Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[sfrench/cifs-2.6.git] / arch / x86 / kernel / tsc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17
18 #include <asm/hpet.h>
19 #include <asm/timer.h>
20 #include <asm/vgtod.h>
21 #include <asm/time.h>
22 #include <asm/delay.h>
23 #include <asm/hypervisor.h>
24 #include <asm/nmi.h>
25 #include <asm/x86_init.h>
26 #include <asm/geode.h>
27 #include <asm/apic.h>
28 #include <asm/intel-family.h>
29 #include <asm/i8259.h>
30 #include <asm/uv/uv.h>
31
32 unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
33 EXPORT_SYMBOL(cpu_khz);
34
35 unsigned int __read_mostly tsc_khz;
36 EXPORT_SYMBOL(tsc_khz);
37
38 #define KHZ     1000
39
40 /*
41  * TSC can be unstable due to cpufreq or due to unsynced TSCs
42  */
43 static int __read_mostly tsc_unstable;
44
45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46
47 int tsc_clocksource_reliable;
48
49 static u32 art_to_tsc_numerator;
50 static u32 art_to_tsc_denominator;
51 static u64 art_to_tsc_offset;
52 struct clocksource *art_related_clocksource;
53
54 struct cyc2ns {
55         struct cyc2ns_data data[2];     /*  0 + 2*16 = 32 */
56         seqcount_t         seq;         /* 32 + 4    = 36 */
57
58 }; /* fits one cacheline */
59
60 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
61
62 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
63 {
64         int seq, idx;
65
66         preempt_disable_notrace();
67
68         do {
69                 seq = this_cpu_read(cyc2ns.seq.sequence);
70                 idx = seq & 1;
71
72                 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
73                 data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
74                 data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
75
76         } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
77 }
78
79 __always_inline void cyc2ns_read_end(void)
80 {
81         preempt_enable_notrace();
82 }
83
84 /*
85  * Accelerators for sched_clock()
86  * convert from cycles(64bits) => nanoseconds (64bits)
87  *  basic equation:
88  *              ns = cycles / (freq / ns_per_sec)
89  *              ns = cycles * (ns_per_sec / freq)
90  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
91  *              ns = cycles * (10^6 / cpu_khz)
92  *
93  *      Then we use scaling math (suggested by george@mvista.com) to get:
94  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
95  *              ns = cycles * cyc2ns_scale / SC
96  *
97  *      And since SC is a constant power of two, we can convert the div
98  *  into a shift. The larger SC is, the more accurate the conversion, but
99  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
100  *  (64-bit result) can be used.
101  *
102  *  We can use khz divisor instead of mhz to keep a better precision.
103  *  (mathieu.desnoyers@polymtl.ca)
104  *
105  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
106  */
107
108 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
109 {
110         struct cyc2ns_data data;
111         unsigned long long ns;
112
113         cyc2ns_read_begin(&data);
114
115         ns = data.cyc2ns_offset;
116         ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
117
118         cyc2ns_read_end();
119
120         return ns;
121 }
122
123 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
124 {
125         unsigned long long ns_now;
126         struct cyc2ns_data data;
127         struct cyc2ns *c2n;
128
129         ns_now = cycles_2_ns(tsc_now);
130
131         /*
132          * Compute a new multiplier as per the above comment and ensure our
133          * time function is continuous; see the comment near struct
134          * cyc2ns_data.
135          */
136         clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
137                                NSEC_PER_MSEC, 0);
138
139         /*
140          * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
141          * not expected to be greater than 31 due to the original published
142          * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
143          * value) - refer perf_event_mmap_page documentation in perf_event.h.
144          */
145         if (data.cyc2ns_shift == 32) {
146                 data.cyc2ns_shift = 31;
147                 data.cyc2ns_mul >>= 1;
148         }
149
150         data.cyc2ns_offset = ns_now -
151                 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
152
153         c2n = per_cpu_ptr(&cyc2ns, cpu);
154
155         raw_write_seqcount_latch(&c2n->seq);
156         c2n->data[0] = data;
157         raw_write_seqcount_latch(&c2n->seq);
158         c2n->data[1] = data;
159 }
160
161 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
162 {
163         unsigned long flags;
164
165         local_irq_save(flags);
166         sched_clock_idle_sleep_event();
167
168         if (khz)
169                 __set_cyc2ns_scale(khz, cpu, tsc_now);
170
171         sched_clock_idle_wakeup_event();
172         local_irq_restore(flags);
173 }
174
175 /*
176  * Initialize cyc2ns for boot cpu
177  */
178 static void __init cyc2ns_init_boot_cpu(void)
179 {
180         struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
181
182         seqcount_init(&c2n->seq);
183         __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
184 }
185
186 /*
187  * Secondary CPUs do not run through tsc_init(), so set up
188  * all the scale factors for all CPUs, assuming the same
189  * speed as the bootup CPU.
190  */
191 static void __init cyc2ns_init_secondary_cpus(void)
192 {
193         unsigned int cpu, this_cpu = smp_processor_id();
194         struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
195         struct cyc2ns_data *data = c2n->data;
196
197         for_each_possible_cpu(cpu) {
198                 if (cpu != this_cpu) {
199                         seqcount_init(&c2n->seq);
200                         c2n = per_cpu_ptr(&cyc2ns, cpu);
201                         c2n->data[0] = data[0];
202                         c2n->data[1] = data[1];
203                 }
204         }
205 }
206
207 /*
208  * Scheduler clock - returns current time in nanosec units.
