync_walk(child, pvec);
2054                         if (!ret) {
2055                                 clear_unsync_child_bit(sp, i);
2056                                 continue;
2057                         } else if (ret > 0) {
2058                                 nr_unsync_leaf += ret;
2059                         } else
2060                                 return ret;
2061                 } else if (child->unsync) {
2062                         nr_unsync_leaf++;
2063                         if (mmu_pages_add(pvec, child, i))
2064                                 return -ENOSPC;
2065                 } else
2066                         clear_unsync_child_bit(sp, i);
2067         }
2068
2069         return nr_unsync_leaf;
2070 }
2071
2072 #define INVALID_INDEX (-1)
2073
2074 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2075                            struct kvm_mmu_pages *pvec)
2076 {
2077         pvec->nr = 0;
2078         if (!sp->unsync_children)
2079                 return 0;
2080
2081         mmu_pages_add(pvec, sp, INVALID_INDEX);
2082         return __mmu_unsync_walk(sp, pvec);
2083 }
2084
2085 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2086 {
2087         WARN_ON(!sp->unsync);
2088         trace_kvm_mmu_sync_page(sp);
2089         sp->unsync = 0;
2090         --kvm->stat.mmu_unsync;
2091 }
2092
2093 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2094                                     struct list_head *invalid_list);
2095 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2096                                     struct list_head *invalid_list);
2097
2098 /*
2099  * NOTE: we should pay more attention on the zapped-obsolete page
2100  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2101  * since it has been deleted from active_mmu_pages but still can be found
2102  * at hast list.
2103  *
2104  * for_each_valid_sp() has skipped that kind of pages.
2105  */
2106 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2107         hlist_for_each_entry(_sp,                                       \
2108           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2109                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2110                 } else
2111
2112 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2113         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2114                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2115
2116 /* @sp->gfn should be write-protected at the call site */
2117 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2118                             struct list_head *invalid_list)
2119 {
2120         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2121                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2122                 return false;
2123         }
2124
2125         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2126                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2127                 return false;
2128         }
2129
2130         return true;
2131 }
2132
2133 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2134                                  struct list_head *invalid_list,
2135                                  bool remote_flush, bool local_flush)
2136 {
2137         if (!list_empty(invalid_list)) {
2138                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2139                 return;
2140         }
2141
2142         if (remote_flush)
2143                 kvm_flush_remote_tlbs(vcpu->kvm);
2144         else if (local_flush)
2145                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2146 }
2147
2148 #ifdef CONFIG_KVM_MMU_AUDIT
2149 #include "mmu_audit.c"
2150 #else
2151 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2152 static void mmu_audit_disable(void) { }
2153 #endif
2154
2155 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2156 {
2157         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2158 }
2159
2160 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2161                          struct list_head *invalid_list)
2162 {
2163         kvm_unlink_unsync_page(vcpu->kvm, sp);
2164         return __kvm_sync_page(vcpu, sp, invalid_list);
2165 }
2166
2167 /* @gfn should be write-protected at the call site */
2168 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2169                            struct list_head *invalid_list)
2170 {
2171         struct kvm_mmu_page *s;
2172         bool ret = false;
2173
2174         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2175                 if (!s->unsync)
2176                         continue;
2177
2178                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2179                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2180         }
2181
2182         return ret;
2183 }
2184
2185 struct mmu_page_path {
2186         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2187         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2188 };
2189
2190 #define for_each_sp(pvec, sp, parents, i)                       \
2191                 for (i = mmu_pages_first(&pvec, &parents);      \
2192                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2193                         i = mmu_pages_next(&pvec, &parents, i))
2194
2195 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2196                           struct mmu_page_path *parents,
2197                           int i)
2198 {
2199         int n;
2200
2201         for (n = i+1; n < pvec->nr; n++) {
2202                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2203                 unsigned idx = pvec->page[n].idx;
2204                 int level = sp->role.level;
2205
2206                 parents->idx[level-1] = idx;
2207                 if (level == PT_PAGE_TABLE_LEVEL)
2208                         break;
2209
2210                 parents->parent[level-2] = sp;
2211         }
2212
2213         return n;
2214 }
2215
2216 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2217                            struct mmu_page_path *parents)
2218 {
2219         struct kvm_mmu_page *sp;
2220         int level;
2221
2222         if (pvec->nr == 0)
2223                 return 0;
2224
2225         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2226
2227         sp = pvec->page[0].sp;
2228         level = sp->role.level;
2229         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2230
2231         parents->parent[level-2] = sp;
2232
2233         /* Also set up a sentinel.  Further entries in pvec are all
2234          * children of sp, so this element is never overwritten.
2235          */
2236         parents->parent[level-1] = NULL;
2237         return mmu_pages_next(pvec, parents, 0);
2238 }
2239
2240 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2241 {
2242         struct kvm_mmu_page *sp;
2243         unsigned int level = 0;
2244
2245         do {
2246                 unsigned int idx = parents->idx[level];
2247                 sp = parents->parent[level];
2248                 if (!sp)
2249                         return;
2250
2251                 WARN_ON(idx == INVALID_INDEX);
2252                 clear_unsync_child_bit(sp, idx);
2253                 level++;
2254         } while (!sp->unsync_children);
2255 }
2256
2257 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2258                               struct kvm_mmu_page *parent)
2259 {
2260         int i;
2261         struct kvm_mmu_page *sp;
2262         struct mmu_page_path parents;
2263         struct kvm_mmu_pages pages;
2264         LIST_HEAD(invalid_list);
2265         bool flush = false;
2266
2267         while (mmu_unsync_walk(parent, &pages)) {
2268                 bool protected = false;
2269
2270                 for_each_sp(pages, sp, parents, i)
2271                         protected |= rmap_write_protect(vcpu, sp->gfn);
2272
2273                 if (protected) {
2274                         kvm_flush_remote_tlbs(vcpu->kvm);
2275                         flush = false;
2276                 }
2277
2278                 for_each_sp(pages, sp, parents, i) {
2279                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2280                         mmu_pages_clear_parents(&parents);
2281                 }
2282                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2283                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2284                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2285                         flush = false;
2286                 }
2287         }
2288
2289         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2290 }
2291
2292 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2293 {
2294         atomic_set(&sp->write_flooding_count,  0);
2295 }
2296
2297 static void clear_sp_write_flooding_count(u64 *spte)
2298 {
2299         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2300
2301         __clear_sp_write_flooding_count(sp);
2302 }
2303
2304 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2305                                              gfn_t gfn,
2306                                              gva_t gaddr,
2307                                              unsigned level,
2308                                              int direct,
2309                                              unsigned access)
2310 {
2311         union kvm_mmu_page_role role;
2312         unsigned quadrant;
2313         struct kvm_mmu_page *sp;
2314         bool need_sync = false;
2315         bool flush = false;
2316         int collisions = 0;
2317         LIST_HEAD(invalid_list);
2318
2319         role = vcpu->arch.mmu.base_role;
2320         role.level = level;
2321         role.direct = direct;
2322         if (role.direct)
2323                 role.cr4_pae = 0;
2324         role.access = access;
2325         if (!vcpu->arch.mmu.direct_map
2326             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2327                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2328                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2329                 role.quadrant = quadrant;
2330         }
2331         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2332                 if (sp->gfn != gfn) {
2333                         collisions++;
2334                         continue;
2335                 }
2336
2337                 if (!need_sync && sp->unsync)
2338                         need_sync = true;
2339
2340                 if (sp->role.word != role.word)
2341                         continue;
2342
2343                 if (sp->unsync) {
2344                         /* The page is good, but __kvm_sync_page might still end
2345                          * up zapping it.  If so, break in order to rebuild it.
2346                          */
2347                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2348                                 break;
2349
2350                         WARN_ON(!list_empty(&invalid_list));
2351                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2352                 }
2353
2354                 if (sp->unsync_children)
2355                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2356
2357                 __clear_sp_write_flooding_count(sp);
2358                 trace_kvm_mmu_get_page(sp, false);
2359                 goto out;
2360         }
2361
2362         ++vcpu->kvm->stat.mmu_cache_miss;
2363
2364         sp = kvm_mmu_alloc_page(vcpu, direct);
2365
2366         sp->gfn = gfn;
2367         sp->role = role;
2368         hlist_add_head(&sp->hash_link,
2369                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2370         if (!direct) {
2371                 /*
2372                  * we should do write protection before syncing pages
2373                  * otherwise the content of the synced shadow page may
2374                  * be inconsistent with guest page table.
2375                  */
2376                 account_shadowed(vcpu->kvm, sp);
2377                 if (level == PT_PAGE_TABLE_LEVEL &&
2378                       rmap_write_protect(vcpu, gfn))
2379                         kvm_flush_remote_tlbs(vcpu->kvm);
2380
2381                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2382                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2383         }
2384         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2385         clear_page(sp->spt);
2386         trace_kvm_mmu_get_page(sp, true);
2387
2388         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2389 out:
2390         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2391                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2392         return sp;
2393 }
2394
2395 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2396                              struct kvm_vcpu *vcpu, u64 addr)
2397 {
2398         iterator->addr = addr;
2399         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2400         iterator->level = vcpu->arch.mmu.shadow_root_level;
2401
2402         if (iterator->level == PT64_ROOT_4LEVEL &&
2403             vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2404             !vcpu->arch.mmu.direct_map)
2405                 --iterator->level;
2406
2407         if (iterator->level == PT32E_ROOT_LEVEL) {
2408                 iterator->shadow_addr
2409                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2410                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2411                 --iterator->level;
2412                 if (!iterator->shadow_addr)
2413                         iterator->level = 0;
2414         }
2415 }
2416
2417 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2418 {
2419         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2420                 return false;
2421
2422         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2423         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2424         return true;
2425 }
2426
2427 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2428                                u64 spte)
2429 {
2430         if (is_last_spte(spte, iterator->level)) {
2431                 iterator->level = 0;
2432                 return;
2433         }
2434
2435         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2436         --iterator->level;
2437 }
2438
2439 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2440 {
2441         __shadow_walk_next(iterator, *iterator->sptep);
2442 }
2443
2444 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2445                              struct kvm_mmu_page *sp)
2446 {
2447         u64 spte;
2448
2449         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2450
2451         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2452                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2453
2454         if (sp_ad_disabled(sp))
2455                 spte |= shadow_acc_track_value;
2456         else
2457                 spte |= shadow_accessed_mask;
2458
2459         mmu_spte_set(sptep, spte);
2460
2461         mmu_page_add_parent_pte(vcpu, sp, sptep);
2462
2463         if (sp->unsync_children || sp->unsync)
2464                 mark_unsync(sptep);
2465 }
2466
2467 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2468                                    unsigned direct_access)
2469 {
2470         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2471                 struct kvm_mmu_page *child;
2472
2473                 /*
2474                  * For the direct sp, if the guest pte's dirty bit
2475                  * changed form clean to dirty, it will corrupt the
2476                  * sp's access: allow writable in the read-only sp,
2477                  * so we should update the spte at this point to get
2478                  * a new sp with the correct access.
2479                  */
2480                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2481                 if (child->role.access == direct_access)
2482                         return;
2483
2484                 drop_parent_pte(child, sptep);
2485                 kvm_flush_remote_tlbs(vcpu->kvm);
2486         }
2487 }
2488
2489 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2490                              u64 *spte)
2491 {
2492         u64 pte;
2493         struct kvm_mmu_page *child;
2494
2495         pte = *spte;
2496         if (is_shadow_present_pte(pte)) {
2497                 if (is_last_spte(pte, sp->role.level)) {
2498                         drop_spte(kvm, spte);
2499                         if (is_large_pte(pte))
2500                                 --kvm->stat.lpages;
2501                 } else {
2502                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2503                         drop_parent_pte(child, spte);
2504                 }
2505                 return true;
2506         }
2507
2508         if (is_mmio_spte(pte))
2509                 mmu_spte_clear_no_track(spte);
2510
2511         return false;
2512 }
2513
2514 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2515                                          struct kvm_mmu_page *sp)
2516 {
2517         unsigned i;
2518
2519         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2520                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2521 }
2522
2523 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2524 {
2525         u64 *sptep;
2526         struct rmap_iterator iter;
2527
2528         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2529                 drop_parent_pte(sp, sptep);
2530 }
2531
2532 static int mmu_zap_unsync_children(struct kvm *kvm,
2533                                    struct kvm_mmu_page *parent,
2534                                    struct list_head *invalid_list)
2535 {
2536         int i, zapped = 0;
2537         struct mmu_page_path parents;
2538         struct kvm_mmu_pages pages;
2539
2540         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2541                 return 0;
2542
2543         while (mmu_unsync_walk(parent, &pages)) {
2544                 struct kvm_mmu_page *sp;
2545
2546                 for_each_sp(pages, sp, parents, i) {
2547                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2548                         mmu_pages_clear_parents(&parents);
2549                         zapped++;
2550                 }
2551         }
2552
2553         return zapped;
2554 }
2555
2556 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2557                                     struct list_head *invalid_list)
2558 {
2559         int ret;
2560
2561         trace_kvm_mmu_prepare_zap_page(sp);
2562         ++kvm->stat.mmu_shadow_zapped;
2563         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2564         kvm_mmu_page_unlink_children(kvm, sp);
2565         kvm_mmu_unlink_parents(kvm, sp);
2566
2567         if (!sp->role.invalid && !sp->role.direct)
2568                 unaccount_shadowed(kvm, sp);
2569
2570         if (sp->unsync)
2571                 kvm_unlink_unsync_page(kvm, sp);
2572         if (!sp->root_count) {
2573                 /* Count self */
2574                 ret++;
2575                 list_move(&sp->link, invalid_list);
2576                 kvm_mod_used_mmu_pages(kvm, -1);
2577         } else {
2578                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2579
2580                 /*
2581                  * The obsolete pages can not be used on any vcpus.