209  */
210 u64 native_sched_clock(void)
211 {
212         if (static_branch_likely(&__use_tsc)) {
213                 u64 tsc_now = rdtsc();
214
215                 /* return the value in ns */
216                 return cycles_2_ns(tsc_now);
217         }
218
219         /*
220          * Fall back to jiffies if there's no TSC available:
221          * ( But note that we still use it if the TSC is marked
222          *   unstable. We do this because unlike Time Of Day,
223          *   the scheduler clock tolerates small errors and it's
224          *   very important for it to be as fast as the platform
225          *   can achieve it. )
226          */
227
228         /* No locking but a rare wrong value is not a big deal: */
229         return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
230 }
231
232 /*
233  * Generate a sched_clock if you already have a TSC value.
234  */
235 u64 native_sched_clock_from_tsc(u64 tsc)
236 {
237         return cycles_2_ns(tsc);
238 }
239
240 /* We need to define a real function for sched_clock, to override the
241    weak default version */
242 #ifdef CONFIG_PARAVIRT
243 unsigned long long sched_clock(void)
244 {
245         return paravirt_sched_clock();
246 }
247
248 bool using_native_sched_clock(void)
249 {
250         return pv_ops.time.sched_clock == native_sched_clock;
251 }
252 #else
253 unsigned long long
254 sched_clock(void) __attribute__((alias("native_sched_clock")));
255
256 bool using_native_sched_clock(void) { return true; }
257 #endif
258
259 int check_tsc_unstable(void)
260 {
261         return tsc_unstable;
262 }
263 EXPORT_SYMBOL_GPL(check_tsc_unstable);
264
265 #ifdef CONFIG_X86_TSC
266 int __init notsc_setup(char *str)
267 {
268         mark_tsc_unstable("boot parameter notsc");
269         return 1;
270 }
271 #else
272 /*
273  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
274  * in cpu/common.c
275  */
276 int __init notsc_setup(char *str)
277 {
278         setup_clear_cpu_cap(X86_FEATURE_TSC);
279         return 1;
280 }
281 #endif
282
283 __setup("notsc", notsc_setup);
284
285 static int no_sched_irq_time;
286 static int no_tsc_watchdog;
287
288 static int __init tsc_setup(char *str)
289 {
290         if (!strcmp(str, "reliable"))
291                 tsc_clocksource_reliable = 1;
292         if (!strncmp(str, "noirqtime", 9))
293                 no_sched_irq_time = 1;
294         if (!strcmp(str, "unstable"))
295                 mark_tsc_unstable("boot parameter");
296         if (!strcmp(str, "nowatchdog"))
297                 no_tsc_watchdog = 1;
298         return 1;
299 }
300
301 __setup("tsc=", tsc_setup);
302
303 #define MAX_RETRIES             5
304 #define TSC_DEFAULT_THRESHOLD   0x20000
305
306 /*
307  * Read TSC and the reference counters. Take care of any disturbances
308  */
309 static u64 tsc_read_refs(u64 *p, int hpet)
310 {
311         u64 t1, t2;
312         u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
313         int i;
314
315         for (i = 0; i < MAX_RETRIES; i++) {
316                 t1 = get_cycles();
317                 if (hpet)
318                         *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
319                 else
320                         *p = acpi_pm_read_early();
321                 t2 = get_cycles();
322                 if ((t2 - t1) < thresh)
323                         return t2;
324         }
325         return ULLONG_MAX;
326 }
327
328 /*
329  * Calculate the TSC frequency from HPET reference
330  */
331 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
332 {
333         u64 tmp;
334
335         if (hpet2 < hpet1)
336                 hpet2 += 0x100000000ULL;
337         hpet2 -= hpet1;
338         tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
339         do_div(tmp, 1000000);
340         deltatsc = div64_u64(deltatsc, tmp);
341
342         return (unsigned long) deltatsc;
343 }
344
345 /*
346  * Calculate the TSC frequency from PMTimer reference
347  */
348 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
349 {
350         u64 tmp;
351
352         if (!pm1 && !pm2)
353                 return ULONG_MAX;
354
355         if (pm2 < pm1)
356                 pm2 += (u64)ACPI_PM_OVRRUN;
357         pm2 -= pm1;
358         tmp = pm2 * 1000000000LL;
359         do_div(tmp, PMTMR_TICKS_PER_SEC);
360         do_div(deltatsc, tmp);
361
362         return (unsigned long) deltatsc;
363 }
364
365 #define CAL_MS          10
366 #define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
367 #define CAL_PIT_LOOPS   1000
368
369 #define CAL2_MS         50
370 #define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
371 #define CAL2_PIT_LOOPS  5000
372
373
374 /*
375  * Try to calibrate the TSC against the Programmable
376  * Interrupt Timer and return the frequency of the TSC
377  * in kHz.
378  *
379  * Return ULONG_MAX on failure to calibrate.
380  */
381 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
382 {
383         u64 tsc, t1, t2, delta;
384         unsigned long tscmin, tscmax;
385         int pitcnt;
386
387         if (!has_legacy_pic()) {
388                 /*
389                  * Relies on tsc_early_delay_calibrate() to have given us semi
390                  * usable udelay(), wait for the same 50ms we would have with
391                  * the PIT loop below.
392                  */
393                 udelay(10 * USEC_PER_MSEC);
394                 udelay(10 * USEC_PER_MSEC);
395                 udelay(10 * USEC_PER_MSEC);
396                 udelay(10 * USEC_PER_MSEC);
397                 udelay(10 * USEC_PER_MSEC);
398                 return ULONG_MAX;
399         }
400
401         /* Set the Gate high, disable speaker */
402         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
403
404         /*
405          * Setup CTC channel 2* for mode 0, (interrupt on terminal
406          * count mode), binary count. Set the latch register to 50ms
407          * (LSB then MSB) to begin countdown.