2582                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2583                  */
2584                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2585                         kvm_reload_remote_mmus(kvm);
2586         }
2587
2588         sp->role.invalid = 1;
2589         return ret;
2590 }
2591
2592 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2593                                     struct list_head *invalid_list)
2594 {
2595         struct kvm_mmu_page *sp, *nsp;
2596
2597         if (list_empty(invalid_list))
2598                 return;
2599
2600         /*
2601          * We need to make sure everyone sees our modifications to
2602          * the page tables and see changes to vcpu->mode here. The barrier
2603          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2604          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2605          *
2606          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2607          * guest mode and/or lockless shadow page table walks.
2608          */
2609         kvm_flush_remote_tlbs(kvm);
2610
2611         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2612                 WARN_ON(!sp->role.invalid || sp->root_count);
2613                 kvm_mmu_free_page(sp);
2614         }
2615 }
2616
2617 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2618                                         struct list_head *invalid_list)
2619 {
2620         struct kvm_mmu_page *sp;
2621
2622         if (list_empty(&kvm->arch.active_mmu_pages))
2623                 return false;
2624
2625         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2626                              struct kvm_mmu_page, link);
2627         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2628 }
2629
2630 /*
2631  * Changing the number of mmu pages allocated to the vm
2632  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2633  */
2634 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2635 {
2636         LIST_HEAD(invalid_list);
2637
2638         spin_lock(&kvm->mmu_lock);
2639
2640         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2641                 /* Need to free some mmu pages to achieve the goal. */
2642                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2643                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2644                                 break;
2645
2646                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2647                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2648         }
2649
2650         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2651
2652         spin_unlock(&kvm->mmu_lock);
2653 }
2654
2655 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2656 {
2657         struct kvm_mmu_page *sp;
2658         LIST_HEAD(invalid_list);
2659         int r;
2660
2661         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2662         r = 0;
2663         spin_lock(&kvm->mmu_lock);
2664         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2665                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2666                          sp->role.word);
2667                 r = 1;
2668                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2669         }
2670         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2671         spin_unlock(&kvm->mmu_lock);
2672
2673         return r;
2674 }
2675 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2676
2677 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2678 {
2679         trace_kvm_mmu_unsync_page(sp);
2680         ++vcpu->kvm->stat.mmu_unsync;
2681         sp->unsync = 1;
2682
2683         kvm_mmu_mark_parents_unsync(sp);
2684 }
2685
2686 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2687                                    bool can_unsync)
2688 {
2689         struct kvm_mmu_page *sp;
2690
2691         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2692                 return true;
2693
2694         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2695                 if (!can_unsync)
2696                         return true;
2697
2698                 if (sp->unsync)
2699                         continue;
2700
2701                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2702                 kvm_unsync_page(vcpu, sp);
2703         }
2704
2705         return false;
2706 }
2707
2708 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2709 {
2710         if (pfn_valid(pfn))
2711                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2712                         /*
2713                          * Some reserved pages, such as those from NVDIMM
2714                          * DAX devices, are not for MMIO, and can be mapped
2715                          * with cached memory type for better performance.
2716                          * However, the above check misconceives those pages
2717                          * as MMIO, and results in KVM mapping them with UC
2718                          * memory type, which would hurt the performance.
2719                          * Therefore, we check the host memory type in addition
2720                          * and only treat UC/UC-/WC pages as MMIO.
2721                          */
2722                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2723
2724         return true;
2725 }
2726
2727 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2728                     unsigned pte_access, int level,
2729                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2730                     bool can_unsync, bool host_writable)
2731 {
2732         u64 spte = 0;
2733         int ret = 0;
2734         struct kvm_mmu_page *sp;
2735
2736         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2737                 return 0;
2738
2739         sp = page_header(__pa(sptep));
2740         if (sp_ad_disabled(sp))
2741                 spte |= shadow_acc_track_value;
2742
2743         /*
2744          * For the EPT case, shadow_present_mask is 0 if hardware
2745          * supports exec-only page table entries.  In that case,
2746          * ACC_USER_MASK and shadow_user_mask are used to represent
2747          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2748          */
2749         spte |= shadow_present_mask;
2750         if (!speculative)
2751                 spte |= spte_shadow_accessed_mask(spte);
2752
2753         if (pte_access & ACC_EXEC_MASK)
2754                 spte |= shadow_x_mask;
2755         else
2756                 spte |= shadow_nx_mask;
2757
2758         if (pte_access & ACC_USER_MASK)
2759                 spte |= shadow_user_mask;
2760
2761         if (level > PT_PAGE_TABLE_LEVEL)
2762                 spte |= PT_PAGE_SIZE_MASK;
2763         if (tdp_enabled)
2764                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2765                         kvm_is_mmio_pfn(pfn));
2766
2767         if (host_writable)
2768                 spte |= SPTE_HOST_WRITEABLE;
2769         else
2770                 pte_access &= ~ACC_WRITE_MASK;
2771
2772         if (!kvm_is_mmio_pfn(pfn))
2773                 spte |= shadow_me_mask;
2774
2775         spte |= (u64)pfn << PAGE_SHIFT;
2776
2777         if (pte_access & ACC_WRITE_MASK) {
2778
2779                 /*
2780                  * Other vcpu creates new sp in the window between
2781                  * mapping_level() and acquiring mmu-lock. We can
2782                  * allow guest to retry the access, the mapping can
2783                  * be fixed if guest refault.
2784                  */
2785                 if (level > PT_PAGE_TABLE_LEVEL &&
2786                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2787                         goto done;
2788
2789                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2790
2791                 /*
2792                  * Optimization: for pte sync, if spte was writable the hash
2793                  * lookup is unnecessary (and expensive). Write protection
2794                  * is responsibility of mmu_get_page / kvm_sync_page.
2795                  * Same reasoning can be applied to dirty page accounting.
2796                  */
2797                 if (!can_unsync && is_writable_pte(*sptep))
2798                         goto set_pte;
2799
2800                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2801                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2802                                  __func__, gfn);
2803                         ret = 1;
2804                         pte_access &= ~ACC_WRITE_MASK;
2805                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2806                 }
2807         }
2808
2809         if (pte_access & ACC_WRITE_MASK) {
2810                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2811                 spte |= spte_shadow_dirty_mask(spte);
2812         }
2813
2814         if (speculative)
2815                 spte = mark_spte_for_access_track(spte);
2816
2817 set_pte:
2818         if (mmu_spte_update(sptep, spte))
2819                 kvm_flush_remote_tlbs(vcpu->kvm);
2820 done:
2821         return ret;
2822 }
2823
2824 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2825                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2826                         bool speculative, bool host_writable)
2827 {
2828         int was_rmapped = 0;
2829         int rmap_count;
2830         int ret = RET_PF_RETRY;
2831
2832         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2833                  *sptep, write_fault, gfn);
2834
2835         if (is_shadow_present_pte(*sptep)) {
2836                 /*
2837                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2838                  * the parent of the now unreachable PTE.
2839                  */
2840                 if (level > PT_PAGE_TABLE_LEVEL &&
2841                     !is_large_pte(*sptep)) {
2842                         struct kvm_mmu_page *child;
2843                         u64 pte = *sptep;
2844
2845                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2846                         drop_parent_pte(child, sptep);
2847                         kvm_flush_remote_tlbs(vcpu->kvm);
2848                 } else if (pfn != spte_to_pfn(*sptep)) {
2849                         pgprintk("hfn old %llx new %llx\n",
2850                                  spte_to_pfn(*sptep), pfn);
2851                         drop_spte(vcpu->kvm, sptep);
2852                         kvm_flush_remote_tlbs(vcpu->kvm);
2853                 } else
2854                         was_rmapped = 1;
2855         }
2856
2857         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2858               true, host_writable)) {
2859                 if (write_fault)
2860                         ret = RET_PF_EMULATE;
2861                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2862         }
2863
2864         if (unlikely(is_mmio_spte(*sptep)))
2865                 ret = RET_PF_EMULATE;
2866
2867         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2868         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2869                  is_large_pte(*sptep)? "2MB" : "4kB",
2870                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2871                  *sptep, sptep);
2872         if (!was_rmapped && is_large_pte(*sptep))
2873                 ++vcpu->kvm->stat.lpages;
2874
2875         if (is_shadow_present_pte(*sptep)) {
2876                 if (!was_rmapped) {
2877                         rmap_count = rmap_add(vcpu, sptep, gfn);
2878                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2879                                 rmap_recycle(vcpu, sptep, gfn);
2880                 }
2881         }
2882
2883         kvm_release_pfn_clean(pfn);
2884
2885         return ret;
2886 }
2887
2888 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2889                                      bool no_dirty_log)
2890 {
2891         struct kvm_memory_slot *slot;
2892
2893         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2894         if (!slot)
2895                 return KVM_PFN_ERR_FAULT;
2896
2897         return gfn_to_pfn_memslot_atomic(slot, gfn);
2898 }
2899
2900 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2901                                     struct kvm_mmu_page *sp,
2902                                     u64 *start, u64 *end)
2903 {
2904         struct page *pages[PTE_PREFETCH_NUM];
2905         struct kvm_memory_slot *slot;
2906         unsigned access = sp->role.access;
2907         int i, ret;
2908         gfn_t gfn;
2909
2910         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2911         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2912         if (!slot)
2913                 return -1;
2914
2915         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2916         if (ret <= 0)
2917                 return -1;
2918
2919         for (i = 0; i < ret; i++, gfn++, start++)
2920                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2921                              page_to_pfn(pages[i]), true, true);
2922
2923         return 0;
2924 }
2925
2926 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2927                                   struct kvm_mmu_page *sp, u64 *sptep)
2928 {
2929         u64 *spte, *start = NULL;
2930         int i;
2931
2932         WARN_ON(!sp->role.direct);
2933
2934         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2935         spte = sp->spt + i;
2936
2937         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2938                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2939                         if (!start)
2940                                 continue;
2941                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2942                                 break;
2943                         start = NULL;
2944                 } else if (!start)
2945                         start = spte;
2946         }
2947 }
2948
2949 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2950 {
2951         struct kvm_mmu_page *sp;
2952
2953         sp = page_header(__pa(sptep));
2954
2955         /*
2956          * Without accessed bits, there's no way to distinguish between
2957          * actually accessed translations and prefetched, so disable pte
2958          * prefetch if accessed bits aren't available.