408          */
409         outb(0xb0, 0x43);
410         outb(latch & 0xff, 0x42);
411         outb(latch >> 8, 0x42);
412
413         tsc = t1 = t2 = get_cycles();
414
415         pitcnt = 0;
416         tscmax = 0;
417         tscmin = ULONG_MAX;
418         while ((inb(0x61) & 0x20) == 0) {
419                 t2 = get_cycles();
420                 delta = t2 - tsc;
421                 tsc = t2;
422                 if ((unsigned long) delta < tscmin)
423                         tscmin = (unsigned int) delta;
424                 if ((unsigned long) delta > tscmax)
425                         tscmax = (unsigned int) delta;
426                 pitcnt++;
427         }
428
429         /*
430          * Sanity checks:
431          *
432          * If we were not able to read the PIT more than loopmin
433          * times, then we have been hit by a massive SMI
434          *
435          * If the maximum is 10 times larger than the minimum,
436          * then we got hit by an SMI as well.
437          */
438         if (pitcnt < loopmin || tscmax > 10 * tscmin)
439                 return ULONG_MAX;
440
441         /* Calculate the PIT value */
442         delta = t2 - t1;
443         do_div(delta, ms);
444         return delta;
445 }
446
447 /*
448  * This reads the current MSB of the PIT counter, and
449  * checks if we are running on sufficiently fast and
450  * non-virtualized hardware.
451  *
452  * Our expectations are:
453  *
454  *  - the PIT is running at roughly 1.19MHz
455  *
456  *  - each IO is going to take about 1us on real hardware,
457  *    but we allow it to be much faster (by a factor of 10) or
458  *    _slightly_ slower (ie we allow up to a 2us read+counter
459  *    update - anything else implies a unacceptably slow CPU
460  *    or PIT for the fast calibration to work.
461  *
462  *  - with 256 PIT ticks to read the value, we have 214us to
463  *    see the same MSB (and overhead like doing a single TSC
464  *    read per MSB value etc).
465  *
466  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
467  *    them each to take about a microsecond on real hardware.
468  *    So we expect a count value of around 100. But we'll be
469  *    generous, and accept anything over 50.
470  *
471  *  - if the PIT is stuck, and we see *many* more reads, we
472  *    return early (and the next caller of pit_expect_msb()
473  *    then consider it a failure when they don't see the
474  *    next expected value).
475  *
476  * These expectations mean that we know that we have seen the
477  * transition from one expected value to another with a fairly
478  * high accuracy, and we didn't miss any events. We can thus
479  * use the TSC value at the transitions to calculate a pretty
480  * good value for the TSC frequencty.
481  */
482 static inline int pit_verify_msb(unsigned char val)
483 {
484         /* Ignore LSB */
485         inb(0x42);
486         return inb(0x42) == val;
487 }
488
489 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
490 {
491         int count;
492         u64 tsc = 0, prev_tsc = 0;
493
494         for (count = 0; count < 50000; count++) {
495                 if (!pit_verify_msb(val))
496                         break;
497                 prev_tsc = tsc;
498                 tsc = get_cycles();
499         }
500         *deltap = get_cycles() - prev_tsc;
501         *tscp = tsc;
502
503         /*
504          * We require _some_ success, but the quality control
505          * will be based on the error terms on the TSC values.
506          */
507         return count > 5;
508 }
509
510 /*
511  * How many MSB values do we want to see? We aim for
512  * a maximum error rate of 500ppm (in practice the
513  * real error is much smaller), but refuse to spend
514  * more than 50ms on it.
515  */
516 #define MAX_QUICK_PIT_MS 50
517 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
518
519 static unsigned long quick_pit_calibrate(void)
520 {
521         int i;
522         u64 tsc, delta;
523         unsigned long d1, d2;
524
525         if (!has_legacy_pic())
526                 return 0;
527
528         /* Set the Gate high, disable speaker */
529         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
530
531         /*
532          * Counter 2, mode 0 (one-shot), binary count
533          *
534          * NOTE! Mode 2 decrements by two (and then the
535          * output is flipped each time, giving the same
536          * final output frequency as a decrement-by-one),
537          * so mode 0 is much better when looking at the
538          * individual counts.
539          */
540         outb(0xb0, 0x43);
541
542         /* Start at 0xffff */
543         outb(0xff, 0x42);
544         outb(0xff, 0x42);
545
546         /*
547          * The PIT starts counting at the next edge, so we
548          * need to delay for a microsecond. The easiest way
549          * to do that is to just read back the 16-bit counter
550          * once from the PIT.
551          */
552         pit_verify_msb(0);
553
554         if (pit_expect_msb(0xff, &tsc, &d1)) {
555                 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
556                         if (!pit_expect_msb(0xff-i, &delta, &d2))
557                                 break;
558
559                         delta -= tsc;
560
561                         /*
562                          * Extrapolate the error and fail fast if the error will
563                          * never be below 500 ppm.
564                          */
565                         if (i == 1 &&
566                             d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
567                                 return 0;
568
569                         /*
570                          * Iterate until the error is less than 500 ppm
571                          */
572                         if (d1+d2 >= delta >> 11)
573                                 continue;
574
575                         /*
576                          * Check the PIT one more time to verify that
577                          * all TSC reads were stable wrt the PIT.
578                          *
579                          * This also guarantees serialization of the
580                          * last cycle read ('d2') in pit_expect_msb.
581                          */
582                         if (!pit_verify_msb(0xfe - i))
583                                 break;
584                         goto success;
585                 }
586         }
587         pr_info("Fast TSC calibration failed\n");
588         return 0;
589
590 success:
591         /*
592          * Ok, if we get here, then we've seen the
593          * MSB of the PIT decrement 'i' times, and the
594          * error has shrunk to less than 500 ppm.
595          *
596          * As a result, we can depend on there not being
597          * any odd delays anywhere, and the TSC reads are
598          * reliable (within the error).