2959          */
2960         if (sp_ad_disabled(sp))
2961                 return;
2962
2963         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2964                 return;
2965
2966         __direct_pte_prefetch(vcpu, sp, sptep);
2967 }
2968
2969 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2970                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2971 {
2972         struct kvm_shadow_walk_iterator iterator;
2973         struct kvm_mmu_page *sp;
2974         int emulate = 0;
2975         gfn_t pseudo_gfn;
2976
2977         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2978                 return 0;
2979
2980         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2981                 if (iterator.level == level) {
2982                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2983                                                write, level, gfn, pfn, prefault,
2984                                                map_writable);
2985                         direct_pte_prefetch(vcpu, iterator.sptep);
2986                         ++vcpu->stat.pf_fixed;
2987                         break;
2988                 }
2989
2990                 drop_large_spte(vcpu, iterator.sptep);
2991                 if (!is_shadow_present_pte(*iterator.sptep)) {
2992                         u64 base_addr = iterator.addr;
2993
2994                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2995                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2996                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2997                                               iterator.level - 1, 1, ACC_ALL);
2998
2999                         link_shadow_page(vcpu, iterator.sptep, sp);
3000                 }
3001         }
3002         return emulate;
3003 }
3004
3005 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3006 {
3007         siginfo_t info;
3008
3009         clear_siginfo(&info);
3010         info.si_signo   = SIGBUS;
3011         info.si_errno   = 0;
3012         info.si_code    = BUS_MCEERR_AR;
3013         info.si_addr    = (void __user *)address;
3014         info.si_addr_lsb = PAGE_SHIFT;
3015
3016         send_sig_info(SIGBUS, &info, tsk);
3017 }
3018
3019 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3020 {
3021         /*
3022          * Do not cache the mmio info caused by writing the readonly gfn
3023          * into the spte otherwise read access on readonly gfn also can
3024          * caused mmio page fault and treat it as mmio access.
3025          */
3026         if (pfn == KVM_PFN_ERR_RO_FAULT)
3027                 return RET_PF_EMULATE;
3028
3029         if (pfn == KVM_PFN_ERR_HWPOISON) {
3030                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3031                 return RET_PF_RETRY;
3032         }
3033
3034         return -EFAULT;
3035 }
3036
3037 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3038                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
3039                                         int *levelp)
3040 {
3041         kvm_pfn_t pfn = *pfnp;
3042         gfn_t gfn = *gfnp;
3043         int level = *levelp;
3044
3045         /*
3046          * Check if it's a transparent hugepage. If this would be an
3047          * hugetlbfs page, level wouldn't be set to
3048          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3049          * here.
3050          */
3051         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3052             level == PT_PAGE_TABLE_LEVEL &&
3053             PageTransCompoundMap(pfn_to_page(pfn)) &&
3054             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3055                 unsigned long mask;
3056                 /*
3057                  * mmu_notifier_retry was successful and we hold the
3058                  * mmu_lock here, so the pmd can't become splitting
3059                  * from under us, and in turn
3060                  * __split_huge_page_refcount() can't run from under
3061                  * us and we can safely transfer the refcount from
3062                  * PG_tail to PG_head as we switch the pfn to tail to
3063                  * head.
3064                  */
3065                 *levelp = level = PT_DIRECTORY_LEVEL;
3066                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3067                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3068                 if (pfn & mask) {
3069                         gfn &= ~mask;
3070                         *gfnp = gfn;
3071                         kvm_release_pfn_clean(pfn);
3072                         pfn &= ~mask;
3073                         kvm_get_pfn(pfn);
3074                         *pfnp = pfn;
3075                 }
3076         }
3077 }
3078
3079 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3080                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3081 {
3082         /* The pfn is invalid, report the error! */
3083         if (unlikely(is_error_pfn(pfn))) {
3084                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3085                 return true;
3086         }
3087
3088         if (unlikely(is_noslot_pfn(pfn)))
3089                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3090
3091         return false;
3092 }
3093
3094 static bool page_fault_can_be_fast(u32 error_code)
3095 {
3096         /*
3097          * Do not fix the mmio spte with invalid generation number which
3098          * need to be updated by slow page fault path.
3099          */
3100         if (unlikely(error_code & PFERR_RSVD_MASK))
3101                 return false;
3102
3103         /* See if the page fault is due to an NX violation */
3104         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3105                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3106                 return false;
3107
3108         /*
3109          * #PF can be fast if:
3110          * 1. The shadow page table entry is not present, which could mean that
3111          *    the fault is potentially caused by access tracking (if enabled).
3112          * 2. The shadow page table entry is present and the fault
3113          *    is caused by write-protect, that means we just need change the W
3114          *    bit of the spte which can be done out of mmu-lock.
3115          *
3116          * However, if access tracking is disabled we know that a non-present
3117          * page must be a genuine page fault where we have to create a new SPTE.
3118          * So, if access tracking is disabled, we return true only for write
3119          * accesses to a present page.
3120          */
3121
3122         return shadow_acc_track_mask != 0 ||
3123                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3124                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3125 }
3126
3127 /*
3128  * Returns true if the SPTE was fixed successfully. Otherwise,
3129  * someone else modified the SPTE from its original value.
3130  */
3131 static bool
3132 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3133                         u64 *sptep, u64 old_spte, u64 new_spte)
3134 {
3135         gfn_t gfn;
3136
3137         WARN_ON(!sp->role.direct);
3138
3139         /*
3140          * Theoretically we could also set dirty bit (and flush TLB) here in
3141          * order to eliminate unnecessary PML logging. See comments in
3142          * set_spte. But fast_page_fault is very unlikely to happen with PML
3143          * enabled, so we do not do this. This might result in the same GPA
3144          * to be logged in PML buffer again when the write really happens, and
3145          * eventually to be called by mark_page_dirty twice. But it's also no
3146          * harm. This also avoids the TLB flush needed after setting dirty bit
3147          * so non-PML cases won't be impacted.
3148          *
3149          * Compare with set_spte where instead shadow_dirty_mask is set.
3150          */
3151         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3152                 return false;
3153
3154         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3155                 /*
3156                  * The gfn of direct spte is stable since it is
3157                  * calculated by sp->gfn.
3158                  */
3159                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3160                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3161         }
3162
3163         return true;
3164 }
3165
3166 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3167 {
3168         if (fault_err_code & PFERR_FETCH_MASK)
3169                 return is_executable_pte(spte);
3170
3171         if (fault_err_code & PFERR_WRITE_MASK)
3172                 return is_writable_pte(spte);
3173
3174         /* Fault was on Read access */
3175         return spte & PT_PRESENT_MASK;
3176 }
3177
3178 /*
3179  * Return value:
3180  * - true: let the vcpu to access on the same address again.
3181  * - false: let the real page fault path to fix it.
3182  */
3183 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3184                             u32 error_code)
3185 {
3186         struct kvm_shadow_walk_iterator iterator;
3187         struct kvm_mmu_page *sp;
3188         bool fault_handled = false;
3189         u64 spte = 0ull;
3190         uint retry_count = 0;
3191
3192         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3193                 return false;
3194
3195         if (!page_fault_can_be_fast(error_code))
3196                 return false;
3197
3198         walk_shadow_page_lockless_begin(vcpu);
3199
3200         do {
3201                 u64 new_spte;
3202
3203                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3204                         if (!is_shadow_present_pte(spte) ||
3205                             iterator.level < level)
3206                                 break;
3207
3208                 sp = page_header(__pa(iterator.sptep));
3209                 if (!is_last_spte(spte, sp->role.level))
3210                         break;
3211
3212                 /*
3213                  * Check whether the memory access that caused the fault would
3214                  * still cause it if it were to be performed right now. If not,
3215                  * then this is a spurious fault caused by TLB lazily flushed,
3216                  * or some other CPU has already fixed the PTE after the
3217                  * current CPU took the fault.
3218                  *
3219                  * Need not check the access of upper level table entries since
3220                  * they are always ACC_ALL.
3221                  */
3222                 if (is_access_allowed(error_code, spte)) {
3223                         fault_handled = true;
3224                         break;
3225                 }
3226
3227                 new_spte = spte;
3228
3229                 if (is_access_track_spte(spte))
3230                         new_spte = restore_acc_track_spte(new_spte);
3231
3232                 /*
3233                  * Currently, to simplify the code, write-protection can
3234                  * be removed in the fast path only if the SPTE was
3235                  * write-protected for dirty-logging or access tracking.
3236                  */
3237                 if ((error_code & PFERR_WRITE_MASK) &&
3238                     spte_can_locklessly_be_made_writable(spte))
3239                 {
3240                         new_spte |= PT_WRITABLE_MASK;
3241
3242                         /*
3243                          * Do not fix write-permission on the large spte.  Since
3244                          * we only dirty the first page into the dirty-bitmap in
3245                          * fast_pf_fix_direct_spte(), other pages are missed
3246                          * if its slot has dirty logging enabled.
3247                          *
3248                          * Instead, we let the slow page fault path create a
3249                          * normal spte to fix the access.
3250                          *
3251                          * See the comments in kvm_arch_commit_memory_region().
3252                          */
3253                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3254                                 break;
3255                 }
3256
3257                 /* Verify that the fault can be handled in the fast path */
3258                 if (new_spte == spte ||
3259                     !is_access_allowed(error_code, new_spte))
3260                         break;
3261
3262                 /*
3263                  * Currently, fast page fault only works for direct mapping
3264                  * since the gfn is not stable for indirect shadow page. See
3265                  * Documentation/virtual/kvm/locking.txt to get more detail.
3266                  */
3267                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3268                                                         iterator.sptep, spte,
3269                                                         new_spte);
3270                 if (fault_handled)
3271                         break;
3272
3273                 if (++retry_count > 4) {
3274                         printk_once(KERN_WARNING
3275                                 "kvm: Fast #PF retrying more than 4 times.\n");
3276                         break;
3277                 }
3278
3279         } while (true);
3280
3281         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3282                               spte, fault_handled);
3283         walk_shadow_page_lockless_end(vcpu);
3284
3285         return fault_handled;
3286 }
3287
3288 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3289                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3290 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3291
3292 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3293                          gfn_t gfn, bool prefault)
3294 {
3295         int r;
3296         int level;
3297         bool force_pt_level = false;
3298         kvm_pfn_t pfn;
3299         unsigned long mmu_seq;
3300         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3301
3302         level = mapping_level(vcpu, gfn, &force_pt_level);
3303         if (likely(!force_pt_level)) {
3304                 /*
3305                  * This path builds a PAE pagetable - so we can map
3306                  * 2mb pages at maximum. Therefore check if the level
3307                  * is larger than that.
3308                  */
3309                 if (level > PT_DIRECTORY_LEVEL)
3310                         level = PT_DIRECTORY_LEVEL;
3311
3312                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3313         }
3314
3315         if (fast_page_fault(vcpu, v, level, error_code))
3316                 return RET_PF_RETRY;
3317
3318         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3319         smp_rmb();
3320
3321         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3322                 return RET_PF_RETRY;
3323
3324         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3325                 return r;
3326
3327         spin_lock(&vcpu->kvm->mmu_lock);
3328         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3329                 goto out_unlock;
3330         if (make_mmu_pages_available(vcpu) < 0)
3331                 goto out_unlock;
3332         if (likely(!force_pt_level))
3333                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3334         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3335         spin_unlock(&vcpu->kvm->mmu_lock);
3336
3337         return r;
3338
3339 out_unlock:
3340         spin_unlock(&vcpu->kvm->mmu_lock);
3341         kvm_release_pfn_clean(pfn);
3342         return RET_PF_RETRY;
3343 }
3344
3345 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3346                                struct list_head *invalid_list)
3347 {
3348         struct kvm_mmu_page *sp;
3349
3350         if (!VALID_PAGE(*root_hpa))
3351                 return;
3352
3353         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3354         --sp->root_count;
3355         if (!sp->root_count && sp->role.invalid)
3356                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3357
3358         *root_hpa = INVALID_PAGE;
3359 }
3360
3361 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu)
3362 {
3363         int i;
3364         LIST_HEAD(invalid_list);
3365         struct kvm_mmu *mmu = &vcpu->arch.mmu;
3366
3367         if (!VALID_PAGE(mmu->root_hpa))
3368                 return;
3369
3370         spin_lock(&vcpu->kvm->mmu_lock);
3371
3372         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3373             (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3374                 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, &invalid_list);
3375         } else {
3376                 for (i = 0; i < 4; ++i)
3377                         if (mmu->pae_root[i] != 0)
3378                                 mmu_free_root_page(vcpu->kvm, &mmu->pae_root[i],
3379                                                    &invalid_list);
3380                 mmu->root_hpa = INVALID_PAGE;
3381         }
3382
3383         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3384         spin_unlock(&vcpu->kvm->mmu_lock);
3385 }
3386 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3387
3388 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3389 {
3390         int ret = 0;
3391
3392         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3393                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3394                 ret = 1;
3395         }
3396
3397         return ret;
3398 }
3399
3400 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3401 {
3402         struct kvm_mmu_page *sp;
3403         unsigned i;
3404
3405         if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3406                 spin_lock(&vcpu->kvm->mmu_lock);
3407                 if(make_mmu_pages_available(vcpu) < 0) {
3408                         spin_unlock(&vcpu->kvm->mmu_lock);
3409                         return -ENOSPC;
3410                 }
3411                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3412                                 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3413                 ++sp->root_count;
3414                 spin_unlock(&vcpu->kvm->mmu_lock);
3415                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3416         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3417                 for (i = 0; i < 4; ++i) {
3418                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3419
3420                         MMU_WARN_ON(VALID_PAGE(root));
3421                         spin_lock(&vcpu->kvm->mmu_lock);
3422                         if (make_mmu_pages_available(vcpu) < 0) {
3423                                 spin_unlock(&vcpu->kvm->mmu_lock);
3424                                 return -ENOSPC;
3425                         }
3426                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3427                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3428                         root = __pa(sp->spt);
3429                         ++sp->root_count;
3430                         spin_unlock(&vcpu->kvm->mmu_lock);
3431                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3432                 }
3433                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3434         } else
3435                 BUG();
3436
3437         return 0;
3438 }
3439
3440 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3441 {
3442         struct kvm_mmu_page *sp;
3443         u64 pdptr, pm_mask;
3444         gfn_t root_gfn;
3445         int i;
3446
3447         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3448
3449         if (mmu_check_root(vcpu, root_gfn))
3450                 return 1;
3451
3452         /*
3453          * Do we shadow a long mode page table? If so we need to
3454          * write-protect the guests page table root.
3455          */
3456         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3457                 hpa_t root = vcpu->arch.mmu.root_hpa;
3458
3459                 MMU_WARN_ON(VALID_PAGE(root));
3460
3461                 spin_lock(&vcpu->kvm->mmu_lock);
3462                 if (make_mmu_pages_available(vcpu) < 0) {
3463                         spin_unlock(&vcpu->kvm->mmu_lock);
3464                         return -ENOSPC;
3465                 }
3466                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3467                                 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3468                 root = __pa(sp->spt);
3469                 ++sp->root_count;
3470                 spin_unlock(&vcpu->kvm->mmu_lock);
3471                 vcpu->arch.mmu.root_hpa = root;
3472                 return 0;
3473         }
3474
3475         /*
3476          * We shadow a 32 bit page table. This may be a legacy 2-level
3477          * or a PAE 3-level page table. In either case we need to be aware that
3478          * the shadow page table may be a PAE or a long mode page table.
3479          */
3480         pm_mask = PT_PRESENT_MASK;
3481         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3482                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3483
3484         for (i = 0; i < 4; ++i) {
3485                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3486
3487                 MMU_WARN_ON(VALID_PAGE(root));
3488                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3489                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3490                         if (!(pdptr & PT_PRESENT_MASK)) {
3491                                 vcpu->arch.mmu.pae_root[i] = 0;
3492                                 continue;
3493                         }
3494                         root_gfn = pdptr >> PAGE_SHIFT;
3495                         if (mmu_check_root(vcpu, root_gfn))
3496                                 return 1;
3497                 }
3498                 spin_lock(&vcpu->kvm->mmu_lock);
3499                 if (make_mmu_pages_available(vcpu) < 0) {
3500                         spin_unlock(&vcpu->kvm->mmu_lock);
3501                         return -ENOSPC;
3502                 }
3503                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3504                                       0, ACC_ALL);
3505                 root = __pa(sp->spt);
3506                 ++sp->root_count;
3507                 spin_unlock(&vcpu->kvm->mmu_lock);
3508
3509                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3510         }
3511         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3512
3513         /*
3514          * If we shadow a 32 bit page table with a long mode page
3515          * table we enter this path.
3516          */
3517         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3518                 if (vcpu->arch.mmu.lm_root == NULL) {
3519                         /*
3520                          * The additional page necessary for this is only
3521                          * allocated on demand.
3522                          */
3523
3524                         u64 *lm_root;
3525
3526                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3527                         if (lm_root == NULL)
3528                                 return 1;
3529
3530                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3531
3532                         vcpu->arch.mmu.lm_root = lm_root;
3533                 }
3534
3535                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3536         }
3537
3538         return 0;
3539 }
3540
3541 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3542 {
3543         if (vcpu->arch.mmu.direct_map)
3544                 return mmu_alloc_direct_roots(vcpu);
3545         else
3546                 return mmu_alloc_shadow_roots(vcpu);
3547 }
3548
3549 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3550 {
3551         int i;
3552         struct kvm_mmu_page *sp;
3553
3554         if (vcpu->arch.mmu.direct_map)
3555                 return;
3556
3557         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3558                 return;
3559
3560         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3561         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3562         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3563                 hpa_t root = vcpu->arch.mmu.root_hpa;
3564                 sp = page_header(root);
3565                 mmu_sync_children(vcpu, sp);
3566                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3567                 return;
3568         }
3569         for (i = 0; i < 4; ++i) {
3570                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3571
3572                 if (root && VALID_PAGE(root)) {
3573                         root &= PT64_BASE_ADDR_MASK;
3574                         sp = page_header(root);
3575                         mmu_sync_children(vcpu, sp);
3576                 }
3577         }
3578         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3579 }
3580
3581 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3582 {
3583         spin_lock(&vcpu->kvm->mmu_lock);
3584         mmu_sync_roots(vcpu);
3585         spin_unlock(&vcpu->kvm->mmu_lock);
3586 }
3587 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3588
3589 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3590                                   u32 access, struct x86_exception *exception)
3591 {
3592         if (exception)
3593                 exception->error_code = 0;
3594         return vaddr;
3595 }
3596
3597 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3598                                          u32 access,
3599                                          struct x86_exception *exception)
3600 {
3601         if (exception)
3602                 exception->error_code = 0;
3603         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3604 }
3605
3606 static bool
3607 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3608 {
3609         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3610
3611         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3612                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3613 }
3614
3615 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3616 {
3617         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3618 }
3619
3620 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3621 {
3622         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3623 }
3624
3625 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3626 {
3627         /*
3628          * A nested guest cannot use the MMIO cache if it is using nested
3629          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3630          */
3631         if (mmu_is_nested(vcpu))
3632                 return false;
3633
3634         if (direct)
3635                 return vcpu_match_mmio_gpa(vcpu, addr);
3636
3637         return vcpu_match_mmio_gva(vcpu, addr);
3638 }
3639
3640 /* return true if reserved bit is detected on spte. */
3641 static bool
3642 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3643 {
3644         struct kvm_shadow_walk_iterator iterator;
3645         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3646         int root, leaf;
3647         bool reserved = false;
3648
3649         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3650                 goto exit;
3651
3652         walk_shadow_page_lockless_begin(vcpu);
3653
3654         for (shadow_walk_init(&iterator, vcpu, addr),
3655                  leaf = root = iterator.level;
3656              shadow_walk_okay(&iterator);
3657              __shadow_walk_next(&iterator, spte)) {
3658                 spte = mmu_spte_get_lockless(iterator.sptep);
3659
3660                 sptes[leaf - 1] = spte;
3661                 leaf--;
3662
3663                 if (!is_shadow_present_pte(spte))
3664                         break;
3665
3666                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3667                                                     iterator.level);
3668         }
3669
3670         walk_shadow_page_lockless_end(vcpu);
3671
3672         if (reserved) {
3673                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3674                        __func__, addr);
3675                 while (root > leaf) {
3676                         pr_err("------ spte 0x%llx level %d.\n",
3677                                sptes[root - 1], root);
3678                         root--;
3679                 }
3680         }
3681 exit:
3682         *sptep = spte;
3683         return reserved;
3684 }
3685
3686 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3687 {
3688         u64 spte;
3689         bool reserved;
3690
3691         if (mmio_info_in_cache(vcpu, addr, direct))
3692                 return RET_PF_EMULATE;
3693
3694         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3695         if (WARN_ON(reserved))
3696                 return -EINVAL;
3697
3698         if (is_mmio_spte(spte)) {
3699                 gfn_t gfn = get_mmio_spte_gfn(spte);
3700                 unsigned access = get_mmio_spte_access(spte);
3701
3702                 if (!check_mmio_spte(vcpu, spte))
3703                         return RET_PF_INVALID;
3704
3705                 if (direct)
3706                         addr = 0;
3707
3708                 trace_handle_mmio_page_fault(addr, gfn, access);
3709                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3710                 return RET_PF_EMULATE;
3711         }
3712
3713         /*
3714          * If the page table is zapped by other cpus, let CPU fault again on
3715          * the address.
3716          */
3717         return RET_PF_RETRY;
3718 }
3719
3720 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3721                                          u32 error_code, gfn_t gfn)
3722 {
3723         if (unlikely(error_code & PFERR_RSVD_MASK))
3724                 return false;
3725
3726         if (!(error_code & PFERR_PRESENT_MASK) ||
3727               !(error_code & PFERR_WRITE_MASK))
3728                 return false;
3729
3730         /*
3731          * guest is writing the page which is write tracked which can
3732          * not be fixed by page fault handler.
3733          */
3734         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3735                 return true;
3736
3737         return false;
3738 }
3739
3740 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3741 {
3742         struct kvm_shadow_walk_iterator iterator;
3743         u64 spte;
3744
3745         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3746                 return;
3747
3748         walk_shadow_page_lockless_begin(vcpu);
3749         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3750                 clear_sp_write_flooding_count(iterator.sptep);
3751                 if (!is_shadow_present_pte(spte))
3752                         break;
3753         }
3754         walk_shadow_page_lockless_end(vcpu);
3755 }
3756
3757 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3758                                 u32 error_code, bool prefault)
3759 {
3760         gfn_t gfn = gva >> PAGE_SHIFT;
3761         int r;
3762
3763         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3764
3765         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3766                 return RET_PF_EMULATE;
3767
3768         r = mmu_topup_memory_caches(vcpu);
3769         if (r)
3770                 return r;
3771
3772         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3773
3774
3775         return nonpaging_map(vcpu, gva & PAGE_MASK,
3776                              error_code, gfn, prefault);
3777 }
3778
3779 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3780 {
3781         struct kvm_arch_async_pf arch;
3782
3783         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3784         arch.gfn = gfn;
3785         arch.direct_map = vcpu->arch.mmu.direct_map;
3786         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3787
3788         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3789 }
3790
3791 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3792 {
3793         if (unlikely(!lapic_in_kernel(vcpu) ||
3794                      kvm_event_needs_reinjection(vcpu) ||
3795                      vcpu->arch.exception.pending))
3796                 return false;
3797
3798         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3799                 return false;
3800
3801         return kvm_x86_ops->interrupt_allowed(vcpu);
3802 }
3803
3804 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3805                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3806 {
3807         struct kvm_memory_slot *slot;
3808         bool async;
3809
3810         /*
3811          * Don't expose private memslots to L2.