599          *
600          * kHz = ticks / time-in-seconds / 1000;
601          * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
602          * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
603          */
604         delta *= PIT_TICK_RATE;
605         do_div(delta, i*256*1000);
606         pr_info("Fast TSC calibration using PIT\n");
607         return delta;
608 }
609
610 /**
611  * native_calibrate_tsc
612  * Determine TSC frequency via CPUID, else return 0.
613  */
614 unsigned long native_calibrate_tsc(void)
615 {
616         unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
617         unsigned int crystal_khz;
618
619         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
620                 return 0;
621
622         if (boot_cpu_data.cpuid_level < 0x15)
623                 return 0;
624
625         eax_denominator = ebx_numerator = ecx_hz = edx = 0;
626
627         /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
628         cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
629
630         if (ebx_numerator == 0 || eax_denominator == 0)
631                 return 0;
632
633         crystal_khz = ecx_hz / 1000;
634
635         /*
636          * Denverton SoCs don't report crystal clock, and also don't support
637          * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
638          * clock.
639          */
640         if (crystal_khz == 0 &&
641                         boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
642                 crystal_khz = 25000;
643
644         /*
645          * TSC frequency reported directly by CPUID is a "hardware reported"
646          * frequency and is the most accurate one so far we have. This
647          * is considered a known frequency.
648          */
649         if (crystal_khz != 0)
650                 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
651
652         /*
653          * Some Intel SoCs like Skylake and Kabylake don't report the crystal
654          * clock, but we can easily calculate it to a high degree of accuracy
655          * by considering the crystal ratio and the CPU speed.
656          */
657         if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
658                 unsigned int eax_base_mhz, ebx, ecx, edx;
659
660                 cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
661                 crystal_khz = eax_base_mhz * 1000 *
662                         eax_denominator / ebx_numerator;
663         }
664
665         if (crystal_khz == 0)
666                 return 0;
667
668         /*
669          * For Atom SoCs TSC is the only reliable clocksource.
670          * Mark TSC reliable so no watchdog on it.
671          */
672         if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
673                 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
674
675 #ifdef CONFIG_X86_LOCAL_APIC
676         /*
677          * The local APIC appears to be fed by the core crystal clock
678          * (which sounds entirely sensible). We can set the global
679          * lapic_timer_period here to avoid having to calibrate the APIC
680          * timer later.
681          */
682         lapic_timer_period = crystal_khz * 1000 / HZ;
683 #endif
684
685         return crystal_khz * ebx_numerator / eax_denominator;
686 }
687
688 static unsigned long cpu_khz_from_cpuid(void)
689 {
690         unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
691
692         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
693                 return 0;
694
695         if (boot_cpu_data.cpuid_level < 0x16)
696                 return 0;
697
698         eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
699
700         cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
701
702         return eax_base_mhz * 1000;
703 }
704
705 /*
706  * calibrate cpu using pit, hpet, and ptimer methods. They are available
707  * later in boot after acpi is initialized.
708  */
709 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
710 {
711         u64 tsc1, tsc2, delta, ref1, ref2;
712         unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
713         unsigned long flags, latch, ms;
714         int hpet = is_hpet_enabled(), i, loopmin;
715
716         /*
717          * Run 5 calibration loops to get the lowest frequency value
718          * (the best estimate). We use two different calibration modes
719          * here:
720          *
721          * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
722          * load a timeout of 50ms. We read the time right after we
723          * started the timer and wait until the PIT count down reaches
724          * zero. In each wait loop iteration we read the TSC and check
725          * the delta to the previous read. We keep track of the min
726          * and max values of that delta. The delta is mostly defined
727          * by the IO time of the PIT access, so we can detect when
728          * any disturbance happened between the two reads. If the
729          * maximum time is significantly larger than the minimum time,
730          * then we discard the result and have another try.
731          *
732          * 2) Reference counter. If available we use the HPET or the
733          * PMTIMER as a reference to check the sanity of that value.
734          * We use separate TSC readouts and check inside of the
735          * reference read for any possible disturbance. We dicard
736          * disturbed values here as well. We do that around the PIT
737          * calibration delay loop as we have to wait for a certain
738          * amount of time anyway.
739          */
740
741         /* Preset PIT loop values */
742         latch = CAL_LATCH;
743         ms = CAL_MS;
744         loopmin = CAL_PIT_LOOPS;
745
746         for (i = 0; i < 3; i++) {
747                 unsigned long tsc_pit_khz;
748
749                 /*
750                  * Read the start value and the reference count of
751                  * hpet/pmtimer when available. Then do the PIT
752                  * calibration, which will take at least 50ms, and
753                  * read the end value.
754                  */
755                 local_irq_save(flags);
756                 tsc1 = tsc_read_refs(&ref1, hpet);
757                 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
758                 tsc2 = tsc_read_refs(&ref2, hpet);
759                 local_irq_restore(flags);
760
761                 /* Pick the lowest PIT TSC calibration so far */
762                 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
763
764                 /* hpet or pmtimer available ? */
765                 if (ref1 == ref2)
766                         continue;
767
768                 /* Check, whether the sampling was disturbed */
769                 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
770                         continue;
771
772                 tsc2 = (tsc2 - tsc1) * 1000000LL;
773                 if (hpet)
774                         tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
775                 else
776                         tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
777
778                 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
779
780                 /* Check the reference deviation */
781                 delta = ((u64) tsc_pit_min) * 100;
782                 do_div(delta, tsc_ref_min);
783
784                 /*
785                  * If both calibration results are inside a 10% window
786                  * then we can be sure, that the calibration
787                  * succeeded. We break out of the loop right away. We
788                  * use the reference value, as it is more precise.