3812          */
3813         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3814                 *pfn = KVM_PFN_NOSLOT;
3815                 return false;
3816         }
3817
3818         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3819         async = false;
3820         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3821         if (!async)
3822                 return false; /* *pfn has correct page already */
3823
3824         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3825                 trace_kvm_try_async_get_page(gva, gfn);
3826                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3827                         trace_kvm_async_pf_doublefault(gva, gfn);
3828                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3829                         return true;
3830                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3831                         return true;
3832         }
3833
3834         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3835         return false;
3836 }
3837
3838 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3839                                 u64 fault_address, char *insn, int insn_len)
3840 {
3841         int r = 1;
3842
3843         switch (vcpu->arch.apf.host_apf_reason) {
3844         default:
3845                 trace_kvm_page_fault(fault_address, error_code);
3846
3847                 if (kvm_event_needs_reinjection(vcpu))
3848                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3849                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3850                                 insn_len);
3851                 break;
3852         case KVM_PV_REASON_PAGE_NOT_PRESENT:
3853                 vcpu->arch.apf.host_apf_reason = 0;
3854                 local_irq_disable();
3855                 kvm_async_pf_task_wait(fault_address, 0);
3856                 local_irq_enable();
3857                 break;
3858         case KVM_PV_REASON_PAGE_READY:
3859                 vcpu->arch.apf.host_apf_reason = 0;
3860                 local_irq_disable();
3861                 kvm_async_pf_task_wake(fault_address);
3862                 local_irq_enable();
3863                 break;
3864         }
3865         return r;
3866 }
3867 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3868
3869 static bool
3870 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3871 {
3872         int page_num = KVM_PAGES_PER_HPAGE(level);
3873
3874         gfn &= ~(page_num - 1);
3875
3876         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3877 }
3878
3879 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3880                           bool prefault)
3881 {
3882         kvm_pfn_t pfn;
3883         int r;
3884         int level;
3885         bool force_pt_level;
3886         gfn_t gfn = gpa >> PAGE_SHIFT;
3887         unsigned long mmu_seq;
3888         int write = error_code & PFERR_WRITE_MASK;
3889         bool map_writable;
3890
3891         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3892
3893         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3894                 return RET_PF_EMULATE;
3895
3896         r = mmu_topup_memory_caches(vcpu);
3897         if (r)
3898                 return r;
3899
3900         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3901                                                            PT_DIRECTORY_LEVEL);
3902         level = mapping_level(vcpu, gfn, &force_pt_level);
3903         if (likely(!force_pt_level)) {
3904                 if (level > PT_DIRECTORY_LEVEL &&
3905                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3906                         level = PT_DIRECTORY_LEVEL;
3907                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3908         }
3909
3910         if (fast_page_fault(vcpu, gpa, level, error_code))
3911                 return RET_PF_RETRY;
3912
3913         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3914         smp_rmb();
3915
3916         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3917                 return RET_PF_RETRY;
3918
3919         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3920                 return r;
3921
3922         spin_lock(&vcpu->kvm->mmu_lock);
3923         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3924                 goto out_unlock;
3925         if (make_mmu_pages_available(vcpu) < 0)
3926                 goto out_unlock;
3927         if (likely(!force_pt_level))
3928                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3929         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3930         spin_unlock(&vcpu->kvm->mmu_lock);
3931
3932         return r;
3933
3934 out_unlock:
3935         spin_unlock(&vcpu->kvm->mmu_lock);
3936         kvm_release_pfn_clean(pfn);
3937         return RET_PF_RETRY;
3938 }
3939
3940 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3941                                    struct kvm_mmu *context)
3942 {
3943         context->page_fault = nonpaging_page_fault;
3944         context->gva_to_gpa = nonpaging_gva_to_gpa;
3945         context->sync_page = nonpaging_sync_page;
3946         context->invlpg = nonpaging_invlpg;
3947         context->update_pte = nonpaging_update_pte;
3948         context->root_level = 0;
3949         context->shadow_root_level = PT32E_ROOT_LEVEL;
3950         context->root_hpa = INVALID_PAGE;
3951         context->direct_map = true;
3952         context->nx = false;
3953 }
3954
3955 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3956 {
3957         kvm_mmu_free_roots(vcpu);
3958 }
3959
3960 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3961 {
3962         return kvm_read_cr3(vcpu);
3963 }
3964
3965 static void inject_page_fault(struct kvm_vcpu *vcpu,
3966                               struct x86_exception *fault)
3967 {
3968         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3969 }
3970
3971 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3972                            unsigned access, int *nr_present)
3973 {
3974         if (unlikely(is_mmio_spte(*sptep))) {
3975                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3976                         mmu_spte_clear_no_track(sptep);
3977                         return true;
3978                 }
3979
3980                 (*nr_present)++;
3981                 mark_mmio_spte(vcpu, sptep, gfn, access);
3982                 return true;
3983         }
3984
3985         return false;
3986 }
3987
3988 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3989                                 unsigned level, unsigned gpte)
3990 {
3991         /*
3992          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3993          * If it is clear, there are no large pages at this level, so clear
3994          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3995          */
3996         gpte &= level - mmu->last_nonleaf_level;
3997
3998         /*
3999          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4000          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4001          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4002          */
4003         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4004
4005         return gpte & PT_PAGE_SIZE_MASK;
4006 }
4007
4008 #define PTTYPE_EPT 18 /* arbitrary */
4009 #define PTTYPE PTTYPE_EPT
4010 #include "paging_tmpl.h"
4011 #undef PTTYPE
4012
4013 #define PTTYPE 64
4014 #include "paging_tmpl.h"
4015 #undef PTTYPE
4016
4017 #define PTTYPE 32
4018 #include "paging_tmpl.h"
4019 #undef PTTYPE
4020
4021 static void
4022 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4023                         struct rsvd_bits_validate *rsvd_check,
4024                         int maxphyaddr, int level, bool nx, bool gbpages,
4025                         bool pse, bool amd)
4026 {
4027         u64 exb_bit_rsvd = 0;
4028         u64 gbpages_bit_rsvd = 0;
4029         u64 nonleaf_bit8_rsvd = 0;
4030
4031         rsvd_check->bad_mt_xwr = 0;
4032
4033         if (!nx)
4034                 exb_bit_rsvd = rsvd_bits(63, 63);
4035         if (!gbpages)
4036                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4037
4038         /*
4039          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4040          * leaf entries) on AMD CPUs only.
4041          */
4042         if (amd)
4043                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4044
4045         switch (level) {
4046         case PT32_ROOT_LEVEL:
4047                 /* no rsvd bits for 2 level 4K page table entries */
4048                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4049                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4050                 rsvd_check->rsvd_bits_mask[1][0] =
4051                         rsvd_check->rsvd_bits_mask[0][0];
4052
4053                 if (!pse) {
4054                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4055                         break;
4056                 }
4057
4058                 if (is_cpuid_PSE36())
4059                         /* 36bits PSE 4MB page */
4060                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4061                 else
4062                         /* 32 bits PSE 4MB page */
4063                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4064                 break;
4065         case PT32E_ROOT_LEVEL:
4066                 rsvd_check->rsvd_bits_mask[0][2] =
4067                         rsvd_bits(maxphyaddr, 63) |
4068                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4069                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4070                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4071                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4072                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4073                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4074                         rsvd_bits(maxphyaddr, 62) |
4075                         rsvd_bits(13, 20);              /* large page */
4076                 rsvd_check->rsvd_bits_mask[1][0] =
4077                         rsvd_check->rsvd_bits_mask[0][0];
4078                 break;
4079         case PT64_ROOT_5LEVEL:
4080                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4081                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4082                         rsvd_bits(maxphyaddr, 51);
4083                 rsvd_check->rsvd_bits_mask[1][4] =
4084                         rsvd_check->rsvd_bits_mask[0][4];
4085         case PT64_ROOT_4LEVEL:
4086                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4087                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4088                         rsvd_bits(maxphyaddr, 51);
4089                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4090                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4091                         rsvd_bits(maxphyaddr, 51);
4092                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4093                         rsvd_bits(maxphyaddr, 51);
4094                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4095                         rsvd_bits(maxphyaddr, 51);
4096                 rsvd_check->rsvd_bits_mask[1][3] =
4097                         rsvd_check->rsvd_bits_mask[0][3];
4098                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4099                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4100                         rsvd_bits(13, 29);
4101                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4102                         rsvd_bits(maxphyaddr, 51) |
4103                         rsvd_bits(13, 20);              /* large page */
4104                 rsvd_check->rsvd_bits_mask[1][0] =
4105                         rsvd_check->rsvd_bits_mask[0][0];
4106                 break;
4107         }
4108 }
4109
4110 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4111                                   struct kvm_mmu *context)
4112 {
4113         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4114                                 cpuid_maxphyaddr(vcpu), context->root_level,
4115                                 context->nx,
4116                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4117                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4118 }
4119
4120 static void
4121 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4122                             int maxphyaddr, bool execonly)
4123 {
4124         u64 bad_mt_xwr;
4125
4126         rsvd_check->rsvd_bits_mask[0][4] =
4127                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4128         rsvd_check->rsvd_bits_mask[0][3] =
4129                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4130         rsvd_check->rsvd_bits_mask[0][2] =
4131                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4132         rsvd_check->rsvd_bits_mask[0][1] =
4133                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4134         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4135
4136         /* large page */
4137         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4138         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4139         rsvd_check->rsvd_bits_mask[1][2] =
4140                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4141         rsvd_check->rsvd_bits_mask[1][1] =
4142                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4143         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4144
4145         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4146         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4147         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4148         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4149         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4150         if (!execonly) {
4151                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4152                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4153         }
4154         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4155 }
4156
4157 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4158                 struct kvm_mmu *context, bool execonly)
4159 {
4160         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4161                                     cpuid_maxphyaddr(vcpu), execonly);
4162 }
4163
4164 /*
4165  * the page table on host is the shadow page table for the page
4166  * table in guest or amd nested guest, its mmu features completely
4167  * follow the features in guest.
4168  */
4169 void
4170 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4171 {
4172         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4173         struct rsvd_bits_validate *shadow_zero_check;
4174         int i;
4175
4176         /*
4177          * Passing "true" to the last argument is okay; it adds a check
4178          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4179          */
4180         shadow_zero_check = &context->shadow_zero_check;
4181         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4182                                 boot_cpu_data.x86_phys_bits,
4183                                 context->shadow_root_level, uses_nx,
4184                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4185                                 is_pse(vcpu), true);
4186
4187         if (!shadow_me_mask)
4188                 return;
4189
4190         for (i = context->shadow_root_level; --i >= 0;) {
4191                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4192                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4193         }
4194
4195 }
4196 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4197
4198 static inline bool boot_cpu_is_amd(void)
4199 {
4200         WARN_ON_ONCE(!tdp_enabled);
4201         return shadow_x_mask == 0;
4202 }
4203
4204 /*
4205  * the direct page table on host, use as much mmu features as
4206  * possible, however, kvm currently does not do execution-protection.
4207  */
4208 static void
4209 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4210                                 struct kvm_mmu *context)
4211 {
4212         struct rsvd_bits_validate *shadow_zero_check;
4213         int i;
4214
4215         shadow_zero_check = &context->shadow_zero_check;
4216
4217         if (boot_cpu_is_amd())
4218                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4219                                         boot_cpu_data.x86_phys_bits,
4220                                         context->shadow_root_level, false,
4221                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4222                                         true, true);
4223         else
4224                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4225                                             boot_cpu_data.x86_phys_bits,
4226                                             false);
4227
4228         if (!shadow_me_mask)
4229                 return;
4230
4231         for (i = context->shadow_root_level; --i >= 0;) {
4232                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4233                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4234         }
4235 }
4236
4237 /*
4238  * as the comments in reset_shadow_zero_bits_mask() except it
4239  * is the shadow page table for intel nested guest.
4240  */
4241 static void
4242 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4243                                 struct kvm_mmu *context, bool execonly)
4244 {
4245         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4246                                     boot_cpu_data.x86_phys_bits, execonly);
4247 }
4248
4249 #define BYTE_MASK(access) \
4250         ((1 & (access) ? 2 : 0) | \
4251          (2 & (access) ? 4 : 0) | \
4252          (3 & (access) ? 8 : 0) | \
4253          (4 & (access) ? 16 : 0) | \
4254          (5 & (access) ? 32 : 0) | \
4255          (6 & (access) ? 64 : 0) | \
4256          (7 & (access) ? 128 : 0))
4257
4258
4259 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4260                                       struct kvm_mmu *mmu, bool ept)
4261 {
4262         unsigned byte;
4263
4264         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4265         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4266         const u8 u = BYTE_MASK(ACC_USER_MASK);
4267
4268         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4269         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4270         bool cr0_wp = is_write_protection(vcpu);
4271
4272         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4273                 unsigned pfec = byte << 1;
4274
4275                 /*
4276                  * Each "*f" variable has a 1 bit for each UWX value
4277                  * that causes a fault with the given PFEC.
4278                  */
4279
4280                 /* Faults from writes to non-writable pages */
4281                 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4282                 /* Faults from user mode accesses to supervisor pages */
4283                 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4284                 /* Faults from fetches of non-executable pages*/
4285                 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4286                 /* Faults from kernel mode fetches of user pages */
4287                 u8 smepf = 0;
4288                 /* Faults from kernel mode accesses of user pages */
4289                 u8 smapf = 0;
4290
4291                 if (!ept) {
4292                         /* Faults from kernel mode accesses to user pages */
4293                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4294
4295                         /* Not really needed: !nx will cause pte.nx to fault */
4296                         if (!mmu->nx)
4297                                 ff = 0;
4298
4299                         /* Allow supervisor writes if !cr0.wp */
4300                         if (!cr0_wp)
4301                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4302
4303                         /* Disallow supervisor fetches of user code if cr4.smep */
4304                         if (cr4_smep)
4305                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4306
4307                         /*
4308                          * SMAP:kernel-mode data accesses from user-mode
4309                          * mappings should fault. A fault is considered
4310                          * as a SMAP violation if all of the following
4311                          * conditions are ture:
4312                          *   - X86_CR4_SMAP is set in CR4
4313                          *   - A user page is accessed
4314                          *   - The access is not a fetch
4315                          *   - Page fault in kernel mode
4316                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4317                          *
4318                          * Here, we cover the first three conditions.