789                  */
790                 if (delta >= 90 && delta <= 110) {
791                         pr_info("PIT calibration matches %s. %d loops\n",
792                                 hpet ? "HPET" : "PMTIMER", i + 1);
793                         return tsc_ref_min;
794                 }
795
796                 /*
797                  * Check whether PIT failed more than once. This
798                  * happens in virtualized environments. We need to
799                  * give the virtual PC a slightly longer timeframe for
800                  * the HPET/PMTIMER to make the result precise.
801                  */
802                 if (i == 1 && tsc_pit_min == ULONG_MAX) {
803                         latch = CAL2_LATCH;
804                         ms = CAL2_MS;
805                         loopmin = CAL2_PIT_LOOPS;
806                 }
807         }
808
809         /*
810          * Now check the results.
811          */
812         if (tsc_pit_min == ULONG_MAX) {
813                 /* PIT gave no useful value */
814                 pr_warn("Unable to calibrate against PIT\n");
815
816                 /* We don't have an alternative source, disable TSC */
817                 if (!hpet && !ref1 && !ref2) {
818                         pr_notice("No reference (HPET/PMTIMER) available\n");
819                         return 0;
820                 }
821
822                 /* The alternative source failed as well, disable TSC */
823                 if (tsc_ref_min == ULONG_MAX) {
824                         pr_warn("HPET/PMTIMER calibration failed\n");
825                         return 0;
826                 }
827
828                 /* Use the alternative source */
829                 pr_info("using %s reference calibration\n",
830                         hpet ? "HPET" : "PMTIMER");
831
832                 return tsc_ref_min;
833         }
834
835         /* We don't have an alternative source, use the PIT calibration value */
836         if (!hpet && !ref1 && !ref2) {
837                 pr_info("Using PIT calibration value\n");
838                 return tsc_pit_min;
839         }
840
841         /* The alternative source failed, use the PIT calibration value */
842         if (tsc_ref_min == ULONG_MAX) {
843                 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
844                 return tsc_pit_min;
845         }
846
847         /*
848          * The calibration values differ too much. In doubt, we use
849          * the PIT value as we know that there are PMTIMERs around
850          * running at double speed. At least we let the user know:
851          */
852         pr_warn("PIT calibration deviates from %s: %lu %lu\n",
853                 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
854         pr_info("Using PIT calibration value\n");
855         return tsc_pit_min;
856 }
857
858 /**
859  * native_calibrate_cpu_early - can calibrate the cpu early in boot
860  */
861 unsigned long native_calibrate_cpu_early(void)
862 {
863         unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
864
865         if (!fast_calibrate)
866                 fast_calibrate = cpu_khz_from_msr();
867         if (!fast_calibrate) {
868                 local_irq_save(flags);
869                 fast_calibrate = quick_pit_calibrate();
870                 local_irq_restore(flags);
871         }
872         return fast_calibrate;
873 }
874
875
876 /**
877  * native_calibrate_cpu - calibrate the cpu
878  */
879 static unsigned long native_calibrate_cpu(void)
880 {
881         unsigned long tsc_freq = native_calibrate_cpu_early();
882
883         if (!tsc_freq)
884                 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
885
886         return tsc_freq;
887 }
888
889 void recalibrate_cpu_khz(void)
890 {
891 #ifndef CONFIG_SMP
892         unsigned long cpu_khz_old = cpu_khz;
893
894         if (!boot_cpu_has(X86_FEATURE_TSC))
895                 return;
896
897         cpu_khz = x86_platform.calibrate_cpu();
898         tsc_khz = x86_platform.calibrate_tsc();
899         if (tsc_khz == 0)
900                 tsc_khz = cpu_khz;
901         else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
902                 cpu_khz = tsc_khz;
903         cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
904                                                     cpu_khz_old, cpu_khz);
905 #endif
906 }
907
908 EXPORT_SYMBOL(recalibrate_cpu_khz);
909
910
911 static unsigned long long cyc2ns_suspend;
912
913 void tsc_save_sched_clock_state(void)
914 {
915         if (!sched_clock_stable())
916                 return;
917
918         cyc2ns_suspend = sched_clock();
919 }
920
921 /*
922  * Even on processors with invariant TSC, TSC gets reset in some the
923  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
924  * arbitrary value (still sync'd across cpu's) during resume from such sleep
925  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
926  * that sched_clock() continues from the point where it was left off during
927  * suspend.
928  */
929 void tsc_restore_sched_clock_state(void)
930 {
931         unsigned long long offset;
932         unsigned long flags;
933         int cpu;
934
935         if (!sched_clock_stable())
936                 return;
937
938         local_irq_save(flags);
939
940         /*
941          * We're coming out of suspend, there's no concurrency yet; don't
942          * bother being nice about the RCU stuff, just write to both
943          * data fields.
944          */
945
946         this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
947         this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
948
949         offset = cyc2ns_suspend - sched_clock();
950
951         for_each_possible_cpu(cpu) {
952                 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
953                 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
954         }
955
956         local_irq_restore(flags);
957 }
958
959 #ifdef CONFIG_CPU_FREQ
960 /*
961  * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
962  * changes.
963  *
964  * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
965  * as unstable and give up in those cases.
966  *
967  * Should fix up last_tsc too. Currently gettimeofday in the
968  * first tick after the change will be slightly wrong.