4319                          * The fourth is computed dynamically in permission_fault();
4320                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4321                          * *not* subject to SMAP restrictions.
4322                          */
4323                         if (cr4_smap)
4324                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4325                 }
4326
4327                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4328         }
4329 }
4330
4331 /*
4332 * PKU is an additional mechanism by which the paging controls access to
4333 * user-mode addresses based on the value in the PKRU register.  Protection
4334 * key violations are reported through a bit in the page fault error code.
4335 * Unlike other bits of the error code, the PK bit is not known at the
4336 * call site of e.g. gva_to_gpa; it must be computed directly in
4337 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4338 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4339 *
4340 * In particular the following conditions come from the error code, the
4341 * page tables and the machine state:
4342 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4343 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4344 * - PK is always zero if U=0 in the page tables
4345 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4346 *
4347 * The PKRU bitmask caches the result of these four conditions.  The error
4348 * code (minus the P bit) and the page table's U bit form an index into the
4349 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4350 * with the two bits of the PKRU register corresponding to the protection key.
4351 * For the first three conditions above the bits will be 00, thus masking
4352 * away both AD and WD.  For all reads or if the last condition holds, WD
4353 * only will be masked away.
4354 */
4355 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4356                                 bool ept)
4357 {
4358         unsigned bit;
4359         bool wp;
4360
4361         if (ept) {
4362                 mmu->pkru_mask = 0;
4363                 return;
4364         }
4365
4366         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4367         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4368                 mmu->pkru_mask = 0;
4369                 return;
4370         }
4371
4372         wp = is_write_protection(vcpu);
4373
4374         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4375                 unsigned pfec, pkey_bits;
4376                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4377
4378                 pfec = bit << 1;
4379                 ff = pfec & PFERR_FETCH_MASK;
4380                 uf = pfec & PFERR_USER_MASK;
4381                 wf = pfec & PFERR_WRITE_MASK;
4382
4383                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4384                 pte_user = pfec & PFERR_RSVD_MASK;
4385
4386                 /*
4387                  * Only need to check the access which is not an
4388                  * instruction fetch and is to a user page.
4389                  */
4390                 check_pkey = (!ff && pte_user);
4391                 /*
4392                  * write access is controlled by PKRU if it is a
4393                  * user access or CR0.WP = 1.
4394                  */
4395                 check_write = check_pkey && wf && (uf || wp);
4396
4397                 /* PKRU.AD stops both read and write access. */
4398                 pkey_bits = !!check_pkey;
4399                 /* PKRU.WD stops write access. */
4400                 pkey_bits |= (!!check_write) << 1;
4401
4402                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4403         }
4404 }
4405
4406 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4407 {
4408         unsigned root_level = mmu->root_level;
4409
4410         mmu->last_nonleaf_level = root_level;
4411         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4412                 mmu->last_nonleaf_level++;
4413 }
4414
4415 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4416                                          struct kvm_mmu *context,
4417                                          int level)
4418 {
4419         context->nx = is_nx(vcpu);
4420         context->root_level = level;
4421
4422         reset_rsvds_bits_mask(vcpu, context);
4423         update_permission_bitmask(vcpu, context, false);
4424         update_pkru_bitmask(vcpu, context, false);
4425         update_last_nonleaf_level(vcpu, context);
4426
4427         MMU_WARN_ON(!is_pae(vcpu));
4428         context->page_fault = paging64_page_fault;
4429         context->gva_to_gpa = paging64_gva_to_gpa;
4430         context->sync_page = paging64_sync_page;
4431         context->invlpg = paging64_invlpg;
4432         context->update_pte = paging64_update_pte;
4433         context->shadow_root_level = level;
4434         context->root_hpa = INVALID_PAGE;
4435         context->direct_map = false;
4436 }
4437
4438 static void paging64_init_context(struct kvm_vcpu *vcpu,
4439                                   struct kvm_mmu *context)
4440 {
4441         int root_level = is_la57_mode(vcpu) ?
4442                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4443
4444         paging64_init_context_common(vcpu, context, root_level);
4445 }
4446
4447 static void paging32_init_context(struct kvm_vcpu *vcpu,
4448                                   struct kvm_mmu *context)
4449 {
4450         context->nx = false;
4451         context->root_level = PT32_ROOT_LEVEL;
4452
4453         reset_rsvds_bits_mask(vcpu, context);
4454         update_permission_bitmask(vcpu, context, false);
4455         update_pkru_bitmask(vcpu, context, false);
4456         update_last_nonleaf_level(vcpu, context);
4457
4458         context->page_fault = paging32_page_fault;
4459         context->gva_to_gpa = paging32_gva_to_gpa;
4460         context->sync_page = paging32_sync_page;
4461         context->invlpg = paging32_invlpg;
4462         context->update_pte = paging32_update_pte;
4463         context->shadow_root_level = PT32E_ROOT_LEVEL;
4464         context->root_hpa = INVALID_PAGE;
4465         context->direct_map = false;
4466 }
4467
4468 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4469                                    struct kvm_mmu *context)
4470 {
4471         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4472 }
4473
4474 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4475 {
4476         struct kvm_mmu *context = &vcpu->arch.mmu;
4477
4478         context->base_role.word = 0;
4479         context->base_role.guest_mode = is_guest_mode(vcpu);
4480         context->base_role.smm = is_smm(vcpu);
4481         context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4482         context->page_fault = tdp_page_fault;
4483         context->sync_page = nonpaging_sync_page;
4484         context->invlpg = nonpaging_invlpg;
4485         context->update_pte = nonpaging_update_pte;
4486         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4487         context->root_hpa = INVALID_PAGE;
4488         context->direct_map = true;
4489         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4490         context->get_cr3 = get_cr3;
4491         context->get_pdptr = kvm_pdptr_read;
4492         context->inject_page_fault = kvm_inject_page_fault;
4493
4494         if (!is_paging(vcpu)) {
4495                 context->nx = false;
4496                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4497                 context->root_level = 0;
4498         } else if (is_long_mode(vcpu)) {
4499                 context->nx = is_nx(vcpu);
4500                 context->root_level = is_la57_mode(vcpu) ?
4501                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4502                 reset_rsvds_bits_mask(vcpu, context);
4503                 context->gva_to_gpa = paging64_gva_to_gpa;
4504         } else if (is_pae(vcpu)) {
4505                 context->nx = is_nx(vcpu);
4506                 context->root_level = PT32E_ROOT_LEVEL;
4507                 reset_rsvds_bits_mask(vcpu, context);
4508                 context->gva_to_gpa = paging64_gva_to_gpa;
4509         } else {
4510                 context->nx = false;
4511                 context->root_level = PT32_ROOT_LEVEL;
4512                 reset_rsvds_bits_mask(vcpu, context);
4513                 context->gva_to_gpa = paging32_gva_to_gpa;
4514         }
4515
4516         update_permission_bitmask(vcpu, context, false);
4517         update_pkru_bitmask(vcpu, context, false);
4518         update_last_nonleaf_level(vcpu, context);
4519         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4520 }
4521
4522 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4523 {
4524         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4525         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4526         struct kvm_mmu *context = &vcpu->arch.mmu;
4527
4528         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4529
4530         if (!is_paging(vcpu))
4531                 nonpaging_init_context(vcpu, context);
4532         else if (is_long_mode(vcpu))
4533                 paging64_init_context(vcpu, context);
4534         else if (is_pae(vcpu))
4535                 paging32E_init_context(vcpu, context);
4536         else
4537                 paging32_init_context(vcpu, context);
4538
4539         context->base_role.nxe = is_nx(vcpu);
4540         context->base_role.cr4_pae = !!is_pae(vcpu);
4541         context->base_role.cr0_wp  = is_write_protection(vcpu);
4542         context->base_role.smep_andnot_wp
4543                 = smep && !is_write_protection(vcpu);
4544         context->base_role.smap_andnot_wp
4545                 = smap && !is_write_protection(vcpu);
4546         context->base_role.guest_mode = is_guest_mode(vcpu);
4547         context->base_role.smm = is_smm(vcpu);
4548         reset_shadow_zero_bits_mask(vcpu, context);
4549 }
4550 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4551
4552 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4553                              bool accessed_dirty)
4554 {
4555         struct kvm_mmu *context = &vcpu->arch.mmu;
4556
4557         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4558
4559         context->shadow_root_level = PT64_ROOT_4LEVEL;
4560
4561         context->nx = true;
4562         context->ept_ad = accessed_dirty;
4563         context->page_fault = ept_page_fault;
4564         context->gva_to_gpa = ept_gva_to_gpa;
4565         context->sync_page = ept_sync_page;
4566         context->invlpg = ept_invlpg;
4567         context->update_pte = ept_update_pte;
4568         context->root_level = PT64_ROOT_4LEVEL;
4569         context->root_hpa = INVALID_PAGE;
4570         context->direct_map = false;
4571         context->base_role.ad_disabled = !accessed_dirty;
4572         context->base_role.guest_mode = 1;
4573         update_permission_bitmask(vcpu, context, true);
4574         update_pkru_bitmask(vcpu, context, true);
4575         update_last_nonleaf_level(vcpu, context);
4576         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4577         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4578 }
4579 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4580
4581 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4582 {
4583         struct kvm_mmu *context = &vcpu->arch.mmu;
4584
4585         kvm_init_shadow_mmu(vcpu);
4586         context->set_cr3           = kvm_x86_ops->set_cr3;
4587         context->get_cr3           = get_cr3;
4588         context->get_pdptr         = kvm_pdptr_read;
4589         context->inject_page_fault = kvm_inject_page_fault;
4590 }
4591
4592 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4593 {
4594         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4595
4596         g_context->get_cr3           = get_cr3;
4597         g_context->get_pdptr         = kvm_pdptr_read;
4598         g_context->inject_page_fault = kvm_inject_page_fault;
4599
4600         /*
4601          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4602          * L1's nested page tables (e.g. EPT12). The nested translation
4603          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4604          * L2's page tables as the first level of translation and L1's
4605          * nested page tables as the second level of translation. Basically
4606          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4607          */
4608         if (!is_paging(vcpu)) {
4609                 g_context->nx = false;
4610                 g_context->root_level = 0;
4611                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4612         } else if (is_long_mode(vcpu)) {
4613                 g_context->nx = is_nx(vcpu);
4614                 g_context->root_level = is_la57_mode(vcpu) ?
4615                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4616                 reset_rsvds_bits_mask(vcpu, g_context);
4617                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4618         } else if (is_pae(vcpu)) {
4619                 g_context->nx = is_nx(vcpu);
4620                 g_context->root_level = PT32E_ROOT_LEVEL;
4621                 reset_rsvds_bits_mask(vcpu, g_context);
4622                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4623         } else {
4624                 g_context->nx = false;
4625                 g_context->root_level = PT32_ROOT_LEVEL;
4626                 reset_rsvds_bits_mask(vcpu, g_context);
4627                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4628         }
4629
4630         update_permission_bitmask(vcpu, g_context, false);
4631         update_pkru_bitmask(vcpu, g_context, false);
4632         update_last_nonleaf_level(vcpu, g_context);
4633 }
4634
4635 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4636 {
4637         if (mmu_is_nested(vcpu))
4638                 init_kvm_nested_mmu(vcpu);
4639         else if (tdp_enabled)
4640                 init_kvm_tdp_mmu(vcpu);
4641         else
4642                 init_kvm_softmmu(vcpu);
4643 }
4644
4645 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4646 {
4647         kvm_mmu_unload(vcpu);
4648         init_kvm_mmu(vcpu);
4649 }
4650 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4651
4652 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4653 {
4654         int r;
4655
4656         r = mmu_topup_memory_caches(vcpu);
4657         if (r)
4658                 goto out;
4659         r = mmu_alloc_roots(vcpu);
4660         kvm_mmu_sync_roots(vcpu);
4661         if (r)
4662                 goto out;
4663         /* set_cr3() should ensure TLB has been flushed */
4664         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4665 out:
4666         return r;
4667 }
4668 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4669
4670 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4671 {
4672         kvm_mmu_free_roots(vcpu);
4673         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4674 }
4675 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4676
4677 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4678                                   struct kvm_mmu_page *sp, u64 *spte,
4679                                   const void *new)
4680 {
4681         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4682                 ++vcpu->kvm->stat.mmu_pde_zapped;
4683                 return;
4684         }
4685
4686         ++vcpu->kvm->stat.mmu_pte_updated;
4687         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4688 }
4689
4690 static bool need_remote_flush(u64 old, u64 new)
4691 {
4692         if (!is_shadow_present_pte(old))
4693                 return false;
4694         if (!is_shadow_present_pte(new))
4695                 return true;
4696         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4697                 return true;
4698         old ^= shadow_nx_mask;
4699         new ^= shadow_nx_mask;
4700         return (old & ~new & PT64_PERM_MASK) != 0;
4701 }
4702
4703 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4704                                     const u8 *new, int *bytes)
4705 {
4706         u64 gentry;
4707         int r;
4708
4709         /*
4710          * Assume that the pte write on a page table of the same type
4711          * as the current vcpu paging mode since we update the sptes only
4712          * when they have the same mode.