969  */
970
971 static unsigned int  ref_freq;
972 static unsigned long loops_per_jiffy_ref;
973 static unsigned long tsc_khz_ref;
974
975 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
976                                 void *data)
977 {
978         struct cpufreq_freqs *freq = data;
979
980         if (num_online_cpus() > 1) {
981                 mark_tsc_unstable("cpufreq changes on SMP");
982                 return 0;
983         }
984
985         if (!ref_freq) {
986                 ref_freq = freq->old;
987                 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
988                 tsc_khz_ref = tsc_khz;
989         }
990
991         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
992             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
993                 boot_cpu_data.loops_per_jiffy =
994                         cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
995
996                 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
997                 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
998                         mark_tsc_unstable("cpufreq changes");
999
1000                 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1001         }
1002
1003         return 0;
1004 }
1005
1006 static struct notifier_block time_cpufreq_notifier_block = {
1007         .notifier_call  = time_cpufreq_notifier
1008 };
1009
1010 static int __init cpufreq_register_tsc_scaling(void)
1011 {
1012         if (!boot_cpu_has(X86_FEATURE_TSC))
1013                 return 0;
1014         if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1015                 return 0;
1016         cpufreq_register_notifier(&time_cpufreq_notifier_block,
1017                                 CPUFREQ_TRANSITION_NOTIFIER);
1018         return 0;
1019 }
1020
1021 core_initcall(cpufreq_register_tsc_scaling);
1022
1023 #endif /* CONFIG_CPU_FREQ */
1024
1025 #define ART_CPUID_LEAF (0x15)
1026 #define ART_MIN_DENOMINATOR (1)
1027
1028
1029 /*
1030  * If ART is present detect the numerator:denominator to convert to TSC
1031  */
1032 static void __init detect_art(void)
1033 {
1034         unsigned int unused[2];
1035
1036         if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1037                 return;
1038
1039         /*
1040          * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1041          * and the TSC counter resets must not occur asynchronously.
1042          */
1043         if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1044             !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1045             !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1046             tsc_async_resets)
1047                 return;
1048
1049         cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1050               &art_to_tsc_numerator, unused, unused+1);
1051
1052         if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1053                 return;
1054
1055         rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1056
1057         /* Make this sticky over multiple CPU init calls */
1058         setup_force_cpu_cap(X86_FEATURE_ART);
1059 }
1060
1061
1062 /* clocksource code */
1063
1064 static void tsc_resume(struct clocksource *cs)
1065 {
1066         tsc_verify_tsc_adjust(true);
1067 }
1068
1069 /*
1070  * We used to compare the TSC to the cycle_last value in the clocksource
1071  * structure to avoid a nasty time-warp. This can be observed in a
1072  * very small window right after one CPU updated cycle_last under
1073  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1074  * is smaller than the cycle_last reference value due to a TSC which
1075  * is slighty behind. This delta is nowhere else observable, but in
1076  * that case it results in a forward time jump in the range of hours
1077  * due to the unsigned delta calculation of the time keeping core
1078  * code, which is necessary to support wrapping clocksources like pm
1079  * timer.
1080  *
1081  * This sanity check is now done in the core timekeeping code.
1082  * checking the result of read_tsc() - cycle_last for being negative.
1083  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1084  */
1085 static u64 read_tsc(struct clocksource *cs)
1086 {
1087         return (u64)rdtsc_ordered();
1088 }
1089
1090 static void tsc_cs_mark_unstable(struct clocksource *cs)
1091 {
1092         if (tsc_unstable)
1093                 return;
1094
1095         tsc_unstable = 1;
1096         if (using_native_sched_clock())
1097                 clear_sched_clock_stable();
1098         disable_sched_clock_irqtime();
1099         pr_info("Marking TSC unstable due to clocksource watchdog\n");
1100 }
1101
1102 static void tsc_cs_tick_stable(struct clocksource *cs)
1103 {
1104         if (tsc_unstable)
1105                 return;
1106
1107         if (using_native_sched_clock())
1108                 sched_clock_tick_stable();
1109 }
1110
1111 /*
1112  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1113  */
1114 static struct clocksource clocksource_tsc_early = {
1115         .name                   = "tsc-early",
1116         .rating                 = 299,
1117         .read                   = read_tsc,
1118         .mask                   = CLOCKSOURCE_MASK(64),
1119         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1120                                   CLOCK_SOURCE_MUST_VERIFY,
1121         .archdata               = { .vclock_mode = VCLOCK_TSC },
1122         .resume                 = tsc_resume,
1123         .mark_unstable          = tsc_cs_mark_unstable,
1124         .tick_stable            = tsc_cs_tick_stable,
1125         .list                   = LIST_HEAD_INIT(clocksource_tsc_early.list),
1126 };
1127
1128 /*
1129  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1130  * this one will immediately take over. We will only register if TSC has
1131  * been found good.
1132  */
1133 static struct clocksource clocksource_tsc = {
1134         .name                   = "tsc",
1135         .rating                 = 300,
1136         .read                   = read_tsc,
1137         .mask                   = CLOCKSOURCE_MASK(64),
1138         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1139                                   CLOCK_SOURCE_VALID_FOR_HRES |
1140                                   CLOCK_SOURCE_MUST_VERIFY,
1141         .archdata               = { .vclock_mode = VCLOCK_TSC },
1142         .resume                 = tsc_resume,
1143         .mark_unstable          = tsc_cs_mark_unstable,
1144         .tick_stable            = tsc_cs_tick_stable,
1145         .list                   = LIST_HEAD_INIT(clocksource_tsc.list),
1146 };
1147
1148 void mark_tsc_unstable(char *reason)
1149 {
1150         if (tsc_unstable)
1151                 return;
1152
1153         tsc_unstable = 1;
1154         if (using_native_sched_clock())
1155                 clear_sched_clock_stable();
1156         disable_sched_clock_irqtime();
1157         pr_info("Marking TSC unstable due to %s\n", reason);
1158
1159         clocksource_mark_unstable(&clocksource_tsc_early);
1160         clocksource_mark_unstable(&clocksource_tsc);
1161 }
1162
1163 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1164
1165 static void __init check_system_tsc_reliable(void)
1166 {
1167 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1168         if (is_geode_lx()) {
1169                 /* RTSC counts during suspend */
1170 #define RTSC_SUSP 0x100
1171                 unsigned long res_low, res_high;
1172
1173                 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1174                 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1175                 if (res_low & RTSC_SUSP)
1176                         tsc_clocksource_reliable = 1;
1177         }
1178 #endif
1179         if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1180                 tsc_clocksource_reliable = 1;
1181 }
1182
1183 /*
1184  * Make an educated guess if the TSC is trustworthy and synchronized
1185  * over all CPUs.
1186  */
1187 int unsynchronized_tsc(void)
1188 {
1189         if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1190                 return 1;
1191
1192 #ifdef CONFIG_SMP
1193         if (apic_is_clustered_box())
1194                 return 1;
1195 #endif
1196
1197         if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1198                 return 0;
1199
1200         if (tsc_clocksource_reliable)
1201                 return 0;
1202         /*
1203          * Intel systems are normally all synchronized.
1204          * Exceptions must mark TSC as unstable:
1205          */
1206         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1207                 /* assume multi socket systems are not synchronized: */
1208                 if (num_possible_cpus() > 1)
1209                         return 1;
1210         }
1211
1212         return 0;
1213 }
1214
1215 /*
1216  * Convert ART to TSC given numerator/denominator found in detect_art()
1217  */
1218 struct system_counterval_t convert_art_to_tsc(u64 art)
1219 {
1220         u64 tmp, res, rem;
1221
1222         rem = do_div(art, art_to_tsc_denominator);
1223
1224         res = art * art_to_tsc_numerator;
1225         tmp = rem * art_to_tsc_numerator;
1226
1227         do_div(tmp, art_to_tsc_denominator);
1228         res += tmp + art_to_tsc_offset;
1229
1230         return (struct system_counterval_t) {.cs = art_related_clocksource,
1231                         .cycles = res};
1232 }
1233 EXPORT_SYMBOL(convert_art_to_tsc);
1234
1235 /**
1236  * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1237  * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1238  *
1239  * PTM requires all timestamps to be in units of nanoseconds. When user
1240  * software requests a cross-timestamp, this function converts system timestamp
1241  * to TSC.
1242  *
1243  * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1244  * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1245  * that this flag is set before conversion to TSC is attempted.
1246  *
1247  * Return:
1248  * struct system_counterval_t - system counter value with the pointer to the
1249  *      corresponding clocksource
1250  *      @cycles:        System counter value
1251  *      @cs:            Clocksource corresponding to system counter value. Used
1252  *                      by timekeeping code to verify comparibility of two cycle
1253  *                      values.
1254  */
1255
1256 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1257 {
1258         u64 tmp, res, rem;
1259
1260         rem = do_div(art_ns, USEC_PER_SEC);
1261
1262         res = art_ns * tsc_khz;
1263         tmp = rem * tsc_khz;
1264
1265         do_div(tmp, USEC_PER_SEC);
1266         res += tmp;
1267
1268         return (struct system_counterval_t) { .cs = art_related_clocksource,
1269                                               .cycles = res};
1270 }
1271 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1272
1273
1274 static void tsc_refine_calibration_work(struct work_struct *work);
1275 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1276 /**
1277  * tsc_refine_calibration_work - Further refine tsc freq calibration
1278  * @work - ignored.
1279  *
1280  * This functions uses delayed work over a period of a
1281  * second to further refine the TSC freq value. Since this is
1282  * timer based, instead of loop based, we don't block the boot
1283  * process while this longer calibration is done.
1284  *
1285  * If there are any calibration anomalies (too many SMIs, etc),
1286  * or the refined calibration is off by 1% of the fast early
1287  * calibration, we throw out the new calibration and use the
1288  * early calibration.
1289  */
1290 static void tsc_refine_calibration_work(struct work_struct *work)
1291 {
1292         static u64 tsc_start = ULLONG_MAX, ref_start;
1293         static int hpet;
1294         u64 tsc_stop, ref_stop, delta;
1295         unsigned long freq;
1296         int cpu;
1297
1298         /* Don't bother refining TSC on unstable systems */
1299         if (tsc_unstable)
1300                 goto unreg;
1301
1302         /*
1303          * Since the work is started early in boot, we may be
1304          * delayed the first time we expire. So set the workqueue
1305          * again once we know timers are working.
1306          */
1307         if (tsc_start == ULLONG_MAX) {
1308 restart:
1309                 /*
1310                  * Only set hpet once, to avoid mixing hardware
1311                  * if the hpet becomes enabled later.
1312                  */
1313                 hpet = is_hpet_enabled();
1314                 tsc_start = tsc_read_refs(&ref_start, hpet);
1315                 schedule_delayed_work(&tsc_irqwork, HZ);
1316                 return;
1317         }
1318
1319         tsc_stop = tsc_read_refs(&ref_stop, hpet);
1320
1321         /* hpet or pmtimer available ? */
1322         if (ref_start == ref_stop)
1323                 goto out;
1324
1325         /* Check, whether the sampling was disturbed */
1326         if (tsc_stop == ULLONG_MAX)
1327                 goto restart;
1328
1329         delta = tsc_stop - tsc_start;
1330         delta *= 1000000LL;
1331         if (hpet)
1332                 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1333         else
1334                 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1335
1336         /* Make sure we're within 1% */
1337         if (abs(tsc_khz - freq) > tsc_khz/100)
1338                 goto out;
1339
1340         tsc_khz = freq;
1341         pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1342                 (unsigned long)tsc_khz / 1000,
1343                 (unsigned long)tsc_khz % 1000);
1344
1345         /* Inform the TSC deadline clockevent devices about the recalibration */
1346         lapic_update_tsc_freq();
1347
1348         /* Update the sched_clock() rate to match the clocksource one */
1349         for_each_possible_cpu(cpu)
1350                 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1351
1352 out:
1353         if (tsc_unstable)
1354                 goto unreg;
1355
1356         if (boot_cpu_has(X86_FEATURE_ART))
1357                 art_related_clocksource = &clocksource_tsc;
1358         clocksource_register_khz(&clocksource_tsc, tsc_khz);
1359 unreg:
1360         clocksource_unregister(&clocksource_tsc_early);
1361 }
1362
1363
1364 static int __init init_tsc_clocksource(void)
1365 {
1366         if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1367                 return 0;
1368
1369         if (tsc_unstable)
1370                 goto unreg;
1371
1372         if (tsc_clocksource_reliable || no_tsc_watchdog)
1373                 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1374
1375         if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1376                 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1377
1378         /*
1379          * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1380          * the refined calibration and directly register it as a clocksource.