4713          */
4714         if (is_pae(vcpu) && *bytes == 4) {
4715                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4716                 *gpa &= ~(gpa_t)7;
4717                 *bytes = 8;
4718                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4719                 if (r)
4720                         gentry = 0;
4721                 new = (const u8 *)&gentry;
4722         }
4723
4724         switch (*bytes) {
4725         case 4:
4726                 gentry = *(const u32 *)new;
4727                 break;
4728         case 8:
4729                 gentry = *(const u64 *)new;
4730                 break;
4731         default:
4732                 gentry = 0;
4733                 break;
4734         }
4735
4736         return gentry;
4737 }
4738
4739 /*
4740  * If we're seeing too many writes to a page, it may no longer be a page table,
4741  * or we may be forking, in which case it is better to unmap the page.
4742  */
4743 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4744 {
4745         /*
4746          * Skip write-flooding detected for the sp whose level is 1, because
4747          * it can become unsync, then the guest page is not write-protected.
4748          */
4749         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4750                 return false;
4751
4752         atomic_inc(&sp->write_flooding_count);
4753         return atomic_read(&sp->write_flooding_count) >= 3;
4754 }
4755
4756 /*
4757  * Misaligned accesses are too much trouble to fix up; also, they usually
4758  * indicate a page is not used as a page table.
4759  */
4760 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4761                                     int bytes)
4762 {
4763         unsigned offset, pte_size, misaligned;
4764
4765         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4766                  gpa, bytes, sp->role.word);
4767
4768         offset = offset_in_page(gpa);
4769         pte_size = sp->role.cr4_pae ? 8 : 4;
4770
4771         /*
4772          * Sometimes, the OS only writes the last one bytes to update status
4773          * bits, for example, in linux, andb instruction is used in clear_bit().
4774          */
4775         if (!(offset & (pte_size - 1)) && bytes == 1)
4776                 return false;
4777
4778         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4779         misaligned |= bytes < 4;
4780
4781         return misaligned;
4782 }
4783
4784 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4785 {
4786         unsigned page_offset, quadrant;
4787         u64 *spte;
4788         int level;
4789
4790         page_offset = offset_in_page(gpa);
4791         level = sp->role.level;
4792         *nspte = 1;
4793         if (!sp->role.cr4_pae) {
4794                 page_offset <<= 1;      /* 32->64 */
4795                 /*
4796                  * A 32-bit pde maps 4MB while the shadow pdes map
4797                  * only 2MB.  So we need to double the offset again
4798                  * and zap two pdes instead of one.
4799                  */
4800                 if (level == PT32_ROOT_LEVEL) {
4801                         page_offset &= ~7; /* kill rounding error */
4802                         page_offset <<= 1;
4803                         *nspte = 2;
4804                 }
4805                 quadrant = page_offset >> PAGE_SHIFT;
4806                 page_offset &= ~PAGE_MASK;
4807                 if (quadrant != sp->role.quadrant)
4808                         return NULL;
4809         }
4810
4811         spte = &sp->spt[page_offset / sizeof(*spte)];
4812         return spte;
4813 }
4814
4815 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4816                               const u8 *new, int bytes,
4817                               struct kvm_page_track_notifier_node *node)
4818 {
4819         gfn_t gfn = gpa >> PAGE_SHIFT;
4820         struct kvm_mmu_page *sp;
4821         LIST_HEAD(invalid_list);
4822         u64 entry, gentry, *spte;
4823         int npte;
4824         bool remote_flush, local_flush;
4825         union kvm_mmu_page_role mask = { };
4826
4827         mask.cr0_wp = 1;
4828         mask.cr4_pae = 1;
4829         mask.nxe = 1;
4830         mask.smep_andnot_wp = 1;
4831         mask.smap_andnot_wp = 1;
4832         mask.smm = 1;
4833         mask.guest_mode = 1;
4834         mask.ad_disabled = 1;
4835
4836         /*
4837          * If we don't have indirect shadow pages, it means no page is
4838          * write-protected, so we can exit simply.
4839          */
4840         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4841                 return;
4842
4843         remote_flush = local_flush = false;
4844
4845         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4846
4847         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4848
4849         /*
4850          * No need to care whether allocation memory is successful
4851          * or not since pte prefetch is skiped if it does not have
4852          * enough objects in the cache.
4853          */
4854         mmu_topup_memory_caches(vcpu);
4855
4856         spin_lock(&vcpu->kvm->mmu_lock);
4857         ++vcpu->kvm->stat.mmu_pte_write;
4858         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4859
4860         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4861                 if (detect_write_misaligned(sp, gpa, bytes) ||
4862                       detect_write_flooding(sp)) {
4863                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4864                         ++vcpu->kvm->stat.mmu_flooded;
4865                         continue;
4866                 }
4867
4868                 spte = get_written_sptes(sp, gpa, &npte);
4869                 if (!spte)
4870                         continue;
4871
4872                 local_flush = true;
4873                 while (npte--) {
4874                         entry = *spte;
4875                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4876                         if (gentry &&
4877                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4878                               & mask.word) && rmap_can_add(vcpu))
4879                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4880                         if (need_remote_flush(entry, *spte))
4881                                 remote_flush = true;
4882                         ++spte;
4883                 }
4884         }
4885         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4886         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4887         spin_unlock(&vcpu->kvm->mmu_lock);
4888 }
4889
4890 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4891 {
4892         gpa_t gpa;
4893         int r;
4894
4895         if (vcpu->arch.mmu.direct_map)
4896                 return 0;
4897
4898         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4899
4900         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4901
4902         return r;
4903 }
4904 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4905
4906 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4907 {
4908         LIST_HEAD(invalid_list);
4909
4910         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4911                 return 0;
4912
4913         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4914                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4915                         break;
4916
4917                 ++vcpu->kvm->stat.mmu_recycled;
4918         }
4919         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4920
4921         if (!kvm_mmu_available_pages(vcpu->kvm))
4922                 return -ENOSPC;
4923         return 0;
4924 }
4925
4926 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4927                        void *insn, int insn_len)
4928 {
4929         int r, emulation_type = EMULTYPE_RETRY;
4930         enum emulation_result er;
4931         bool direct = vcpu->arch.mmu.direct_map;
4932
4933         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
4934         if (vcpu->arch.mmu.direct_map) {
4935                 vcpu->arch.gpa_available = true;
4936                 vcpu->arch.gpa_val = cr2;
4937         }
4938
4939         r = RET_PF_INVALID;
4940         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4941                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4942                 if (r == RET_PF_EMULATE) {
4943                         emulation_type = 0;
4944                         goto emulate;
4945                 }
4946         }
4947
4948         if (r == RET_PF_INVALID) {
4949                 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4950                                               false);
4951                 WARN_ON(r == RET_PF_INVALID);
4952         }
4953
4954         if (r == RET_PF_RETRY)
4955                 return 1;
4956         if (r < 0)
4957                 return r;
4958
4959         /*
4960          * Before emulating the instruction, check if the error code
4961          * was due to a RO violation while translating the guest page.
4962          * This can occur when using nested virtualization with nested
4963          * paging in both guests. If true, we simply unprotect the page
4964          * and resume the guest.
4965          */
4966         if (vcpu->arch.mmu.direct_map &&
4967             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4968                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4969                 return 1;
4970         }
4971
4972         if (mmio_info_in_cache(vcpu, cr2, direct))
4973                 emulation_type = 0;
4974 emulate:
4975         /*
4976          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
4977          * This can happen if a guest gets a page-fault on data access but the HW
4978          * table walker is not able to read the instruction page (e.g instruction
4979          * page is not present in memory). In those cases we simply restart the
4980          * guest.
4981          */
4982         if (unlikely(insn && !insn_len))
4983                 return 1;
4984
4985         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4986
4987         switch (er) {
4988         case EMULATE_DONE:
4989                 return 1;
4990         case EMULATE_USER_EXIT:
4991                 ++vcpu->stat.mmio_exits;
4992                 /* fall through */
4993         case EMULATE_FAIL:
4994                 return 0;
4995         default:
4996                 BUG();
4997         }
4998 }
4999 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5000
5001 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5002 {
5003         vcpu->arch.mmu.invlpg(vcpu, gva);
5004         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5005         ++vcpu->stat.invlpg;
5006 }
5007 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5008
5009 void kvm_enable_tdp(void)
5010 {
5011         tdp_enabled = true;
5012 }
5013 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5014
5015 void kvm_disable_tdp(void)
5016 {
5017         tdp_enabled = false;
5018 }
5019 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5020
5021 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5022 {
5023         free_page((unsigned long)vcpu->arch.mmu.pae_root);
5024         free_page((unsigned long)vcpu->arch.mmu.lm_root);
5025 }
5026
5027 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5028 {
5029         struct page *page;
5030         int i;
5031
5032         /*
5033          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5034          * Therefore we need to allocate shadow page tables in the first
5035          * 4GB of memory, which happens to fit the DMA32 zone.
5036          */
5037         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5038         if (!page)
5039                 return -ENOMEM;
5040
5041         vcpu->arch.mmu.pae_root = page_address(page);
5042         for (i = 0; i < 4; ++i)
5043                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5044
5045         return 0;
5046 }
5047
5048 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5049 {
5050         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5051         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5052         vcpu->arch.mmu.translate_gpa = translate_gpa;
5053         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5054
5055         return alloc_mmu_pages(vcpu);
5056 }
5057
5058 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5059 {
5060         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5061
5062         init_kvm_mmu(vcpu);
5063 }
5064
5065 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5066                         struct kvm_memory_slot *slot,
5067                         struct kvm_page_track_notifier_node *node)
5068 {
5069         kvm_mmu_invalidate_zap_all_pages(kvm);
5070 }
5071
5072 void kvm_mmu_init_vm(struct kvm *kvm)
5073 {
5074         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5075
5076         node->track_write = kvm_mmu_pte_write;
5077         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5078         kvm_page_track_register_notifier(kvm, node);
5079 }
5080
5081 void kvm_mmu_uninit_vm(struct kvm *kvm)
5082 {
5083         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5084
5085         kvm_page_track_unregister_notifier(kvm, node);
5086 }
5087
5088 /* The return value indicates if tlb flush on all vcpus is needed. */
5089 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5090
5091 /* The caller should hold mmu-lock before calling this function. */
5092 static __always_inline bool
5093 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5094                         slot_level_handler fn, int start_level, int end_level,
5095                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5096 {
5097         struct slot_rmap_walk_iterator iterator;
5098         bool flush = false;
5099
5100         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5101                         end_gfn, &iterator) {
5102                 if (iterator.rmap)
5103                         flush |= fn(kvm, iterator.rmap);
5104
5105                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5106                         if (flush && lock_flush_tlb) {
5107                                 kvm_flush_remote_tlbs(kvm);
5108                                 flush = false;
5109                         }
5110                         cond_resched_lock(&kvm->mmu_lock);
5111                 }
5112         }
5113
5114         if (flush && lock_flush_tlb) {
5115                 kvm_flush_remote_tlbs(kvm);
5116                 flush = false;
5117         }
5118
5119         return flush;
5120 }
5121
5122 static __always_inline bool
5123 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5124                   slot_level_handler fn, int start_level, int end_level,
5125                   bool lock_flush_tlb)
5126 {
5127         return slot_handle_level_range(kvm, memslot, fn, start_level,
5128                         end_level, memslot->base_gfn,
5129                         memslot->base_gfn + memslot->npages - 1,
5130                         lock_flush_tlb);
5131 }
5132
5133 static __always_inline bool
5134 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5135                       slot_level_handler fn, bool lock_flush_tlb)
5136 {
5137         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5138                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5139 }
5140
5141 static __always_inline bool
5142 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5143                         slot_level_handler fn, bool lock_flush_tlb)
5144 {
5145         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5146                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5147 }
5148
5149 static __always_inline bool
5150 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5151                  slot_level_handler fn, bool lock_flush_tlb)
5152 {
5153         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5154                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5155 }
5156
5157 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5158 {
5159         struct kvm_memslots *slots;
5160         struct kvm_memory_slot *memslot;
5161         int i;
5162
5163         spin_lock(&kvm->mmu_lock);
5164         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5165                 slots = __kvm_memslots(kvm, i);
5166                 kvm_for_each_memslot(memslot, slots) {
5167                         gfn_t start, end;
5168
5169                         start = max(gfn_start, memslot->base_gfn);
5170                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5171                         if (start >= end)
5172                                 continue;
5173
5174                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5175                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5176                                                 start, end - 1, true);
5177                 }
5178         }
5179
5180         spin_unlock(&kvm->mmu_lock);
5181 }
5182
5183 static bool slot_rmap_write_protect(struct kvm *kvm,
5184                                     struct kvm_rmap_head *rmap_head)
5185 {
5186         return __rmap_write_protect(kvm, rmap_head, false);
5187 }
5188
5189 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5190                                       struct kvm_memory_slot *memslot)
5191 {
5192         bool flush;
5193
5194         spin_lock(&kvm->mmu_lock);
5195         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5196                                       false);
5197         spin_unlock(&kvm->mmu_lock);
5198
5199         /*
5200          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5201          * which do tlb flush out of mmu-lock should be serialized by
5202          * kvm->slots_lock otherwise tlb flush would be missed.
5203          */
5204         lockdep_assert_held(&kvm->slots_lock);
5205
5206         /*
5207          * We can flush all the TLBs out of the mmu lock without TLB
5208          * corruption since we just change the spte from writable to
5209          * readonly so that we only need to care the case of changing
5210          * spte from present to present (changing the spte from present
5211          * to nonpresent will flush all the TLBs immediately), in other
5212          * words, the only case we care is mmu_spte_update() where we
5213          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5214          * instead of PT_WRITABLE_MASK, that means it does not depend
5215          * on PT_WRITABLE_MASK anymore.
5216          */
5217         if (flush)
5218                 kvm_flush_remote_tlbs(kvm);
5219 }
5220
5221 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5222                                          struct kvm_rmap_head *rmap_head)
5223 {
5224         u64 *sptep;
5225         struct rmap_iterator iter;
5226         int need_tlb_flush = 0;
5227         kvm_pfn_t pfn;
5228         struct kvm_mmu_page *sp;
5229
5230 restart:
5231         for_each_rmap_spte(rmap_head, &iter, sptep) {
5232                 sp = page_header(__pa(sptep));
5233                 pfn = spte_to_pfn(*sptep);
5234
5235                 /*
5236                  * We cannot do huge page mapping for indirect shadow pages,
5237                  * which are found on the last rmap (level = 1) when not using
5238                  * tdp; such shadow pages are synced with the page table in
5239                  * the guest, and the guest page table is using 4K page size
5240                  * mapping if the indirect sp has level = 1.
5241                  */
5242                 if (sp->role.direct &&
5243                         !kvm_is_reserved_pfn(pfn) &&
5244                         PageTransCompoundMap(pfn_to_page(pfn))) {
5245                         drop_spte(kvm, sptep);
5246                         need_tlb_flush = 1;
5247                         goto restart;
5248                 }
5249         }
5250
5251         return need_tlb_flush;
5252 }
5253
5254 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5255                                    const struct kvm_memory_slot *memslot)
5256 {
5257         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5258         spin_lock(&kvm->mmu_lock);
5259         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5260                          kvm_mmu_zap_collapsible_spte, true);
5261         spin_unlock(&kvm->mmu_lock);
5262 }
5263
5264 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5265                                    struct kvm_memory_slot *memslot)
5266 {
5267         bool flush;
5268
5269         spin_lock(&kvm->mmu_lock);
5270         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5271         spin_unlock(&kvm->mmu_lock);
5272
5273         lockdep_assert_held(&kvm->slots_lock);
5274
5275         /*
5276          * It's also safe to flush TLBs out of mmu lock here as currently this
5277          * function is only used for dirty logging, in which case flushing TLB
5278          * out of mmu lock also guarantees no dirty pages will be lost in
5279          * dirty_bitmap.
5280          */
5281         if (flush)
5282                 kvm_flush_remote_tlbs(kvm);
5283 }
5284 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5285
5286 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5287                                         struct kvm_memory_slot *memslot)
5288 {
5289         bool flush;
5290
5291         spin_lock(&kvm->mmu_lock);
5292         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5293                                         false);
5294         spin_unlock(&kvm->mmu_lock);
5295
5296         /* see kvm_mmu_slot_remove_write_access */
5297         lockdep_assert_held(&kvm->slots_lock);
5298
5299         if (flush)
5300                 kvm_flush_remote_tlbs(kvm);
5301 }
5302 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5303
5304 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5305                             struct kvm_memory_slot *memslot)
5306 {
5307         bool flush;
5308
5309         spin_lock(&kvm->mmu_lock);
5310         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5311         spin_unlock(&kvm->mmu_lock);
5312
5313         lockdep_assert_held(&kvm->slots_lock);
5314
5315         /* see kvm_mmu_slot_leaf_clear_dirty */
5316         if (flush)
5317                 kvm_flush_remote_tlbs(kvm);
5318 }
5319 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5320
5321 #define BATCH_ZAP_PAGES 10
5322 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5323 {
5324         struct kvm_mmu_page *sp, *node;
5325         int batch = 0;
5326
5327 restart:
5328         list_for_each_entry_safe_reverse(sp, node,
5329               &kvm->arch.active_mmu_pages, link) {
5330                 int ret;
5331
5332                 /*
5333                  * No obsolete page exists before new created page since
5334                  * active_mmu_pages is the FIFO list.
5335                  */
5336                 if (!is_obsolete_sp(kvm, sp))
5337                         break;
5338
5339                 /*
5340                  * Since we are reversely walking the list and the invalid
5341                  * list will be moved to the head, skip the invalid page
5342                  * can help us to avoid the infinity list walking.
5343                  */
5344                 if (sp->role.invalid)
5345                         continue;
5346
5347                 /*
5348                  * Need not flush tlb since we only zap the sp with invalid
5349                  * generation number.
5350                  */
5351                 if (batch >= BATCH_ZAP_PAGES &&
5352                       cond_resched_lock(&kvm->mmu_lock)) {
5353                         batch = 0;
5354                         goto restart;
5355                 }
5356
5357                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5358                                 &kvm->arch.zapped_obsolete_pages);
5359                 batch += ret;
5360
5361                 if (ret)
5362                         goto restart;
5363         }
5364
5365         /*
5366          * Should flush tlb before free page tables since lockless-walking
5367          * may use the pages.
5368          */
5369         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5370 }
5371
5372 /*
5373  * Fast invalidate all shadow pages and use lock-break technique
5374  * to zap obsolete pages.
5375  *
5376  * It's required when memslot is being deleted or VM is being
5377  * destroyed, in these cases, we should ensure that KVM MMU does
5378  * not use any resource of the being-deleted slot or all slots
5379  * after calling the function.
5380  */
5381 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5382 {
5383         spin_lock(&kvm->mmu_lock);
5384         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5385         kvm->arch.mmu_valid_gen++;
5386
5387         /*
5388          * Notify all vcpus to reload its shadow page table
5389          * and flush TLB. Then all vcpus will switch to new
5390          * shadow page table with the new mmu_valid_gen.
5391          *
5392          * Note: we should do this under the protection of
5393          * mmu-lock, otherwise, vcpu would purge shadow page
5394          * but miss tlb flush.
5395          */
5396         kvm_reload_remote_mmus(kvm);
5397
5398         kvm_zap_obsolete_pages(kvm);
5399         spin_unlock(&kvm->mmu_lock);
5400 }
5401
5402 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5403 {
5404         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5405 }
5406
5407 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5408 {
5409         /*
5410          * The very rare case: if the generation-number is round,
5411          * zap all shadow pages.
5412          */
5413         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5414                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5415                 kvm_mmu_invalidate_zap_all_pages(kvm);
5416         }
5417 }
5418
5419 static unsigned long
5420 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5421 {
5422         struct kvm *kvm;
5423         int nr_to_scan = sc->nr_to_scan;
5424         unsigned long freed = 0;
5425
5426         spin_lock(&kvm_lock);
5427
5428         list_for_each_entry(kvm, &vm_list, vm_list) {
5429                 int idx;
5430                 LIST_HEAD(invalid_list);
5431
5432                 /*
5433                  * Never scan more than sc->nr_to_scan VM instances.
5434                  * Will not hit this condition practically since we do not try
5435                  * to shrink more than one VM and it is very unlikely to see
5436                  * !n_used_mmu_pages so many times.
5437                  */
5438                 if (!nr_to_scan--)
5439                         break;
5440                 /*
5441                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5442                  * here. We may skip a VM instance errorneosly, but we do not
5443                  * want to shrink a VM that only started to populate its MMU
5444                  * anyway.
5445                  */
5446                 if (!kvm->arch.n_used_mmu_pages &&
5447                       !kvm_has_zapped_obsolete_pages(kvm))
5448                         continue;
5449
5450                 idx = srcu_read_lock(&kvm->srcu);
5451                 spin_lock(&kvm->mmu_lock);
5452
5453                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5454                         kvm_mmu_commit_zap_page(kvm,
5455                               &kvm->arch.zapped_obsolete_pages);
5456                         goto unlock;
5457                 }
5458
5459                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5460                         freed++;
5461                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5462
5463 unlock:
5464                 spin_unlock(&kvm->mmu_lock);
5465                 srcu_read_unlock(&kvm->srcu, idx);
5466
5467                 /*
5468                  * unfair on small ones
5469                  * per-vm shrinkers cry out
5470                  * sadness comes quickly
5471                  */
5472                 list_move_tail(&kvm->vm_list, &vm_list);
5473                 break;
5474         }
5475
5476         spin_unlock(&kvm_lock);
5477         return freed;
5478 }
5479
5480 static unsigned long
5481 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5482 {
5483         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5484 }
5485
5486 static struct shrinker mmu_shrinker = {
5487         .count_objects = mmu_shrink_count,
5488         .scan_objects = mmu_shrink_scan,
5489         .seeks = DEFAULT_SEEKS * 10,
5490 };
5491
5492 static void mmu_destroy_caches(void)
5493 {
5494         kmem_cache_destroy(pte_list_desc_cache);
5495         kmem_cache_destroy(mmu_page_header_cache);
5496 }
5497
5498 int kvm_mmu_module_init(void)
5499 {
5500         int ret = -ENOMEM;
5501
5502         kvm_mmu_clear_all_pte_masks();
5503
5504         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5505                                             sizeof(struct pte_list_desc),
5506                                             0, SLAB_ACCOUNT, NULL);
5507         if (!pte_list_desc_cache)
5508                 goto out;
5509
5510         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5511                                                   sizeof(struct kvm_mmu_page),
5512                                                   0, SLAB_ACCOUNT, NULL);
5513         if (!mmu_page_header_cache)
5514                 goto out;
5515
5516         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5517                 goto out;
5518
5519         ret = register_shrinker(&mmu_shrinker);
5520         if (ret)
5521                 goto out;
5522
5523         return 0;
5524
5525 out:
5526         mmu_destroy_caches();
5527         return ret;
5528 }
5529
5530 /*
5531  * Caculate mmu pages needed for kvm.
5532  */
5533 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5534 {
5535         unsigned int nr_mmu_pages;
5536         unsigned int  nr_pages = 0;
5537         struct kvm_memslots *slots;
5538         struct kvm_memory_slot *memslot;
5539         int i;
5540
5541         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5542                 slots = __kvm_memslots(kvm, i);
5543
5544                 kvm_for_each_memslot(memslot, slots)
5545                         nr_pages += memslot->npages;
5546         }
5547
5548         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5549         nr_mmu_pages = max(nr_mmu_pages,
5550                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5551
5552         return nr_mmu_pages;
5553 }
5554
5555 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5556 {
5557         kvm_mmu_unload(vcpu);
5558         free_mmu_pages(vcpu);
5559         mmu_free_memory_caches(vcpu);
5560 }
5561
5562 void kvm_mmu_module_exit(void)
5563 {
5564         mmu_destroy_caches();
5565         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5566         unregister_shrinker(&mmu_shrinker);
5567         mmu_audit_disable();
5568 }