1381          */
1382         if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1383                 if (boot_cpu_has(X86_FEATURE_ART))
1384                         art_related_clocksource = &clocksource_tsc;
1385                 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1386 unreg:
1387                 clocksource_unregister(&clocksource_tsc_early);
1388                 return 0;
1389         }
1390
1391         schedule_delayed_work(&tsc_irqwork, 0);
1392         return 0;
1393 }
1394 /*
1395  * We use device_initcall here, to ensure we run after the hpet
1396  * is fully initialized, which may occur at fs_initcall time.
1397  */
1398 device_initcall(init_tsc_clocksource);
1399
1400 static bool __init determine_cpu_tsc_frequencies(bool early)
1401 {
1402         /* Make sure that cpu and tsc are not already calibrated */
1403         WARN_ON(cpu_khz || tsc_khz);
1404
1405         if (early) {
1406                 cpu_khz = x86_platform.calibrate_cpu();
1407                 tsc_khz = x86_platform.calibrate_tsc();
1408         } else {
1409                 /* We should not be here with non-native cpu calibration */
1410                 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1411                 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1412         }
1413
1414         /*
1415          * Trust non-zero tsc_khz as authoritative,
1416          * and use it to sanity check cpu_khz,
1417          * which will be off if system timer is off.
1418          */
1419         if (tsc_khz == 0)
1420                 tsc_khz = cpu_khz;
1421         else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1422                 cpu_khz = tsc_khz;
1423
1424         if (tsc_khz == 0)
1425                 return false;
1426
1427         pr_info("Detected %lu.%03lu MHz processor\n",
1428                 (unsigned long)cpu_khz / KHZ,
1429                 (unsigned long)cpu_khz % KHZ);
1430
1431         if (cpu_khz != tsc_khz) {
1432                 pr_info("Detected %lu.%03lu MHz TSC",
1433                         (unsigned long)tsc_khz / KHZ,
1434                         (unsigned long)tsc_khz % KHZ);
1435         }
1436         return true;
1437 }
1438
1439 static unsigned long __init get_loops_per_jiffy(void)
1440 {
1441         u64 lpj = (u64)tsc_khz * KHZ;
1442
1443         do_div(lpj, HZ);
1444         return lpj;
1445 }
1446
1447 static void __init tsc_enable_sched_clock(void)
1448 {
1449         /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1450         tsc_store_and_check_tsc_adjust(true);
1451         cyc2ns_init_boot_cpu();
1452         static_branch_enable(&__use_tsc);
1453 }
1454
1455 void __init tsc_early_init(void)
1456 {
1457         if (!boot_cpu_has(X86_FEATURE_TSC))
1458                 return;
1459         /* Don't change UV TSC multi-chassis synchronization */
1460         if (is_early_uv_system())
1461                 return;
1462         if (!determine_cpu_tsc_frequencies(true))
1463                 return;
1464         loops_per_jiffy = get_loops_per_jiffy();
1465
1466         tsc_enable_sched_clock();
1467 }
1468
1469 void __init tsc_init(void)
1470 {
1471         /*
1472          * native_calibrate_cpu_early can only calibrate using methods that are
1473          * available early in boot.
1474          */
1475         if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1476                 x86_platform.calibrate_cpu = native_calibrate_cpu;
1477
1478         if (!boot_cpu_has(X86_FEATURE_TSC)) {
1479                 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1480                 return;
1481         }
1482
1483         if (!tsc_khz) {
1484                 /* We failed to determine frequencies earlier, try again */
1485                 if (!determine_cpu_tsc_frequencies(false)) {
1486                         mark_tsc_unstable("could not calculate TSC khz");
1487                         setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1488                         return;
1489                 }
1490                 tsc_enable_sched_clock();
1491         }
1492
1493         cyc2ns_init_secondary_cpus();
1494
1495         if (!no_sched_irq_time)
1496                 enable_sched_clock_irqtime();
1497
1498         lpj_fine = get_loops_per_jiffy();
1499         use_tsc_delay();
1500
1501         check_system_tsc_reliable();
1502
1503         if (unsynchronized_tsc()) {
1504                 mark_tsc_unstable("TSCs unsynchronized");
1505                 return;
1506         }
1507
1508         if (tsc_clocksource_reliable || no_tsc_watchdog)
1509                 clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1510
1511         clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1512         detect_art();
1513 }
1514
1515 #ifdef CONFIG_SMP
1516 /*
1517  * If we have a constant TSC and are using the TSC for the delay loop,
1518  * we can skip clock calibration if another cpu in the same socket has already
1519  * been calibrated. This assumes that CONSTANT_TSC applies to all
1520  * cpus in the socket - this should be a safe assumption.
1521  */
1522 unsigned long calibrate_delay_is_known(void)
1523 {
1524         int sibling, cpu = smp_processor_id();
1525         int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1526         const struct cpumask *mask = topology_core_cpumask(cpu);
1527
1528         if (!constant_tsc || !mask)
1529                 return 0;
1530
1531         sibling = cpumask_any_but(mask, cpu);
1532         if (sibling < nr_cpu_ids)
1533                 return cpu_data(sibling).loops_per_jiffy;
1534         return 0;
1535 }
1536 #endif